1// SPDX-License-Identifier: GPL-2.0-only
2/******************************************************************************
3
4  Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5
6  802.11 status code portion of this file from ethereal-0.10.6:
7    Copyright 2000, Axis Communications AB
8    Ethereal - Network traffic analyzer
9    By Gerald Combs <gerald@ethereal.com>
10    Copyright 1998 Gerald Combs
11
12
13  Contact Information:
14  Intel Linux Wireless <ilw@linux.intel.com>
15  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16
17******************************************************************************/
18
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <net/cfg80211-wext.h>
22#include "ipw2200.h"
23#include "ipw.h"
24
25
26#ifndef KBUILD_EXTMOD
27#define VK "k"
28#else
29#define VK
30#endif
31
32#ifdef CONFIG_IPW2200_DEBUG
33#define VD "d"
34#else
35#define VD
36#endif
37
38#ifdef CONFIG_IPW2200_MONITOR
39#define VM "m"
40#else
41#define VM
42#endif
43
44#ifdef CONFIG_IPW2200_PROMISCUOUS
45#define VP "p"
46#else
47#define VP
48#endif
49
50#ifdef CONFIG_IPW2200_RADIOTAP
51#define VR "r"
52#else
53#define VR
54#endif
55
56#ifdef CONFIG_IPW2200_QOS
57#define VQ "q"
58#else
59#define VQ
60#endif
61
62#define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63#define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
64#define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
65#define DRV_VERSION     IPW2200_VERSION
66
67#define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68
69MODULE_DESCRIPTION(DRV_DESCRIPTION);
70MODULE_VERSION(DRV_VERSION);
71MODULE_AUTHOR(DRV_COPYRIGHT);
72MODULE_LICENSE("GPL");
73MODULE_FIRMWARE("ipw2200-ibss.fw");
74#ifdef CONFIG_IPW2200_MONITOR
75MODULE_FIRMWARE("ipw2200-sniffer.fw");
76#endif
77MODULE_FIRMWARE("ipw2200-bss.fw");
78
79static int cmdlog = 0;
80static int debug = 0;
81static int default_channel = 0;
82static int network_mode = 0;
83
84static u32 ipw_debug_level;
85static int associate;
86static int auto_create = 1;
87static int led_support = 1;
88static int disable = 0;
89static int bt_coexist = 0;
90static int hwcrypto = 0;
91static int roaming = 1;
92static const char ipw_modes[] = {
93	'a', 'b', 'g', '?'
94};
95static int antenna = CFG_SYS_ANTENNA_BOTH;
96
97#ifdef CONFIG_IPW2200_PROMISCUOUS
98static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
99#endif
100
101static struct ieee80211_rate ipw2200_rates[] = {
102	{ .bitrate = 10 },
103	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106	{ .bitrate = 60 },
107	{ .bitrate = 90 },
108	{ .bitrate = 120 },
109	{ .bitrate = 180 },
110	{ .bitrate = 240 },
111	{ .bitrate = 360 },
112	{ .bitrate = 480 },
113	{ .bitrate = 540 }
114};
115
116#define ipw2200_a_rates		(ipw2200_rates + 4)
117#define ipw2200_num_a_rates	8
118#define ipw2200_bg_rates	(ipw2200_rates + 0)
119#define ipw2200_num_bg_rates	12
120
121/* Ugly macro to convert literal channel numbers into their mhz equivalents
122 * There are certianly some conditions that will break this (like feeding it '30')
123 * but they shouldn't arise since nothing talks on channel 30. */
124#define ieee80211chan2mhz(x) \
125	(((x) <= 14) ? \
126	(((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127	((x) + 1000) * 5)
128
129#ifdef CONFIG_IPW2200_QOS
130static int qos_enable = 0;
131static int qos_burst_enable = 0;
132static int qos_no_ack_mask = 0;
133static int burst_duration_CCK = 0;
134static int burst_duration_OFDM = 0;
135
136static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137	{QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138	 QOS_TX3_CW_MIN_OFDM},
139	{QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140	 QOS_TX3_CW_MAX_OFDM},
141	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143	{QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144	 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145};
146
147static struct libipw_qos_parameters def_qos_parameters_CCK = {
148	{QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149	 QOS_TX3_CW_MIN_CCK},
150	{QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151	 QOS_TX3_CW_MAX_CCK},
152	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154	{QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155	 QOS_TX3_TXOP_LIMIT_CCK}
156};
157
158static struct libipw_qos_parameters def_parameters_OFDM = {
159	{DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160	 DEF_TX3_CW_MIN_OFDM},
161	{DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162	 DEF_TX3_CW_MAX_OFDM},
163	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165	{DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166	 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167};
168
169static struct libipw_qos_parameters def_parameters_CCK = {
170	{DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171	 DEF_TX3_CW_MIN_CCK},
172	{DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173	 DEF_TX3_CW_MAX_CCK},
174	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176	{DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177	 DEF_TX3_TXOP_LIMIT_CCK}
178};
179
180static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181
182static int from_priority_to_tx_queue[] = {
183	IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184	IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185};
186
187static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188
189static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190				       *qos_param);
191static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192				     *qos_param);
193#endif				/* CONFIG_IPW2200_QOS */
194
195static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196static void ipw_remove_current_network(struct ipw_priv *priv);
197static void ipw_rx(struct ipw_priv *priv);
198static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199				struct clx2_tx_queue *txq, int qindex);
200static int ipw_queue_reset(struct ipw_priv *priv);
201
202static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
203			     int len, int sync);
204
205static void ipw_tx_queue_free(struct ipw_priv *);
206
207static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209static void ipw_rx_queue_replenish(void *);
210static int ipw_up(struct ipw_priv *);
211static void ipw_bg_up(struct work_struct *work);
212static void ipw_down(struct ipw_priv *);
213static void ipw_bg_down(struct work_struct *work);
214static int ipw_config(struct ipw_priv *);
215static int init_supported_rates(struct ipw_priv *priv,
216				struct ipw_supported_rates *prates);
217static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218static void ipw_send_wep_keys(struct ipw_priv *, int);
219
220static int snprint_line(char *buf, size_t count,
221			const u8 * data, u32 len, u32 ofs)
222{
223	int out, i, j, l;
224	char c;
225
226	out = scnprintf(buf, count, "%08X", ofs);
227
228	for (l = 0, i = 0; i < 2; i++) {
229		out += scnprintf(buf + out, count - out, " ");
230		for (j = 0; j < 8 && l < len; j++, l++)
231			out += scnprintf(buf + out, count - out, "%02X ",
232					data[(i * 8 + j)]);
233		for (; j < 8; j++)
234			out += scnprintf(buf + out, count - out, "   ");
235	}
236
237	out += scnprintf(buf + out, count - out, " ");
238	for (l = 0, i = 0; i < 2; i++) {
239		out += scnprintf(buf + out, count - out, " ");
240		for (j = 0; j < 8 && l < len; j++, l++) {
241			c = data[(i * 8 + j)];
242			if (!isascii(c) || !isprint(c))
243				c = '.';
244
245			out += scnprintf(buf + out, count - out, "%c", c);
246		}
247
248		for (; j < 8; j++)
249			out += scnprintf(buf + out, count - out, " ");
250	}
251
252	return out;
253}
254
255static void printk_buf(int level, const u8 * data, u32 len)
256{
257	char line[81];
258	u32 ofs = 0;
259	if (!(ipw_debug_level & level))
260		return;
261
262	while (len) {
263		snprint_line(line, sizeof(line), &data[ofs],
264			     min(len, 16U), ofs);
265		printk(KERN_DEBUG "%s\n", line);
266		ofs += 16;
267		len -= min(len, 16U);
268	}
269}
270
271static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272{
273	size_t out = size;
274	u32 ofs = 0;
275	int total = 0;
276
277	while (size && len) {
278		out = snprint_line(output, size, &data[ofs],
279				   min_t(size_t, len, 16U), ofs);
280
281		ofs += 16;
282		output += out;
283		size -= out;
284		len -= min_t(size_t, len, 16U);
285		total += out;
286	}
287	return total;
288}
289
290/* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293
294/* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297
298/* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
300static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301{
302	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303		     __LINE__, (u32) (b), (u32) (c));
304	_ipw_write_reg8(a, b, c);
305}
306
307/* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
309static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310{
311	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312		     __LINE__, (u32) (b), (u32) (c));
313	_ipw_write_reg16(a, b, c);
314}
315
316/* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
318static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319{
320	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321		     __LINE__, (u32) (b), (u32) (c));
322	_ipw_write_reg32(a, b, c);
323}
324
325/* 8-bit direct write (low 4K) */
326static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327		u8 val)
328{
329	writeb(val, ipw->hw_base + ofs);
330}
331
332/* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333#define ipw_write8(ipw, ofs, val) do { \
334	IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335			__LINE__, (u32)(ofs), (u32)(val)); \
336	_ipw_write8(ipw, ofs, val); \
337} while (0)
338
339/* 16-bit direct write (low 4K) */
340static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341		u16 val)
342{
343	writew(val, ipw->hw_base + ofs);
344}
345
346/* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347#define ipw_write16(ipw, ofs, val) do { \
348	IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349			__LINE__, (u32)(ofs), (u32)(val)); \
350	_ipw_write16(ipw, ofs, val); \
351} while (0)
352
353/* 32-bit direct write (low 4K) */
354static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355		u32 val)
356{
357	writel(val, ipw->hw_base + ofs);
358}
359
360/* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361#define ipw_write32(ipw, ofs, val) do { \
362	IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363			__LINE__, (u32)(ofs), (u32)(val)); \
364	_ipw_write32(ipw, ofs, val); \
365} while (0)
366
367/* 8-bit direct read (low 4K) */
368static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369{
370	return readb(ipw->hw_base + ofs);
371}
372
373/* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374#define ipw_read8(ipw, ofs) ({ \
375	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376			(u32)(ofs)); \
377	_ipw_read8(ipw, ofs); \
378})
379
380/* 32-bit direct read (low 4K) */
381static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
382{
383	return readl(ipw->hw_base + ofs);
384}
385
386/* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387#define ipw_read32(ipw, ofs) ({ \
388	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
389			(u32)(ofs)); \
390	_ipw_read32(ipw, ofs); \
391})
392
393static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
394/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
395#define ipw_read_indirect(a, b, c, d) ({ \
396	IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
397			__LINE__, (u32)(b), (u32)(d)); \
398	_ipw_read_indirect(a, b, c, d); \
399})
400
401/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
402static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
403				int num);
404#define ipw_write_indirect(a, b, c, d) do { \
405	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
406			__LINE__, (u32)(b), (u32)(d)); \
407	_ipw_write_indirect(a, b, c, d); \
408} while (0)
409
410/* 32-bit indirect write (above 4K) */
411static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
412{
413	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
414	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
415	_ipw_write32(priv, IPW_INDIRECT_DATA, value);
416}
417
418/* 8-bit indirect write (above 4K) */
419static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
420{
421	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
422	u32 dif_len = reg - aligned_addr;
423
424	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
425	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
426	_ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
427}
428
429/* 16-bit indirect write (above 4K) */
430static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
431{
432	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
433	u32 dif_len = (reg - aligned_addr) & (~0x1ul);
434
435	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
436	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
437	_ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
438}
439
440/* 8-bit indirect read (above 4K) */
441static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
442{
443	u32 word;
444	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
445	IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
446	word = _ipw_read32(priv, IPW_INDIRECT_DATA);
447	return (word >> ((reg & 0x3) * 8)) & 0xff;
448}
449
450/* 32-bit indirect read (above 4K) */
451static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
452{
453	u32 value;
454
455	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
456
457	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
458	value = _ipw_read32(priv, IPW_INDIRECT_DATA);
459	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
460	return value;
461}
462
463/* General purpose, no alignment requirement, iterative (multi-byte) read, */
464/*    for area above 1st 4K of SRAM/reg space */
465static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
466			       int num)
467{
468	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
469	u32 dif_len = addr - aligned_addr;
470	u32 i;
471
472	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
473
474	if (num <= 0) {
475		return;
476	}
477
478	/* Read the first dword (or portion) byte by byte */
479	if (unlikely(dif_len)) {
480		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
481		/* Start reading at aligned_addr + dif_len */
482		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
483			*buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
484		aligned_addr += 4;
485	}
486
487	/* Read all of the middle dwords as dwords, with auto-increment */
488	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
489	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
490		*(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
491
492	/* Read the last dword (or portion) byte by byte */
493	if (unlikely(num)) {
494		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495		for (i = 0; num > 0; i++, num--)
496			*buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
497	}
498}
499
500/* General purpose, no alignment requirement, iterative (multi-byte) write, */
501/*    for area above 1st 4K of SRAM/reg space */
502static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
503				int num)
504{
505	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
506	u32 dif_len = addr - aligned_addr;
507	u32 i;
508
509	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
510
511	if (num <= 0) {
512		return;
513	}
514
515	/* Write the first dword (or portion) byte by byte */
516	if (unlikely(dif_len)) {
517		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
518		/* Start writing at aligned_addr + dif_len */
519		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
520			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
521		aligned_addr += 4;
522	}
523
524	/* Write all of the middle dwords as dwords, with auto-increment */
525	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
526	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
527		_ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
528
529	/* Write the last dword (or portion) byte by byte */
530	if (unlikely(num)) {
531		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
532		for (i = 0; num > 0; i++, num--, buf++)
533			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534	}
535}
536
537/* General purpose, no alignment requirement, iterative (multi-byte) write, */
538/*    for 1st 4K of SRAM/regs space */
539static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
540			     int num)
541{
542	memcpy_toio((priv->hw_base + addr), buf, num);
543}
544
545/* Set bit(s) in low 4K of SRAM/regs */
546static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
547{
548	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
549}
550
551/* Clear bit(s) in low 4K of SRAM/regs */
552static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
553{
554	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
555}
556
557static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
558{
559	if (priv->status & STATUS_INT_ENABLED)
560		return;
561	priv->status |= STATUS_INT_ENABLED;
562	ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
563}
564
565static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
566{
567	if (!(priv->status & STATUS_INT_ENABLED))
568		return;
569	priv->status &= ~STATUS_INT_ENABLED;
570	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
571}
572
573static inline void ipw_enable_interrupts(struct ipw_priv *priv)
574{
575	unsigned long flags;
576
577	spin_lock_irqsave(&priv->irq_lock, flags);
578	__ipw_enable_interrupts(priv);
579	spin_unlock_irqrestore(&priv->irq_lock, flags);
580}
581
582static inline void ipw_disable_interrupts(struct ipw_priv *priv)
583{
584	unsigned long flags;
585
586	spin_lock_irqsave(&priv->irq_lock, flags);
587	__ipw_disable_interrupts(priv);
588	spin_unlock_irqrestore(&priv->irq_lock, flags);
589}
590
591static char *ipw_error_desc(u32 val)
592{
593	switch (val) {
594	case IPW_FW_ERROR_OK:
595		return "ERROR_OK";
596	case IPW_FW_ERROR_FAIL:
597		return "ERROR_FAIL";
598	case IPW_FW_ERROR_MEMORY_UNDERFLOW:
599		return "MEMORY_UNDERFLOW";
600	case IPW_FW_ERROR_MEMORY_OVERFLOW:
601		return "MEMORY_OVERFLOW";
602	case IPW_FW_ERROR_BAD_PARAM:
603		return "BAD_PARAM";
604	case IPW_FW_ERROR_BAD_CHECKSUM:
605		return "BAD_CHECKSUM";
606	case IPW_FW_ERROR_NMI_INTERRUPT:
607		return "NMI_INTERRUPT";
608	case IPW_FW_ERROR_BAD_DATABASE:
609		return "BAD_DATABASE";
610	case IPW_FW_ERROR_ALLOC_FAIL:
611		return "ALLOC_FAIL";
612	case IPW_FW_ERROR_DMA_UNDERRUN:
613		return "DMA_UNDERRUN";
614	case IPW_FW_ERROR_DMA_STATUS:
615		return "DMA_STATUS";
616	case IPW_FW_ERROR_DINO_ERROR:
617		return "DINO_ERROR";
618	case IPW_FW_ERROR_EEPROM_ERROR:
619		return "EEPROM_ERROR";
620	case IPW_FW_ERROR_SYSASSERT:
621		return "SYSASSERT";
622	case IPW_FW_ERROR_FATAL_ERROR:
623		return "FATAL_ERROR";
624	default:
625		return "UNKNOWN_ERROR";
626	}
627}
628
629static void ipw_dump_error_log(struct ipw_priv *priv,
630			       struct ipw_fw_error *error)
631{
632	u32 i;
633
634	if (!error) {
635		IPW_ERROR("Error allocating and capturing error log.  "
636			  "Nothing to dump.\n");
637		return;
638	}
639
640	IPW_ERROR("Start IPW Error Log Dump:\n");
641	IPW_ERROR("Status: 0x%08X, Config: %08X\n",
642		  error->status, error->config);
643
644	for (i = 0; i < error->elem_len; i++)
645		IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
646			  ipw_error_desc(error->elem[i].desc),
647			  error->elem[i].time,
648			  error->elem[i].blink1,
649			  error->elem[i].blink2,
650			  error->elem[i].link1,
651			  error->elem[i].link2, error->elem[i].data);
652	for (i = 0; i < error->log_len; i++)
653		IPW_ERROR("%i\t0x%08x\t%i\n",
654			  error->log[i].time,
655			  error->log[i].data, error->log[i].event);
656}
657
658static inline int ipw_is_init(struct ipw_priv *priv)
659{
660	return (priv->status & STATUS_INIT) ? 1 : 0;
661}
662
663static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
664{
665	u32 addr, field_info, field_len, field_count, total_len;
666
667	IPW_DEBUG_ORD("ordinal = %i\n", ord);
668
669	if (!priv || !val || !len) {
670		IPW_DEBUG_ORD("Invalid argument\n");
671		return -EINVAL;
672	}
673
674	/* verify device ordinal tables have been initialized */
675	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
676		IPW_DEBUG_ORD("Access ordinals before initialization\n");
677		return -EINVAL;
678	}
679
680	switch (IPW_ORD_TABLE_ID_MASK & ord) {
681	case IPW_ORD_TABLE_0_MASK:
682		/*
683		 * TABLE 0: Direct access to a table of 32 bit values
684		 *
685		 * This is a very simple table with the data directly
686		 * read from the table
687		 */
688
689		/* remove the table id from the ordinal */
690		ord &= IPW_ORD_TABLE_VALUE_MASK;
691
692		/* boundary check */
693		if (ord > priv->table0_len) {
694			IPW_DEBUG_ORD("ordinal value (%i) longer then "
695				      "max (%i)\n", ord, priv->table0_len);
696			return -EINVAL;
697		}
698
699		/* verify we have enough room to store the value */
700		if (*len < sizeof(u32)) {
701			IPW_DEBUG_ORD("ordinal buffer length too small, "
702				      "need %zd\n", sizeof(u32));
703			return -EINVAL;
704		}
705
706		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
707			      ord, priv->table0_addr + (ord << 2));
708
709		*len = sizeof(u32);
710		ord <<= 2;
711		*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
712		break;
713
714	case IPW_ORD_TABLE_1_MASK:
715		/*
716		 * TABLE 1: Indirect access to a table of 32 bit values
717		 *
718		 * This is a fairly large table of u32 values each
719		 * representing starting addr for the data (which is
720		 * also a u32)
721		 */
722
723		/* remove the table id from the ordinal */
724		ord &= IPW_ORD_TABLE_VALUE_MASK;
725
726		/* boundary check */
727		if (ord > priv->table1_len) {
728			IPW_DEBUG_ORD("ordinal value too long\n");
729			return -EINVAL;
730		}
731
732		/* verify we have enough room to store the value */
733		if (*len < sizeof(u32)) {
734			IPW_DEBUG_ORD("ordinal buffer length too small, "
735				      "need %zd\n", sizeof(u32));
736			return -EINVAL;
737		}
738
739		*((u32 *) val) =
740		    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
741		*len = sizeof(u32);
742		break;
743
744	case IPW_ORD_TABLE_2_MASK:
745		/*
746		 * TABLE 2: Indirect access to a table of variable sized values
747		 *
748		 * This table consist of six values, each containing
749		 *     - dword containing the starting offset of the data
750		 *     - dword containing the lengh in the first 16bits
751		 *       and the count in the second 16bits
752		 */
753
754		/* remove the table id from the ordinal */
755		ord &= IPW_ORD_TABLE_VALUE_MASK;
756
757		/* boundary check */
758		if (ord > priv->table2_len) {
759			IPW_DEBUG_ORD("ordinal value too long\n");
760			return -EINVAL;
761		}
762
763		/* get the address of statistic */
764		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
765
766		/* get the second DW of statistics ;
767		 * two 16-bit words - first is length, second is count */
768		field_info =
769		    ipw_read_reg32(priv,
770				   priv->table2_addr + (ord << 3) +
771				   sizeof(u32));
772
773		/* get each entry length */
774		field_len = *((u16 *) & field_info);
775
776		/* get number of entries */
777		field_count = *(((u16 *) & field_info) + 1);
778
779		/* abort if not enough memory */
780		total_len = field_len * field_count;
781		if (total_len > *len) {
782			*len = total_len;
783			return -EINVAL;
784		}
785
786		*len = total_len;
787		if (!total_len)
788			return 0;
789
790		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
791			      "field_info = 0x%08x\n",
792			      addr, total_len, field_info);
793		ipw_read_indirect(priv, addr, val, total_len);
794		break;
795
796	default:
797		IPW_DEBUG_ORD("Invalid ordinal!\n");
798		return -EINVAL;
799
800	}
801
802	return 0;
803}
804
805static void ipw_init_ordinals(struct ipw_priv *priv)
806{
807	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
808	priv->table0_len = ipw_read32(priv, priv->table0_addr);
809
810	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
811		      priv->table0_addr, priv->table0_len);
812
813	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
814	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
815
816	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
817		      priv->table1_addr, priv->table1_len);
818
819	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
820	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
821	priv->table2_len &= 0x0000ffff;	/* use first two bytes */
822
823	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
824		      priv->table2_addr, priv->table2_len);
825
826}
827
828static u32 ipw_register_toggle(u32 reg)
829{
830	reg &= ~IPW_START_STANDBY;
831	if (reg & IPW_GATE_ODMA)
832		reg &= ~IPW_GATE_ODMA;
833	if (reg & IPW_GATE_IDMA)
834		reg &= ~IPW_GATE_IDMA;
835	if (reg & IPW_GATE_ADMA)
836		reg &= ~IPW_GATE_ADMA;
837	return reg;
838}
839
840/*
841 * LED behavior:
842 * - On radio ON, turn on any LEDs that require to be on during start
843 * - On initialization, start unassociated blink
844 * - On association, disable unassociated blink
845 * - On disassociation, start unassociated blink
846 * - On radio OFF, turn off any LEDs started during radio on
847 *
848 */
849#define LD_TIME_LINK_ON msecs_to_jiffies(300)
850#define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
851#define LD_TIME_ACT_ON msecs_to_jiffies(250)
852
853static void ipw_led_link_on(struct ipw_priv *priv)
854{
855	unsigned long flags;
856	u32 led;
857
858	/* If configured to not use LEDs, or nic_type is 1,
859	 * then we don't toggle a LINK led */
860	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
861		return;
862
863	spin_lock_irqsave(&priv->lock, flags);
864
865	if (!(priv->status & STATUS_RF_KILL_MASK) &&
866	    !(priv->status & STATUS_LED_LINK_ON)) {
867		IPW_DEBUG_LED("Link LED On\n");
868		led = ipw_read_reg32(priv, IPW_EVENT_REG);
869		led |= priv->led_association_on;
870
871		led = ipw_register_toggle(led);
872
873		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
874		ipw_write_reg32(priv, IPW_EVENT_REG, led);
875
876		priv->status |= STATUS_LED_LINK_ON;
877
878		/* If we aren't associated, schedule turning the LED off */
879		if (!(priv->status & STATUS_ASSOCIATED))
880			schedule_delayed_work(&priv->led_link_off,
881					      LD_TIME_LINK_ON);
882	}
883
884	spin_unlock_irqrestore(&priv->lock, flags);
885}
886
887static void ipw_bg_led_link_on(struct work_struct *work)
888{
889	struct ipw_priv *priv =
890		container_of(work, struct ipw_priv, led_link_on.work);
891	mutex_lock(&priv->mutex);
892	ipw_led_link_on(priv);
893	mutex_unlock(&priv->mutex);
894}
895
896static void ipw_led_link_off(struct ipw_priv *priv)
897{
898	unsigned long flags;
899	u32 led;
900
901	/* If configured not to use LEDs, or nic type is 1,
902	 * then we don't goggle the LINK led. */
903	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
904		return;
905
906	spin_lock_irqsave(&priv->lock, flags);
907
908	if (priv->status & STATUS_LED_LINK_ON) {
909		led = ipw_read_reg32(priv, IPW_EVENT_REG);
910		led &= priv->led_association_off;
911		led = ipw_register_toggle(led);
912
913		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
914		ipw_write_reg32(priv, IPW_EVENT_REG, led);
915
916		IPW_DEBUG_LED("Link LED Off\n");
917
918		priv->status &= ~STATUS_LED_LINK_ON;
919
920		/* If we aren't associated and the radio is on, schedule
921		 * turning the LED on (blink while unassociated) */
922		if (!(priv->status & STATUS_RF_KILL_MASK) &&
923		    !(priv->status & STATUS_ASSOCIATED))
924			schedule_delayed_work(&priv->led_link_on,
925					      LD_TIME_LINK_OFF);
926
927	}
928
929	spin_unlock_irqrestore(&priv->lock, flags);
930}
931
932static void ipw_bg_led_link_off(struct work_struct *work)
933{
934	struct ipw_priv *priv =
935		container_of(work, struct ipw_priv, led_link_off.work);
936	mutex_lock(&priv->mutex);
937	ipw_led_link_off(priv);
938	mutex_unlock(&priv->mutex);
939}
940
941static void __ipw_led_activity_on(struct ipw_priv *priv)
942{
943	u32 led;
944
945	if (priv->config & CFG_NO_LED)
946		return;
947
948	if (priv->status & STATUS_RF_KILL_MASK)
949		return;
950
951	if (!(priv->status & STATUS_LED_ACT_ON)) {
952		led = ipw_read_reg32(priv, IPW_EVENT_REG);
953		led |= priv->led_activity_on;
954
955		led = ipw_register_toggle(led);
956
957		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
958		ipw_write_reg32(priv, IPW_EVENT_REG, led);
959
960		IPW_DEBUG_LED("Activity LED On\n");
961
962		priv->status |= STATUS_LED_ACT_ON;
963
964		cancel_delayed_work(&priv->led_act_off);
965		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
966	} else {
967		/* Reschedule LED off for full time period */
968		cancel_delayed_work(&priv->led_act_off);
969		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
970	}
971}
972
973#if 0
974void ipw_led_activity_on(struct ipw_priv *priv)
975{
976	unsigned long flags;
977	spin_lock_irqsave(&priv->lock, flags);
978	__ipw_led_activity_on(priv);
979	spin_unlock_irqrestore(&priv->lock, flags);
980}
981#endif  /*  0  */
982
983static void ipw_led_activity_off(struct ipw_priv *priv)
984{
985	unsigned long flags;
986	u32 led;
987
988	if (priv->config & CFG_NO_LED)
989		return;
990
991	spin_lock_irqsave(&priv->lock, flags);
992
993	if (priv->status & STATUS_LED_ACT_ON) {
994		led = ipw_read_reg32(priv, IPW_EVENT_REG);
995		led &= priv->led_activity_off;
996
997		led = ipw_register_toggle(led);
998
999		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1000		ipw_write_reg32(priv, IPW_EVENT_REG, led);
1001
1002		IPW_DEBUG_LED("Activity LED Off\n");
1003
1004		priv->status &= ~STATUS_LED_ACT_ON;
1005	}
1006
1007	spin_unlock_irqrestore(&priv->lock, flags);
1008}
1009
1010static void ipw_bg_led_activity_off(struct work_struct *work)
1011{
1012	struct ipw_priv *priv =
1013		container_of(work, struct ipw_priv, led_act_off.work);
1014	mutex_lock(&priv->mutex);
1015	ipw_led_activity_off(priv);
1016	mutex_unlock(&priv->mutex);
1017}
1018
1019static void ipw_led_band_on(struct ipw_priv *priv)
1020{
1021	unsigned long flags;
1022	u32 led;
1023
1024	/* Only nic type 1 supports mode LEDs */
1025	if (priv->config & CFG_NO_LED ||
1026	    priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1027		return;
1028
1029	spin_lock_irqsave(&priv->lock, flags);
1030
1031	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1032	if (priv->assoc_network->mode == IEEE_A) {
1033		led |= priv->led_ofdm_on;
1034		led &= priv->led_association_off;
1035		IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1036	} else if (priv->assoc_network->mode == IEEE_G) {
1037		led |= priv->led_ofdm_on;
1038		led |= priv->led_association_on;
1039		IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1040	} else {
1041		led &= priv->led_ofdm_off;
1042		led |= priv->led_association_on;
1043		IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1044	}
1045
1046	led = ipw_register_toggle(led);
1047
1048	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1049	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1050
1051	spin_unlock_irqrestore(&priv->lock, flags);
1052}
1053
1054static void ipw_led_band_off(struct ipw_priv *priv)
1055{
1056	unsigned long flags;
1057	u32 led;
1058
1059	/* Only nic type 1 supports mode LEDs */
1060	if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1061		return;
1062
1063	spin_lock_irqsave(&priv->lock, flags);
1064
1065	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1066	led &= priv->led_ofdm_off;
1067	led &= priv->led_association_off;
1068
1069	led = ipw_register_toggle(led);
1070
1071	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1072	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1073
1074	spin_unlock_irqrestore(&priv->lock, flags);
1075}
1076
1077static void ipw_led_radio_on(struct ipw_priv *priv)
1078{
1079	ipw_led_link_on(priv);
1080}
1081
1082static void ipw_led_radio_off(struct ipw_priv *priv)
1083{
1084	ipw_led_activity_off(priv);
1085	ipw_led_link_off(priv);
1086}
1087
1088static void ipw_led_link_up(struct ipw_priv *priv)
1089{
1090	/* Set the Link Led on for all nic types */
1091	ipw_led_link_on(priv);
1092}
1093
1094static void ipw_led_link_down(struct ipw_priv *priv)
1095{
1096	ipw_led_activity_off(priv);
1097	ipw_led_link_off(priv);
1098
1099	if (priv->status & STATUS_RF_KILL_MASK)
1100		ipw_led_radio_off(priv);
1101}
1102
1103static void ipw_led_init(struct ipw_priv *priv)
1104{
1105	priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1106
1107	/* Set the default PINs for the link and activity leds */
1108	priv->led_activity_on = IPW_ACTIVITY_LED;
1109	priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1110
1111	priv->led_association_on = IPW_ASSOCIATED_LED;
1112	priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1113
1114	/* Set the default PINs for the OFDM leds */
1115	priv->led_ofdm_on = IPW_OFDM_LED;
1116	priv->led_ofdm_off = ~(IPW_OFDM_LED);
1117
1118	switch (priv->nic_type) {
1119	case EEPROM_NIC_TYPE_1:
1120		/* In this NIC type, the LEDs are reversed.... */
1121		priv->led_activity_on = IPW_ASSOCIATED_LED;
1122		priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1123		priv->led_association_on = IPW_ACTIVITY_LED;
1124		priv->led_association_off = ~(IPW_ACTIVITY_LED);
1125
1126		if (!(priv->config & CFG_NO_LED))
1127			ipw_led_band_on(priv);
1128
1129		/* And we don't blink link LEDs for this nic, so
1130		 * just return here */
1131		return;
1132
1133	case EEPROM_NIC_TYPE_3:
1134	case EEPROM_NIC_TYPE_2:
1135	case EEPROM_NIC_TYPE_4:
1136	case EEPROM_NIC_TYPE_0:
1137		break;
1138
1139	default:
1140		IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1141			       priv->nic_type);
1142		priv->nic_type = EEPROM_NIC_TYPE_0;
1143		break;
1144	}
1145
1146	if (!(priv->config & CFG_NO_LED)) {
1147		if (priv->status & STATUS_ASSOCIATED)
1148			ipw_led_link_on(priv);
1149		else
1150			ipw_led_link_off(priv);
1151	}
1152}
1153
1154static void ipw_led_shutdown(struct ipw_priv *priv)
1155{
1156	ipw_led_activity_off(priv);
1157	ipw_led_link_off(priv);
1158	ipw_led_band_off(priv);
1159	cancel_delayed_work(&priv->led_link_on);
1160	cancel_delayed_work(&priv->led_link_off);
1161	cancel_delayed_work(&priv->led_act_off);
1162}
1163
1164/*
1165 * The following adds a new attribute to the sysfs representation
1166 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1167 * used for controlling the debug level.
1168 *
1169 * See the level definitions in ipw for details.
1170 */
1171static ssize_t debug_level_show(struct device_driver *d, char *buf)
1172{
1173	return sprintf(buf, "0x%08X\n", ipw_debug_level);
1174}
1175
1176static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1177				 size_t count)
1178{
1179	unsigned long val;
1180
1181	int result = kstrtoul(buf, 0, &val);
1182
1183	if (result == -EINVAL)
1184		printk(KERN_INFO DRV_NAME
1185		       ": %s is not in hex or decimal form.\n", buf);
1186	else if (result == -ERANGE)
1187		printk(KERN_INFO DRV_NAME
1188			 ": %s has overflowed.\n", buf);
1189	else
1190		ipw_debug_level = val;
1191
1192	return count;
1193}
1194static DRIVER_ATTR_RW(debug_level);
1195
1196static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1197{
1198	/* length = 1st dword in log */
1199	return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1200}
1201
1202static void ipw_capture_event_log(struct ipw_priv *priv,
1203				  u32 log_len, struct ipw_event *log)
1204{
1205	u32 base;
1206
1207	if (log_len) {
1208		base = ipw_read32(priv, IPW_EVENT_LOG);
1209		ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1210				  (u8 *) log, sizeof(*log) * log_len);
1211	}
1212}
1213
1214static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1215{
1216	struct ipw_fw_error *error;
1217	u32 log_len = ipw_get_event_log_len(priv);
1218	u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1219	u32 elem_len = ipw_read_reg32(priv, base);
1220
1221	error = kmalloc(size_add(struct_size(error, elem, elem_len),
1222				 array_size(sizeof(*error->log), log_len)),
1223			GFP_ATOMIC);
1224	if (!error) {
1225		IPW_ERROR("Memory allocation for firmware error log "
1226			  "failed.\n");
1227		return NULL;
1228	}
1229	error->jiffies = jiffies;
1230	error->status = priv->status;
1231	error->config = priv->config;
1232	error->elem_len = elem_len;
1233	error->log_len = log_len;
1234	error->log = (struct ipw_event *)(error->elem + elem_len);
1235
1236	ipw_capture_event_log(priv, log_len, error->log);
1237
1238	if (elem_len)
1239		ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240				  sizeof(*error->elem) * elem_len);
1241
1242	return error;
1243}
1244
1245static ssize_t event_log_show(struct device *d,
1246			      struct device_attribute *attr, char *buf)
1247{
1248	struct ipw_priv *priv = dev_get_drvdata(d);
1249	u32 log_len = ipw_get_event_log_len(priv);
1250	u32 log_size;
1251	struct ipw_event *log;
1252	u32 len = 0, i;
1253
1254	/* not using min() because of its strict type checking */
1255	log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256			sizeof(*log) * log_len : PAGE_SIZE;
1257	log = kzalloc(log_size, GFP_KERNEL);
1258	if (!log) {
1259		IPW_ERROR("Unable to allocate memory for log\n");
1260		return 0;
1261	}
1262	log_len = log_size / sizeof(*log);
1263	ipw_capture_event_log(priv, log_len, log);
1264
1265	len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266	for (i = 0; i < log_len; i++)
1267		len += scnprintf(buf + len, PAGE_SIZE - len,
1268				"\n%08X%08X%08X",
1269				log[i].time, log[i].event, log[i].data);
1270	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1271	kfree(log);
1272	return len;
1273}
1274
1275static DEVICE_ATTR_RO(event_log);
1276
1277static ssize_t error_show(struct device *d,
1278			  struct device_attribute *attr, char *buf)
1279{
1280	struct ipw_priv *priv = dev_get_drvdata(d);
1281	u32 len = 0, i;
1282	if (!priv->error)
1283		return 0;
1284	len += scnprintf(buf + len, PAGE_SIZE - len,
1285			"%08lX%08X%08X%08X",
1286			priv->error->jiffies,
1287			priv->error->status,
1288			priv->error->config, priv->error->elem_len);
1289	for (i = 0; i < priv->error->elem_len; i++)
1290		len += scnprintf(buf + len, PAGE_SIZE - len,
1291				"\n%08X%08X%08X%08X%08X%08X%08X",
1292				priv->error->elem[i].time,
1293				priv->error->elem[i].desc,
1294				priv->error->elem[i].blink1,
1295				priv->error->elem[i].blink2,
1296				priv->error->elem[i].link1,
1297				priv->error->elem[i].link2,
1298				priv->error->elem[i].data);
1299
1300	len += scnprintf(buf + len, PAGE_SIZE - len,
1301			"\n%08X", priv->error->log_len);
1302	for (i = 0; i < priv->error->log_len; i++)
1303		len += scnprintf(buf + len, PAGE_SIZE - len,
1304				"\n%08X%08X%08X",
1305				priv->error->log[i].time,
1306				priv->error->log[i].event,
1307				priv->error->log[i].data);
1308	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1309	return len;
1310}
1311
1312static ssize_t error_store(struct device *d,
1313			   struct device_attribute *attr,
1314			   const char *buf, size_t count)
1315{
1316	struct ipw_priv *priv = dev_get_drvdata(d);
1317
1318	kfree(priv->error);
1319	priv->error = NULL;
1320	return count;
1321}
1322
1323static DEVICE_ATTR_RW(error);
1324
1325static ssize_t cmd_log_show(struct device *d,
1326			    struct device_attribute *attr, char *buf)
1327{
1328	struct ipw_priv *priv = dev_get_drvdata(d);
1329	u32 len = 0, i;
1330	if (!priv->cmdlog)
1331		return 0;
1332	for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333	     (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1334	     i = (i + 1) % priv->cmdlog_len) {
1335		len +=
1336		    scnprintf(buf + len, PAGE_SIZE - len,
1337			     "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338			     priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339			     priv->cmdlog[i].cmd.len);
1340		len +=
1341		    snprintk_buf(buf + len, PAGE_SIZE - len,
1342				 (u8 *) priv->cmdlog[i].cmd.param,
1343				 priv->cmdlog[i].cmd.len);
1344		len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1345	}
1346	len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1347	return len;
1348}
1349
1350static DEVICE_ATTR_RO(cmd_log);
1351
1352#ifdef CONFIG_IPW2200_PROMISCUOUS
1353static void ipw_prom_free(struct ipw_priv *priv);
1354static int ipw_prom_alloc(struct ipw_priv *priv);
1355static ssize_t rtap_iface_store(struct device *d,
1356			 struct device_attribute *attr,
1357			 const char *buf, size_t count)
1358{
1359	struct ipw_priv *priv = dev_get_drvdata(d);
1360	int rc = 0;
1361
1362	if (count < 1)
1363		return -EINVAL;
1364
1365	switch (buf[0]) {
1366	case '0':
1367		if (!rtap_iface)
1368			return count;
1369
1370		if (netif_running(priv->prom_net_dev)) {
1371			IPW_WARNING("Interface is up.  Cannot unregister.\n");
1372			return count;
1373		}
1374
1375		ipw_prom_free(priv);
1376		rtap_iface = 0;
1377		break;
1378
1379	case '1':
1380		if (rtap_iface)
1381			return count;
1382
1383		rc = ipw_prom_alloc(priv);
1384		if (!rc)
1385			rtap_iface = 1;
1386		break;
1387
1388	default:
1389		return -EINVAL;
1390	}
1391
1392	if (rc) {
1393		IPW_ERROR("Failed to register promiscuous network "
1394			  "device (error %d).\n", rc);
1395	}
1396
1397	return count;
1398}
1399
1400static ssize_t rtap_iface_show(struct device *d,
1401			struct device_attribute *attr,
1402			char *buf)
1403{
1404	struct ipw_priv *priv = dev_get_drvdata(d);
1405	if (rtap_iface)
1406		return sprintf(buf, "%s", priv->prom_net_dev->name);
1407	else {
1408		buf[0] = '-';
1409		buf[1] = '1';
1410		buf[2] = '\0';
1411		return 3;
1412	}
1413}
1414
1415static DEVICE_ATTR_ADMIN_RW(rtap_iface);
1416
1417static ssize_t rtap_filter_store(struct device *d,
1418			 struct device_attribute *attr,
1419			 const char *buf, size_t count)
1420{
1421	struct ipw_priv *priv = dev_get_drvdata(d);
1422
1423	if (!priv->prom_priv) {
1424		IPW_ERROR("Attempting to set filter without "
1425			  "rtap_iface enabled.\n");
1426		return -EPERM;
1427	}
1428
1429	priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1430
1431	IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1432		       BIT_ARG16(priv->prom_priv->filter));
1433
1434	return count;
1435}
1436
1437static ssize_t rtap_filter_show(struct device *d,
1438			struct device_attribute *attr,
1439			char *buf)
1440{
1441	struct ipw_priv *priv = dev_get_drvdata(d);
1442	return sprintf(buf, "0x%04X",
1443		       priv->prom_priv ? priv->prom_priv->filter : 0);
1444}
1445
1446static DEVICE_ATTR_ADMIN_RW(rtap_filter);
1447#endif
1448
1449static ssize_t scan_age_show(struct device *d, struct device_attribute *attr,
1450			     char *buf)
1451{
1452	struct ipw_priv *priv = dev_get_drvdata(d);
1453	return sprintf(buf, "%d\n", priv->ieee->scan_age);
1454}
1455
1456static ssize_t scan_age_store(struct device *d, struct device_attribute *attr,
1457			      const char *buf, size_t count)
1458{
1459	struct ipw_priv *priv = dev_get_drvdata(d);
1460	struct net_device *dev = priv->net_dev;
1461
1462	IPW_DEBUG_INFO("enter\n");
1463
1464	unsigned long val;
1465	int result = kstrtoul(buf, 0, &val);
1466
1467	if (result == -EINVAL || result == -ERANGE) {
1468		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469	} else {
1470		priv->ieee->scan_age = val;
1471		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1472	}
1473
1474	IPW_DEBUG_INFO("exit\n");
1475	return count;
1476}
1477
1478static DEVICE_ATTR_RW(scan_age);
1479
1480static ssize_t led_show(struct device *d, struct device_attribute *attr,
1481			char *buf)
1482{
1483	struct ipw_priv *priv = dev_get_drvdata(d);
1484	return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1485}
1486
1487static ssize_t led_store(struct device *d, struct device_attribute *attr,
1488			 const char *buf, size_t count)
1489{
1490	struct ipw_priv *priv = dev_get_drvdata(d);
1491
1492	IPW_DEBUG_INFO("enter\n");
1493
1494	if (count == 0)
1495		return 0;
1496
1497	if (*buf == 0) {
1498		IPW_DEBUG_LED("Disabling LED control.\n");
1499		priv->config |= CFG_NO_LED;
1500		ipw_led_shutdown(priv);
1501	} else {
1502		IPW_DEBUG_LED("Enabling LED control.\n");
1503		priv->config &= ~CFG_NO_LED;
1504		ipw_led_init(priv);
1505	}
1506
1507	IPW_DEBUG_INFO("exit\n");
1508	return count;
1509}
1510
1511static DEVICE_ATTR_RW(led);
1512
1513static ssize_t status_show(struct device *d,
1514			   struct device_attribute *attr, char *buf)
1515{
1516	struct ipw_priv *p = dev_get_drvdata(d);
1517	return sprintf(buf, "0x%08x\n", (int)p->status);
1518}
1519
1520static DEVICE_ATTR_RO(status);
1521
1522static ssize_t cfg_show(struct device *d, struct device_attribute *attr,
1523			char *buf)
1524{
1525	struct ipw_priv *p = dev_get_drvdata(d);
1526	return sprintf(buf, "0x%08x\n", (int)p->config);
1527}
1528
1529static DEVICE_ATTR_RO(cfg);
1530
1531static ssize_t nic_type_show(struct device *d,
1532			     struct device_attribute *attr, char *buf)
1533{
1534	struct ipw_priv *priv = dev_get_drvdata(d);
1535	return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1536}
1537
1538static DEVICE_ATTR_RO(nic_type);
1539
1540static ssize_t ucode_version_show(struct device *d,
1541				  struct device_attribute *attr, char *buf)
1542{
1543	u32 len = sizeof(u32), tmp = 0;
1544	struct ipw_priv *p = dev_get_drvdata(d);
1545
1546	if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547		return 0;
1548
1549	return sprintf(buf, "0x%08x\n", tmp);
1550}
1551
1552static DEVICE_ATTR_RO(ucode_version);
1553
1554static ssize_t rtc_show(struct device *d, struct device_attribute *attr,
1555			char *buf)
1556{
1557	u32 len = sizeof(u32), tmp = 0;
1558	struct ipw_priv *p = dev_get_drvdata(d);
1559
1560	if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561		return 0;
1562
1563	return sprintf(buf, "0x%08x\n", tmp);
1564}
1565
1566static DEVICE_ATTR_RO(rtc);
1567
1568/*
1569 * Add a device attribute to view/control the delay between eeprom
1570 * operations.
1571 */
1572static ssize_t eeprom_delay_show(struct device *d,
1573				 struct device_attribute *attr, char *buf)
1574{
1575	struct ipw_priv *p = dev_get_drvdata(d);
1576	int n = p->eeprom_delay;
1577	return sprintf(buf, "%i\n", n);
1578}
1579static ssize_t eeprom_delay_store(struct device *d,
1580				  struct device_attribute *attr,
1581				  const char *buf, size_t count)
1582{
1583	struct ipw_priv *p = dev_get_drvdata(d);
1584	sscanf(buf, "%i", &p->eeprom_delay);
1585	return strnlen(buf, count);
1586}
1587
1588static DEVICE_ATTR_RW(eeprom_delay);
1589
1590static ssize_t command_event_reg_show(struct device *d,
1591				      struct device_attribute *attr, char *buf)
1592{
1593	u32 reg = 0;
1594	struct ipw_priv *p = dev_get_drvdata(d);
1595
1596	reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597	return sprintf(buf, "0x%08x\n", reg);
1598}
1599static ssize_t command_event_reg_store(struct device *d,
1600				       struct device_attribute *attr,
1601				       const char *buf, size_t count)
1602{
1603	u32 reg;
1604	struct ipw_priv *p = dev_get_drvdata(d);
1605
1606	sscanf(buf, "%x", &reg);
1607	ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608	return strnlen(buf, count);
1609}
1610
1611static DEVICE_ATTR_RW(command_event_reg);
1612
1613static ssize_t mem_gpio_reg_show(struct device *d,
1614				 struct device_attribute *attr, char *buf)
1615{
1616	u32 reg = 0;
1617	struct ipw_priv *p = dev_get_drvdata(d);
1618
1619	reg = ipw_read_reg32(p, 0x301100);
1620	return sprintf(buf, "0x%08x\n", reg);
1621}
1622static ssize_t mem_gpio_reg_store(struct device *d,
1623				  struct device_attribute *attr,
1624				  const char *buf, size_t count)
1625{
1626	u32 reg;
1627	struct ipw_priv *p = dev_get_drvdata(d);
1628
1629	sscanf(buf, "%x", &reg);
1630	ipw_write_reg32(p, 0x301100, reg);
1631	return strnlen(buf, count);
1632}
1633
1634static DEVICE_ATTR_RW(mem_gpio_reg);
1635
1636static ssize_t indirect_dword_show(struct device *d,
1637				   struct device_attribute *attr, char *buf)
1638{
1639	u32 reg = 0;
1640	struct ipw_priv *priv = dev_get_drvdata(d);
1641
1642	if (priv->status & STATUS_INDIRECT_DWORD)
1643		reg = ipw_read_reg32(priv, priv->indirect_dword);
1644	else
1645		reg = 0;
1646
1647	return sprintf(buf, "0x%08x\n", reg);
1648}
1649static ssize_t indirect_dword_store(struct device *d,
1650				    struct device_attribute *attr,
1651				    const char *buf, size_t count)
1652{
1653	struct ipw_priv *priv = dev_get_drvdata(d);
1654
1655	sscanf(buf, "%x", &priv->indirect_dword);
1656	priv->status |= STATUS_INDIRECT_DWORD;
1657	return strnlen(buf, count);
1658}
1659
1660static DEVICE_ATTR_RW(indirect_dword);
1661
1662static ssize_t indirect_byte_show(struct device *d,
1663				  struct device_attribute *attr, char *buf)
1664{
1665	u8 reg = 0;
1666	struct ipw_priv *priv = dev_get_drvdata(d);
1667
1668	if (priv->status & STATUS_INDIRECT_BYTE)
1669		reg = ipw_read_reg8(priv, priv->indirect_byte);
1670	else
1671		reg = 0;
1672
1673	return sprintf(buf, "0x%02x\n", reg);
1674}
1675static ssize_t indirect_byte_store(struct device *d,
1676				   struct device_attribute *attr,
1677				   const char *buf, size_t count)
1678{
1679	struct ipw_priv *priv = dev_get_drvdata(d);
1680
1681	sscanf(buf, "%x", &priv->indirect_byte);
1682	priv->status |= STATUS_INDIRECT_BYTE;
1683	return strnlen(buf, count);
1684}
1685
1686static DEVICE_ATTR_RW(indirect_byte);
1687
1688static ssize_t direct_dword_show(struct device *d,
1689				 struct device_attribute *attr, char *buf)
1690{
1691	u32 reg = 0;
1692	struct ipw_priv *priv = dev_get_drvdata(d);
1693
1694	if (priv->status & STATUS_DIRECT_DWORD)
1695		reg = ipw_read32(priv, priv->direct_dword);
1696	else
1697		reg = 0;
1698
1699	return sprintf(buf, "0x%08x\n", reg);
1700}
1701static ssize_t direct_dword_store(struct device *d,
1702				  struct device_attribute *attr,
1703				  const char *buf, size_t count)
1704{
1705	struct ipw_priv *priv = dev_get_drvdata(d);
1706
1707	sscanf(buf, "%x", &priv->direct_dword);
1708	priv->status |= STATUS_DIRECT_DWORD;
1709	return strnlen(buf, count);
1710}
1711
1712static DEVICE_ATTR_RW(direct_dword);
1713
1714static int rf_kill_active(struct ipw_priv *priv)
1715{
1716	if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1717		priv->status |= STATUS_RF_KILL_HW;
1718		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1719	} else {
1720		priv->status &= ~STATUS_RF_KILL_HW;
1721		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1722	}
1723
1724	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1725}
1726
1727static ssize_t rf_kill_show(struct device *d, struct device_attribute *attr,
1728			    char *buf)
1729{
1730	/* 0 - RF kill not enabled
1731	   1 - SW based RF kill active (sysfs)
1732	   2 - HW based RF kill active
1733	   3 - Both HW and SW baed RF kill active */
1734	struct ipw_priv *priv = dev_get_drvdata(d);
1735	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1736	    (rf_kill_active(priv) ? 0x2 : 0x0);
1737	return sprintf(buf, "%i\n", val);
1738}
1739
1740static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1741{
1742	if ((disable_radio ? 1 : 0) ==
1743	    ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1744		return 0;
1745
1746	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1747			  disable_radio ? "OFF" : "ON");
1748
1749	if (disable_radio) {
1750		priv->status |= STATUS_RF_KILL_SW;
1751
1752		cancel_delayed_work(&priv->request_scan);
1753		cancel_delayed_work(&priv->request_direct_scan);
1754		cancel_delayed_work(&priv->request_passive_scan);
1755		cancel_delayed_work(&priv->scan_event);
1756		schedule_work(&priv->down);
1757	} else {
1758		priv->status &= ~STATUS_RF_KILL_SW;
1759		if (rf_kill_active(priv)) {
1760			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1761					  "disabled by HW switch\n");
1762			/* Make sure the RF_KILL check timer is running */
1763			cancel_delayed_work(&priv->rf_kill);
1764			schedule_delayed_work(&priv->rf_kill,
1765					      round_jiffies_relative(2 * HZ));
1766		} else
1767			schedule_work(&priv->up);
1768	}
1769
1770	return 1;
1771}
1772
1773static ssize_t rf_kill_store(struct device *d, struct device_attribute *attr,
1774			     const char *buf, size_t count)
1775{
1776	struct ipw_priv *priv = dev_get_drvdata(d);
1777
1778	ipw_radio_kill_sw(priv, buf[0] == '1');
1779
1780	return count;
1781}
1782
1783static DEVICE_ATTR_RW(rf_kill);
1784
1785static ssize_t speed_scan_show(struct device *d, struct device_attribute *attr,
1786			       char *buf)
1787{
1788	struct ipw_priv *priv = dev_get_drvdata(d);
1789	int pos = 0, len = 0;
1790	if (priv->config & CFG_SPEED_SCAN) {
1791		while (priv->speed_scan[pos] != 0)
1792			len += sprintf(&buf[len], "%d ",
1793				       priv->speed_scan[pos++]);
1794		return len + sprintf(&buf[len], "\n");
1795	}
1796
1797	return sprintf(buf, "0\n");
1798}
1799
1800static ssize_t speed_scan_store(struct device *d, struct device_attribute *attr,
1801				const char *buf, size_t count)
1802{
1803	struct ipw_priv *priv = dev_get_drvdata(d);
1804	int channel, pos = 0;
1805	const char *p = buf;
1806
1807	/* list of space separated channels to scan, optionally ending with 0 */
1808	while ((channel = simple_strtol(p, NULL, 0))) {
1809		if (pos == MAX_SPEED_SCAN - 1) {
1810			priv->speed_scan[pos] = 0;
1811			break;
1812		}
1813
1814		if (libipw_is_valid_channel(priv->ieee, channel))
1815			priv->speed_scan[pos++] = channel;
1816		else
1817			IPW_WARNING("Skipping invalid channel request: %d\n",
1818				    channel);
1819		p = strchr(p, ' ');
1820		if (!p)
1821			break;
1822		while (*p == ' ' || *p == '\t')
1823			p++;
1824	}
1825
1826	if (pos == 0)
1827		priv->config &= ~CFG_SPEED_SCAN;
1828	else {
1829		priv->speed_scan_pos = 0;
1830		priv->config |= CFG_SPEED_SCAN;
1831	}
1832
1833	return count;
1834}
1835
1836static DEVICE_ATTR_RW(speed_scan);
1837
1838static ssize_t net_stats_show(struct device *d, struct device_attribute *attr,
1839			      char *buf)
1840{
1841	struct ipw_priv *priv = dev_get_drvdata(d);
1842	return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1843}
1844
1845static ssize_t net_stats_store(struct device *d, struct device_attribute *attr,
1846			       const char *buf, size_t count)
1847{
1848	struct ipw_priv *priv = dev_get_drvdata(d);
1849	if (buf[0] == '1')
1850		priv->config |= CFG_NET_STATS;
1851	else
1852		priv->config &= ~CFG_NET_STATS;
1853
1854	return count;
1855}
1856
1857static DEVICE_ATTR_RW(net_stats);
1858
1859static ssize_t channels_show(struct device *d,
1860			     struct device_attribute *attr,
1861			     char *buf)
1862{
1863	struct ipw_priv *priv = dev_get_drvdata(d);
1864	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1865	int len = 0, i;
1866
1867	len = sprintf(&buf[len],
1868		      "Displaying %d channels in 2.4Ghz band "
1869		      "(802.11bg):\n", geo->bg_channels);
1870
1871	for (i = 0; i < geo->bg_channels; i++) {
1872		len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1873			       geo->bg[i].channel,
1874			       geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1875			       " (radar spectrum)" : "",
1876			       ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1877				(geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1878			       ? "" : ", IBSS",
1879			       geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1880			       "passive only" : "active/passive",
1881			       geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1882			       "B" : "B/G");
1883	}
1884
1885	len += sprintf(&buf[len],
1886		       "Displaying %d channels in 5.2Ghz band "
1887		       "(802.11a):\n", geo->a_channels);
1888	for (i = 0; i < geo->a_channels; i++) {
1889		len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1890			       geo->a[i].channel,
1891			       geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1892			       " (radar spectrum)" : "",
1893			       ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1894				(geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1895			       ? "" : ", IBSS",
1896			       geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1897			       "passive only" : "active/passive");
1898	}
1899
1900	return len;
1901}
1902
1903static DEVICE_ATTR_ADMIN_RO(channels);
1904
1905static void notify_wx_assoc_event(struct ipw_priv *priv)
1906{
1907	union iwreq_data wrqu;
1908	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1909	if (priv->status & STATUS_ASSOCIATED)
1910		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1911	else
1912		eth_zero_addr(wrqu.ap_addr.sa_data);
1913	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1914}
1915
1916static void ipw_irq_tasklet(struct tasklet_struct *t)
1917{
1918	struct ipw_priv *priv = from_tasklet(priv, t, irq_tasklet);
1919	u32 inta, inta_mask, handled = 0;
1920	unsigned long flags;
1921
1922	spin_lock_irqsave(&priv->irq_lock, flags);
1923
1924	inta = ipw_read32(priv, IPW_INTA_RW);
1925	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1926
1927	if (inta == 0xFFFFFFFF) {
1928		/* Hardware disappeared */
1929		IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1930		/* Only handle the cached INTA values */
1931		inta = 0;
1932	}
1933	inta &= (IPW_INTA_MASK_ALL & inta_mask);
1934
1935	/* Add any cached INTA values that need to be handled */
1936	inta |= priv->isr_inta;
1937
1938	spin_unlock_irqrestore(&priv->irq_lock, flags);
1939
1940	spin_lock_irqsave(&priv->lock, flags);
1941
1942	/* handle all the justifications for the interrupt */
1943	if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1944		ipw_rx(priv);
1945		handled |= IPW_INTA_BIT_RX_TRANSFER;
1946	}
1947
1948	if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1949		IPW_DEBUG_HC("Command completed.\n");
1950		ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1951		priv->status &= ~STATUS_HCMD_ACTIVE;
1952		wake_up_interruptible(&priv->wait_command_queue);
1953		handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1954	}
1955
1956	if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1957		IPW_DEBUG_TX("TX_QUEUE_1\n");
1958		ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1959		handled |= IPW_INTA_BIT_TX_QUEUE_1;
1960	}
1961
1962	if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1963		IPW_DEBUG_TX("TX_QUEUE_2\n");
1964		ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1965		handled |= IPW_INTA_BIT_TX_QUEUE_2;
1966	}
1967
1968	if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1969		IPW_DEBUG_TX("TX_QUEUE_3\n");
1970		ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1971		handled |= IPW_INTA_BIT_TX_QUEUE_3;
1972	}
1973
1974	if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1975		IPW_DEBUG_TX("TX_QUEUE_4\n");
1976		ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1977		handled |= IPW_INTA_BIT_TX_QUEUE_4;
1978	}
1979
1980	if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1981		IPW_WARNING("STATUS_CHANGE\n");
1982		handled |= IPW_INTA_BIT_STATUS_CHANGE;
1983	}
1984
1985	if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1986		IPW_WARNING("TX_PERIOD_EXPIRED\n");
1987		handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1988	}
1989
1990	if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1991		IPW_WARNING("HOST_CMD_DONE\n");
1992		handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1993	}
1994
1995	if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1996		IPW_WARNING("FW_INITIALIZATION_DONE\n");
1997		handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1998	}
1999
2000	if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2001		IPW_WARNING("PHY_OFF_DONE\n");
2002		handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2003	}
2004
2005	if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2006		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2007		priv->status |= STATUS_RF_KILL_HW;
2008		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2009		wake_up_interruptible(&priv->wait_command_queue);
2010		priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2011		cancel_delayed_work(&priv->request_scan);
2012		cancel_delayed_work(&priv->request_direct_scan);
2013		cancel_delayed_work(&priv->request_passive_scan);
2014		cancel_delayed_work(&priv->scan_event);
2015		schedule_work(&priv->link_down);
2016		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2017		handled |= IPW_INTA_BIT_RF_KILL_DONE;
2018	}
2019
2020	if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2021		IPW_WARNING("Firmware error detected.  Restarting.\n");
2022		if (priv->error) {
2023			IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2024			if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2025				struct ipw_fw_error *error =
2026				    ipw_alloc_error_log(priv);
2027				ipw_dump_error_log(priv, error);
2028				kfree(error);
2029			}
2030		} else {
2031			priv->error = ipw_alloc_error_log(priv);
2032			if (priv->error)
2033				IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2034			else
2035				IPW_DEBUG_FW("Error allocating sysfs 'error' "
2036					     "log.\n");
2037			if (ipw_debug_level & IPW_DL_FW_ERRORS)
2038				ipw_dump_error_log(priv, priv->error);
2039		}
2040
2041		/* XXX: If hardware encryption is for WPA/WPA2,
2042		 * we have to notify the supplicant. */
2043		if (priv->ieee->sec.encrypt) {
2044			priv->status &= ~STATUS_ASSOCIATED;
2045			notify_wx_assoc_event(priv);
2046		}
2047
2048		/* Keep the restart process from trying to send host
2049		 * commands by clearing the INIT status bit */
2050		priv->status &= ~STATUS_INIT;
2051
2052		/* Cancel currently queued command. */
2053		priv->status &= ~STATUS_HCMD_ACTIVE;
2054		wake_up_interruptible(&priv->wait_command_queue);
2055
2056		schedule_work(&priv->adapter_restart);
2057		handled |= IPW_INTA_BIT_FATAL_ERROR;
2058	}
2059
2060	if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2061		IPW_ERROR("Parity error\n");
2062		handled |= IPW_INTA_BIT_PARITY_ERROR;
2063	}
2064
2065	if (handled != inta) {
2066		IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2067	}
2068
2069	spin_unlock_irqrestore(&priv->lock, flags);
2070
2071	/* enable all interrupts */
2072	ipw_enable_interrupts(priv);
2073}
2074
2075#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2076static char *get_cmd_string(u8 cmd)
2077{
2078	switch (cmd) {
2079		IPW_CMD(HOST_COMPLETE);
2080		IPW_CMD(POWER_DOWN);
2081		IPW_CMD(SYSTEM_CONFIG);
2082		IPW_CMD(MULTICAST_ADDRESS);
2083		IPW_CMD(SSID);
2084		IPW_CMD(ADAPTER_ADDRESS);
2085		IPW_CMD(PORT_TYPE);
2086		IPW_CMD(RTS_THRESHOLD);
2087		IPW_CMD(FRAG_THRESHOLD);
2088		IPW_CMD(POWER_MODE);
2089		IPW_CMD(WEP_KEY);
2090		IPW_CMD(TGI_TX_KEY);
2091		IPW_CMD(SCAN_REQUEST);
2092		IPW_CMD(SCAN_REQUEST_EXT);
2093		IPW_CMD(ASSOCIATE);
2094		IPW_CMD(SUPPORTED_RATES);
2095		IPW_CMD(SCAN_ABORT);
2096		IPW_CMD(TX_FLUSH);
2097		IPW_CMD(QOS_PARAMETERS);
2098		IPW_CMD(DINO_CONFIG);
2099		IPW_CMD(RSN_CAPABILITIES);
2100		IPW_CMD(RX_KEY);
2101		IPW_CMD(CARD_DISABLE);
2102		IPW_CMD(SEED_NUMBER);
2103		IPW_CMD(TX_POWER);
2104		IPW_CMD(COUNTRY_INFO);
2105		IPW_CMD(AIRONET_INFO);
2106		IPW_CMD(AP_TX_POWER);
2107		IPW_CMD(CCKM_INFO);
2108		IPW_CMD(CCX_VER_INFO);
2109		IPW_CMD(SET_CALIBRATION);
2110		IPW_CMD(SENSITIVITY_CALIB);
2111		IPW_CMD(RETRY_LIMIT);
2112		IPW_CMD(IPW_PRE_POWER_DOWN);
2113		IPW_CMD(VAP_BEACON_TEMPLATE);
2114		IPW_CMD(VAP_DTIM_PERIOD);
2115		IPW_CMD(EXT_SUPPORTED_RATES);
2116		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2117		IPW_CMD(VAP_QUIET_INTERVALS);
2118		IPW_CMD(VAP_CHANNEL_SWITCH);
2119		IPW_CMD(VAP_MANDATORY_CHANNELS);
2120		IPW_CMD(VAP_CELL_PWR_LIMIT);
2121		IPW_CMD(VAP_CF_PARAM_SET);
2122		IPW_CMD(VAP_SET_BEACONING_STATE);
2123		IPW_CMD(MEASUREMENT);
2124		IPW_CMD(POWER_CAPABILITY);
2125		IPW_CMD(SUPPORTED_CHANNELS);
2126		IPW_CMD(TPC_REPORT);
2127		IPW_CMD(WME_INFO);
2128		IPW_CMD(PRODUCTION_COMMAND);
2129	default:
2130		return "UNKNOWN";
2131	}
2132}
2133
2134#define HOST_COMPLETE_TIMEOUT HZ
2135
2136static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2137{
2138	int rc = 0;
2139	unsigned long flags;
2140	unsigned long now, end;
2141
2142	spin_lock_irqsave(&priv->lock, flags);
2143	if (priv->status & STATUS_HCMD_ACTIVE) {
2144		IPW_ERROR("Failed to send %s: Already sending a command.\n",
2145			  get_cmd_string(cmd->cmd));
2146		spin_unlock_irqrestore(&priv->lock, flags);
2147		return -EAGAIN;
2148	}
2149
2150	priv->status |= STATUS_HCMD_ACTIVE;
2151
2152	if (priv->cmdlog) {
2153		priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2154		priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2155		priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2156		memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2157		       cmd->len);
2158		priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2159	}
2160
2161	IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2162		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2163		     priv->status);
2164
2165#ifndef DEBUG_CMD_WEP_KEY
2166	if (cmd->cmd == IPW_CMD_WEP_KEY)
2167		IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2168	else
2169#endif
2170		printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2171
2172	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2173	if (rc) {
2174		priv->status &= ~STATUS_HCMD_ACTIVE;
2175		IPW_ERROR("Failed to send %s: Reason %d\n",
2176			  get_cmd_string(cmd->cmd), rc);
2177		spin_unlock_irqrestore(&priv->lock, flags);
2178		goto exit;
2179	}
2180	spin_unlock_irqrestore(&priv->lock, flags);
2181
2182	now = jiffies;
2183	end = now + HOST_COMPLETE_TIMEOUT;
2184again:
2185	rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2186					      !(priv->
2187						status & STATUS_HCMD_ACTIVE),
2188					      end - now);
2189	if (rc < 0) {
2190		now = jiffies;
2191		if (time_before(now, end))
2192			goto again;
2193		rc = 0;
2194	}
2195
2196	if (rc == 0) {
2197		spin_lock_irqsave(&priv->lock, flags);
2198		if (priv->status & STATUS_HCMD_ACTIVE) {
2199			IPW_ERROR("Failed to send %s: Command timed out.\n",
2200				  get_cmd_string(cmd->cmd));
2201			priv->status &= ~STATUS_HCMD_ACTIVE;
2202			spin_unlock_irqrestore(&priv->lock, flags);
2203			rc = -EIO;
2204			goto exit;
2205		}
2206		spin_unlock_irqrestore(&priv->lock, flags);
2207	} else
2208		rc = 0;
2209
2210	if (priv->status & STATUS_RF_KILL_HW) {
2211		IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2212			  get_cmd_string(cmd->cmd));
2213		rc = -EIO;
2214		goto exit;
2215	}
2216
2217      exit:
2218	if (priv->cmdlog) {
2219		priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2220		priv->cmdlog_pos %= priv->cmdlog_len;
2221	}
2222	return rc;
2223}
2224
2225static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2226{
2227	struct host_cmd cmd = {
2228		.cmd = command,
2229	};
2230
2231	return __ipw_send_cmd(priv, &cmd);
2232}
2233
2234static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2235			    const void *data)
2236{
2237	struct host_cmd cmd = {
2238		.cmd = command,
2239		.len = len,
2240		.param = data,
2241	};
2242
2243	return __ipw_send_cmd(priv, &cmd);
2244}
2245
2246static int ipw_send_host_complete(struct ipw_priv *priv)
2247{
2248	if (!priv) {
2249		IPW_ERROR("Invalid args\n");
2250		return -1;
2251	}
2252
2253	return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2254}
2255
2256static int ipw_send_system_config(struct ipw_priv *priv)
2257{
2258	return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2259				sizeof(priv->sys_config),
2260				&priv->sys_config);
2261}
2262
2263static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2264{
2265	if (!priv || !ssid) {
2266		IPW_ERROR("Invalid args\n");
2267		return -1;
2268	}
2269
2270	return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2271				ssid);
2272}
2273
2274static int ipw_send_adapter_address(struct ipw_priv *priv, const u8 * mac)
2275{
2276	if (!priv || !mac) {
2277		IPW_ERROR("Invalid args\n");
2278		return -1;
2279	}
2280
2281	IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2282		       priv->net_dev->name, mac);
2283
2284	return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2285}
2286
2287static void ipw_adapter_restart(void *adapter)
2288{
2289	struct ipw_priv *priv = adapter;
2290
2291	if (priv->status & STATUS_RF_KILL_MASK)
2292		return;
2293
2294	ipw_down(priv);
2295
2296	if (priv->assoc_network &&
2297	    (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2298		ipw_remove_current_network(priv);
2299
2300	if (ipw_up(priv)) {
2301		IPW_ERROR("Failed to up device\n");
2302		return;
2303	}
2304}
2305
2306static void ipw_bg_adapter_restart(struct work_struct *work)
2307{
2308	struct ipw_priv *priv =
2309		container_of(work, struct ipw_priv, adapter_restart);
2310	mutex_lock(&priv->mutex);
2311	ipw_adapter_restart(priv);
2312	mutex_unlock(&priv->mutex);
2313}
2314
2315static void ipw_abort_scan(struct ipw_priv *priv);
2316
2317#define IPW_SCAN_CHECK_WATCHDOG	(5 * HZ)
2318
2319static void ipw_scan_check(void *data)
2320{
2321	struct ipw_priv *priv = data;
2322
2323	if (priv->status & STATUS_SCAN_ABORTING) {
2324		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2325			       "adapter after (%dms).\n",
2326			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2327		schedule_work(&priv->adapter_restart);
2328	} else if (priv->status & STATUS_SCANNING) {
2329		IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2330			       "after (%dms).\n",
2331			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2332		ipw_abort_scan(priv);
2333		schedule_delayed_work(&priv->scan_check, HZ);
2334	}
2335}
2336
2337static void ipw_bg_scan_check(struct work_struct *work)
2338{
2339	struct ipw_priv *priv =
2340		container_of(work, struct ipw_priv, scan_check.work);
2341	mutex_lock(&priv->mutex);
2342	ipw_scan_check(priv);
2343	mutex_unlock(&priv->mutex);
2344}
2345
2346static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2347				     struct ipw_scan_request_ext *request)
2348{
2349	return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2350				sizeof(*request), request);
2351}
2352
2353static int ipw_send_scan_abort(struct ipw_priv *priv)
2354{
2355	if (!priv) {
2356		IPW_ERROR("Invalid args\n");
2357		return -1;
2358	}
2359
2360	return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2361}
2362
2363static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2364{
2365	struct ipw_sensitivity_calib calib = {
2366		.beacon_rssi_raw = cpu_to_le16(sens),
2367	};
2368
2369	return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2370				&calib);
2371}
2372
2373static int ipw_send_associate(struct ipw_priv *priv,
2374			      struct ipw_associate *associate)
2375{
2376	if (!priv || !associate) {
2377		IPW_ERROR("Invalid args\n");
2378		return -1;
2379	}
2380
2381	return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2382				associate);
2383}
2384
2385static int ipw_send_supported_rates(struct ipw_priv *priv,
2386				    struct ipw_supported_rates *rates)
2387{
2388	if (!priv || !rates) {
2389		IPW_ERROR("Invalid args\n");
2390		return -1;
2391	}
2392
2393	return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2394				rates);
2395}
2396
2397static int ipw_set_random_seed(struct ipw_priv *priv)
2398{
2399	u32 val;
2400
2401	if (!priv) {
2402		IPW_ERROR("Invalid args\n");
2403		return -1;
2404	}
2405
2406	get_random_bytes(&val, sizeof(val));
2407
2408	return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2409}
2410
2411static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2412{
2413	__le32 v = cpu_to_le32(phy_off);
2414	if (!priv) {
2415		IPW_ERROR("Invalid args\n");
2416		return -1;
2417	}
2418
2419	return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2420}
2421
2422static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2423{
2424	if (!priv || !power) {
2425		IPW_ERROR("Invalid args\n");
2426		return -1;
2427	}
2428
2429	return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2430}
2431
2432static int ipw_set_tx_power(struct ipw_priv *priv)
2433{
2434	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2435	struct ipw_tx_power tx_power;
2436	s8 max_power;
2437	int i;
2438
2439	memset(&tx_power, 0, sizeof(tx_power));
2440
2441	/* configure device for 'G' band */
2442	tx_power.ieee_mode = IPW_G_MODE;
2443	tx_power.num_channels = geo->bg_channels;
2444	for (i = 0; i < geo->bg_channels; i++) {
2445		max_power = geo->bg[i].max_power;
2446		tx_power.channels_tx_power[i].channel_number =
2447		    geo->bg[i].channel;
2448		tx_power.channels_tx_power[i].tx_power = max_power ?
2449		    min(max_power, priv->tx_power) : priv->tx_power;
2450	}
2451	if (ipw_send_tx_power(priv, &tx_power))
2452		return -EIO;
2453
2454	/* configure device to also handle 'B' band */
2455	tx_power.ieee_mode = IPW_B_MODE;
2456	if (ipw_send_tx_power(priv, &tx_power))
2457		return -EIO;
2458
2459	/* configure device to also handle 'A' band */
2460	if (priv->ieee->abg_true) {
2461		tx_power.ieee_mode = IPW_A_MODE;
2462		tx_power.num_channels = geo->a_channels;
2463		for (i = 0; i < tx_power.num_channels; i++) {
2464			max_power = geo->a[i].max_power;
2465			tx_power.channels_tx_power[i].channel_number =
2466			    geo->a[i].channel;
2467			tx_power.channels_tx_power[i].tx_power = max_power ?
2468			    min(max_power, priv->tx_power) : priv->tx_power;
2469		}
2470		if (ipw_send_tx_power(priv, &tx_power))
2471			return -EIO;
2472	}
2473	return 0;
2474}
2475
2476static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2477{
2478	struct ipw_rts_threshold rts_threshold = {
2479		.rts_threshold = cpu_to_le16(rts),
2480	};
2481
2482	if (!priv) {
2483		IPW_ERROR("Invalid args\n");
2484		return -1;
2485	}
2486
2487	return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2488				sizeof(rts_threshold), &rts_threshold);
2489}
2490
2491static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2492{
2493	struct ipw_frag_threshold frag_threshold = {
2494		.frag_threshold = cpu_to_le16(frag),
2495	};
2496
2497	if (!priv) {
2498		IPW_ERROR("Invalid args\n");
2499		return -1;
2500	}
2501
2502	return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2503				sizeof(frag_threshold), &frag_threshold);
2504}
2505
2506static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2507{
2508	__le32 param;
2509
2510	if (!priv) {
2511		IPW_ERROR("Invalid args\n");
2512		return -1;
2513	}
2514
2515	/* If on battery, set to 3, if AC set to CAM, else user
2516	 * level */
2517	switch (mode) {
2518	case IPW_POWER_BATTERY:
2519		param = cpu_to_le32(IPW_POWER_INDEX_3);
2520		break;
2521	case IPW_POWER_AC:
2522		param = cpu_to_le32(IPW_POWER_MODE_CAM);
2523		break;
2524	default:
2525		param = cpu_to_le32(mode);
2526		break;
2527	}
2528
2529	return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2530				&param);
2531}
2532
2533static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2534{
2535	struct ipw_retry_limit retry_limit = {
2536		.short_retry_limit = slimit,
2537		.long_retry_limit = llimit
2538	};
2539
2540	if (!priv) {
2541		IPW_ERROR("Invalid args\n");
2542		return -1;
2543	}
2544
2545	return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2546				&retry_limit);
2547}
2548
2549/*
2550 * The IPW device contains a Microwire compatible EEPROM that stores
2551 * various data like the MAC address.  Usually the firmware has exclusive
2552 * access to the eeprom, but during device initialization (before the
2553 * device driver has sent the HostComplete command to the firmware) the
2554 * device driver has read access to the EEPROM by way of indirect addressing
2555 * through a couple of memory mapped registers.
2556 *
2557 * The following is a simplified implementation for pulling data out of the
2558 * eeprom, along with some helper functions to find information in
2559 * the per device private data's copy of the eeprom.
2560 *
2561 * NOTE: To better understand how these functions work (i.e what is a chip
2562 *       select and why do have to keep driving the eeprom clock?), read
2563 *       just about any data sheet for a Microwire compatible EEPROM.
2564 */
2565
2566/* write a 32 bit value into the indirect accessor register */
2567static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2568{
2569	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2570
2571	/* the eeprom requires some time to complete the operation */
2572	udelay(p->eeprom_delay);
2573}
2574
2575/* perform a chip select operation */
2576static void eeprom_cs(struct ipw_priv *priv)
2577{
2578	eeprom_write_reg(priv, 0);
2579	eeprom_write_reg(priv, EEPROM_BIT_CS);
2580	eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2581	eeprom_write_reg(priv, EEPROM_BIT_CS);
2582}
2583
2584/* perform a chip select operation */
2585static void eeprom_disable_cs(struct ipw_priv *priv)
2586{
2587	eeprom_write_reg(priv, EEPROM_BIT_CS);
2588	eeprom_write_reg(priv, 0);
2589	eeprom_write_reg(priv, EEPROM_BIT_SK);
2590}
2591
2592/* push a single bit down to the eeprom */
2593static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2594{
2595	int d = (bit ? EEPROM_BIT_DI : 0);
2596	eeprom_write_reg(p, EEPROM_BIT_CS | d);
2597	eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2598}
2599
2600/* push an opcode followed by an address down to the eeprom */
2601static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2602{
2603	int i;
2604
2605	eeprom_cs(priv);
2606	eeprom_write_bit(priv, 1);
2607	eeprom_write_bit(priv, op & 2);
2608	eeprom_write_bit(priv, op & 1);
2609	for (i = 7; i >= 0; i--) {
2610		eeprom_write_bit(priv, addr & (1 << i));
2611	}
2612}
2613
2614/* pull 16 bits off the eeprom, one bit at a time */
2615static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2616{
2617	int i;
2618	u16 r = 0;
2619
2620	/* Send READ Opcode */
2621	eeprom_op(priv, EEPROM_CMD_READ, addr);
2622
2623	/* Send dummy bit */
2624	eeprom_write_reg(priv, EEPROM_BIT_CS);
2625
2626	/* Read the byte off the eeprom one bit at a time */
2627	for (i = 0; i < 16; i++) {
2628		u32 data = 0;
2629		eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2630		eeprom_write_reg(priv, EEPROM_BIT_CS);
2631		data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2632		r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2633	}
2634
2635	/* Send another dummy bit */
2636	eeprom_write_reg(priv, 0);
2637	eeprom_disable_cs(priv);
2638
2639	return r;
2640}
2641
2642/* helper function for pulling the mac address out of the private */
2643/* data's copy of the eeprom data                                 */
2644static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2645{
2646	memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2647}
2648
2649static void ipw_read_eeprom(struct ipw_priv *priv)
2650{
2651	int i;
2652	__le16 *eeprom = (__le16 *) priv->eeprom;
2653
2654	IPW_DEBUG_TRACE(">>\n");
2655
2656	/* read entire contents of eeprom into private buffer */
2657	for (i = 0; i < 128; i++)
2658		eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2659
2660	IPW_DEBUG_TRACE("<<\n");
2661}
2662
2663/*
2664 * Either the device driver (i.e. the host) or the firmware can
2665 * load eeprom data into the designated region in SRAM.  If neither
2666 * happens then the FW will shutdown with a fatal error.
2667 *
2668 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2669 * bit needs region of shared SRAM needs to be non-zero.
2670 */
2671static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2672{
2673	int i;
2674
2675	IPW_DEBUG_TRACE(">>\n");
2676
2677	/*
2678	   If the data looks correct, then copy it to our private
2679	   copy.  Otherwise let the firmware know to perform the operation
2680	   on its own.
2681	 */
2682	if (priv->eeprom[EEPROM_VERSION] != 0) {
2683		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2684
2685		/* write the eeprom data to sram */
2686		for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2687			ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2688
2689		/* Do not load eeprom data on fatal error or suspend */
2690		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2691	} else {
2692		IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2693
2694		/* Load eeprom data on fatal error or suspend */
2695		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2696	}
2697
2698	IPW_DEBUG_TRACE("<<\n");
2699}
2700
2701static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2702{
2703	count >>= 2;
2704	if (!count)
2705		return;
2706	_ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2707	while (count--)
2708		_ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2709}
2710
2711static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2712{
2713	ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2714			CB_NUMBER_OF_ELEMENTS_SMALL *
2715			sizeof(struct command_block));
2716}
2717
2718static int ipw_fw_dma_enable(struct ipw_priv *priv)
2719{				/* start dma engine but no transfers yet */
2720
2721	IPW_DEBUG_FW(">> :\n");
2722
2723	/* Start the dma */
2724	ipw_fw_dma_reset_command_blocks(priv);
2725
2726	/* Write CB base address */
2727	ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2728
2729	IPW_DEBUG_FW("<< :\n");
2730	return 0;
2731}
2732
2733static void ipw_fw_dma_abort(struct ipw_priv *priv)
2734{
2735	u32 control = 0;
2736
2737	IPW_DEBUG_FW(">> :\n");
2738
2739	/* set the Stop and Abort bit */
2740	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2741	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2742	priv->sram_desc.last_cb_index = 0;
2743
2744	IPW_DEBUG_FW("<<\n");
2745}
2746
2747static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2748					  struct command_block *cb)
2749{
2750	u32 address =
2751	    IPW_SHARED_SRAM_DMA_CONTROL +
2752	    (sizeof(struct command_block) * index);
2753	IPW_DEBUG_FW(">> :\n");
2754
2755	ipw_write_indirect(priv, address, (u8 *) cb,
2756			   (int)sizeof(struct command_block));
2757
2758	IPW_DEBUG_FW("<< :\n");
2759	return 0;
2760
2761}
2762
2763static int ipw_fw_dma_kick(struct ipw_priv *priv)
2764{
2765	u32 control = 0;
2766	u32 index = 0;
2767
2768	IPW_DEBUG_FW(">> :\n");
2769
2770	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2771		ipw_fw_dma_write_command_block(priv, index,
2772					       &priv->sram_desc.cb_list[index]);
2773
2774	/* Enable the DMA in the CSR register */
2775	ipw_clear_bit(priv, IPW_RESET_REG,
2776		      IPW_RESET_REG_MASTER_DISABLED |
2777		      IPW_RESET_REG_STOP_MASTER);
2778
2779	/* Set the Start bit. */
2780	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2781	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2782
2783	IPW_DEBUG_FW("<< :\n");
2784	return 0;
2785}
2786
2787static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2788{
2789	u32 address;
2790	u32 register_value = 0;
2791	u32 cb_fields_address = 0;
2792
2793	IPW_DEBUG_FW(">> :\n");
2794	address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2795	IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2796
2797	/* Read the DMA Controlor register */
2798	register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2799	IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2800
2801	/* Print the CB values */
2802	cb_fields_address = address;
2803	register_value = ipw_read_reg32(priv, cb_fields_address);
2804	IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2805
2806	cb_fields_address += sizeof(u32);
2807	register_value = ipw_read_reg32(priv, cb_fields_address);
2808	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2809
2810	cb_fields_address += sizeof(u32);
2811	register_value = ipw_read_reg32(priv, cb_fields_address);
2812	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2813			  register_value);
2814
2815	cb_fields_address += sizeof(u32);
2816	register_value = ipw_read_reg32(priv, cb_fields_address);
2817	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2818
2819	IPW_DEBUG_FW(">> :\n");
2820}
2821
2822static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2823{
2824	u32 current_cb_address = 0;
2825	u32 current_cb_index = 0;
2826
2827	IPW_DEBUG_FW("<< :\n");
2828	current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2829
2830	current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2831	    sizeof(struct command_block);
2832
2833	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2834			  current_cb_index, current_cb_address);
2835
2836	IPW_DEBUG_FW(">> :\n");
2837	return current_cb_index;
2838
2839}
2840
2841static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2842					u32 src_address,
2843					u32 dest_address,
2844					u32 length,
2845					int interrupt_enabled, int is_last)
2846{
2847
2848	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2849	    CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2850	    CB_DEST_SIZE_LONG;
2851	struct command_block *cb;
2852	u32 last_cb_element = 0;
2853
2854	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2855			  src_address, dest_address, length);
2856
2857	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2858		return -1;
2859
2860	last_cb_element = priv->sram_desc.last_cb_index;
2861	cb = &priv->sram_desc.cb_list[last_cb_element];
2862	priv->sram_desc.last_cb_index++;
2863
2864	/* Calculate the new CB control word */
2865	if (interrupt_enabled)
2866		control |= CB_INT_ENABLED;
2867
2868	if (is_last)
2869		control |= CB_LAST_VALID;
2870
2871	control |= length;
2872
2873	/* Calculate the CB Element's checksum value */
2874	cb->status = control ^ src_address ^ dest_address;
2875
2876	/* Copy the Source and Destination addresses */
2877	cb->dest_addr = dest_address;
2878	cb->source_addr = src_address;
2879
2880	/* Copy the Control Word last */
2881	cb->control = control;
2882
2883	return 0;
2884}
2885
2886static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2887				 int nr, u32 dest_address, u32 len)
2888{
2889	int ret, i;
2890	u32 size;
2891
2892	IPW_DEBUG_FW(">>\n");
2893	IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2894			  nr, dest_address, len);
2895
2896	for (i = 0; i < nr; i++) {
2897		size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2898		ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2899						   dest_address +
2900						   i * CB_MAX_LENGTH, size,
2901						   0, 0);
2902		if (ret) {
2903			IPW_DEBUG_FW_INFO(": Failed\n");
2904			return -1;
2905		} else
2906			IPW_DEBUG_FW_INFO(": Added new cb\n");
2907	}
2908
2909	IPW_DEBUG_FW("<<\n");
2910	return 0;
2911}
2912
2913static int ipw_fw_dma_wait(struct ipw_priv *priv)
2914{
2915	u32 current_index = 0, previous_index;
2916	u32 watchdog = 0;
2917
2918	IPW_DEBUG_FW(">> :\n");
2919
2920	current_index = ipw_fw_dma_command_block_index(priv);
2921	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2922			  (int)priv->sram_desc.last_cb_index);
2923
2924	while (current_index < priv->sram_desc.last_cb_index) {
2925		udelay(50);
2926		previous_index = current_index;
2927		current_index = ipw_fw_dma_command_block_index(priv);
2928
2929		if (previous_index < current_index) {
2930			watchdog = 0;
2931			continue;
2932		}
2933		if (++watchdog > 400) {
2934			IPW_DEBUG_FW_INFO("Timeout\n");
2935			ipw_fw_dma_dump_command_block(priv);
2936			ipw_fw_dma_abort(priv);
2937			return -1;
2938		}
2939	}
2940
2941	ipw_fw_dma_abort(priv);
2942
2943	/*Disable the DMA in the CSR register */
2944	ipw_set_bit(priv, IPW_RESET_REG,
2945		    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2946
2947	IPW_DEBUG_FW("<< dmaWaitSync\n");
2948	return 0;
2949}
2950
2951static void ipw_remove_current_network(struct ipw_priv *priv)
2952{
2953	struct list_head *element, *safe;
2954	struct libipw_network *network = NULL;
2955	unsigned long flags;
2956
2957	spin_lock_irqsave(&priv->ieee->lock, flags);
2958	list_for_each_safe(element, safe, &priv->ieee->network_list) {
2959		network = list_entry(element, struct libipw_network, list);
2960		if (ether_addr_equal(network->bssid, priv->bssid)) {
2961			list_del(element);
2962			list_add_tail(&network->list,
2963				      &priv->ieee->network_free_list);
2964		}
2965	}
2966	spin_unlock_irqrestore(&priv->ieee->lock, flags);
2967}
2968
2969/* timeout in msec, attempted in 10-msec quanta */
2970static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2971			       int timeout)
2972{
2973	int i = 0;
2974
2975	do {
2976		if ((ipw_read32(priv, addr) & mask) == mask)
2977			return i;
2978		mdelay(10);
2979		i += 10;
2980	} while (i < timeout);
2981
2982	return -ETIME;
2983}
2984
2985/* These functions load the firmware and micro code for the operation of
2986 * the ipw hardware.  It assumes the buffer has all the bits for the
2987 * image and the caller is handling the memory allocation and clean up.
2988 */
2989
2990static int ipw_stop_master(struct ipw_priv *priv)
2991{
2992	int rc;
2993
2994	IPW_DEBUG_TRACE(">>\n");
2995	/* stop master. typical delay - 0 */
2996	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2997
2998	/* timeout is in msec, polled in 10-msec quanta */
2999	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3000			  IPW_RESET_REG_MASTER_DISABLED, 100);
3001	if (rc < 0) {
3002		IPW_ERROR("wait for stop master failed after 100ms\n");
3003		return -1;
3004	}
3005
3006	IPW_DEBUG_INFO("stop master %dms\n", rc);
3007
3008	return rc;
3009}
3010
3011static void ipw_arc_release(struct ipw_priv *priv)
3012{
3013	IPW_DEBUG_TRACE(">>\n");
3014	mdelay(5);
3015
3016	ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3017
3018	/* no one knows timing, for safety add some delay */
3019	mdelay(5);
3020}
3021
3022struct fw_chunk {
3023	__le32 address;
3024	__le32 length;
3025};
3026
3027static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3028{
3029	int rc = 0, i, addr;
3030	u8 cr = 0;
3031	__le16 *image;
3032
3033	image = (__le16 *) data;
3034
3035	IPW_DEBUG_TRACE(">>\n");
3036
3037	rc = ipw_stop_master(priv);
3038
3039	if (rc < 0)
3040		return rc;
3041
3042	for (addr = IPW_SHARED_LOWER_BOUND;
3043	     addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3044		ipw_write32(priv, addr, 0);
3045	}
3046
3047	/* no ucode (yet) */
3048	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3049	/* destroy DMA queues */
3050	/* reset sequence */
3051
3052	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3053	ipw_arc_release(priv);
3054	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3055	mdelay(1);
3056
3057	/* reset PHY */
3058	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3059	mdelay(1);
3060
3061	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3062	mdelay(1);
3063
3064	/* enable ucode store */
3065	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3066	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3067	mdelay(1);
3068
3069	/* write ucode */
3070	/*
3071	 * @bug
3072	 * Do NOT set indirect address register once and then
3073	 * store data to indirect data register in the loop.
3074	 * It seems very reasonable, but in this case DINO do not
3075	 * accept ucode. It is essential to set address each time.
3076	 */
3077	/* load new ipw uCode */
3078	for (i = 0; i < len / 2; i++)
3079		ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3080				le16_to_cpu(image[i]));
3081
3082	/* enable DINO */
3083	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3084	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3085
3086	/* this is where the igx / win driver deveates from the VAP driver. */
3087
3088	/* wait for alive response */
3089	for (i = 0; i < 100; i++) {
3090		/* poll for incoming data */
3091		cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3092		if (cr & DINO_RXFIFO_DATA)
3093			break;
3094		mdelay(1);
3095	}
3096
3097	if (cr & DINO_RXFIFO_DATA) {
3098		/* alive_command_responce size is NOT multiple of 4 */
3099		__le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3100
3101		for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3102			response_buffer[i] =
3103			    cpu_to_le32(ipw_read_reg32(priv,
3104						       IPW_BASEBAND_RX_FIFO_READ));
3105		memcpy(&priv->dino_alive, response_buffer,
3106		       sizeof(priv->dino_alive));
3107		if (priv->dino_alive.alive_command == 1
3108		    && priv->dino_alive.ucode_valid == 1) {
3109			rc = 0;
3110			IPW_DEBUG_INFO
3111			    ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3112			     "of %02d/%02d/%02d %02d:%02d\n",
3113			     priv->dino_alive.software_revision,
3114			     priv->dino_alive.software_revision,
3115			     priv->dino_alive.device_identifier,
3116			     priv->dino_alive.device_identifier,
3117			     priv->dino_alive.time_stamp[0],
3118			     priv->dino_alive.time_stamp[1],
3119			     priv->dino_alive.time_stamp[2],
3120			     priv->dino_alive.time_stamp[3],
3121			     priv->dino_alive.time_stamp[4]);
3122		} else {
3123			IPW_DEBUG_INFO("Microcode is not alive\n");
3124			rc = -EINVAL;
3125		}
3126	} else {
3127		IPW_DEBUG_INFO("No alive response from DINO\n");
3128		rc = -ETIME;
3129	}
3130
3131	/* disable DINO, otherwise for some reason
3132	   firmware have problem getting alive resp. */
3133	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3134
3135	return rc;
3136}
3137
3138static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3139{
3140	int ret = -1;
3141	int offset = 0;
3142	struct fw_chunk *chunk;
3143	int total_nr = 0;
3144	int i;
3145	struct dma_pool *pool;
3146	void **virts;
3147	dma_addr_t *phys;
3148
3149	IPW_DEBUG_TRACE("<< :\n");
3150
3151	virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3152			      GFP_KERNEL);
3153	if (!virts)
3154		return -ENOMEM;
3155
3156	phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3157			     GFP_KERNEL);
3158	if (!phys) {
3159		kfree(virts);
3160		return -ENOMEM;
3161	}
3162	pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3163			       0);
3164	if (!pool) {
3165		IPW_ERROR("dma_pool_create failed\n");
3166		kfree(phys);
3167		kfree(virts);
3168		return -ENOMEM;
3169	}
3170
3171	/* Start the Dma */
3172	ret = ipw_fw_dma_enable(priv);
3173
3174	/* the DMA is already ready this would be a bug. */
3175	BUG_ON(priv->sram_desc.last_cb_index > 0);
3176
3177	do {
3178		u32 chunk_len;
3179		u8 *start;
3180		int size;
3181		int nr = 0;
3182
3183		chunk = (struct fw_chunk *)(data + offset);
3184		offset += sizeof(struct fw_chunk);
3185		chunk_len = le32_to_cpu(chunk->length);
3186		start = data + offset;
3187
3188		nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3189		for (i = 0; i < nr; i++) {
3190			virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3191							 &phys[total_nr]);
3192			if (!virts[total_nr]) {
3193				ret = -ENOMEM;
3194				goto out;
3195			}
3196			size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3197				     CB_MAX_LENGTH);
3198			memcpy(virts[total_nr], start, size);
3199			start += size;
3200			total_nr++;
3201			/* We don't support fw chunk larger than 64*8K */
3202			BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3203		}
3204
3205		/* build DMA packet and queue up for sending */
3206		/* dma to chunk->address, the chunk->length bytes from data +
3207		 * offeset*/
3208		/* Dma loading */
3209		ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3210					    nr, le32_to_cpu(chunk->address),
3211					    chunk_len);
3212		if (ret) {
3213			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3214			goto out;
3215		}
3216
3217		offset += chunk_len;
3218	} while (offset < len);
3219
3220	/* Run the DMA and wait for the answer */
3221	ret = ipw_fw_dma_kick(priv);
3222	if (ret) {
3223		IPW_ERROR("dmaKick Failed\n");
3224		goto out;
3225	}
3226
3227	ret = ipw_fw_dma_wait(priv);
3228	if (ret) {
3229		IPW_ERROR("dmaWaitSync Failed\n");
3230		goto out;
3231	}
3232 out:
3233	for (i = 0; i < total_nr; i++)
3234		dma_pool_free(pool, virts[i], phys[i]);
3235
3236	dma_pool_destroy(pool);
3237	kfree(phys);
3238	kfree(virts);
3239
3240	return ret;
3241}
3242
3243/* stop nic */
3244static int ipw_stop_nic(struct ipw_priv *priv)
3245{
3246	int rc = 0;
3247
3248	/* stop */
3249	ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3250
3251	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3252			  IPW_RESET_REG_MASTER_DISABLED, 500);
3253	if (rc < 0) {
3254		IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3255		return rc;
3256	}
3257
3258	ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3259
3260	return rc;
3261}
3262
3263static void ipw_start_nic(struct ipw_priv *priv)
3264{
3265	IPW_DEBUG_TRACE(">>\n");
3266
3267	/* prvHwStartNic  release ARC */
3268	ipw_clear_bit(priv, IPW_RESET_REG,
3269		      IPW_RESET_REG_MASTER_DISABLED |
3270		      IPW_RESET_REG_STOP_MASTER |
3271		      CBD_RESET_REG_PRINCETON_RESET);
3272
3273	/* enable power management */
3274	ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3275		    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3276
3277	IPW_DEBUG_TRACE("<<\n");
3278}
3279
3280static int ipw_init_nic(struct ipw_priv *priv)
3281{
3282	int rc;
3283
3284	IPW_DEBUG_TRACE(">>\n");
3285	/* reset */
3286	/*prvHwInitNic */
3287	/* set "initialization complete" bit to move adapter to D0 state */
3288	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3289
3290	/* low-level PLL activation */
3291	ipw_write32(priv, IPW_READ_INT_REGISTER,
3292		    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3293
3294	/* wait for clock stabilization */
3295	rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3296			  IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3297	if (rc < 0)
3298		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3299
3300	/* assert SW reset */
3301	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3302
3303	udelay(10);
3304
3305	/* set "initialization complete" bit to move adapter to D0 state */
3306	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3307
3308	IPW_DEBUG_TRACE(">>\n");
3309	return 0;
3310}
3311
3312/* Call this function from process context, it will sleep in request_firmware.
3313 * Probe is an ok place to call this from.
3314 */
3315static int ipw_reset_nic(struct ipw_priv *priv)
3316{
3317	int rc = 0;
3318	unsigned long flags;
3319
3320	IPW_DEBUG_TRACE(">>\n");
3321
3322	rc = ipw_init_nic(priv);
3323
3324	spin_lock_irqsave(&priv->lock, flags);
3325	/* Clear the 'host command active' bit... */
3326	priv->status &= ~STATUS_HCMD_ACTIVE;
3327	wake_up_interruptible(&priv->wait_command_queue);
3328	priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3329	wake_up_interruptible(&priv->wait_state);
3330	spin_unlock_irqrestore(&priv->lock, flags);
3331
3332	IPW_DEBUG_TRACE("<<\n");
3333	return rc;
3334}
3335
3336
3337struct ipw_fw {
3338	__le32 ver;
3339	__le32 boot_size;
3340	__le32 ucode_size;
3341	__le32 fw_size;
3342	u8 data[];
3343};
3344
3345static int ipw_get_fw(struct ipw_priv *priv,
3346		      const struct firmware **raw, const char *name)
3347{
3348	struct ipw_fw *fw;
3349	int rc;
3350
3351	/* ask firmware_class module to get the boot firmware off disk */
3352	rc = request_firmware(raw, name, &priv->pci_dev->dev);
3353	if (rc < 0) {
3354		IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3355		return rc;
3356	}
3357
3358	if ((*raw)->size < sizeof(*fw)) {
3359		IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3360		return -EINVAL;
3361	}
3362
3363	fw = (void *)(*raw)->data;
3364
3365	if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3366	    le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3367		IPW_ERROR("%s is too small or corrupt (%zd)\n",
3368			  name, (*raw)->size);
3369		return -EINVAL;
3370	}
3371
3372	IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3373		       name,
3374		       le32_to_cpu(fw->ver) >> 16,
3375		       le32_to_cpu(fw->ver) & 0xff,
3376		       (*raw)->size - sizeof(*fw));
3377	return 0;
3378}
3379
3380#define IPW_RX_BUF_SIZE (3000)
3381
3382static void ipw_rx_queue_reset(struct ipw_priv *priv,
3383				      struct ipw_rx_queue *rxq)
3384{
3385	unsigned long flags;
3386	int i;
3387
3388	spin_lock_irqsave(&rxq->lock, flags);
3389
3390	INIT_LIST_HEAD(&rxq->rx_free);
3391	INIT_LIST_HEAD(&rxq->rx_used);
3392
3393	/* Fill the rx_used queue with _all_ of the Rx buffers */
3394	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3395		/* In the reset function, these buffers may have been allocated
3396		 * to an SKB, so we need to unmap and free potential storage */
3397		if (rxq->pool[i].skb != NULL) {
3398			dma_unmap_single(&priv->pci_dev->dev,
3399					 rxq->pool[i].dma_addr,
3400					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
3401			dev_kfree_skb_irq(rxq->pool[i].skb);
3402			rxq->pool[i].skb = NULL;
3403		}
3404		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3405	}
3406
3407	/* Set us so that we have processed and used all buffers, but have
3408	 * not restocked the Rx queue with fresh buffers */
3409	rxq->read = rxq->write = 0;
3410	rxq->free_count = 0;
3411	spin_unlock_irqrestore(&rxq->lock, flags);
3412}
3413
3414#ifdef CONFIG_PM
3415static int fw_loaded = 0;
3416static const struct firmware *raw = NULL;
3417
3418static void free_firmware(void)
3419{
3420	if (fw_loaded) {
3421		release_firmware(raw);
3422		raw = NULL;
3423		fw_loaded = 0;
3424	}
3425}
3426#else
3427#define free_firmware() do {} while (0)
3428#endif
3429
3430static int ipw_load(struct ipw_priv *priv)
3431{
3432#ifndef CONFIG_PM
3433	const struct firmware *raw = NULL;
3434#endif
3435	struct ipw_fw *fw;
3436	u8 *boot_img, *ucode_img, *fw_img;
3437	u8 *name = NULL;
3438	int rc = 0, retries = 3;
3439
3440	switch (priv->ieee->iw_mode) {
3441	case IW_MODE_ADHOC:
3442		name = "ipw2200-ibss.fw";
3443		break;
3444#ifdef CONFIG_IPW2200_MONITOR
3445	case IW_MODE_MONITOR:
3446		name = "ipw2200-sniffer.fw";
3447		break;
3448#endif
3449	case IW_MODE_INFRA:
3450		name = "ipw2200-bss.fw";
3451		break;
3452	}
3453
3454	if (!name) {
3455		rc = -EINVAL;
3456		goto error;
3457	}
3458
3459#ifdef CONFIG_PM
3460	if (!fw_loaded) {
3461#endif
3462		rc = ipw_get_fw(priv, &raw, name);
3463		if (rc < 0)
3464			goto error;
3465#ifdef CONFIG_PM
3466	}
3467#endif
3468
3469	fw = (void *)raw->data;
3470	boot_img = &fw->data[0];
3471	ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3472	fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3473			   le32_to_cpu(fw->ucode_size)];
3474
3475	if (!priv->rxq)
3476		priv->rxq = ipw_rx_queue_alloc(priv);
3477	else
3478		ipw_rx_queue_reset(priv, priv->rxq);
3479	if (!priv->rxq) {
3480		IPW_ERROR("Unable to initialize Rx queue\n");
3481		rc = -ENOMEM;
3482		goto error;
3483	}
3484
3485      retry:
3486	/* Ensure interrupts are disabled */
3487	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3488	priv->status &= ~STATUS_INT_ENABLED;
3489
3490	/* ack pending interrupts */
3491	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3492
3493	ipw_stop_nic(priv);
3494
3495	rc = ipw_reset_nic(priv);
3496	if (rc < 0) {
3497		IPW_ERROR("Unable to reset NIC\n");
3498		goto error;
3499	}
3500
3501	ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3502			IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3503
3504	/* DMA the initial boot firmware into the device */
3505	rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3506	if (rc < 0) {
3507		IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3508		goto error;
3509	}
3510
3511	/* kick start the device */
3512	ipw_start_nic(priv);
3513
3514	/* wait for the device to finish its initial startup sequence */
3515	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3516			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3517	if (rc < 0) {
3518		IPW_ERROR("device failed to boot initial fw image\n");
3519		goto error;
3520	}
3521	IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3522
3523	/* ack fw init done interrupt */
3524	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3525
3526	/* DMA the ucode into the device */
3527	rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3528	if (rc < 0) {
3529		IPW_ERROR("Unable to load ucode: %d\n", rc);
3530		goto error;
3531	}
3532
3533	/* stop nic */
3534	ipw_stop_nic(priv);
3535
3536	/* DMA bss firmware into the device */
3537	rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3538	if (rc < 0) {
3539		IPW_ERROR("Unable to load firmware: %d\n", rc);
3540		goto error;
3541	}
3542#ifdef CONFIG_PM
3543	fw_loaded = 1;
3544#endif
3545
3546	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3547
3548	rc = ipw_queue_reset(priv);
3549	if (rc < 0) {
3550		IPW_ERROR("Unable to initialize queues\n");
3551		goto error;
3552	}
3553
3554	/* Ensure interrupts are disabled */
3555	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3556	/* ack pending interrupts */
3557	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3558
3559	/* kick start the device */
3560	ipw_start_nic(priv);
3561
3562	if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3563		if (retries > 0) {
3564			IPW_WARNING("Parity error.  Retrying init.\n");
3565			retries--;
3566			goto retry;
3567		}
3568
3569		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3570		rc = -EIO;
3571		goto error;
3572	}
3573
3574	/* wait for the device */
3575	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3576			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3577	if (rc < 0) {
3578		IPW_ERROR("device failed to start within 500ms\n");
3579		goto error;
3580	}
3581	IPW_DEBUG_INFO("device response after %dms\n", rc);
3582
3583	/* ack fw init done interrupt */
3584	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3585
3586	/* read eeprom data */
3587	priv->eeprom_delay = 1;
3588	ipw_read_eeprom(priv);
3589	/* initialize the eeprom region of sram */
3590	ipw_eeprom_init_sram(priv);
3591
3592	/* enable interrupts */
3593	ipw_enable_interrupts(priv);
3594
3595	/* Ensure our queue has valid packets */
3596	ipw_rx_queue_replenish(priv);
3597
3598	ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3599
3600	/* ack pending interrupts */
3601	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3602
3603#ifndef CONFIG_PM
3604	release_firmware(raw);
3605#endif
3606	return 0;
3607
3608      error:
3609	if (priv->rxq) {
3610		ipw_rx_queue_free(priv, priv->rxq);
3611		priv->rxq = NULL;
3612	}
3613	ipw_tx_queue_free(priv);
3614	release_firmware(raw);
3615#ifdef CONFIG_PM
3616	fw_loaded = 0;
3617	raw = NULL;
3618#endif
3619
3620	return rc;
3621}
3622
3623/*
3624 * DMA services
3625 *
3626 * Theory of operation
3627 *
3628 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3629 * 2 empty entries always kept in the buffer to protect from overflow.
3630 *
3631 * For Tx queue, there are low mark and high mark limits. If, after queuing
3632 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3633 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3634 * Tx queue resumed.
3635 *
3636 * The IPW operates with six queues, one receive queue in the device's
3637 * sram, one transmit queue for sending commands to the device firmware,
3638 * and four transmit queues for data.
3639 *
3640 * The four transmit queues allow for performing quality of service (qos)
3641 * transmissions as per the 802.11 protocol.  Currently Linux does not
3642 * provide a mechanism to the user for utilizing prioritized queues, so
3643 * we only utilize the first data transmit queue (queue1).
3644 */
3645
3646/*
3647 * Driver allocates buffers of this size for Rx
3648 */
3649
3650/*
3651 * ipw_rx_queue_space - Return number of free slots available in queue.
3652 */
3653static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3654{
3655	int s = q->read - q->write;
3656	if (s <= 0)
3657		s += RX_QUEUE_SIZE;
3658	/* keep some buffer to not confuse full and empty queue */
3659	s -= 2;
3660	if (s < 0)
3661		s = 0;
3662	return s;
3663}
3664
3665static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3666{
3667	int s = q->last_used - q->first_empty;
3668	if (s <= 0)
3669		s += q->n_bd;
3670	s -= 2;			/* keep some reserve to not confuse empty and full situations */
3671	if (s < 0)
3672		s = 0;
3673	return s;
3674}
3675
3676static inline int ipw_queue_inc_wrap(int index, int n_bd)
3677{
3678	return (++index == n_bd) ? 0 : index;
3679}
3680
3681/*
3682 * Initialize common DMA queue structure
3683 *
3684 * @param q                queue to init
3685 * @param count            Number of BD's to allocate. Should be power of 2
3686 * @param read_register    Address for 'read' register
3687 *                         (not offset within BAR, full address)
3688 * @param write_register   Address for 'write' register
3689 *                         (not offset within BAR, full address)
3690 * @param base_register    Address for 'base' register
3691 *                         (not offset within BAR, full address)
3692 * @param size             Address for 'size' register
3693 *                         (not offset within BAR, full address)
3694 */
3695static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3696			   int count, u32 read, u32 write, u32 base, u32 size)
3697{
3698	q->n_bd = count;
3699
3700	q->low_mark = q->n_bd / 4;
3701	if (q->low_mark < 4)
3702		q->low_mark = 4;
3703
3704	q->high_mark = q->n_bd / 8;
3705	if (q->high_mark < 2)
3706		q->high_mark = 2;
3707
3708	q->first_empty = q->last_used = 0;
3709	q->reg_r = read;
3710	q->reg_w = write;
3711
3712	ipw_write32(priv, base, q->dma_addr);
3713	ipw_write32(priv, size, count);
3714	ipw_write32(priv, read, 0);
3715	ipw_write32(priv, write, 0);
3716
3717	_ipw_read32(priv, 0x90);
3718}
3719
3720static int ipw_queue_tx_init(struct ipw_priv *priv,
3721			     struct clx2_tx_queue *q,
3722			     int count, u32 read, u32 write, u32 base, u32 size)
3723{
3724	struct pci_dev *dev = priv->pci_dev;
3725
3726	q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3727	if (!q->txb)
3728		return -ENOMEM;
3729
3730	q->bd =
3731	    dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count,
3732			       &q->q.dma_addr, GFP_KERNEL);
3733	if (!q->bd) {
3734		IPW_ERROR("dma_alloc_coherent(%zd) failed\n",
3735			  sizeof(q->bd[0]) * count);
3736		kfree(q->txb);
3737		q->txb = NULL;
3738		return -ENOMEM;
3739	}
3740
3741	ipw_queue_init(priv, &q->q, count, read, write, base, size);
3742	return 0;
3743}
3744
3745/*
3746 * Free one TFD, those at index [txq->q.last_used].
3747 * Do NOT advance any indexes
3748 *
3749 * @param dev
3750 * @param txq
3751 */
3752static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3753				  struct clx2_tx_queue *txq)
3754{
3755	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3756	struct pci_dev *dev = priv->pci_dev;
3757	int i;
3758
3759	/* classify bd */
3760	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3761		/* nothing to cleanup after for host commands */
3762		return;
3763
3764	/* sanity check */
3765	if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3766		IPW_ERROR("Too many chunks: %i\n",
3767			  le32_to_cpu(bd->u.data.num_chunks));
3768		/* @todo issue fatal error, it is quite serious situation */
3769		return;
3770	}
3771
3772	/* unmap chunks if any */
3773	for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3774		dma_unmap_single(&dev->dev,
3775				 le32_to_cpu(bd->u.data.chunk_ptr[i]),
3776				 le16_to_cpu(bd->u.data.chunk_len[i]),
3777				 DMA_TO_DEVICE);
3778		if (txq->txb[txq->q.last_used]) {
3779			libipw_txb_free(txq->txb[txq->q.last_used]);
3780			txq->txb[txq->q.last_used] = NULL;
3781		}
3782	}
3783}
3784
3785/*
3786 * Deallocate DMA queue.
3787 *
3788 * Empty queue by removing and destroying all BD's.
3789 * Free all buffers.
3790 *
3791 * @param dev
3792 * @param q
3793 */
3794static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3795{
3796	struct clx2_queue *q = &txq->q;
3797	struct pci_dev *dev = priv->pci_dev;
3798
3799	if (q->n_bd == 0)
3800		return;
3801
3802	/* first, empty all BD's */
3803	for (; q->first_empty != q->last_used;
3804	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3805		ipw_queue_tx_free_tfd(priv, txq);
3806	}
3807
3808	/* free buffers belonging to queue itself */
3809	dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3810			  q->dma_addr);
3811	kfree(txq->txb);
3812
3813	/* 0 fill whole structure */
3814	memset(txq, 0, sizeof(*txq));
3815}
3816
3817/*
3818 * Destroy all DMA queues and structures
3819 *
3820 * @param priv
3821 */
3822static void ipw_tx_queue_free(struct ipw_priv *priv)
3823{
3824	/* Tx CMD queue */
3825	ipw_queue_tx_free(priv, &priv->txq_cmd);
3826
3827	/* Tx queues */
3828	ipw_queue_tx_free(priv, &priv->txq[0]);
3829	ipw_queue_tx_free(priv, &priv->txq[1]);
3830	ipw_queue_tx_free(priv, &priv->txq[2]);
3831	ipw_queue_tx_free(priv, &priv->txq[3]);
3832}
3833
3834static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3835{
3836	/* First 3 bytes are manufacturer */
3837	bssid[0] = priv->mac_addr[0];
3838	bssid[1] = priv->mac_addr[1];
3839	bssid[2] = priv->mac_addr[2];
3840
3841	/* Last bytes are random */
3842	get_random_bytes(&bssid[3], ETH_ALEN - 3);
3843
3844	bssid[0] &= 0xfe;	/* clear multicast bit */
3845	bssid[0] |= 0x02;	/* set local assignment bit (IEEE802) */
3846}
3847
3848static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3849{
3850	struct ipw_station_entry entry;
3851	int i;
3852
3853	for (i = 0; i < priv->num_stations; i++) {
3854		if (ether_addr_equal(priv->stations[i], bssid)) {
3855			/* Another node is active in network */
3856			priv->missed_adhoc_beacons = 0;
3857			if (!(priv->config & CFG_STATIC_CHANNEL))
3858				/* when other nodes drop out, we drop out */
3859				priv->config &= ~CFG_ADHOC_PERSIST;
3860
3861			return i;
3862		}
3863	}
3864
3865	if (i == MAX_STATIONS)
3866		return IPW_INVALID_STATION;
3867
3868	IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3869
3870	entry.reserved = 0;
3871	entry.support_mode = 0;
3872	memcpy(entry.mac_addr, bssid, ETH_ALEN);
3873	memcpy(priv->stations[i], bssid, ETH_ALEN);
3874	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3875			 &entry, sizeof(entry));
3876	priv->num_stations++;
3877
3878	return i;
3879}
3880
3881static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3882{
3883	int i;
3884
3885	for (i = 0; i < priv->num_stations; i++)
3886		if (ether_addr_equal(priv->stations[i], bssid))
3887			return i;
3888
3889	return IPW_INVALID_STATION;
3890}
3891
3892static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3893{
3894	int err;
3895
3896	if (priv->status & STATUS_ASSOCIATING) {
3897		IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3898		schedule_work(&priv->disassociate);
3899		return;
3900	}
3901
3902	if (!(priv->status & STATUS_ASSOCIATED)) {
3903		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3904		return;
3905	}
3906
3907	IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3908			"on channel %d.\n",
3909			priv->assoc_request.bssid,
3910			priv->assoc_request.channel);
3911
3912	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3913	priv->status |= STATUS_DISASSOCIATING;
3914
3915	if (quiet)
3916		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3917	else
3918		priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3919
3920	err = ipw_send_associate(priv, &priv->assoc_request);
3921	if (err) {
3922		IPW_DEBUG_HC("Attempt to send [dis]associate command "
3923			     "failed.\n");
3924		return;
3925	}
3926
3927}
3928
3929static int ipw_disassociate(void *data)
3930{
3931	struct ipw_priv *priv = data;
3932	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3933		return 0;
3934	ipw_send_disassociate(data, 0);
3935	netif_carrier_off(priv->net_dev);
3936	return 1;
3937}
3938
3939static void ipw_bg_disassociate(struct work_struct *work)
3940{
3941	struct ipw_priv *priv =
3942		container_of(work, struct ipw_priv, disassociate);
3943	mutex_lock(&priv->mutex);
3944	ipw_disassociate(priv);
3945	mutex_unlock(&priv->mutex);
3946}
3947
3948static void ipw_system_config(struct work_struct *work)
3949{
3950	struct ipw_priv *priv =
3951		container_of(work, struct ipw_priv, system_config);
3952
3953#ifdef CONFIG_IPW2200_PROMISCUOUS
3954	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3955		priv->sys_config.accept_all_data_frames = 1;
3956		priv->sys_config.accept_non_directed_frames = 1;
3957		priv->sys_config.accept_all_mgmt_bcpr = 1;
3958		priv->sys_config.accept_all_mgmt_frames = 1;
3959	}
3960#endif
3961
3962	ipw_send_system_config(priv);
3963}
3964
3965struct ipw_status_code {
3966	u16 status;
3967	const char *reason;
3968};
3969
3970static const struct ipw_status_code ipw_status_codes[] = {
3971	{0x00, "Successful"},
3972	{0x01, "Unspecified failure"},
3973	{0x0A, "Cannot support all requested capabilities in the "
3974	 "Capability information field"},
3975	{0x0B, "Reassociation denied due to inability to confirm that "
3976	 "association exists"},
3977	{0x0C, "Association denied due to reason outside the scope of this "
3978	 "standard"},
3979	{0x0D,
3980	 "Responding station does not support the specified authentication "
3981	 "algorithm"},
3982	{0x0E,
3983	 "Received an Authentication frame with authentication sequence "
3984	 "transaction sequence number out of expected sequence"},
3985	{0x0F, "Authentication rejected because of challenge failure"},
3986	{0x10, "Authentication rejected due to timeout waiting for next "
3987	 "frame in sequence"},
3988	{0x11, "Association denied because AP is unable to handle additional "
3989	 "associated stations"},
3990	{0x12,
3991	 "Association denied due to requesting station not supporting all "
3992	 "of the datarates in the BSSBasicServiceSet Parameter"},
3993	{0x13,
3994	 "Association denied due to requesting station not supporting "
3995	 "short preamble operation"},
3996	{0x14,
3997	 "Association denied due to requesting station not supporting "
3998	 "PBCC encoding"},
3999	{0x15,
4000	 "Association denied due to requesting station not supporting "
4001	 "channel agility"},
4002	{0x19,
4003	 "Association denied due to requesting station not supporting "
4004	 "short slot operation"},
4005	{0x1A,
4006	 "Association denied due to requesting station not supporting "
4007	 "DSSS-OFDM operation"},
4008	{0x28, "Invalid Information Element"},
4009	{0x29, "Group Cipher is not valid"},
4010	{0x2A, "Pairwise Cipher is not valid"},
4011	{0x2B, "AKMP is not valid"},
4012	{0x2C, "Unsupported RSN IE version"},
4013	{0x2D, "Invalid RSN IE Capabilities"},
4014	{0x2E, "Cipher suite is rejected per security policy"},
4015};
4016
4017static const char *ipw_get_status_code(u16 status)
4018{
4019	int i;
4020	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4021		if (ipw_status_codes[i].status == (status & 0xff))
4022			return ipw_status_codes[i].reason;
4023	return "Unknown status value.";
4024}
4025
4026static inline void average_init(struct average *avg)
4027{
4028	memset(avg, 0, sizeof(*avg));
4029}
4030
4031#define DEPTH_RSSI 8
4032#define DEPTH_NOISE 16
4033static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4034{
4035	return ((depth-1)*prev_avg +  val)/depth;
4036}
4037
4038static void average_add(struct average *avg, s16 val)
4039{
4040	avg->sum -= avg->entries[avg->pos];
4041	avg->sum += val;
4042	avg->entries[avg->pos++] = val;
4043	if (unlikely(avg->pos == AVG_ENTRIES)) {
4044		avg->init = 1;
4045		avg->pos = 0;
4046	}
4047}
4048
4049static s16 average_value(struct average *avg)
4050{
4051	if (!unlikely(avg->init)) {
4052		if (avg->pos)
4053			return avg->sum / avg->pos;
4054		return 0;
4055	}
4056
4057	return avg->sum / AVG_ENTRIES;
4058}
4059
4060static void ipw_reset_stats(struct ipw_priv *priv)
4061{
4062	u32 len = sizeof(u32);
4063
4064	priv->quality = 0;
4065
4066	average_init(&priv->average_missed_beacons);
4067	priv->exp_avg_rssi = -60;
4068	priv->exp_avg_noise = -85 + 0x100;
4069
4070	priv->last_rate = 0;
4071	priv->last_missed_beacons = 0;
4072	priv->last_rx_packets = 0;
4073	priv->last_tx_packets = 0;
4074	priv->last_tx_failures = 0;
4075
4076	/* Firmware managed, reset only when NIC is restarted, so we have to
4077	 * normalize on the current value */
4078	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4079			&priv->last_rx_err, &len);
4080	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4081			&priv->last_tx_failures, &len);
4082
4083	/* Driver managed, reset with each association */
4084	priv->missed_adhoc_beacons = 0;
4085	priv->missed_beacons = 0;
4086	priv->tx_packets = 0;
4087	priv->rx_packets = 0;
4088
4089}
4090
4091static u32 ipw_get_max_rate(struct ipw_priv *priv)
4092{
4093	u32 i = 0x80000000;
4094	u32 mask = priv->rates_mask;
4095	/* If currently associated in B mode, restrict the maximum
4096	 * rate match to B rates */
4097	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4098		mask &= LIBIPW_CCK_RATES_MASK;
4099
4100	/* TODO: Verify that the rate is supported by the current rates
4101	 * list. */
4102
4103	while (i && !(mask & i))
4104		i >>= 1;
4105	switch (i) {
4106	case LIBIPW_CCK_RATE_1MB_MASK:
4107		return 1000000;
4108	case LIBIPW_CCK_RATE_2MB_MASK:
4109		return 2000000;
4110	case LIBIPW_CCK_RATE_5MB_MASK:
4111		return 5500000;
4112	case LIBIPW_OFDM_RATE_6MB_MASK:
4113		return 6000000;
4114	case LIBIPW_OFDM_RATE_9MB_MASK:
4115		return 9000000;
4116	case LIBIPW_CCK_RATE_11MB_MASK:
4117		return 11000000;
4118	case LIBIPW_OFDM_RATE_12MB_MASK:
4119		return 12000000;
4120	case LIBIPW_OFDM_RATE_18MB_MASK:
4121		return 18000000;
4122	case LIBIPW_OFDM_RATE_24MB_MASK:
4123		return 24000000;
4124	case LIBIPW_OFDM_RATE_36MB_MASK:
4125		return 36000000;
4126	case LIBIPW_OFDM_RATE_48MB_MASK:
4127		return 48000000;
4128	case LIBIPW_OFDM_RATE_54MB_MASK:
4129		return 54000000;
4130	}
4131
4132	if (priv->ieee->mode == IEEE_B)
4133		return 11000000;
4134	else
4135		return 54000000;
4136}
4137
4138static u32 ipw_get_current_rate(struct ipw_priv *priv)
4139{
4140	u32 rate, len = sizeof(rate);
4141	int err;
4142
4143	if (!(priv->status & STATUS_ASSOCIATED))
4144		return 0;
4145
4146	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4147		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4148				      &len);
4149		if (err) {
4150			IPW_DEBUG_INFO("failed querying ordinals.\n");
4151			return 0;
4152		}
4153	} else
4154		return ipw_get_max_rate(priv);
4155
4156	switch (rate) {
4157	case IPW_TX_RATE_1MB:
4158		return 1000000;
4159	case IPW_TX_RATE_2MB:
4160		return 2000000;
4161	case IPW_TX_RATE_5MB:
4162		return 5500000;
4163	case IPW_TX_RATE_6MB:
4164		return 6000000;
4165	case IPW_TX_RATE_9MB:
4166		return 9000000;
4167	case IPW_TX_RATE_11MB:
4168		return 11000000;
4169	case IPW_TX_RATE_12MB:
4170		return 12000000;
4171	case IPW_TX_RATE_18MB:
4172		return 18000000;
4173	case IPW_TX_RATE_24MB:
4174		return 24000000;
4175	case IPW_TX_RATE_36MB:
4176		return 36000000;
4177	case IPW_TX_RATE_48MB:
4178		return 48000000;
4179	case IPW_TX_RATE_54MB:
4180		return 54000000;
4181	}
4182
4183	return 0;
4184}
4185
4186#define IPW_STATS_INTERVAL (2 * HZ)
4187static void ipw_gather_stats(struct ipw_priv *priv)
4188{
4189	u32 rx_err, rx_err_delta, rx_packets_delta;
4190	u32 tx_failures, tx_failures_delta, tx_packets_delta;
4191	u32 missed_beacons_percent, missed_beacons_delta;
4192	u32 quality = 0;
4193	u32 len = sizeof(u32);
4194	s16 rssi;
4195	u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4196	    rate_quality;
4197	u32 max_rate;
4198
4199	if (!(priv->status & STATUS_ASSOCIATED)) {
4200		priv->quality = 0;
4201		return;
4202	}
4203
4204	/* Update the statistics */
4205	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4206			&priv->missed_beacons, &len);
4207	missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4208	priv->last_missed_beacons = priv->missed_beacons;
4209	if (priv->assoc_request.beacon_interval) {
4210		missed_beacons_percent = missed_beacons_delta *
4211		    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4212		    (IPW_STATS_INTERVAL * 10);
4213	} else {
4214		missed_beacons_percent = 0;
4215	}
4216	average_add(&priv->average_missed_beacons, missed_beacons_percent);
4217
4218	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4219	rx_err_delta = rx_err - priv->last_rx_err;
4220	priv->last_rx_err = rx_err;
4221
4222	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4223	tx_failures_delta = tx_failures - priv->last_tx_failures;
4224	priv->last_tx_failures = tx_failures;
4225
4226	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4227	priv->last_rx_packets = priv->rx_packets;
4228
4229	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4230	priv->last_tx_packets = priv->tx_packets;
4231
4232	/* Calculate quality based on the following:
4233	 *
4234	 * Missed beacon: 100% = 0, 0% = 70% missed
4235	 * Rate: 60% = 1Mbs, 100% = Max
4236	 * Rx and Tx errors represent a straight % of total Rx/Tx
4237	 * RSSI: 100% = > -50,  0% = < -80
4238	 * Rx errors: 100% = 0, 0% = 50% missed
4239	 *
4240	 * The lowest computed quality is used.
4241	 *
4242	 */
4243#define BEACON_THRESHOLD 5
4244	beacon_quality = 100 - missed_beacons_percent;
4245	if (beacon_quality < BEACON_THRESHOLD)
4246		beacon_quality = 0;
4247	else
4248		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4249		    (100 - BEACON_THRESHOLD);
4250	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4251			beacon_quality, missed_beacons_percent);
4252
4253	priv->last_rate = ipw_get_current_rate(priv);
4254	max_rate = ipw_get_max_rate(priv);
4255	rate_quality = priv->last_rate * 40 / max_rate + 60;
4256	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4257			rate_quality, priv->last_rate / 1000000);
4258
4259	if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4260		rx_quality = 100 - (rx_err_delta * 100) /
4261		    (rx_packets_delta + rx_err_delta);
4262	else
4263		rx_quality = 100;
4264	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4265			rx_quality, rx_err_delta, rx_packets_delta);
4266
4267	if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4268		tx_quality = 100 - (tx_failures_delta * 100) /
4269		    (tx_packets_delta + tx_failures_delta);
4270	else
4271		tx_quality = 100;
4272	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4273			tx_quality, tx_failures_delta, tx_packets_delta);
4274
4275	rssi = priv->exp_avg_rssi;
4276	signal_quality =
4277	    (100 *
4278	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4279	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4280	     (priv->ieee->perfect_rssi - rssi) *
4281	     (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4282	      62 * (priv->ieee->perfect_rssi - rssi))) /
4283	    ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4284	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4285	if (signal_quality > 100)
4286		signal_quality = 100;
4287	else if (signal_quality < 1)
4288		signal_quality = 0;
4289
4290	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4291			signal_quality, rssi);
4292
4293	quality = min(rx_quality, signal_quality);
4294	quality = min(tx_quality, quality);
4295	quality = min(rate_quality, quality);
4296	quality = min(beacon_quality, quality);
4297	if (quality == beacon_quality)
4298		IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4299				quality);
4300	if (quality == rate_quality)
4301		IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4302				quality);
4303	if (quality == tx_quality)
4304		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4305				quality);
4306	if (quality == rx_quality)
4307		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4308				quality);
4309	if (quality == signal_quality)
4310		IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4311				quality);
4312
4313	priv->quality = quality;
4314
4315	schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4316}
4317
4318static void ipw_bg_gather_stats(struct work_struct *work)
4319{
4320	struct ipw_priv *priv =
4321		container_of(work, struct ipw_priv, gather_stats.work);
4322	mutex_lock(&priv->mutex);
4323	ipw_gather_stats(priv);
4324	mutex_unlock(&priv->mutex);
4325}
4326
4327/* Missed beacon behavior:
4328 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4329 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4330 * Above disassociate threshold, give up and stop scanning.
4331 * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4332static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4333					    int missed_count)
4334{
4335	priv->notif_missed_beacons = missed_count;
4336
4337	if (missed_count > priv->disassociate_threshold &&
4338	    priv->status & STATUS_ASSOCIATED) {
4339		/* If associated and we've hit the missed
4340		 * beacon threshold, disassociate, turn
4341		 * off roaming, and abort any active scans */
4342		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4343			  IPW_DL_STATE | IPW_DL_ASSOC,
4344			  "Missed beacon: %d - disassociate\n", missed_count);
4345		priv->status &= ~STATUS_ROAMING;
4346		if (priv->status & STATUS_SCANNING) {
4347			IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4348				  IPW_DL_STATE,
4349				  "Aborting scan with missed beacon.\n");
4350			schedule_work(&priv->abort_scan);
4351		}
4352
4353		schedule_work(&priv->disassociate);
4354		return;
4355	}
4356
4357	if (priv->status & STATUS_ROAMING) {
4358		/* If we are currently roaming, then just
4359		 * print a debug statement... */
4360		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4361			  "Missed beacon: %d - roam in progress\n",
4362			  missed_count);
4363		return;
4364	}
4365
4366	if (roaming &&
4367	    (missed_count > priv->roaming_threshold &&
4368	     missed_count <= priv->disassociate_threshold)) {
4369		/* If we are not already roaming, set the ROAM
4370		 * bit in the status and kick off a scan.
4371		 * This can happen several times before we reach
4372		 * disassociate_threshold. */
4373		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4374			  "Missed beacon: %d - initiate "
4375			  "roaming\n", missed_count);
4376		if (!(priv->status & STATUS_ROAMING)) {
4377			priv->status |= STATUS_ROAMING;
4378			if (!(priv->status & STATUS_SCANNING))
4379				schedule_delayed_work(&priv->request_scan, 0);
4380		}
4381		return;
4382	}
4383
4384	if (priv->status & STATUS_SCANNING &&
4385	    missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4386		/* Stop scan to keep fw from getting
4387		 * stuck (only if we aren't roaming --
4388		 * otherwise we'll never scan more than 2 or 3
4389		 * channels..) */
4390		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4391			  "Aborting scan with missed beacon.\n");
4392		schedule_work(&priv->abort_scan);
4393	}
4394
4395	IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4396}
4397
4398static void ipw_scan_event(struct work_struct *work)
4399{
4400	union iwreq_data wrqu;
4401
4402	struct ipw_priv *priv =
4403		container_of(work, struct ipw_priv, scan_event.work);
4404
4405	wrqu.data.length = 0;
4406	wrqu.data.flags = 0;
4407	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4408}
4409
4410static void handle_scan_event(struct ipw_priv *priv)
4411{
4412	/* Only userspace-requested scan completion events go out immediately */
4413	if (!priv->user_requested_scan) {
4414		schedule_delayed_work(&priv->scan_event,
4415				      round_jiffies_relative(msecs_to_jiffies(4000)));
4416	} else {
4417		priv->user_requested_scan = 0;
4418		mod_delayed_work(system_wq, &priv->scan_event, 0);
4419	}
4420}
4421
4422/*
4423 * Handle host notification packet.
4424 * Called from interrupt routine
4425 */
4426static void ipw_rx_notification(struct ipw_priv *priv,
4427				       struct ipw_rx_notification *notif)
4428{
4429	u16 size = le16_to_cpu(notif->size);
4430
4431	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4432
4433	switch (notif->subtype) {
4434	case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4435			struct notif_association *assoc = &notif->u.assoc;
4436
4437			switch (assoc->state) {
4438			case CMAS_ASSOCIATED:{
4439					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4440						  IPW_DL_ASSOC,
4441						  "associated: '%*pE' %pM\n",
4442						  priv->essid_len, priv->essid,
4443						  priv->bssid);
4444
4445					switch (priv->ieee->iw_mode) {
4446					case IW_MODE_INFRA:
4447						memcpy(priv->ieee->bssid,
4448						       priv->bssid, ETH_ALEN);
4449						break;
4450
4451					case IW_MODE_ADHOC:
4452						memcpy(priv->ieee->bssid,
4453						       priv->bssid, ETH_ALEN);
4454
4455						/* clear out the station table */
4456						priv->num_stations = 0;
4457
4458						IPW_DEBUG_ASSOC
4459						    ("queueing adhoc check\n");
4460						schedule_delayed_work(
4461							&priv->adhoc_check,
4462							le16_to_cpu(priv->
4463							assoc_request.
4464							beacon_interval));
4465						break;
4466					}
4467
4468					priv->status &= ~STATUS_ASSOCIATING;
4469					priv->status |= STATUS_ASSOCIATED;
4470					schedule_work(&priv->system_config);
4471
4472#ifdef CONFIG_IPW2200_QOS
4473#define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4474			 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4475					if ((priv->status & STATUS_AUTH) &&
4476					    (IPW_GET_PACKET_STYPE(&notif->u.raw)
4477					     == IEEE80211_STYPE_ASSOC_RESP)) {
4478						if ((sizeof
4479						     (struct
4480						      libipw_assoc_response)
4481						     <= size)
4482						    && (size <= 2314)) {
4483							struct
4484							libipw_rx_stats
4485							    stats = {
4486								.len = size - 1,
4487							};
4488
4489							IPW_DEBUG_QOS
4490							    ("QoS Associate "
4491							     "size %d\n", size);
4492							libipw_rx_mgt(priv->
4493									 ieee,
4494									 (struct
4495									  libipw_hdr_4addr
4496									  *)
4497									 &notif->u.raw, &stats);
4498						}
4499					}
4500#endif
4501
4502					schedule_work(&priv->link_up);
4503
4504					break;
4505				}
4506
4507			case CMAS_AUTHENTICATED:{
4508					if (priv->
4509					    status & (STATUS_ASSOCIATED |
4510						      STATUS_AUTH)) {
4511						struct notif_authenticate *auth
4512						    = &notif->u.auth;
4513						IPW_DEBUG(IPW_DL_NOTIF |
4514							  IPW_DL_STATE |
4515							  IPW_DL_ASSOC,
4516							  "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4517							  priv->essid_len,
4518							  priv->essid,
4519							  priv->bssid,
4520							  le16_to_cpu(auth->status),
4521							  ipw_get_status_code
4522							  (le16_to_cpu
4523							   (auth->status)));
4524
4525						priv->status &=
4526						    ~(STATUS_ASSOCIATING |
4527						      STATUS_AUTH |
4528						      STATUS_ASSOCIATED);
4529
4530						schedule_work(&priv->link_down);
4531						break;
4532					}
4533
4534					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4535						  IPW_DL_ASSOC,
4536						  "authenticated: '%*pE' %pM\n",
4537						  priv->essid_len, priv->essid,
4538						  priv->bssid);
4539					break;
4540				}
4541
4542			case CMAS_INIT:{
4543					if (priv->status & STATUS_AUTH) {
4544						struct
4545						    libipw_assoc_response
4546						*resp;
4547						resp =
4548						    (struct
4549						     libipw_assoc_response
4550						     *)&notif->u.raw;
4551						IPW_DEBUG(IPW_DL_NOTIF |
4552							  IPW_DL_STATE |
4553							  IPW_DL_ASSOC,
4554							  "association failed (0x%04X): %s\n",
4555							  le16_to_cpu(resp->status),
4556							  ipw_get_status_code
4557							  (le16_to_cpu
4558							   (resp->status)));
4559					}
4560
4561					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4562						  IPW_DL_ASSOC,
4563						  "disassociated: '%*pE' %pM\n",
4564						  priv->essid_len, priv->essid,
4565						  priv->bssid);
4566
4567					priv->status &=
4568					    ~(STATUS_DISASSOCIATING |
4569					      STATUS_ASSOCIATING |
4570					      STATUS_ASSOCIATED | STATUS_AUTH);
4571					if (priv->assoc_network
4572					    && (priv->assoc_network->
4573						capability &
4574						WLAN_CAPABILITY_IBSS))
4575						ipw_remove_current_network
4576						    (priv);
4577
4578					schedule_work(&priv->link_down);
4579
4580					break;
4581				}
4582
4583			case CMAS_RX_ASSOC_RESP:
4584				break;
4585
4586			default:
4587				IPW_ERROR("assoc: unknown (%d)\n",
4588					  assoc->state);
4589				break;
4590			}
4591
4592			break;
4593		}
4594
4595	case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4596			struct notif_authenticate *auth = &notif->u.auth;
4597			switch (auth->state) {
4598			case CMAS_AUTHENTICATED:
4599				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4600					  "authenticated: '%*pE' %pM\n",
4601					  priv->essid_len, priv->essid,
4602					  priv->bssid);
4603				priv->status |= STATUS_AUTH;
4604				break;
4605
4606			case CMAS_INIT:
4607				if (priv->status & STATUS_AUTH) {
4608					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4609						  IPW_DL_ASSOC,
4610						  "authentication failed (0x%04X): %s\n",
4611						  le16_to_cpu(auth->status),
4612						  ipw_get_status_code(le16_to_cpu
4613								      (auth->
4614								       status)));
4615				}
4616				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4617					  IPW_DL_ASSOC,
4618					  "deauthenticated: '%*pE' %pM\n",
4619					  priv->essid_len, priv->essid,
4620					  priv->bssid);
4621
4622				priv->status &= ~(STATUS_ASSOCIATING |
4623						  STATUS_AUTH |
4624						  STATUS_ASSOCIATED);
4625
4626				schedule_work(&priv->link_down);
4627				break;
4628
4629			case CMAS_TX_AUTH_SEQ_1:
4630				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631					  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4632				break;
4633			case CMAS_RX_AUTH_SEQ_2:
4634				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635					  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4636				break;
4637			case CMAS_AUTH_SEQ_1_PASS:
4638				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639					  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4640				break;
4641			case CMAS_AUTH_SEQ_1_FAIL:
4642				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643					  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4644				break;
4645			case CMAS_TX_AUTH_SEQ_3:
4646				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647					  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4648				break;
4649			case CMAS_RX_AUTH_SEQ_4:
4650				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651					  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4652				break;
4653			case CMAS_AUTH_SEQ_2_PASS:
4654				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655					  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4656				break;
4657			case CMAS_AUTH_SEQ_2_FAIL:
4658				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4659					  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4660				break;
4661			case CMAS_TX_ASSOC:
4662				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663					  IPW_DL_ASSOC, "TX_ASSOC\n");
4664				break;
4665			case CMAS_RX_ASSOC_RESP:
4666				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4667					  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4668
4669				break;
4670			case CMAS_ASSOCIATED:
4671				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4672					  IPW_DL_ASSOC, "ASSOCIATED\n");
4673				break;
4674			default:
4675				IPW_DEBUG_NOTIF("auth: failure - %d\n",
4676						auth->state);
4677				break;
4678			}
4679			break;
4680		}
4681
4682	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4683			struct notif_channel_result *x =
4684			    &notif->u.channel_result;
4685
4686			if (size == sizeof(*x)) {
4687				IPW_DEBUG_SCAN("Scan result for channel %d\n",
4688					       x->channel_num);
4689			} else {
4690				IPW_DEBUG_SCAN("Scan result of wrong size %d "
4691					       "(should be %zd)\n",
4692					       size, sizeof(*x));
4693			}
4694			break;
4695		}
4696
4697	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4698			struct notif_scan_complete *x = &notif->u.scan_complete;
4699			if (size == sizeof(*x)) {
4700				IPW_DEBUG_SCAN
4701				    ("Scan completed: type %d, %d channels, "
4702				     "%d status\n", x->scan_type,
4703				     x->num_channels, x->status);
4704			} else {
4705				IPW_ERROR("Scan completed of wrong size %d "
4706					  "(should be %zd)\n",
4707					  size, sizeof(*x));
4708			}
4709
4710			priv->status &=
4711			    ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4712
4713			wake_up_interruptible(&priv->wait_state);
4714			cancel_delayed_work(&priv->scan_check);
4715
4716			if (priv->status & STATUS_EXIT_PENDING)
4717				break;
4718
4719			priv->ieee->scans++;
4720
4721#ifdef CONFIG_IPW2200_MONITOR
4722			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4723				priv->status |= STATUS_SCAN_FORCED;
4724				schedule_delayed_work(&priv->request_scan, 0);
4725				break;
4726			}
4727			priv->status &= ~STATUS_SCAN_FORCED;
4728#endif				/* CONFIG_IPW2200_MONITOR */
4729
4730			/* Do queued direct scans first */
4731			if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4732				schedule_delayed_work(&priv->request_direct_scan, 0);
4733
4734			if (!(priv->status & (STATUS_ASSOCIATED |
4735					      STATUS_ASSOCIATING |
4736					      STATUS_ROAMING |
4737					      STATUS_DISASSOCIATING)))
4738				schedule_work(&priv->associate);
4739			else if (priv->status & STATUS_ROAMING) {
4740				if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4741					/* If a scan completed and we are in roam mode, then
4742					 * the scan that completed was the one requested as a
4743					 * result of entering roam... so, schedule the
4744					 * roam work */
4745					schedule_work(&priv->roam);
4746				else
4747					/* Don't schedule if we aborted the scan */
4748					priv->status &= ~STATUS_ROAMING;
4749			} else if (priv->status & STATUS_SCAN_PENDING)
4750				schedule_delayed_work(&priv->request_scan, 0);
4751			else if (priv->config & CFG_BACKGROUND_SCAN
4752				 && priv->status & STATUS_ASSOCIATED)
4753				schedule_delayed_work(&priv->request_scan,
4754						      round_jiffies_relative(HZ));
4755
4756			/* Send an empty event to user space.
4757			 * We don't send the received data on the event because
4758			 * it would require us to do complex transcoding, and
4759			 * we want to minimise the work done in the irq handler
4760			 * Use a request to extract the data.
4761			 * Also, we generate this even for any scan, regardless
4762			 * on how the scan was initiated. User space can just
4763			 * sync on periodic scan to get fresh data...
4764			 * Jean II */
4765			if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4766				handle_scan_event(priv);
4767			break;
4768		}
4769
4770	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4771			struct notif_frag_length *x = &notif->u.frag_len;
4772
4773			if (size == sizeof(*x))
4774				IPW_ERROR("Frag length: %d\n",
4775					  le16_to_cpu(x->frag_length));
4776			else
4777				IPW_ERROR("Frag length of wrong size %d "
4778					  "(should be %zd)\n",
4779					  size, sizeof(*x));
4780			break;
4781		}
4782
4783	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4784			struct notif_link_deterioration *x =
4785			    &notif->u.link_deterioration;
4786
4787			if (size == sizeof(*x)) {
4788				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4789					"link deterioration: type %d, cnt %d\n",
4790					x->silence_notification_type,
4791					x->silence_count);
4792				memcpy(&priv->last_link_deterioration, x,
4793				       sizeof(*x));
4794			} else {
4795				IPW_ERROR("Link Deterioration of wrong size %d "
4796					  "(should be %zd)\n",
4797					  size, sizeof(*x));
4798			}
4799			break;
4800		}
4801
4802	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4803			IPW_ERROR("Dino config\n");
4804			if (priv->hcmd
4805			    && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4806				IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4807
4808			break;
4809		}
4810
4811	case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4812			struct notif_beacon_state *x = &notif->u.beacon_state;
4813			if (size != sizeof(*x)) {
4814				IPW_ERROR
4815				    ("Beacon state of wrong size %d (should "
4816				     "be %zd)\n", size, sizeof(*x));
4817				break;
4818			}
4819
4820			if (le32_to_cpu(x->state) ==
4821			    HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4822				ipw_handle_missed_beacon(priv,
4823							 le32_to_cpu(x->
4824								     number));
4825
4826			break;
4827		}
4828
4829	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4830			struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4831			if (size == sizeof(*x)) {
4832				IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4833					  "0x%02x station %d\n",
4834					  x->key_state, x->security_type,
4835					  x->station_index);
4836				break;
4837			}
4838
4839			IPW_ERROR
4840			    ("TGi Tx Key of wrong size %d (should be %zd)\n",
4841			     size, sizeof(*x));
4842			break;
4843		}
4844
4845	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4846			struct notif_calibration *x = &notif->u.calibration;
4847
4848			if (size == sizeof(*x)) {
4849				memcpy(&priv->calib, x, sizeof(*x));
4850				IPW_DEBUG_INFO("TODO: Calibration\n");
4851				break;
4852			}
4853
4854			IPW_ERROR
4855			    ("Calibration of wrong size %d (should be %zd)\n",
4856			     size, sizeof(*x));
4857			break;
4858		}
4859
4860	case HOST_NOTIFICATION_NOISE_STATS:{
4861			if (size == sizeof(u32)) {
4862				priv->exp_avg_noise =
4863				    exponential_average(priv->exp_avg_noise,
4864				    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4865				    DEPTH_NOISE);
4866				break;
4867			}
4868
4869			IPW_ERROR
4870			    ("Noise stat is wrong size %d (should be %zd)\n",
4871			     size, sizeof(u32));
4872			break;
4873		}
4874
4875	default:
4876		IPW_DEBUG_NOTIF("Unknown notification: "
4877				"subtype=%d,flags=0x%2x,size=%d\n",
4878				notif->subtype, notif->flags, size);
4879	}
4880}
4881
4882/*
4883 * Destroys all DMA structures and initialise them again
4884 *
4885 * @param priv
4886 * @return error code
4887 */
4888static int ipw_queue_reset(struct ipw_priv *priv)
4889{
4890	int rc = 0;
4891	/* @todo customize queue sizes */
4892	int nTx = 64, nTxCmd = 8;
4893	ipw_tx_queue_free(priv);
4894	/* Tx CMD queue */
4895	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4896			       IPW_TX_CMD_QUEUE_READ_INDEX,
4897			       IPW_TX_CMD_QUEUE_WRITE_INDEX,
4898			       IPW_TX_CMD_QUEUE_BD_BASE,
4899			       IPW_TX_CMD_QUEUE_BD_SIZE);
4900	if (rc) {
4901		IPW_ERROR("Tx Cmd queue init failed\n");
4902		goto error;
4903	}
4904	/* Tx queue(s) */
4905	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4906			       IPW_TX_QUEUE_0_READ_INDEX,
4907			       IPW_TX_QUEUE_0_WRITE_INDEX,
4908			       IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4909	if (rc) {
4910		IPW_ERROR("Tx 0 queue init failed\n");
4911		goto error;
4912	}
4913	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4914			       IPW_TX_QUEUE_1_READ_INDEX,
4915			       IPW_TX_QUEUE_1_WRITE_INDEX,
4916			       IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4917	if (rc) {
4918		IPW_ERROR("Tx 1 queue init failed\n");
4919		goto error;
4920	}
4921	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4922			       IPW_TX_QUEUE_2_READ_INDEX,
4923			       IPW_TX_QUEUE_2_WRITE_INDEX,
4924			       IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4925	if (rc) {
4926		IPW_ERROR("Tx 2 queue init failed\n");
4927		goto error;
4928	}
4929	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4930			       IPW_TX_QUEUE_3_READ_INDEX,
4931			       IPW_TX_QUEUE_3_WRITE_INDEX,
4932			       IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4933	if (rc) {
4934		IPW_ERROR("Tx 3 queue init failed\n");
4935		goto error;
4936	}
4937	/* statistics */
4938	priv->rx_bufs_min = 0;
4939	priv->rx_pend_max = 0;
4940	return rc;
4941
4942      error:
4943	ipw_tx_queue_free(priv);
4944	return rc;
4945}
4946
4947/*
4948 * Reclaim Tx queue entries no more used by NIC.
4949 *
4950 * When FW advances 'R' index, all entries between old and
4951 * new 'R' index need to be reclaimed. As result, some free space
4952 * forms. If there is enough free space (> low mark), wake Tx queue.
4953 *
4954 * @note Need to protect against garbage in 'R' index
4955 * @param priv
4956 * @param txq
4957 * @param qindex
4958 * @return Number of used entries remains in the queue
4959 */
4960static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4961				struct clx2_tx_queue *txq, int qindex)
4962{
4963	u32 hw_tail;
4964	int used;
4965	struct clx2_queue *q = &txq->q;
4966
4967	hw_tail = ipw_read32(priv, q->reg_r);
4968	if (hw_tail >= q->n_bd) {
4969		IPW_ERROR
4970		    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4971		     hw_tail, q->n_bd);
4972		goto done;
4973	}
4974	for (; q->last_used != hw_tail;
4975	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4976		ipw_queue_tx_free_tfd(priv, txq);
4977		priv->tx_packets++;
4978	}
4979      done:
4980	if ((ipw_tx_queue_space(q) > q->low_mark) &&
4981	    (qindex >= 0))
4982		netif_wake_queue(priv->net_dev);
4983	used = q->first_empty - q->last_used;
4984	if (used < 0)
4985		used += q->n_bd;
4986
4987	return used;
4988}
4989
4990static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
4991			     int len, int sync)
4992{
4993	struct clx2_tx_queue *txq = &priv->txq_cmd;
4994	struct clx2_queue *q = &txq->q;
4995	struct tfd_frame *tfd;
4996
4997	if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4998		IPW_ERROR("No space for Tx\n");
4999		return -EBUSY;
5000	}
5001
5002	tfd = &txq->bd[q->first_empty];
5003	txq->txb[q->first_empty] = NULL;
5004
5005	memset(tfd, 0, sizeof(*tfd));
5006	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5007	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5008	priv->hcmd_seq++;
5009	tfd->u.cmd.index = hcmd;
5010	tfd->u.cmd.length = len;
5011	memcpy(tfd->u.cmd.payload, buf, len);
5012	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5013	ipw_write32(priv, q->reg_w, q->first_empty);
5014	_ipw_read32(priv, 0x90);
5015
5016	return 0;
5017}
5018
5019/*
5020 * Rx theory of operation
5021 *
5022 * The host allocates 32 DMA target addresses and passes the host address
5023 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5024 * 0 to 31
5025 *
5026 * Rx Queue Indexes
5027 * The host/firmware share two index registers for managing the Rx buffers.
5028 *
5029 * The READ index maps to the first position that the firmware may be writing
5030 * to -- the driver can read up to (but not including) this position and get
5031 * good data.
5032 * The READ index is managed by the firmware once the card is enabled.
5033 *
5034 * The WRITE index maps to the last position the driver has read from -- the
5035 * position preceding WRITE is the last slot the firmware can place a packet.
5036 *
5037 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5038 * WRITE = READ.
5039 *
5040 * During initialization the host sets up the READ queue position to the first
5041 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5042 *
5043 * When the firmware places a packet in a buffer it will advance the READ index
5044 * and fire the RX interrupt.  The driver can then query the READ index and
5045 * process as many packets as possible, moving the WRITE index forward as it
5046 * resets the Rx queue buffers with new memory.
5047 *
5048 * The management in the driver is as follows:
5049 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5050 *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5051 *   to replensish the ipw->rxq->rx_free.
5052 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5053 *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5054 *   'processed' and 'read' driver indexes as well)
5055 * + A received packet is processed and handed to the kernel network stack,
5056 *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5057 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5058 *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5059 *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5060 *   were enough free buffers and RX_STALLED is set it is cleared.
5061 *
5062 *
5063 * Driver sequence:
5064 *
5065 * ipw_rx_queue_alloc()       Allocates rx_free
5066 * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5067 *                            ipw_rx_queue_restock
5068 * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5069 *                            queue, updates firmware pointers, and updates
5070 *                            the WRITE index.  If insufficient rx_free buffers
5071 *                            are available, schedules ipw_rx_queue_replenish
5072 *
5073 * -- enable interrupts --
5074 * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5075 *                            READ INDEX, detaching the SKB from the pool.
5076 *                            Moves the packet buffer from queue to rx_used.
5077 *                            Calls ipw_rx_queue_restock to refill any empty
5078 *                            slots.
5079 * ...
5080 *
5081 */
5082
5083/*
5084 * If there are slots in the RX queue that  need to be restocked,
5085 * and we have free pre-allocated buffers, fill the ranks as much
5086 * as we can pulling from rx_free.
5087 *
5088 * This moves the 'write' index forward to catch up with 'processed', and
5089 * also updates the memory address in the firmware to reference the new
5090 * target buffer.
5091 */
5092static void ipw_rx_queue_restock(struct ipw_priv *priv)
5093{
5094	struct ipw_rx_queue *rxq = priv->rxq;
5095	struct list_head *element;
5096	struct ipw_rx_mem_buffer *rxb;
5097	unsigned long flags;
5098	int write;
5099
5100	spin_lock_irqsave(&rxq->lock, flags);
5101	write = rxq->write;
5102	while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5103		element = rxq->rx_free.next;
5104		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5105		list_del(element);
5106
5107		ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5108			    rxb->dma_addr);
5109		rxq->queue[rxq->write] = rxb;
5110		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5111		rxq->free_count--;
5112	}
5113	spin_unlock_irqrestore(&rxq->lock, flags);
5114
5115	/* If the pre-allocated buffer pool is dropping low, schedule to
5116	 * refill it */
5117	if (rxq->free_count <= RX_LOW_WATERMARK)
5118		schedule_work(&priv->rx_replenish);
5119
5120	/* If we've added more space for the firmware to place data, tell it */
5121	if (write != rxq->write)
5122		ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5123}
5124
5125/*
5126 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5127 * Also restock the Rx queue via ipw_rx_queue_restock.
5128 *
5129 * This is called as a scheduled work item (except for during initialization)
5130 */
5131static void ipw_rx_queue_replenish(void *data)
5132{
5133	struct ipw_priv *priv = data;
5134	struct ipw_rx_queue *rxq = priv->rxq;
5135	struct list_head *element;
5136	struct ipw_rx_mem_buffer *rxb;
5137	unsigned long flags;
5138
5139	spin_lock_irqsave(&rxq->lock, flags);
5140	while (!list_empty(&rxq->rx_used)) {
5141		element = rxq->rx_used.next;
5142		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5143		rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5144		if (!rxb->skb) {
5145			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5146			       priv->net_dev->name);
5147			/* We don't reschedule replenish work here -- we will
5148			 * call the restock method and if it still needs
5149			 * more buffers it will schedule replenish */
5150			break;
5151		}
5152		list_del(element);
5153
5154		rxb->dma_addr =
5155		    dma_map_single(&priv->pci_dev->dev, rxb->skb->data,
5156				   IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5157
5158		list_add_tail(&rxb->list, &rxq->rx_free);
5159		rxq->free_count++;
5160	}
5161	spin_unlock_irqrestore(&rxq->lock, flags);
5162
5163	ipw_rx_queue_restock(priv);
5164}
5165
5166static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5167{
5168	struct ipw_priv *priv =
5169		container_of(work, struct ipw_priv, rx_replenish);
5170	mutex_lock(&priv->mutex);
5171	ipw_rx_queue_replenish(priv);
5172	mutex_unlock(&priv->mutex);
5173}
5174
5175/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5176 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5177 * This free routine walks the list of POOL entries and if SKB is set to
5178 * non NULL it is unmapped and freed
5179 */
5180static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5181{
5182	int i;
5183
5184	if (!rxq)
5185		return;
5186
5187	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5188		if (rxq->pool[i].skb != NULL) {
5189			dma_unmap_single(&priv->pci_dev->dev,
5190					 rxq->pool[i].dma_addr,
5191					 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5192			dev_kfree_skb(rxq->pool[i].skb);
5193		}
5194	}
5195
5196	kfree(rxq);
5197}
5198
5199static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5200{
5201	struct ipw_rx_queue *rxq;
5202	int i;
5203
5204	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5205	if (unlikely(!rxq)) {
5206		IPW_ERROR("memory allocation failed\n");
5207		return NULL;
5208	}
5209	spin_lock_init(&rxq->lock);
5210	INIT_LIST_HEAD(&rxq->rx_free);
5211	INIT_LIST_HEAD(&rxq->rx_used);
5212
5213	/* Fill the rx_used queue with _all_ of the Rx buffers */
5214	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5215		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5216
5217	/* Set us so that we have processed and used all buffers, but have
5218	 * not restocked the Rx queue with fresh buffers */
5219	rxq->read = rxq->write = 0;
5220	rxq->free_count = 0;
5221
5222	return rxq;
5223}
5224
5225static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5226{
5227	rate &= ~LIBIPW_BASIC_RATE_MASK;
5228	if (ieee_mode == IEEE_A) {
5229		switch (rate) {
5230		case LIBIPW_OFDM_RATE_6MB:
5231			return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5232			    1 : 0;
5233		case LIBIPW_OFDM_RATE_9MB:
5234			return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5235			    1 : 0;
5236		case LIBIPW_OFDM_RATE_12MB:
5237			return priv->
5238			    rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5239		case LIBIPW_OFDM_RATE_18MB:
5240			return priv->
5241			    rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5242		case LIBIPW_OFDM_RATE_24MB:
5243			return priv->
5244			    rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5245		case LIBIPW_OFDM_RATE_36MB:
5246			return priv->
5247			    rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5248		case LIBIPW_OFDM_RATE_48MB:
5249			return priv->
5250			    rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5251		case LIBIPW_OFDM_RATE_54MB:
5252			return priv->
5253			    rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5254		default:
5255			return 0;
5256		}
5257	}
5258
5259	/* B and G mixed */
5260	switch (rate) {
5261	case LIBIPW_CCK_RATE_1MB:
5262		return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5263	case LIBIPW_CCK_RATE_2MB:
5264		return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5265	case LIBIPW_CCK_RATE_5MB:
5266		return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5267	case LIBIPW_CCK_RATE_11MB:
5268		return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5269	}
5270
5271	/* If we are limited to B modulations, bail at this point */
5272	if (ieee_mode == IEEE_B)
5273		return 0;
5274
5275	/* G */
5276	switch (rate) {
5277	case LIBIPW_OFDM_RATE_6MB:
5278		return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5279	case LIBIPW_OFDM_RATE_9MB:
5280		return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5281	case LIBIPW_OFDM_RATE_12MB:
5282		return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5283	case LIBIPW_OFDM_RATE_18MB:
5284		return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5285	case LIBIPW_OFDM_RATE_24MB:
5286		return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5287	case LIBIPW_OFDM_RATE_36MB:
5288		return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5289	case LIBIPW_OFDM_RATE_48MB:
5290		return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5291	case LIBIPW_OFDM_RATE_54MB:
5292		return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5293	}
5294
5295	return 0;
5296}
5297
5298static int ipw_compatible_rates(struct ipw_priv *priv,
5299				const struct libipw_network *network,
5300				struct ipw_supported_rates *rates)
5301{
5302	int num_rates, i;
5303
5304	memset(rates, 0, sizeof(*rates));
5305	num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5306	rates->num_rates = 0;
5307	for (i = 0; i < num_rates; i++) {
5308		if (!ipw_is_rate_in_mask(priv, network->mode,
5309					 network->rates[i])) {
5310
5311			if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5312				IPW_DEBUG_SCAN("Adding masked mandatory "
5313					       "rate %02X\n",
5314					       network->rates[i]);
5315				rates->supported_rates[rates->num_rates++] =
5316				    network->rates[i];
5317				continue;
5318			}
5319
5320			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5321				       network->rates[i], priv->rates_mask);
5322			continue;
5323		}
5324
5325		rates->supported_rates[rates->num_rates++] = network->rates[i];
5326	}
5327
5328	num_rates = min(network->rates_ex_len,
5329			(u8) (IPW_MAX_RATES - num_rates));
5330	for (i = 0; i < num_rates; i++) {
5331		if (!ipw_is_rate_in_mask(priv, network->mode,
5332					 network->rates_ex[i])) {
5333			if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5334				IPW_DEBUG_SCAN("Adding masked mandatory "
5335					       "rate %02X\n",
5336					       network->rates_ex[i]);
5337				rates->supported_rates[rates->num_rates++] =
5338				    network->rates[i];
5339				continue;
5340			}
5341
5342			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5343				       network->rates_ex[i], priv->rates_mask);
5344			continue;
5345		}
5346
5347		rates->supported_rates[rates->num_rates++] =
5348		    network->rates_ex[i];
5349	}
5350
5351	return 1;
5352}
5353
5354static void ipw_copy_rates(struct ipw_supported_rates *dest,
5355				  const struct ipw_supported_rates *src)
5356{
5357	u8 i;
5358	for (i = 0; i < src->num_rates; i++)
5359		dest->supported_rates[i] = src->supported_rates[i];
5360	dest->num_rates = src->num_rates;
5361}
5362
5363/* TODO: Look at sniffed packets in the air to determine if the basic rate
5364 * mask should ever be used -- right now all callers to add the scan rates are
5365 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5366static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5367				   u8 modulation, u32 rate_mask)
5368{
5369	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5370	    LIBIPW_BASIC_RATE_MASK : 0;
5371
5372	if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5373		rates->supported_rates[rates->num_rates++] =
5374		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5375
5376	if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5377		rates->supported_rates[rates->num_rates++] =
5378		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5379
5380	if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5381		rates->supported_rates[rates->num_rates++] = basic_mask |
5382		    LIBIPW_CCK_RATE_5MB;
5383
5384	if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5385		rates->supported_rates[rates->num_rates++] = basic_mask |
5386		    LIBIPW_CCK_RATE_11MB;
5387}
5388
5389static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5390				    u8 modulation, u32 rate_mask)
5391{
5392	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5393	    LIBIPW_BASIC_RATE_MASK : 0;
5394
5395	if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5396		rates->supported_rates[rates->num_rates++] = basic_mask |
5397		    LIBIPW_OFDM_RATE_6MB;
5398
5399	if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5400		rates->supported_rates[rates->num_rates++] =
5401		    LIBIPW_OFDM_RATE_9MB;
5402
5403	if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5404		rates->supported_rates[rates->num_rates++] = basic_mask |
5405		    LIBIPW_OFDM_RATE_12MB;
5406
5407	if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5408		rates->supported_rates[rates->num_rates++] =
5409		    LIBIPW_OFDM_RATE_18MB;
5410
5411	if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5412		rates->supported_rates[rates->num_rates++] = basic_mask |
5413		    LIBIPW_OFDM_RATE_24MB;
5414
5415	if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5416		rates->supported_rates[rates->num_rates++] =
5417		    LIBIPW_OFDM_RATE_36MB;
5418
5419	if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5420		rates->supported_rates[rates->num_rates++] =
5421		    LIBIPW_OFDM_RATE_48MB;
5422
5423	if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5424		rates->supported_rates[rates->num_rates++] =
5425		    LIBIPW_OFDM_RATE_54MB;
5426}
5427
5428struct ipw_network_match {
5429	struct libipw_network *network;
5430	struct ipw_supported_rates rates;
5431};
5432
5433static int ipw_find_adhoc_network(struct ipw_priv *priv,
5434				  struct ipw_network_match *match,
5435				  struct libipw_network *network,
5436				  int roaming)
5437{
5438	struct ipw_supported_rates rates;
5439
5440	/* Verify that this network's capability is compatible with the
5441	 * current mode (AdHoc or Infrastructure) */
5442	if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5443	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5444		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5445				network->ssid_len, network->ssid,
5446				network->bssid);
5447		return 0;
5448	}
5449
5450	if (unlikely(roaming)) {
5451		/* If we are roaming, then ensure check if this is a valid
5452		 * network to try and roam to */
5453		if ((network->ssid_len != match->network->ssid_len) ||
5454		    memcmp(network->ssid, match->network->ssid,
5455			   network->ssid_len)) {
5456			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5457					network->ssid_len, network->ssid,
5458					network->bssid);
5459			return 0;
5460		}
5461	} else {
5462		/* If an ESSID has been configured then compare the broadcast
5463		 * ESSID to ours */
5464		if ((priv->config & CFG_STATIC_ESSID) &&
5465		    ((network->ssid_len != priv->essid_len) ||
5466		     memcmp(network->ssid, priv->essid,
5467			    min(network->ssid_len, priv->essid_len)))) {
5468			IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5469					network->ssid_len, network->ssid,
5470					network->bssid, priv->essid_len,
5471					priv->essid);
5472			return 0;
5473		}
5474	}
5475
5476	/* If the old network rate is better than this one, don't bother
5477	 * testing everything else. */
5478
5479	if (network->time_stamp[0] < match->network->time_stamp[0]) {
5480		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5481				match->network->ssid_len, match->network->ssid);
5482		return 0;
5483	} else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5484		IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5485				match->network->ssid_len, match->network->ssid);
5486		return 0;
5487	}
5488
5489	/* Now go through and see if the requested network is valid... */
5490	if (priv->ieee->scan_age != 0 &&
5491	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5492		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5493				network->ssid_len, network->ssid,
5494				network->bssid,
5495				jiffies_to_msecs(jiffies -
5496						 network->last_scanned));
5497		return 0;
5498	}
5499
5500	if ((priv->config & CFG_STATIC_CHANNEL) &&
5501	    (network->channel != priv->channel)) {
5502		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5503				network->ssid_len, network->ssid,
5504				network->bssid,
5505				network->channel, priv->channel);
5506		return 0;
5507	}
5508
5509	/* Verify privacy compatibility */
5510	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5511	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5512		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5513				network->ssid_len, network->ssid,
5514				network->bssid,
5515				priv->
5516				capability & CAP_PRIVACY_ON ? "on" : "off",
5517				network->
5518				capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5519				"off");
5520		return 0;
5521	}
5522
5523	if (ether_addr_equal(network->bssid, priv->bssid)) {
5524		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5525				network->ssid_len, network->ssid,
5526				network->bssid, priv->bssid);
5527		return 0;
5528	}
5529
5530	/* Filter out any incompatible freq / mode combinations */
5531	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5532		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5533				network->ssid_len, network->ssid,
5534				network->bssid);
5535		return 0;
5536	}
5537
5538	/* Ensure that the rates supported by the driver are compatible with
5539	 * this AP, including verification of basic rates (mandatory) */
5540	if (!ipw_compatible_rates(priv, network, &rates)) {
5541		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5542				network->ssid_len, network->ssid,
5543				network->bssid);
5544		return 0;
5545	}
5546
5547	if (rates.num_rates == 0) {
5548		IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5549				network->ssid_len, network->ssid,
5550				network->bssid);
5551		return 0;
5552	}
5553
5554	/* TODO: Perform any further minimal comparititive tests.  We do not
5555	 * want to put too much policy logic here; intelligent scan selection
5556	 * should occur within a generic IEEE 802.11 user space tool.  */
5557
5558	/* Set up 'new' AP to this network */
5559	ipw_copy_rates(&match->rates, &rates);
5560	match->network = network;
5561	IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5562			network->ssid_len, network->ssid, network->bssid);
5563
5564	return 1;
5565}
5566
5567static void ipw_merge_adhoc_network(struct work_struct *work)
5568{
5569	struct ipw_priv *priv =
5570		container_of(work, struct ipw_priv, merge_networks);
5571	struct libipw_network *network = NULL;
5572	struct ipw_network_match match = {
5573		.network = priv->assoc_network
5574	};
5575
5576	if ((priv->status & STATUS_ASSOCIATED) &&
5577	    (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5578		/* First pass through ROAM process -- look for a better
5579		 * network */
5580		unsigned long flags;
5581
5582		spin_lock_irqsave(&priv->ieee->lock, flags);
5583		list_for_each_entry(network, &priv->ieee->network_list, list) {
5584			if (network != priv->assoc_network)
5585				ipw_find_adhoc_network(priv, &match, network,
5586						       1);
5587		}
5588		spin_unlock_irqrestore(&priv->ieee->lock, flags);
5589
5590		if (match.network == priv->assoc_network) {
5591			IPW_DEBUG_MERGE("No better ADHOC in this network to "
5592					"merge to.\n");
5593			return;
5594		}
5595
5596		mutex_lock(&priv->mutex);
5597		if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5598			IPW_DEBUG_MERGE("remove network %*pE\n",
5599					priv->essid_len, priv->essid);
5600			ipw_remove_current_network(priv);
5601		}
5602
5603		ipw_disassociate(priv);
5604		priv->assoc_network = match.network;
5605		mutex_unlock(&priv->mutex);
5606		return;
5607	}
5608}
5609
5610static int ipw_best_network(struct ipw_priv *priv,
5611			    struct ipw_network_match *match,
5612			    struct libipw_network *network, int roaming)
5613{
5614	struct ipw_supported_rates rates;
5615
5616	/* Verify that this network's capability is compatible with the
5617	 * current mode (AdHoc or Infrastructure) */
5618	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5619	     !(network->capability & WLAN_CAPABILITY_ESS)) ||
5620	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5621	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5622		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5623				network->ssid_len, network->ssid,
5624				network->bssid);
5625		return 0;
5626	}
5627
5628	if (unlikely(roaming)) {
5629		/* If we are roaming, then ensure check if this is a valid
5630		 * network to try and roam to */
5631		if ((network->ssid_len != match->network->ssid_len) ||
5632		    memcmp(network->ssid, match->network->ssid,
5633			   network->ssid_len)) {
5634			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5635					network->ssid_len, network->ssid,
5636					network->bssid);
5637			return 0;
5638		}
5639	} else {
5640		/* If an ESSID has been configured then compare the broadcast
5641		 * ESSID to ours */
5642		if ((priv->config & CFG_STATIC_ESSID) &&
5643		    ((network->ssid_len != priv->essid_len) ||
5644		     memcmp(network->ssid, priv->essid,
5645			    min(network->ssid_len, priv->essid_len)))) {
5646			IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5647					network->ssid_len, network->ssid,
5648					network->bssid, priv->essid_len,
5649					priv->essid);
5650			return 0;
5651		}
5652	}
5653
5654	/* If the old network rate is better than this one, don't bother
5655	 * testing everything else. */
5656	if (match->network && match->network->stats.rssi > network->stats.rssi) {
5657		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5658				network->ssid_len, network->ssid,
5659				network->bssid, match->network->ssid_len,
5660				match->network->ssid, match->network->bssid);
5661		return 0;
5662	}
5663
5664	/* If this network has already had an association attempt within the
5665	 * last 3 seconds, do not try and associate again... */
5666	if (network->last_associate &&
5667	    time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5668		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5669				network->ssid_len, network->ssid,
5670				network->bssid,
5671				jiffies_to_msecs(jiffies -
5672						 network->last_associate));
5673		return 0;
5674	}
5675
5676	/* Now go through and see if the requested network is valid... */
5677	if (priv->ieee->scan_age != 0 &&
5678	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5679		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5680				network->ssid_len, network->ssid,
5681				network->bssid,
5682				jiffies_to_msecs(jiffies -
5683						 network->last_scanned));
5684		return 0;
5685	}
5686
5687	if ((priv->config & CFG_STATIC_CHANNEL) &&
5688	    (network->channel != priv->channel)) {
5689		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5690				network->ssid_len, network->ssid,
5691				network->bssid,
5692				network->channel, priv->channel);
5693		return 0;
5694	}
5695
5696	/* Verify privacy compatibility */
5697	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5698	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5699		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5700				network->ssid_len, network->ssid,
5701				network->bssid,
5702				priv->capability & CAP_PRIVACY_ON ? "on" :
5703				"off",
5704				network->capability &
5705				WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5706		return 0;
5707	}
5708
5709	if ((priv->config & CFG_STATIC_BSSID) &&
5710	    !ether_addr_equal(network->bssid, priv->bssid)) {
5711		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5712				network->ssid_len, network->ssid,
5713				network->bssid, priv->bssid);
5714		return 0;
5715	}
5716
5717	/* Filter out any incompatible freq / mode combinations */
5718	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5719		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5720				network->ssid_len, network->ssid,
5721				network->bssid);
5722		return 0;
5723	}
5724
5725	/* Filter out invalid channel in current GEO */
5726	if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5727		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5728				network->ssid_len, network->ssid,
5729				network->bssid);
5730		return 0;
5731	}
5732
5733	/* Ensure that the rates supported by the driver are compatible with
5734	 * this AP, including verification of basic rates (mandatory) */
5735	if (!ipw_compatible_rates(priv, network, &rates)) {
5736		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5737				network->ssid_len, network->ssid,
5738				network->bssid);
5739		return 0;
5740	}
5741
5742	if (rates.num_rates == 0) {
5743		IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5744				network->ssid_len, network->ssid,
5745				network->bssid);
5746		return 0;
5747	}
5748
5749	/* TODO: Perform any further minimal comparititive tests.  We do not
5750	 * want to put too much policy logic here; intelligent scan selection
5751	 * should occur within a generic IEEE 802.11 user space tool.  */
5752
5753	/* Set up 'new' AP to this network */
5754	ipw_copy_rates(&match->rates, &rates);
5755	match->network = network;
5756
5757	IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5758			network->ssid_len, network->ssid, network->bssid);
5759
5760	return 1;
5761}
5762
5763static void ipw_adhoc_create(struct ipw_priv *priv,
5764			     struct libipw_network *network)
5765{
5766	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5767	int i;
5768
5769	/*
5770	 * For the purposes of scanning, we can set our wireless mode
5771	 * to trigger scans across combinations of bands, but when it
5772	 * comes to creating a new ad-hoc network, we have tell the FW
5773	 * exactly which band to use.
5774	 *
5775	 * We also have the possibility of an invalid channel for the
5776	 * chossen band.  Attempting to create a new ad-hoc network
5777	 * with an invalid channel for wireless mode will trigger a
5778	 * FW fatal error.
5779	 *
5780	 */
5781	switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5782	case LIBIPW_52GHZ_BAND:
5783		network->mode = IEEE_A;
5784		i = libipw_channel_to_index(priv->ieee, priv->channel);
5785		BUG_ON(i == -1);
5786		if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5787			IPW_WARNING("Overriding invalid channel\n");
5788			priv->channel = geo->a[0].channel;
5789		}
5790		break;
5791
5792	case LIBIPW_24GHZ_BAND:
5793		if (priv->ieee->mode & IEEE_G)
5794			network->mode = IEEE_G;
5795		else
5796			network->mode = IEEE_B;
5797		i = libipw_channel_to_index(priv->ieee, priv->channel);
5798		BUG_ON(i == -1);
5799		if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5800			IPW_WARNING("Overriding invalid channel\n");
5801			priv->channel = geo->bg[0].channel;
5802		}
5803		break;
5804
5805	default:
5806		IPW_WARNING("Overriding invalid channel\n");
5807		if (priv->ieee->mode & IEEE_A) {
5808			network->mode = IEEE_A;
5809			priv->channel = geo->a[0].channel;
5810		} else if (priv->ieee->mode & IEEE_G) {
5811			network->mode = IEEE_G;
5812			priv->channel = geo->bg[0].channel;
5813		} else {
5814			network->mode = IEEE_B;
5815			priv->channel = geo->bg[0].channel;
5816		}
5817		break;
5818	}
5819
5820	network->channel = priv->channel;
5821	priv->config |= CFG_ADHOC_PERSIST;
5822	ipw_create_bssid(priv, network->bssid);
5823	network->ssid_len = priv->essid_len;
5824	memcpy(network->ssid, priv->essid, priv->essid_len);
5825	memset(&network->stats, 0, sizeof(network->stats));
5826	network->capability = WLAN_CAPABILITY_IBSS;
5827	if (!(priv->config & CFG_PREAMBLE_LONG))
5828		network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5829	if (priv->capability & CAP_PRIVACY_ON)
5830		network->capability |= WLAN_CAPABILITY_PRIVACY;
5831	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5832	memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5833	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5834	memcpy(network->rates_ex,
5835	       &priv->rates.supported_rates[network->rates_len],
5836	       network->rates_ex_len);
5837	network->last_scanned = 0;
5838	network->flags = 0;
5839	network->last_associate = 0;
5840	network->time_stamp[0] = 0;
5841	network->time_stamp[1] = 0;
5842	network->beacon_interval = 100;	/* Default */
5843	network->listen_interval = 10;	/* Default */
5844	network->atim_window = 0;	/* Default */
5845	network->wpa_ie_len = 0;
5846	network->rsn_ie_len = 0;
5847}
5848
5849static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5850{
5851	struct ipw_tgi_tx_key key;
5852
5853	if (!(priv->ieee->sec.flags & (1 << index)))
5854		return;
5855
5856	key.key_id = index;
5857	memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5858	key.security_type = type;
5859	key.station_index = 0;	/* always 0 for BSS */
5860	key.flags = 0;
5861	/* 0 for new key; previous value of counter (after fatal error) */
5862	key.tx_counter[0] = cpu_to_le32(0);
5863	key.tx_counter[1] = cpu_to_le32(0);
5864
5865	ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5866}
5867
5868static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5869{
5870	struct ipw_wep_key key;
5871	int i;
5872
5873	key.cmd_id = DINO_CMD_WEP_KEY;
5874	key.seq_num = 0;
5875
5876	/* Note: AES keys cannot be set for multiple times.
5877	 * Only set it at the first time. */
5878	for (i = 0; i < 4; i++) {
5879		key.key_index = i | type;
5880		if (!(priv->ieee->sec.flags & (1 << i))) {
5881			key.key_size = 0;
5882			continue;
5883		}
5884
5885		key.key_size = priv->ieee->sec.key_sizes[i];
5886		memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5887
5888		ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5889	}
5890}
5891
5892static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5893{
5894	if (priv->ieee->host_encrypt)
5895		return;
5896
5897	switch (level) {
5898	case SEC_LEVEL_3:
5899		priv->sys_config.disable_unicast_decryption = 0;
5900		priv->ieee->host_decrypt = 0;
5901		break;
5902	case SEC_LEVEL_2:
5903		priv->sys_config.disable_unicast_decryption = 1;
5904		priv->ieee->host_decrypt = 1;
5905		break;
5906	case SEC_LEVEL_1:
5907		priv->sys_config.disable_unicast_decryption = 0;
5908		priv->ieee->host_decrypt = 0;
5909		break;
5910	case SEC_LEVEL_0:
5911		priv->sys_config.disable_unicast_decryption = 1;
5912		break;
5913	default:
5914		break;
5915	}
5916}
5917
5918static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5919{
5920	if (priv->ieee->host_encrypt)
5921		return;
5922
5923	switch (level) {
5924	case SEC_LEVEL_3:
5925		priv->sys_config.disable_multicast_decryption = 0;
5926		break;
5927	case SEC_LEVEL_2:
5928		priv->sys_config.disable_multicast_decryption = 1;
5929		break;
5930	case SEC_LEVEL_1:
5931		priv->sys_config.disable_multicast_decryption = 0;
5932		break;
5933	case SEC_LEVEL_0:
5934		priv->sys_config.disable_multicast_decryption = 1;
5935		break;
5936	default:
5937		break;
5938	}
5939}
5940
5941static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5942{
5943	switch (priv->ieee->sec.level) {
5944	case SEC_LEVEL_3:
5945		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5946			ipw_send_tgi_tx_key(priv,
5947					    DCT_FLAG_EXT_SECURITY_CCM,
5948					    priv->ieee->sec.active_key);
5949
5950		if (!priv->ieee->host_mc_decrypt)
5951			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5952		break;
5953	case SEC_LEVEL_2:
5954		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5955			ipw_send_tgi_tx_key(priv,
5956					    DCT_FLAG_EXT_SECURITY_TKIP,
5957					    priv->ieee->sec.active_key);
5958		break;
5959	case SEC_LEVEL_1:
5960		ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5961		ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5962		ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5963		break;
5964	case SEC_LEVEL_0:
5965	default:
5966		break;
5967	}
5968}
5969
5970static void ipw_adhoc_check(void *data)
5971{
5972	struct ipw_priv *priv = data;
5973
5974	if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5975	    !(priv->config & CFG_ADHOC_PERSIST)) {
5976		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5977			  IPW_DL_STATE | IPW_DL_ASSOC,
5978			  "Missed beacon: %d - disassociate\n",
5979			  priv->missed_adhoc_beacons);
5980		ipw_remove_current_network(priv);
5981		ipw_disassociate(priv);
5982		return;
5983	}
5984
5985	schedule_delayed_work(&priv->adhoc_check,
5986			      le16_to_cpu(priv->assoc_request.beacon_interval));
5987}
5988
5989static void ipw_bg_adhoc_check(struct work_struct *work)
5990{
5991	struct ipw_priv *priv =
5992		container_of(work, struct ipw_priv, adhoc_check.work);
5993	mutex_lock(&priv->mutex);
5994	ipw_adhoc_check(priv);
5995	mutex_unlock(&priv->mutex);
5996}
5997
5998static void ipw_debug_config(struct ipw_priv *priv)
5999{
6000	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6001		       "[CFG 0x%08X]\n", priv->config);
6002	if (priv->config & CFG_STATIC_CHANNEL)
6003		IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6004	else
6005		IPW_DEBUG_INFO("Channel unlocked.\n");
6006	if (priv->config & CFG_STATIC_ESSID)
6007		IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6008			       priv->essid_len, priv->essid);
6009	else
6010		IPW_DEBUG_INFO("ESSID unlocked.\n");
6011	if (priv->config & CFG_STATIC_BSSID)
6012		IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6013	else
6014		IPW_DEBUG_INFO("BSSID unlocked.\n");
6015	if (priv->capability & CAP_PRIVACY_ON)
6016		IPW_DEBUG_INFO("PRIVACY on\n");
6017	else
6018		IPW_DEBUG_INFO("PRIVACY off\n");
6019	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6020}
6021
6022static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6023{
6024	/* TODO: Verify that this works... */
6025	struct ipw_fixed_rate fr;
6026	u32 reg;
6027	u16 mask = 0;
6028	u16 new_tx_rates = priv->rates_mask;
6029
6030	/* Identify 'current FW band' and match it with the fixed
6031	 * Tx rates */
6032
6033	switch (priv->ieee->freq_band) {
6034	case LIBIPW_52GHZ_BAND:	/* A only */
6035		/* IEEE_A */
6036		if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6037			/* Invalid fixed rate mask */
6038			IPW_DEBUG_WX
6039			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6040			new_tx_rates = 0;
6041			break;
6042		}
6043
6044		new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6045		break;
6046
6047	default:		/* 2.4Ghz or Mixed */
6048		/* IEEE_B */
6049		if (mode == IEEE_B) {
6050			if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6051				/* Invalid fixed rate mask */
6052				IPW_DEBUG_WX
6053				    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6054				new_tx_rates = 0;
6055			}
6056			break;
6057		}
6058
6059		/* IEEE_G */
6060		if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6061				    LIBIPW_OFDM_RATES_MASK)) {
6062			/* Invalid fixed rate mask */
6063			IPW_DEBUG_WX
6064			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6065			new_tx_rates = 0;
6066			break;
6067		}
6068
6069		if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6070			mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6071			new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6072		}
6073
6074		if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6075			mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6076			new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6077		}
6078
6079		if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6080			mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6081			new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6082		}
6083
6084		new_tx_rates |= mask;
6085		break;
6086	}
6087
6088	fr.tx_rates = cpu_to_le16(new_tx_rates);
6089
6090	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6091	ipw_write_reg32(priv, reg, *(u32 *) & fr);
6092}
6093
6094static void ipw_abort_scan(struct ipw_priv *priv)
6095{
6096	int err;
6097
6098	if (priv->status & STATUS_SCAN_ABORTING) {
6099		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6100		return;
6101	}
6102	priv->status |= STATUS_SCAN_ABORTING;
6103
6104	err = ipw_send_scan_abort(priv);
6105	if (err)
6106		IPW_DEBUG_HC("Request to abort scan failed.\n");
6107}
6108
6109static void ipw_add_scan_channels(struct ipw_priv *priv,
6110				  struct ipw_scan_request_ext *scan,
6111				  int scan_type)
6112{
6113	int channel_index = 0;
6114	const struct libipw_geo *geo;
6115	int i;
6116
6117	geo = libipw_get_geo(priv->ieee);
6118
6119	if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6120		int start = channel_index;
6121		for (i = 0; i < geo->a_channels; i++) {
6122			if ((priv->status & STATUS_ASSOCIATED) &&
6123			    geo->a[i].channel == priv->channel)
6124				continue;
6125			channel_index++;
6126			scan->channels_list[channel_index] = geo->a[i].channel;
6127			ipw_set_scan_type(scan, channel_index,
6128					  geo->a[i].
6129					  flags & LIBIPW_CH_PASSIVE_ONLY ?
6130					  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6131					  scan_type);
6132		}
6133
6134		if (start != channel_index) {
6135			scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6136			    (channel_index - start);
6137			channel_index++;
6138		}
6139	}
6140
6141	if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6142		int start = channel_index;
6143		if (priv->config & CFG_SPEED_SCAN) {
6144			int index;
6145			u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6146				/* nop out the list */
6147				[0] = 0
6148			};
6149
6150			u8 channel;
6151			while (channel_index < IPW_SCAN_CHANNELS - 1) {
6152				channel =
6153				    priv->speed_scan[priv->speed_scan_pos];
6154				if (channel == 0) {
6155					priv->speed_scan_pos = 0;
6156					channel = priv->speed_scan[0];
6157				}
6158				if ((priv->status & STATUS_ASSOCIATED) &&
6159				    channel == priv->channel) {
6160					priv->speed_scan_pos++;
6161					continue;
6162				}
6163
6164				/* If this channel has already been
6165				 * added in scan, break from loop
6166				 * and this will be the first channel
6167				 * in the next scan.
6168				 */
6169				if (channels[channel - 1] != 0)
6170					break;
6171
6172				channels[channel - 1] = 1;
6173				priv->speed_scan_pos++;
6174				channel_index++;
6175				scan->channels_list[channel_index] = channel;
6176				index =
6177				    libipw_channel_to_index(priv->ieee, channel);
6178				ipw_set_scan_type(scan, channel_index,
6179						  geo->bg[index].
6180						  flags &
6181						  LIBIPW_CH_PASSIVE_ONLY ?
6182						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6183						  : scan_type);
6184			}
6185		} else {
6186			for (i = 0; i < geo->bg_channels; i++) {
6187				if ((priv->status & STATUS_ASSOCIATED) &&
6188				    geo->bg[i].channel == priv->channel)
6189					continue;
6190				channel_index++;
6191				scan->channels_list[channel_index] =
6192				    geo->bg[i].channel;
6193				ipw_set_scan_type(scan, channel_index,
6194						  geo->bg[i].
6195						  flags &
6196						  LIBIPW_CH_PASSIVE_ONLY ?
6197						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6198						  : scan_type);
6199			}
6200		}
6201
6202		if (start != channel_index) {
6203			scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6204			    (channel_index - start);
6205		}
6206	}
6207}
6208
6209static int ipw_passive_dwell_time(struct ipw_priv *priv)
6210{
6211	/* staying on passive channels longer than the DTIM interval during a
6212	 * scan, while associated, causes the firmware to cancel the scan
6213	 * without notification. Hence, don't stay on passive channels longer
6214	 * than the beacon interval.
6215	 */
6216	if (priv->status & STATUS_ASSOCIATED
6217	    && priv->assoc_network->beacon_interval > 10)
6218		return priv->assoc_network->beacon_interval - 10;
6219	else
6220		return 120;
6221}
6222
6223static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6224{
6225	struct ipw_scan_request_ext scan;
6226	int err = 0, scan_type;
6227
6228	if (!(priv->status & STATUS_INIT) ||
6229	    (priv->status & STATUS_EXIT_PENDING))
6230		return 0;
6231
6232	mutex_lock(&priv->mutex);
6233
6234	if (direct && (priv->direct_scan_ssid_len == 0)) {
6235		IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6236		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6237		goto done;
6238	}
6239
6240	if (priv->status & STATUS_SCANNING) {
6241		IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6242		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6243					STATUS_SCAN_PENDING;
6244		goto done;
6245	}
6246
6247	if (!(priv->status & STATUS_SCAN_FORCED) &&
6248	    priv->status & STATUS_SCAN_ABORTING) {
6249		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6250		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6251					STATUS_SCAN_PENDING;
6252		goto done;
6253	}
6254
6255	if (priv->status & STATUS_RF_KILL_MASK) {
6256		IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6257		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6258					STATUS_SCAN_PENDING;
6259		goto done;
6260	}
6261
6262	memset(&scan, 0, sizeof(scan));
6263	scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6264
6265	if (type == IW_SCAN_TYPE_PASSIVE) {
6266		IPW_DEBUG_WX("use passive scanning\n");
6267		scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6268		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6269			cpu_to_le16(ipw_passive_dwell_time(priv));
6270		ipw_add_scan_channels(priv, &scan, scan_type);
6271		goto send_request;
6272	}
6273
6274	/* Use active scan by default. */
6275	if (priv->config & CFG_SPEED_SCAN)
6276		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6277			cpu_to_le16(30);
6278	else
6279		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6280			cpu_to_le16(20);
6281
6282	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6283		cpu_to_le16(20);
6284
6285	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6286		cpu_to_le16(ipw_passive_dwell_time(priv));
6287	scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6288
6289#ifdef CONFIG_IPW2200_MONITOR
6290	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6291		u8 channel;
6292		u8 band = 0;
6293
6294		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6295		case LIBIPW_52GHZ_BAND:
6296			band = (u8) (IPW_A_MODE << 6) | 1;
6297			channel = priv->channel;
6298			break;
6299
6300		case LIBIPW_24GHZ_BAND:
6301			band = (u8) (IPW_B_MODE << 6) | 1;
6302			channel = priv->channel;
6303			break;
6304
6305		default:
6306			band = (u8) (IPW_B_MODE << 6) | 1;
6307			channel = 9;
6308			break;
6309		}
6310
6311		scan.channels_list[0] = band;
6312		scan.channels_list[1] = channel;
6313		ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6314
6315		/* NOTE:  The card will sit on this channel for this time
6316		 * period.  Scan aborts are timing sensitive and frequently
6317		 * result in firmware restarts.  As such, it is best to
6318		 * set a small dwell_time here and just keep re-issuing
6319		 * scans.  Otherwise fast channel hopping will not actually
6320		 * hop channels.
6321		 *
6322		 * TODO: Move SPEED SCAN support to all modes and bands */
6323		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6324			cpu_to_le16(2000);
6325	} else {
6326#endif				/* CONFIG_IPW2200_MONITOR */
6327		/* Honor direct scans first, otherwise if we are roaming make
6328		 * this a direct scan for the current network.  Finally,
6329		 * ensure that every other scan is a fast channel hop scan */
6330		if (direct) {
6331			err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6332			                    priv->direct_scan_ssid_len);
6333			if (err) {
6334				IPW_DEBUG_HC("Attempt to send SSID command  "
6335					     "failed\n");
6336				goto done;
6337			}
6338
6339			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6340		} else if ((priv->status & STATUS_ROAMING)
6341			   || (!(priv->status & STATUS_ASSOCIATED)
6342			       && (priv->config & CFG_STATIC_ESSID)
6343			       && (le32_to_cpu(scan.full_scan_index) % 2))) {
6344			err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6345			if (err) {
6346				IPW_DEBUG_HC("Attempt to send SSID command "
6347					     "failed.\n");
6348				goto done;
6349			}
6350
6351			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6352		} else
6353			scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6354
6355		ipw_add_scan_channels(priv, &scan, scan_type);
6356#ifdef CONFIG_IPW2200_MONITOR
6357	}
6358#endif
6359
6360send_request:
6361	err = ipw_send_scan_request_ext(priv, &scan);
6362	if (err) {
6363		IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6364		goto done;
6365	}
6366
6367	priv->status |= STATUS_SCANNING;
6368	if (direct) {
6369		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6370		priv->direct_scan_ssid_len = 0;
6371	} else
6372		priv->status &= ~STATUS_SCAN_PENDING;
6373
6374	schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6375done:
6376	mutex_unlock(&priv->mutex);
6377	return err;
6378}
6379
6380static void ipw_request_passive_scan(struct work_struct *work)
6381{
6382	struct ipw_priv *priv =
6383		container_of(work, struct ipw_priv, request_passive_scan.work);
6384	ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6385}
6386
6387static void ipw_request_scan(struct work_struct *work)
6388{
6389	struct ipw_priv *priv =
6390		container_of(work, struct ipw_priv, request_scan.work);
6391	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6392}
6393
6394static void ipw_request_direct_scan(struct work_struct *work)
6395{
6396	struct ipw_priv *priv =
6397		container_of(work, struct ipw_priv, request_direct_scan.work);
6398	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6399}
6400
6401static void ipw_bg_abort_scan(struct work_struct *work)
6402{
6403	struct ipw_priv *priv =
6404		container_of(work, struct ipw_priv, abort_scan);
6405	mutex_lock(&priv->mutex);
6406	ipw_abort_scan(priv);
6407	mutex_unlock(&priv->mutex);
6408}
6409
6410static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6411{
6412	/* This is called when wpa_supplicant loads and closes the driver
6413	 * interface. */
6414	priv->ieee->wpa_enabled = value;
6415	return 0;
6416}
6417
6418static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6419{
6420	struct libipw_device *ieee = priv->ieee;
6421	struct libipw_security sec = {
6422		.flags = SEC_AUTH_MODE,
6423	};
6424	int ret = 0;
6425
6426	if (value & IW_AUTH_ALG_SHARED_KEY) {
6427		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6428		ieee->open_wep = 0;
6429	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6430		sec.auth_mode = WLAN_AUTH_OPEN;
6431		ieee->open_wep = 1;
6432	} else if (value & IW_AUTH_ALG_LEAP) {
6433		sec.auth_mode = WLAN_AUTH_LEAP;
6434		ieee->open_wep = 1;
6435	} else
6436		return -EINVAL;
6437
6438	if (ieee->set_security)
6439		ieee->set_security(ieee->dev, &sec);
6440	else
6441		ret = -EOPNOTSUPP;
6442
6443	return ret;
6444}
6445
6446static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6447				int wpa_ie_len)
6448{
6449	/* make sure WPA is enabled */
6450	ipw_wpa_enable(priv, 1);
6451}
6452
6453static int ipw_set_rsn_capa(struct ipw_priv *priv,
6454			    char *capabilities, int length)
6455{
6456	IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6457
6458	return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6459				capabilities);
6460}
6461
6462/*
6463 * WE-18 support
6464 */
6465
6466/* SIOCSIWGENIE */
6467static int ipw_wx_set_genie(struct net_device *dev,
6468			    struct iw_request_info *info,
6469			    union iwreq_data *wrqu, char *extra)
6470{
6471	struct ipw_priv *priv = libipw_priv(dev);
6472	struct libipw_device *ieee = priv->ieee;
6473	u8 *buf;
6474	int err = 0;
6475
6476	if (wrqu->data.length > MAX_WPA_IE_LEN ||
6477	    (wrqu->data.length && extra == NULL))
6478		return -EINVAL;
6479
6480	if (wrqu->data.length) {
6481		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6482		if (buf == NULL) {
6483			err = -ENOMEM;
6484			goto out;
6485		}
6486
6487		kfree(ieee->wpa_ie);
6488		ieee->wpa_ie = buf;
6489		ieee->wpa_ie_len = wrqu->data.length;
6490	} else {
6491		kfree(ieee->wpa_ie);
6492		ieee->wpa_ie = NULL;
6493		ieee->wpa_ie_len = 0;
6494	}
6495
6496	ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6497      out:
6498	return err;
6499}
6500
6501/* SIOCGIWGENIE */
6502static int ipw_wx_get_genie(struct net_device *dev,
6503			    struct iw_request_info *info,
6504			    union iwreq_data *wrqu, char *extra)
6505{
6506	struct ipw_priv *priv = libipw_priv(dev);
6507	struct libipw_device *ieee = priv->ieee;
6508	int err = 0;
6509
6510	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6511		wrqu->data.length = 0;
6512		goto out;
6513	}
6514
6515	if (wrqu->data.length < ieee->wpa_ie_len) {
6516		err = -E2BIG;
6517		goto out;
6518	}
6519
6520	wrqu->data.length = ieee->wpa_ie_len;
6521	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6522
6523      out:
6524	return err;
6525}
6526
6527static int wext_cipher2level(int cipher)
6528{
6529	switch (cipher) {
6530	case IW_AUTH_CIPHER_NONE:
6531		return SEC_LEVEL_0;
6532	case IW_AUTH_CIPHER_WEP40:
6533	case IW_AUTH_CIPHER_WEP104:
6534		return SEC_LEVEL_1;
6535	case IW_AUTH_CIPHER_TKIP:
6536		return SEC_LEVEL_2;
6537	case IW_AUTH_CIPHER_CCMP:
6538		return SEC_LEVEL_3;
6539	default:
6540		return -1;
6541	}
6542}
6543
6544/* SIOCSIWAUTH */
6545static int ipw_wx_set_auth(struct net_device *dev,
6546			   struct iw_request_info *info,
6547			   union iwreq_data *wrqu, char *extra)
6548{
6549	struct ipw_priv *priv = libipw_priv(dev);
6550	struct libipw_device *ieee = priv->ieee;
6551	struct iw_param *param = &wrqu->param;
6552	struct lib80211_crypt_data *crypt;
6553	unsigned long flags;
6554	int ret = 0;
6555
6556	switch (param->flags & IW_AUTH_INDEX) {
6557	case IW_AUTH_WPA_VERSION:
6558		break;
6559	case IW_AUTH_CIPHER_PAIRWISE:
6560		ipw_set_hw_decrypt_unicast(priv,
6561					   wext_cipher2level(param->value));
6562		break;
6563	case IW_AUTH_CIPHER_GROUP:
6564		ipw_set_hw_decrypt_multicast(priv,
6565					     wext_cipher2level(param->value));
6566		break;
6567	case IW_AUTH_KEY_MGMT:
6568		/*
6569		 * ipw2200 does not use these parameters
6570		 */
6571		break;
6572
6573	case IW_AUTH_TKIP_COUNTERMEASURES:
6574		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6575		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6576			break;
6577
6578		flags = crypt->ops->get_flags(crypt->priv);
6579
6580		if (param->value)
6581			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6582		else
6583			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6584
6585		crypt->ops->set_flags(flags, crypt->priv);
6586
6587		break;
6588
6589	case IW_AUTH_DROP_UNENCRYPTED:{
6590			/* HACK:
6591			 *
6592			 * wpa_supplicant calls set_wpa_enabled when the driver
6593			 * is loaded and unloaded, regardless of if WPA is being
6594			 * used.  No other calls are made which can be used to
6595			 * determine if encryption will be used or not prior to
6596			 * association being expected.  If encryption is not being
6597			 * used, drop_unencrypted is set to false, else true -- we
6598			 * can use this to determine if the CAP_PRIVACY_ON bit should
6599			 * be set.
6600			 */
6601			struct libipw_security sec = {
6602				.flags = SEC_ENABLED,
6603				.enabled = param->value,
6604			};
6605			priv->ieee->drop_unencrypted = param->value;
6606			/* We only change SEC_LEVEL for open mode. Others
6607			 * are set by ipw_wpa_set_encryption.
6608			 */
6609			if (!param->value) {
6610				sec.flags |= SEC_LEVEL;
6611				sec.level = SEC_LEVEL_0;
6612			} else {
6613				sec.flags |= SEC_LEVEL;
6614				sec.level = SEC_LEVEL_1;
6615			}
6616			if (priv->ieee->set_security)
6617				priv->ieee->set_security(priv->ieee->dev, &sec);
6618			break;
6619		}
6620
6621	case IW_AUTH_80211_AUTH_ALG:
6622		ret = ipw_wpa_set_auth_algs(priv, param->value);
6623		break;
6624
6625	case IW_AUTH_WPA_ENABLED:
6626		ret = ipw_wpa_enable(priv, param->value);
6627		ipw_disassociate(priv);
6628		break;
6629
6630	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6631		ieee->ieee802_1x = param->value;
6632		break;
6633
6634	case IW_AUTH_PRIVACY_INVOKED:
6635		ieee->privacy_invoked = param->value;
6636		break;
6637
6638	default:
6639		return -EOPNOTSUPP;
6640	}
6641	return ret;
6642}
6643
6644/* SIOCGIWAUTH */
6645static int ipw_wx_get_auth(struct net_device *dev,
6646			   struct iw_request_info *info,
6647			   union iwreq_data *wrqu, char *extra)
6648{
6649	struct ipw_priv *priv = libipw_priv(dev);
6650	struct libipw_device *ieee = priv->ieee;
6651	struct lib80211_crypt_data *crypt;
6652	struct iw_param *param = &wrqu->param;
6653
6654	switch (param->flags & IW_AUTH_INDEX) {
6655	case IW_AUTH_WPA_VERSION:
6656	case IW_AUTH_CIPHER_PAIRWISE:
6657	case IW_AUTH_CIPHER_GROUP:
6658	case IW_AUTH_KEY_MGMT:
6659		/*
6660		 * wpa_supplicant will control these internally
6661		 */
6662		return -EOPNOTSUPP;
6663
6664	case IW_AUTH_TKIP_COUNTERMEASURES:
6665		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6666		if (!crypt || !crypt->ops->get_flags)
6667			break;
6668
6669		param->value = (crypt->ops->get_flags(crypt->priv) &
6670				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6671
6672		break;
6673
6674	case IW_AUTH_DROP_UNENCRYPTED:
6675		param->value = ieee->drop_unencrypted;
6676		break;
6677
6678	case IW_AUTH_80211_AUTH_ALG:
6679		param->value = ieee->sec.auth_mode;
6680		break;
6681
6682	case IW_AUTH_WPA_ENABLED:
6683		param->value = ieee->wpa_enabled;
6684		break;
6685
6686	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6687		param->value = ieee->ieee802_1x;
6688		break;
6689
6690	case IW_AUTH_ROAMING_CONTROL:
6691	case IW_AUTH_PRIVACY_INVOKED:
6692		param->value = ieee->privacy_invoked;
6693		break;
6694
6695	default:
6696		return -EOPNOTSUPP;
6697	}
6698	return 0;
6699}
6700
6701/* SIOCSIWENCODEEXT */
6702static int ipw_wx_set_encodeext(struct net_device *dev,
6703				struct iw_request_info *info,
6704				union iwreq_data *wrqu, char *extra)
6705{
6706	struct ipw_priv *priv = libipw_priv(dev);
6707	struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6708
6709	if (hwcrypto) {
6710		if (ext->alg == IW_ENCODE_ALG_TKIP) {
6711			/* IPW HW can't build TKIP MIC,
6712			   host decryption still needed */
6713			if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6714				priv->ieee->host_mc_decrypt = 1;
6715			else {
6716				priv->ieee->host_encrypt = 0;
6717				priv->ieee->host_encrypt_msdu = 1;
6718				priv->ieee->host_decrypt = 1;
6719			}
6720		} else {
6721			priv->ieee->host_encrypt = 0;
6722			priv->ieee->host_encrypt_msdu = 0;
6723			priv->ieee->host_decrypt = 0;
6724			priv->ieee->host_mc_decrypt = 0;
6725		}
6726	}
6727
6728	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6729}
6730
6731/* SIOCGIWENCODEEXT */
6732static int ipw_wx_get_encodeext(struct net_device *dev,
6733				struct iw_request_info *info,
6734				union iwreq_data *wrqu, char *extra)
6735{
6736	struct ipw_priv *priv = libipw_priv(dev);
6737	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6738}
6739
6740/* SIOCSIWMLME */
6741static int ipw_wx_set_mlme(struct net_device *dev,
6742			   struct iw_request_info *info,
6743			   union iwreq_data *wrqu, char *extra)
6744{
6745	struct ipw_priv *priv = libipw_priv(dev);
6746	struct iw_mlme *mlme = (struct iw_mlme *)extra;
6747
6748	switch (mlme->cmd) {
6749	case IW_MLME_DEAUTH:
6750		/* silently ignore */
6751		break;
6752
6753	case IW_MLME_DISASSOC:
6754		ipw_disassociate(priv);
6755		break;
6756
6757	default:
6758		return -EOPNOTSUPP;
6759	}
6760	return 0;
6761}
6762
6763#ifdef CONFIG_IPW2200_QOS
6764
6765/* QoS */
6766/*
6767* get the modulation type of the current network or
6768* the card current mode
6769*/
6770static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6771{
6772	u8 mode = 0;
6773
6774	if (priv->status & STATUS_ASSOCIATED) {
6775		unsigned long flags;
6776
6777		spin_lock_irqsave(&priv->ieee->lock, flags);
6778		mode = priv->assoc_network->mode;
6779		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6780	} else {
6781		mode = priv->ieee->mode;
6782	}
6783	IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6784	return mode;
6785}
6786
6787/*
6788* Handle management frame beacon and probe response
6789*/
6790static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6791					 int active_network,
6792					 struct libipw_network *network)
6793{
6794	u32 size = sizeof(struct libipw_qos_parameters);
6795
6796	if (network->capability & WLAN_CAPABILITY_IBSS)
6797		network->qos_data.active = network->qos_data.supported;
6798
6799	if (network->flags & NETWORK_HAS_QOS_MASK) {
6800		if (active_network &&
6801		    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6802			network->qos_data.active = network->qos_data.supported;
6803
6804		if ((network->qos_data.active == 1) && (active_network == 1) &&
6805		    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6806		    (network->qos_data.old_param_count !=
6807		     network->qos_data.param_count)) {
6808			network->qos_data.old_param_count =
6809			    network->qos_data.param_count;
6810			schedule_work(&priv->qos_activate);
6811			IPW_DEBUG_QOS("QoS parameters change call "
6812				      "qos_activate\n");
6813		}
6814	} else {
6815		if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6816			memcpy(&network->qos_data.parameters,
6817			       &def_parameters_CCK, size);
6818		else
6819			memcpy(&network->qos_data.parameters,
6820			       &def_parameters_OFDM, size);
6821
6822		if ((network->qos_data.active == 1) && (active_network == 1)) {
6823			IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6824			schedule_work(&priv->qos_activate);
6825		}
6826
6827		network->qos_data.active = 0;
6828		network->qos_data.supported = 0;
6829	}
6830	if ((priv->status & STATUS_ASSOCIATED) &&
6831	    (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6832		if (!ether_addr_equal(network->bssid, priv->bssid))
6833			if (network->capability & WLAN_CAPABILITY_IBSS)
6834				if ((network->ssid_len ==
6835				     priv->assoc_network->ssid_len) &&
6836				    !memcmp(network->ssid,
6837					    priv->assoc_network->ssid,
6838					    network->ssid_len)) {
6839					schedule_work(&priv->merge_networks);
6840				}
6841	}
6842
6843	return 0;
6844}
6845
6846/*
6847* This function set up the firmware to support QoS. It sends
6848* IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6849*/
6850static int ipw_qos_activate(struct ipw_priv *priv,
6851			    struct libipw_qos_data *qos_network_data)
6852{
6853	int err;
6854	struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6855	struct libipw_qos_parameters *active_one = NULL;
6856	u32 size = sizeof(struct libipw_qos_parameters);
6857	u32 burst_duration;
6858	int i;
6859	u8 type;
6860
6861	type = ipw_qos_current_mode(priv);
6862
6863	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6864	memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6865	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6866	memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6867
6868	if (qos_network_data == NULL) {
6869		if (type == IEEE_B) {
6870			IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6871			active_one = &def_parameters_CCK;
6872		} else
6873			active_one = &def_parameters_OFDM;
6874
6875		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6876		burst_duration = ipw_qos_get_burst_duration(priv);
6877		for (i = 0; i < QOS_QUEUE_NUM; i++)
6878			qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6879			    cpu_to_le16(burst_duration);
6880	} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6881		if (type == IEEE_B) {
6882			IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6883				      type);
6884			if (priv->qos_data.qos_enable == 0)
6885				active_one = &def_parameters_CCK;
6886			else
6887				active_one = priv->qos_data.def_qos_parm_CCK;
6888		} else {
6889			if (priv->qos_data.qos_enable == 0)
6890				active_one = &def_parameters_OFDM;
6891			else
6892				active_one = priv->qos_data.def_qos_parm_OFDM;
6893		}
6894		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6895	} else {
6896		unsigned long flags;
6897		int active;
6898
6899		spin_lock_irqsave(&priv->ieee->lock, flags);
6900		active_one = &(qos_network_data->parameters);
6901		qos_network_data->old_param_count =
6902		    qos_network_data->param_count;
6903		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6904		active = qos_network_data->supported;
6905		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6906
6907		if (active == 0) {
6908			burst_duration = ipw_qos_get_burst_duration(priv);
6909			for (i = 0; i < QOS_QUEUE_NUM; i++)
6910				qos_parameters[QOS_PARAM_SET_ACTIVE].
6911				    tx_op_limit[i] = cpu_to_le16(burst_duration);
6912		}
6913	}
6914
6915	IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6916	err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6917	if (err)
6918		IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6919
6920	return err;
6921}
6922
6923/*
6924* send IPW_CMD_WME_INFO to the firmware
6925*/
6926static int ipw_qos_set_info_element(struct ipw_priv *priv)
6927{
6928	int ret = 0;
6929	struct libipw_qos_information_element qos_info;
6930
6931	if (priv == NULL)
6932		return -1;
6933
6934	qos_info.elementID = QOS_ELEMENT_ID;
6935	qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6936
6937	qos_info.version = QOS_VERSION_1;
6938	qos_info.ac_info = 0;
6939
6940	memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6941	qos_info.qui_type = QOS_OUI_TYPE;
6942	qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6943
6944	ret = ipw_send_qos_info_command(priv, &qos_info);
6945	if (ret != 0) {
6946		IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6947	}
6948	return ret;
6949}
6950
6951/*
6952* Set the QoS parameter with the association request structure
6953*/
6954static int ipw_qos_association(struct ipw_priv *priv,
6955			       struct libipw_network *network)
6956{
6957	int err = 0;
6958	struct libipw_qos_data *qos_data = NULL;
6959	struct libipw_qos_data ibss_data = {
6960		.supported = 1,
6961		.active = 1,
6962	};
6963
6964	switch (priv->ieee->iw_mode) {
6965	case IW_MODE_ADHOC:
6966		BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6967
6968		qos_data = &ibss_data;
6969		break;
6970
6971	case IW_MODE_INFRA:
6972		qos_data = &network->qos_data;
6973		break;
6974
6975	default:
6976		BUG();
6977		break;
6978	}
6979
6980	err = ipw_qos_activate(priv, qos_data);
6981	if (err) {
6982		priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6983		return err;
6984	}
6985
6986	if (priv->qos_data.qos_enable && qos_data->supported) {
6987		IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6988		priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6989		return ipw_qos_set_info_element(priv);
6990	}
6991
6992	return 0;
6993}
6994
6995/*
6996* handling the beaconing responses. if we get different QoS setting
6997* off the network from the associated setting, adjust the QoS
6998* setting
6999*/
7000static void ipw_qos_association_resp(struct ipw_priv *priv,
7001				    struct libipw_network *network)
7002{
7003	unsigned long flags;
7004	u32 size = sizeof(struct libipw_qos_parameters);
7005	int set_qos_param = 0;
7006
7007	if ((priv == NULL) || (network == NULL) ||
7008	    (priv->assoc_network == NULL))
7009		return;
7010
7011	if (!(priv->status & STATUS_ASSOCIATED))
7012		return;
7013
7014	if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7015		return;
7016
7017	spin_lock_irqsave(&priv->ieee->lock, flags);
7018	if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7019		memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7020		       sizeof(struct libipw_qos_data));
7021		priv->assoc_network->qos_data.active = 1;
7022		if ((network->qos_data.old_param_count !=
7023		     network->qos_data.param_count)) {
7024			set_qos_param = 1;
7025			network->qos_data.old_param_count =
7026			    network->qos_data.param_count;
7027		}
7028
7029	} else {
7030		if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7031			memcpy(&priv->assoc_network->qos_data.parameters,
7032			       &def_parameters_CCK, size);
7033		else
7034			memcpy(&priv->assoc_network->qos_data.parameters,
7035			       &def_parameters_OFDM, size);
7036		priv->assoc_network->qos_data.active = 0;
7037		priv->assoc_network->qos_data.supported = 0;
7038		set_qos_param = 1;
7039	}
7040
7041	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7042
7043	if (set_qos_param == 1)
7044		schedule_work(&priv->qos_activate);
7045}
7046
7047static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7048{
7049	u32 ret = 0;
7050
7051	if (!priv)
7052		return 0;
7053
7054	if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7055		ret = priv->qos_data.burst_duration_CCK;
7056	else
7057		ret = priv->qos_data.burst_duration_OFDM;
7058
7059	return ret;
7060}
7061
7062/*
7063* Initialize the setting of QoS global
7064*/
7065static void ipw_qos_init(struct ipw_priv *priv, int enable,
7066			 int burst_enable, u32 burst_duration_CCK,
7067			 u32 burst_duration_OFDM)
7068{
7069	priv->qos_data.qos_enable = enable;
7070
7071	if (priv->qos_data.qos_enable) {
7072		priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7073		priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7074		IPW_DEBUG_QOS("QoS is enabled\n");
7075	} else {
7076		priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7077		priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7078		IPW_DEBUG_QOS("QoS is not enabled\n");
7079	}
7080
7081	priv->qos_data.burst_enable = burst_enable;
7082
7083	if (burst_enable) {
7084		priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7085		priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7086	} else {
7087		priv->qos_data.burst_duration_CCK = 0;
7088		priv->qos_data.burst_duration_OFDM = 0;
7089	}
7090}
7091
7092/*
7093* map the packet priority to the right TX Queue
7094*/
7095static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7096{
7097	if (priority > 7 || !priv->qos_data.qos_enable)
7098		priority = 0;
7099
7100	return from_priority_to_tx_queue[priority] - 1;
7101}
7102
7103static int ipw_is_qos_active(struct net_device *dev,
7104			     struct sk_buff *skb)
7105{
7106	struct ipw_priv *priv = libipw_priv(dev);
7107	struct libipw_qos_data *qos_data = NULL;
7108	int active, supported;
7109	u8 *daddr = skb->data + ETH_ALEN;
7110	int unicast = !is_multicast_ether_addr(daddr);
7111
7112	if (!(priv->status & STATUS_ASSOCIATED))
7113		return 0;
7114
7115	qos_data = &priv->assoc_network->qos_data;
7116
7117	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7118		if (unicast == 0)
7119			qos_data->active = 0;
7120		else
7121			qos_data->active = qos_data->supported;
7122	}
7123	active = qos_data->active;
7124	supported = qos_data->supported;
7125	IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7126		      "unicast %d\n",
7127		      priv->qos_data.qos_enable, active, supported, unicast);
7128	if (active && priv->qos_data.qos_enable)
7129		return 1;
7130
7131	return 0;
7132
7133}
7134/*
7135* add QoS parameter to the TX command
7136*/
7137static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7138					u16 priority,
7139					struct tfd_data *tfd)
7140{
7141	int tx_queue_id = 0;
7142
7143
7144	tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7145	tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7146
7147	if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7148		tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7149		tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7150	}
7151	return 0;
7152}
7153
7154/*
7155* background support to run QoS activate functionality
7156*/
7157static void ipw_bg_qos_activate(struct work_struct *work)
7158{
7159	struct ipw_priv *priv =
7160		container_of(work, struct ipw_priv, qos_activate);
7161
7162	mutex_lock(&priv->mutex);
7163
7164	if (priv->status & STATUS_ASSOCIATED)
7165		ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7166
7167	mutex_unlock(&priv->mutex);
7168}
7169
7170static int ipw_handle_probe_response(struct net_device *dev,
7171				     struct libipw_probe_response *resp,
7172				     struct libipw_network *network)
7173{
7174	struct ipw_priv *priv = libipw_priv(dev);
7175	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7176			      (network == priv->assoc_network));
7177
7178	ipw_qos_handle_probe_response(priv, active_network, network);
7179
7180	return 0;
7181}
7182
7183static int ipw_handle_beacon(struct net_device *dev,
7184			     struct libipw_beacon *resp,
7185			     struct libipw_network *network)
7186{
7187	struct ipw_priv *priv = libipw_priv(dev);
7188	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7189			      (network == priv->assoc_network));
7190
7191	ipw_qos_handle_probe_response(priv, active_network, network);
7192
7193	return 0;
7194}
7195
7196static int ipw_handle_assoc_response(struct net_device *dev,
7197				     struct libipw_assoc_response *resp,
7198				     struct libipw_network *network)
7199{
7200	struct ipw_priv *priv = libipw_priv(dev);
7201	ipw_qos_association_resp(priv, network);
7202	return 0;
7203}
7204
7205static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7206				       *qos_param)
7207{
7208	return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7209				sizeof(*qos_param) * 3, qos_param);
7210}
7211
7212static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7213				     *qos_param)
7214{
7215	return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7216				qos_param);
7217}
7218
7219#endif				/* CONFIG_IPW2200_QOS */
7220
7221static int ipw_associate_network(struct ipw_priv *priv,
7222				 struct libipw_network *network,
7223				 struct ipw_supported_rates *rates, int roaming)
7224{
7225	int err;
7226
7227	if (priv->config & CFG_FIXED_RATE)
7228		ipw_set_fixed_rate(priv, network->mode);
7229
7230	if (!(priv->config & CFG_STATIC_ESSID)) {
7231		priv->essid_len = min(network->ssid_len,
7232				      (u8) IW_ESSID_MAX_SIZE);
7233		memcpy(priv->essid, network->ssid, priv->essid_len);
7234	}
7235
7236	network->last_associate = jiffies;
7237
7238	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7239	priv->assoc_request.channel = network->channel;
7240	priv->assoc_request.auth_key = 0;
7241
7242	if ((priv->capability & CAP_PRIVACY_ON) &&
7243	    (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7244		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7245		priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7246
7247		if (priv->ieee->sec.level == SEC_LEVEL_1)
7248			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7249
7250	} else if ((priv->capability & CAP_PRIVACY_ON) &&
7251		   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7252		priv->assoc_request.auth_type = AUTH_LEAP;
7253	else
7254		priv->assoc_request.auth_type = AUTH_OPEN;
7255
7256	if (priv->ieee->wpa_ie_len) {
7257		priv->assoc_request.policy_support = cpu_to_le16(0x02);	/* RSN active */
7258		ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7259				 priv->ieee->wpa_ie_len);
7260	}
7261
7262	/*
7263	 * It is valid for our ieee device to support multiple modes, but
7264	 * when it comes to associating to a given network we have to choose
7265	 * just one mode.
7266	 */
7267	if (network->mode & priv->ieee->mode & IEEE_A)
7268		priv->assoc_request.ieee_mode = IPW_A_MODE;
7269	else if (network->mode & priv->ieee->mode & IEEE_G)
7270		priv->assoc_request.ieee_mode = IPW_G_MODE;
7271	else if (network->mode & priv->ieee->mode & IEEE_B)
7272		priv->assoc_request.ieee_mode = IPW_B_MODE;
7273
7274	priv->assoc_request.capability = cpu_to_le16(network->capability);
7275	if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7276	    && !(priv->config & CFG_PREAMBLE_LONG)) {
7277		priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7278	} else {
7279		priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7280
7281		/* Clear the short preamble if we won't be supporting it */
7282		priv->assoc_request.capability &=
7283		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7284	}
7285
7286	/* Clear capability bits that aren't used in Ad Hoc */
7287	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7288		priv->assoc_request.capability &=
7289		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7290
7291	IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7292			roaming ? "Rea" : "A",
7293			priv->essid_len, priv->essid,
7294			network->channel,
7295			ipw_modes[priv->assoc_request.ieee_mode],
7296			rates->num_rates,
7297			(priv->assoc_request.preamble_length ==
7298			 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7299			network->capability &
7300			WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7301			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7302			priv->capability & CAP_PRIVACY_ON ?
7303			(priv->capability & CAP_SHARED_KEY ? "(shared)" :
7304			 "(open)") : "",
7305			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7306			priv->capability & CAP_PRIVACY_ON ?
7307			'1' + priv->ieee->sec.active_key : '.',
7308			priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7309
7310	priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7311	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7312	    (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7313		priv->assoc_request.assoc_type = HC_IBSS_START;
7314		priv->assoc_request.assoc_tsf_msw = 0;
7315		priv->assoc_request.assoc_tsf_lsw = 0;
7316	} else {
7317		if (unlikely(roaming))
7318			priv->assoc_request.assoc_type = HC_REASSOCIATE;
7319		else
7320			priv->assoc_request.assoc_type = HC_ASSOCIATE;
7321		priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7322		priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7323	}
7324
7325	memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7326
7327	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7328		eth_broadcast_addr(priv->assoc_request.dest);
7329		priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7330	} else {
7331		memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7332		priv->assoc_request.atim_window = 0;
7333	}
7334
7335	priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7336
7337	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7338	if (err) {
7339		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7340		return err;
7341	}
7342
7343	rates->ieee_mode = priv->assoc_request.ieee_mode;
7344	rates->purpose = IPW_RATE_CONNECT;
7345	ipw_send_supported_rates(priv, rates);
7346
7347	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7348		priv->sys_config.dot11g_auto_detection = 1;
7349	else
7350		priv->sys_config.dot11g_auto_detection = 0;
7351
7352	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7353		priv->sys_config.answer_broadcast_ssid_probe = 1;
7354	else
7355		priv->sys_config.answer_broadcast_ssid_probe = 0;
7356
7357	err = ipw_send_system_config(priv);
7358	if (err) {
7359		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7360		return err;
7361	}
7362
7363	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7364	err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7365	if (err) {
7366		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7367		return err;
7368	}
7369
7370	/*
7371	 * If preemption is enabled, it is possible for the association
7372	 * to complete before we return from ipw_send_associate.  Therefore
7373	 * we have to be sure and update our priviate data first.
7374	 */
7375	priv->channel = network->channel;
7376	memcpy(priv->bssid, network->bssid, ETH_ALEN);
7377	priv->status |= STATUS_ASSOCIATING;
7378	priv->status &= ~STATUS_SECURITY_UPDATED;
7379
7380	priv->assoc_network = network;
7381
7382#ifdef CONFIG_IPW2200_QOS
7383	ipw_qos_association(priv, network);
7384#endif
7385
7386	err = ipw_send_associate(priv, &priv->assoc_request);
7387	if (err) {
7388		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7389		return err;
7390	}
7391
7392	IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7393		  priv->essid_len, priv->essid, priv->bssid);
7394
7395	return 0;
7396}
7397
7398static void ipw_roam(void *data)
7399{
7400	struct ipw_priv *priv = data;
7401	struct libipw_network *network = NULL;
7402	struct ipw_network_match match = {
7403		.network = priv->assoc_network
7404	};
7405
7406	/* The roaming process is as follows:
7407	 *
7408	 * 1.  Missed beacon threshold triggers the roaming process by
7409	 *     setting the status ROAM bit and requesting a scan.
7410	 * 2.  When the scan completes, it schedules the ROAM work
7411	 * 3.  The ROAM work looks at all of the known networks for one that
7412	 *     is a better network than the currently associated.  If none
7413	 *     found, the ROAM process is over (ROAM bit cleared)
7414	 * 4.  If a better network is found, a disassociation request is
7415	 *     sent.
7416	 * 5.  When the disassociation completes, the roam work is again
7417	 *     scheduled.  The second time through, the driver is no longer
7418	 *     associated, and the newly selected network is sent an
7419	 *     association request.
7420	 * 6.  At this point ,the roaming process is complete and the ROAM
7421	 *     status bit is cleared.
7422	 */
7423
7424	/* If we are no longer associated, and the roaming bit is no longer
7425	 * set, then we are not actively roaming, so just return */
7426	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7427		return;
7428
7429	if (priv->status & STATUS_ASSOCIATED) {
7430		/* First pass through ROAM process -- look for a better
7431		 * network */
7432		unsigned long flags;
7433		u8 rssi = priv->assoc_network->stats.rssi;
7434		priv->assoc_network->stats.rssi = -128;
7435		spin_lock_irqsave(&priv->ieee->lock, flags);
7436		list_for_each_entry(network, &priv->ieee->network_list, list) {
7437			if (network != priv->assoc_network)
7438				ipw_best_network(priv, &match, network, 1);
7439		}
7440		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7441		priv->assoc_network->stats.rssi = rssi;
7442
7443		if (match.network == priv->assoc_network) {
7444			IPW_DEBUG_ASSOC("No better APs in this network to "
7445					"roam to.\n");
7446			priv->status &= ~STATUS_ROAMING;
7447			ipw_debug_config(priv);
7448			return;
7449		}
7450
7451		ipw_send_disassociate(priv, 1);
7452		priv->assoc_network = match.network;
7453
7454		return;
7455	}
7456
7457	/* Second pass through ROAM process -- request association */
7458	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7459	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7460	priv->status &= ~STATUS_ROAMING;
7461}
7462
7463static void ipw_bg_roam(struct work_struct *work)
7464{
7465	struct ipw_priv *priv =
7466		container_of(work, struct ipw_priv, roam);
7467	mutex_lock(&priv->mutex);
7468	ipw_roam(priv);
7469	mutex_unlock(&priv->mutex);
7470}
7471
7472static int ipw_associate(void *data)
7473{
7474	struct ipw_priv *priv = data;
7475
7476	struct libipw_network *network = NULL;
7477	struct ipw_network_match match = {
7478		.network = NULL
7479	};
7480	struct ipw_supported_rates *rates;
7481	struct list_head *element;
7482	unsigned long flags;
7483
7484	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7485		IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7486		return 0;
7487	}
7488
7489	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7490		IPW_DEBUG_ASSOC("Not attempting association (already in "
7491				"progress)\n");
7492		return 0;
7493	}
7494
7495	if (priv->status & STATUS_DISASSOCIATING) {
7496		IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7497		schedule_work(&priv->associate);
7498		return 0;
7499	}
7500
7501	if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7502		IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7503				"initialized)\n");
7504		return 0;
7505	}
7506
7507	if (!(priv->config & CFG_ASSOCIATE) &&
7508	    !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7509		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7510		return 0;
7511	}
7512
7513	/* Protect our use of the network_list */
7514	spin_lock_irqsave(&priv->ieee->lock, flags);
7515	list_for_each_entry(network, &priv->ieee->network_list, list)
7516	    ipw_best_network(priv, &match, network, 0);
7517
7518	network = match.network;
7519	rates = &match.rates;
7520
7521	if (network == NULL &&
7522	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
7523	    priv->config & CFG_ADHOC_CREATE &&
7524	    priv->config & CFG_STATIC_ESSID &&
7525	    priv->config & CFG_STATIC_CHANNEL) {
7526		/* Use oldest network if the free list is empty */
7527		if (list_empty(&priv->ieee->network_free_list)) {
7528			struct libipw_network *oldest = NULL;
7529			struct libipw_network *target;
7530
7531			list_for_each_entry(target, &priv->ieee->network_list, list) {
7532				if ((oldest == NULL) ||
7533				    (target->last_scanned < oldest->last_scanned))
7534					oldest = target;
7535			}
7536
7537			/* If there are no more slots, expire the oldest */
7538			list_del(&oldest->list);
7539			target = oldest;
7540			IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7541					target->ssid_len, target->ssid,
7542					target->bssid);
7543			list_add_tail(&target->list,
7544				      &priv->ieee->network_free_list);
7545		}
7546
7547		element = priv->ieee->network_free_list.next;
7548		network = list_entry(element, struct libipw_network, list);
7549		ipw_adhoc_create(priv, network);
7550		rates = &priv->rates;
7551		list_del(element);
7552		list_add_tail(&network->list, &priv->ieee->network_list);
7553	}
7554	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7555
7556	/* If we reached the end of the list, then we don't have any valid
7557	 * matching APs */
7558	if (!network) {
7559		ipw_debug_config(priv);
7560
7561		if (!(priv->status & STATUS_SCANNING)) {
7562			if (!(priv->config & CFG_SPEED_SCAN))
7563				schedule_delayed_work(&priv->request_scan,
7564						      SCAN_INTERVAL);
7565			else
7566				schedule_delayed_work(&priv->request_scan, 0);
7567		}
7568
7569		return 0;
7570	}
7571
7572	ipw_associate_network(priv, network, rates, 0);
7573
7574	return 1;
7575}
7576
7577static void ipw_bg_associate(struct work_struct *work)
7578{
7579	struct ipw_priv *priv =
7580		container_of(work, struct ipw_priv, associate);
7581	mutex_lock(&priv->mutex);
7582	ipw_associate(priv);
7583	mutex_unlock(&priv->mutex);
7584}
7585
7586static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7587				      struct sk_buff *skb)
7588{
7589	struct ieee80211_hdr *hdr;
7590	u16 fc;
7591
7592	hdr = (struct ieee80211_hdr *)skb->data;
7593	fc = le16_to_cpu(hdr->frame_control);
7594	if (!(fc & IEEE80211_FCTL_PROTECTED))
7595		return;
7596
7597	fc &= ~IEEE80211_FCTL_PROTECTED;
7598	hdr->frame_control = cpu_to_le16(fc);
7599	switch (priv->ieee->sec.level) {
7600	case SEC_LEVEL_3:
7601		/* Remove CCMP HDR */
7602		memmove(skb->data + LIBIPW_3ADDR_LEN,
7603			skb->data + LIBIPW_3ADDR_LEN + 8,
7604			skb->len - LIBIPW_3ADDR_LEN - 8);
7605		skb_trim(skb, skb->len - 16);	/* CCMP_HDR_LEN + CCMP_MIC_LEN */
7606		break;
7607	case SEC_LEVEL_2:
7608		break;
7609	case SEC_LEVEL_1:
7610		/* Remove IV */
7611		memmove(skb->data + LIBIPW_3ADDR_LEN,
7612			skb->data + LIBIPW_3ADDR_LEN + 4,
7613			skb->len - LIBIPW_3ADDR_LEN - 4);
7614		skb_trim(skb, skb->len - 8);	/* IV + ICV */
7615		break;
7616	case SEC_LEVEL_0:
7617		break;
7618	default:
7619		printk(KERN_ERR "Unknown security level %d\n",
7620		       priv->ieee->sec.level);
7621		break;
7622	}
7623}
7624
7625static void ipw_handle_data_packet(struct ipw_priv *priv,
7626				   struct ipw_rx_mem_buffer *rxb,
7627				   struct libipw_rx_stats *stats)
7628{
7629	struct net_device *dev = priv->net_dev;
7630	struct libipw_hdr_4addr *hdr;
7631	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7632
7633	/* We received data from the HW, so stop the watchdog */
7634	netif_trans_update(dev);
7635
7636	/* We only process data packets if the
7637	 * interface is open */
7638	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7639		     skb_tailroom(rxb->skb))) {
7640		dev->stats.rx_errors++;
7641		priv->wstats.discard.misc++;
7642		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7643		return;
7644	} else if (unlikely(!netif_running(priv->net_dev))) {
7645		dev->stats.rx_dropped++;
7646		priv->wstats.discard.misc++;
7647		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7648		return;
7649	}
7650
7651	/* Advance skb->data to the start of the actual payload */
7652	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7653
7654	/* Set the size of the skb to the size of the frame */
7655	skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7656
7657	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7658
7659	/* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7660	hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7661	if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7662	    (is_multicast_ether_addr(hdr->addr1) ?
7663	     !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7664		ipw_rebuild_decrypted_skb(priv, rxb->skb);
7665
7666	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7667		dev->stats.rx_errors++;
7668	else {			/* libipw_rx succeeded, so it now owns the SKB */
7669		rxb->skb = NULL;
7670		__ipw_led_activity_on(priv);
7671	}
7672}
7673
7674#ifdef CONFIG_IPW2200_RADIOTAP
7675static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7676					   struct ipw_rx_mem_buffer *rxb,
7677					   struct libipw_rx_stats *stats)
7678{
7679	struct net_device *dev = priv->net_dev;
7680	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7681	struct ipw_rx_frame *frame = &pkt->u.frame;
7682
7683	/* initial pull of some data */
7684	u16 received_channel = frame->received_channel;
7685	u8 antennaAndPhy = frame->antennaAndPhy;
7686	s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;	/* call it signed anyhow */
7687	u16 pktrate = frame->rate;
7688
7689	/* Magic struct that slots into the radiotap header -- no reason
7690	 * to build this manually element by element, we can write it much
7691	 * more efficiently than we can parse it. ORDER MATTERS HERE */
7692	struct ipw_rt_hdr *ipw_rt;
7693
7694	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7695
7696	/* We received data from the HW, so stop the watchdog */
7697	netif_trans_update(dev);
7698
7699	/* We only process data packets if the
7700	 * interface is open */
7701	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7702		     skb_tailroom(rxb->skb))) {
7703		dev->stats.rx_errors++;
7704		priv->wstats.discard.misc++;
7705		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7706		return;
7707	} else if (unlikely(!netif_running(priv->net_dev))) {
7708		dev->stats.rx_dropped++;
7709		priv->wstats.discard.misc++;
7710		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7711		return;
7712	}
7713
7714	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7715	 * that now */
7716	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7717		/* FIXME: Should alloc bigger skb instead */
7718		dev->stats.rx_dropped++;
7719		priv->wstats.discard.misc++;
7720		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7721		return;
7722	}
7723
7724	/* copy the frame itself */
7725	memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7726		rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7727
7728	ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7729
7730	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7731	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7732	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr));	/* total header+data */
7733
7734	/* Big bitfield of all the fields we provide in radiotap */
7735	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7736	     (1 << IEEE80211_RADIOTAP_TSFT) |
7737	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7738	     (1 << IEEE80211_RADIOTAP_RATE) |
7739	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7740	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7741	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7742	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7743
7744	/* Zero the flags, we'll add to them as we go */
7745	ipw_rt->rt_flags = 0;
7746	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7747			       frame->parent_tsf[2] << 16 |
7748			       frame->parent_tsf[1] << 8  |
7749			       frame->parent_tsf[0]);
7750
7751	/* Convert signal to DBM */
7752	ipw_rt->rt_dbmsignal = antsignal;
7753	ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7754
7755	/* Convert the channel data and set the flags */
7756	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7757	if (received_channel > 14) {	/* 802.11a */
7758		ipw_rt->rt_chbitmask =
7759		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7760	} else if (antennaAndPhy & 32) {	/* 802.11b */
7761		ipw_rt->rt_chbitmask =
7762		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7763	} else {		/* 802.11g */
7764		ipw_rt->rt_chbitmask =
7765		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7766	}
7767
7768	/* set the rate in multiples of 500k/s */
7769	switch (pktrate) {
7770	case IPW_TX_RATE_1MB:
7771		ipw_rt->rt_rate = 2;
7772		break;
7773	case IPW_TX_RATE_2MB:
7774		ipw_rt->rt_rate = 4;
7775		break;
7776	case IPW_TX_RATE_5MB:
7777		ipw_rt->rt_rate = 10;
7778		break;
7779	case IPW_TX_RATE_6MB:
7780		ipw_rt->rt_rate = 12;
7781		break;
7782	case IPW_TX_RATE_9MB:
7783		ipw_rt->rt_rate = 18;
7784		break;
7785	case IPW_TX_RATE_11MB:
7786		ipw_rt->rt_rate = 22;
7787		break;
7788	case IPW_TX_RATE_12MB:
7789		ipw_rt->rt_rate = 24;
7790		break;
7791	case IPW_TX_RATE_18MB:
7792		ipw_rt->rt_rate = 36;
7793		break;
7794	case IPW_TX_RATE_24MB:
7795		ipw_rt->rt_rate = 48;
7796		break;
7797	case IPW_TX_RATE_36MB:
7798		ipw_rt->rt_rate = 72;
7799		break;
7800	case IPW_TX_RATE_48MB:
7801		ipw_rt->rt_rate = 96;
7802		break;
7803	case IPW_TX_RATE_54MB:
7804		ipw_rt->rt_rate = 108;
7805		break;
7806	default:
7807		ipw_rt->rt_rate = 0;
7808		break;
7809	}
7810
7811	/* antenna number */
7812	ipw_rt->rt_antenna = (antennaAndPhy & 3);	/* Is this right? */
7813
7814	/* set the preamble flag if we have it */
7815	if ((antennaAndPhy & 64))
7816		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7817
7818	/* Set the size of the skb to the size of the frame */
7819	skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7820
7821	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7822
7823	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7824		dev->stats.rx_errors++;
7825	else {			/* libipw_rx succeeded, so it now owns the SKB */
7826		rxb->skb = NULL;
7827		/* no LED during capture */
7828	}
7829}
7830#endif
7831
7832#ifdef CONFIG_IPW2200_PROMISCUOUS
7833#define libipw_is_probe_response(fc) \
7834   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7835    (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7836
7837#define libipw_is_management(fc) \
7838   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7839
7840#define libipw_is_control(fc) \
7841   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7842
7843#define libipw_is_data(fc) \
7844   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7845
7846#define libipw_is_assoc_request(fc) \
7847   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7848
7849#define libipw_is_reassoc_request(fc) \
7850   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7851
7852static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7853				      struct ipw_rx_mem_buffer *rxb,
7854				      struct libipw_rx_stats *stats)
7855{
7856	struct net_device *dev = priv->prom_net_dev;
7857	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7858	struct ipw_rx_frame *frame = &pkt->u.frame;
7859	struct ipw_rt_hdr *ipw_rt;
7860
7861	/* First cache any information we need before we overwrite
7862	 * the information provided in the skb from the hardware */
7863	struct ieee80211_hdr *hdr;
7864	u16 channel = frame->received_channel;
7865	u8 phy_flags = frame->antennaAndPhy;
7866	s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7867	s8 noise = (s8) le16_to_cpu(frame->noise);
7868	u8 rate = frame->rate;
7869	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7870	struct sk_buff *skb;
7871	int hdr_only = 0;
7872	u16 filter = priv->prom_priv->filter;
7873
7874	/* If the filter is set to not include Rx frames then return */
7875	if (filter & IPW_PROM_NO_RX)
7876		return;
7877
7878	/* We received data from the HW, so stop the watchdog */
7879	netif_trans_update(dev);
7880
7881	if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7882		dev->stats.rx_errors++;
7883		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7884		return;
7885	}
7886
7887	/* We only process data packets if the interface is open */
7888	if (unlikely(!netif_running(dev))) {
7889		dev->stats.rx_dropped++;
7890		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7891		return;
7892	}
7893
7894	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7895	 * that now */
7896	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7897		/* FIXME: Should alloc bigger skb instead */
7898		dev->stats.rx_dropped++;
7899		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7900		return;
7901	}
7902
7903	hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7904	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7905		if (filter & IPW_PROM_NO_MGMT)
7906			return;
7907		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7908			hdr_only = 1;
7909	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7910		if (filter & IPW_PROM_NO_CTL)
7911			return;
7912		if (filter & IPW_PROM_CTL_HEADER_ONLY)
7913			hdr_only = 1;
7914	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7915		if (filter & IPW_PROM_NO_DATA)
7916			return;
7917		if (filter & IPW_PROM_DATA_HEADER_ONLY)
7918			hdr_only = 1;
7919	}
7920
7921	/* Copy the SKB since this is for the promiscuous side */
7922	skb = skb_copy(rxb->skb, GFP_ATOMIC);
7923	if (skb == NULL) {
7924		IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7925		return;
7926	}
7927
7928	/* copy the frame data to write after where the radiotap header goes */
7929	ipw_rt = (void *)skb->data;
7930
7931	if (hdr_only)
7932		len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7933
7934	memcpy(ipw_rt->payload, hdr, len);
7935
7936	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7937	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7938	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));	/* total header+data */
7939
7940	/* Set the size of the skb to the size of the frame */
7941	skb_put(skb, sizeof(*ipw_rt) + len);
7942
7943	/* Big bitfield of all the fields we provide in radiotap */
7944	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7945	     (1 << IEEE80211_RADIOTAP_TSFT) |
7946	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7947	     (1 << IEEE80211_RADIOTAP_RATE) |
7948	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7949	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7950	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7951	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7952
7953	/* Zero the flags, we'll add to them as we go */
7954	ipw_rt->rt_flags = 0;
7955	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7956			       frame->parent_tsf[2] << 16 |
7957			       frame->parent_tsf[1] << 8  |
7958			       frame->parent_tsf[0]);
7959
7960	/* Convert to DBM */
7961	ipw_rt->rt_dbmsignal = signal;
7962	ipw_rt->rt_dbmnoise = noise;
7963
7964	/* Convert the channel data and set the flags */
7965	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7966	if (channel > 14) {	/* 802.11a */
7967		ipw_rt->rt_chbitmask =
7968		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7969	} else if (phy_flags & (1 << 5)) {	/* 802.11b */
7970		ipw_rt->rt_chbitmask =
7971		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7972	} else {		/* 802.11g */
7973		ipw_rt->rt_chbitmask =
7974		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7975	}
7976
7977	/* set the rate in multiples of 500k/s */
7978	switch (rate) {
7979	case IPW_TX_RATE_1MB:
7980		ipw_rt->rt_rate = 2;
7981		break;
7982	case IPW_TX_RATE_2MB:
7983		ipw_rt->rt_rate = 4;
7984		break;
7985	case IPW_TX_RATE_5MB:
7986		ipw_rt->rt_rate = 10;
7987		break;
7988	case IPW_TX_RATE_6MB:
7989		ipw_rt->rt_rate = 12;
7990		break;
7991	case IPW_TX_RATE_9MB:
7992		ipw_rt->rt_rate = 18;
7993		break;
7994	case IPW_TX_RATE_11MB:
7995		ipw_rt->rt_rate = 22;
7996		break;
7997	case IPW_TX_RATE_12MB:
7998		ipw_rt->rt_rate = 24;
7999		break;
8000	case IPW_TX_RATE_18MB:
8001		ipw_rt->rt_rate = 36;
8002		break;
8003	case IPW_TX_RATE_24MB:
8004		ipw_rt->rt_rate = 48;
8005		break;
8006	case IPW_TX_RATE_36MB:
8007		ipw_rt->rt_rate = 72;
8008		break;
8009	case IPW_TX_RATE_48MB:
8010		ipw_rt->rt_rate = 96;
8011		break;
8012	case IPW_TX_RATE_54MB:
8013		ipw_rt->rt_rate = 108;
8014		break;
8015	default:
8016		ipw_rt->rt_rate = 0;
8017		break;
8018	}
8019
8020	/* antenna number */
8021	ipw_rt->rt_antenna = (phy_flags & 3);
8022
8023	/* set the preamble flag if we have it */
8024	if (phy_flags & (1 << 6))
8025		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8026
8027	IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8028
8029	if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8030		dev->stats.rx_errors++;
8031		dev_kfree_skb_any(skb);
8032	}
8033}
8034#endif
8035
8036static int is_network_packet(struct ipw_priv *priv,
8037				    struct libipw_hdr_4addr *header)
8038{
8039	/* Filter incoming packets to determine if they are targeted toward
8040	 * this network, discarding packets coming from ourselves */
8041	switch (priv->ieee->iw_mode) {
8042	case IW_MODE_ADHOC:	/* Header: Dest. | Source    | BSSID */
8043		/* packets from our adapter are dropped (echo) */
8044		if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8045			return 0;
8046
8047		/* {broad,multi}cast packets to our BSSID go through */
8048		if (is_multicast_ether_addr(header->addr1))
8049			return ether_addr_equal(header->addr3, priv->bssid);
8050
8051		/* packets to our adapter go through */
8052		return ether_addr_equal(header->addr1,
8053					priv->net_dev->dev_addr);
8054
8055	case IW_MODE_INFRA:	/* Header: Dest. | BSSID | Source */
8056		/* packets from our adapter are dropped (echo) */
8057		if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8058			return 0;
8059
8060		/* {broad,multi}cast packets to our BSS go through */
8061		if (is_multicast_ether_addr(header->addr1))
8062			return ether_addr_equal(header->addr2, priv->bssid);
8063
8064		/* packets to our adapter go through */
8065		return ether_addr_equal(header->addr1,
8066					priv->net_dev->dev_addr);
8067	}
8068
8069	return 1;
8070}
8071
8072#define IPW_PACKET_RETRY_TIME HZ
8073
8074static  int is_duplicate_packet(struct ipw_priv *priv,
8075				      struct libipw_hdr_4addr *header)
8076{
8077	u16 sc = le16_to_cpu(header->seq_ctl);
8078	u16 seq = WLAN_GET_SEQ_SEQ(sc);
8079	u16 frag = WLAN_GET_SEQ_FRAG(sc);
8080	u16 *last_seq, *last_frag;
8081	unsigned long *last_time;
8082
8083	switch (priv->ieee->iw_mode) {
8084	case IW_MODE_ADHOC:
8085		{
8086			struct list_head *p;
8087			struct ipw_ibss_seq *entry = NULL;
8088			u8 *mac = header->addr2;
8089			int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8090
8091			list_for_each(p, &priv->ibss_mac_hash[index]) {
8092				entry =
8093				    list_entry(p, struct ipw_ibss_seq, list);
8094				if (ether_addr_equal(entry->mac, mac))
8095					break;
8096			}
8097			if (p == &priv->ibss_mac_hash[index]) {
8098				entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8099				if (!entry) {
8100					IPW_ERROR
8101					    ("Cannot malloc new mac entry\n");
8102					return 0;
8103				}
8104				memcpy(entry->mac, mac, ETH_ALEN);
8105				entry->seq_num = seq;
8106				entry->frag_num = frag;
8107				entry->packet_time = jiffies;
8108				list_add(&entry->list,
8109					 &priv->ibss_mac_hash[index]);
8110				return 0;
8111			}
8112			last_seq = &entry->seq_num;
8113			last_frag = &entry->frag_num;
8114			last_time = &entry->packet_time;
8115			break;
8116		}
8117	case IW_MODE_INFRA:
8118		last_seq = &priv->last_seq_num;
8119		last_frag = &priv->last_frag_num;
8120		last_time = &priv->last_packet_time;
8121		break;
8122	default:
8123		return 0;
8124	}
8125	if ((*last_seq == seq) &&
8126	    time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8127		if (*last_frag == frag)
8128			goto drop;
8129		if (*last_frag + 1 != frag)
8130			/* out-of-order fragment */
8131			goto drop;
8132	} else
8133		*last_seq = seq;
8134
8135	*last_frag = frag;
8136	*last_time = jiffies;
8137	return 0;
8138
8139      drop:
8140	/* Comment this line now since we observed the card receives
8141	 * duplicate packets but the FCTL_RETRY bit is not set in the
8142	 * IBSS mode with fragmentation enabled.
8143	 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8144	return 1;
8145}
8146
8147static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8148				   struct ipw_rx_mem_buffer *rxb,
8149				   struct libipw_rx_stats *stats)
8150{
8151	struct sk_buff *skb = rxb->skb;
8152	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8153	struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8154	    (skb->data + IPW_RX_FRAME_SIZE);
8155
8156	libipw_rx_mgt(priv->ieee, header, stats);
8157
8158	if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8159	    ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8160	      IEEE80211_STYPE_PROBE_RESP) ||
8161	     (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8162	      IEEE80211_STYPE_BEACON))) {
8163		if (ether_addr_equal(header->addr3, priv->bssid))
8164			ipw_add_station(priv, header->addr2);
8165	}
8166
8167	if (priv->config & CFG_NET_STATS) {
8168		IPW_DEBUG_HC("sending stat packet\n");
8169
8170		/* Set the size of the skb to the size of the full
8171		 * ipw header and 802.11 frame */
8172		skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8173			IPW_RX_FRAME_SIZE);
8174
8175		/* Advance past the ipw packet header to the 802.11 frame */
8176		skb_pull(skb, IPW_RX_FRAME_SIZE);
8177
8178		/* Push the libipw_rx_stats before the 802.11 frame */
8179		memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8180
8181		skb->dev = priv->ieee->dev;
8182
8183		/* Point raw at the libipw_stats */
8184		skb_reset_mac_header(skb);
8185
8186		skb->pkt_type = PACKET_OTHERHOST;
8187		skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8188		memset(skb->cb, 0, sizeof(rxb->skb->cb));
8189		netif_rx(skb);
8190		rxb->skb = NULL;
8191	}
8192}
8193
8194/*
8195 * Main entry function for receiving a packet with 80211 headers.  This
8196 * should be called when ever the FW has notified us that there is a new
8197 * skb in the receive queue.
8198 */
8199static void ipw_rx(struct ipw_priv *priv)
8200{
8201	struct ipw_rx_mem_buffer *rxb;
8202	struct ipw_rx_packet *pkt;
8203	struct libipw_hdr_4addr *header;
8204	u32 r, i;
8205	u8 network_packet;
8206	u8 fill_rx = 0;
8207
8208	r = ipw_read32(priv, IPW_RX_READ_INDEX);
8209	ipw_read32(priv, IPW_RX_WRITE_INDEX);
8210	i = priv->rxq->read;
8211
8212	if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8213		fill_rx = 1;
8214
8215	while (i != r) {
8216		rxb = priv->rxq->queue[i];
8217		if (unlikely(rxb == NULL)) {
8218			printk(KERN_CRIT "Queue not allocated!\n");
8219			break;
8220		}
8221		priv->rxq->queue[i] = NULL;
8222
8223		dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr,
8224					IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8225
8226		pkt = (struct ipw_rx_packet *)rxb->skb->data;
8227		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8228			     pkt->header.message_type,
8229			     pkt->header.rx_seq_num, pkt->header.control_bits);
8230
8231		switch (pkt->header.message_type) {
8232		case RX_FRAME_TYPE:	/* 802.11 frame */  {
8233				struct libipw_rx_stats stats = {
8234					.rssi = pkt->u.frame.rssi_dbm -
8235					    IPW_RSSI_TO_DBM,
8236					.signal =
8237					    pkt->u.frame.rssi_dbm -
8238					    IPW_RSSI_TO_DBM + 0x100,
8239					.noise =
8240					    le16_to_cpu(pkt->u.frame.noise),
8241					.rate = pkt->u.frame.rate,
8242					.mac_time = jiffies,
8243					.received_channel =
8244					    pkt->u.frame.received_channel,
8245					.freq =
8246					    (pkt->u.frame.
8247					     control & (1 << 0)) ?
8248					    LIBIPW_24GHZ_BAND :
8249					    LIBIPW_52GHZ_BAND,
8250					.len = le16_to_cpu(pkt->u.frame.length),
8251				};
8252
8253				if (stats.rssi != 0)
8254					stats.mask |= LIBIPW_STATMASK_RSSI;
8255				if (stats.signal != 0)
8256					stats.mask |= LIBIPW_STATMASK_SIGNAL;
8257				if (stats.noise != 0)
8258					stats.mask |= LIBIPW_STATMASK_NOISE;
8259				if (stats.rate != 0)
8260					stats.mask |= LIBIPW_STATMASK_RATE;
8261
8262				priv->rx_packets++;
8263
8264#ifdef CONFIG_IPW2200_PROMISCUOUS
8265	if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8266		ipw_handle_promiscuous_rx(priv, rxb, &stats);
8267#endif
8268
8269#ifdef CONFIG_IPW2200_MONITOR
8270				if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8271#ifdef CONFIG_IPW2200_RADIOTAP
8272
8273                ipw_handle_data_packet_monitor(priv,
8274					       rxb,
8275					       &stats);
8276#else
8277		ipw_handle_data_packet(priv, rxb,
8278				       &stats);
8279#endif
8280					break;
8281				}
8282#endif
8283
8284				header =
8285				    (struct libipw_hdr_4addr *)(rxb->skb->
8286								   data +
8287								   IPW_RX_FRAME_SIZE);
8288				/* TODO: Check Ad-Hoc dest/source and make sure
8289				 * that we are actually parsing these packets
8290				 * correctly -- we should probably use the
8291				 * frame control of the packet and disregard
8292				 * the current iw_mode */
8293
8294				network_packet =
8295				    is_network_packet(priv, header);
8296				if (network_packet && priv->assoc_network) {
8297					priv->assoc_network->stats.rssi =
8298					    stats.rssi;
8299					priv->exp_avg_rssi =
8300					    exponential_average(priv->exp_avg_rssi,
8301					    stats.rssi, DEPTH_RSSI);
8302				}
8303
8304				IPW_DEBUG_RX("Frame: len=%u\n",
8305					     le16_to_cpu(pkt->u.frame.length));
8306
8307				if (le16_to_cpu(pkt->u.frame.length) <
8308				    libipw_get_hdrlen(le16_to_cpu(
8309						    header->frame_ctl))) {
8310					IPW_DEBUG_DROP
8311					    ("Received packet is too small. "
8312					     "Dropping.\n");
8313					priv->net_dev->stats.rx_errors++;
8314					priv->wstats.discard.misc++;
8315					break;
8316				}
8317
8318				switch (WLAN_FC_GET_TYPE
8319					(le16_to_cpu(header->frame_ctl))) {
8320
8321				case IEEE80211_FTYPE_MGMT:
8322					ipw_handle_mgmt_packet(priv, rxb,
8323							       &stats);
8324					break;
8325
8326				case IEEE80211_FTYPE_CTL:
8327					break;
8328
8329				case IEEE80211_FTYPE_DATA:
8330					if (unlikely(!network_packet ||
8331						     is_duplicate_packet(priv,
8332									 header)))
8333					{
8334						IPW_DEBUG_DROP("Dropping: "
8335							       "%pM, "
8336							       "%pM, "
8337							       "%pM\n",
8338							       header->addr1,
8339							       header->addr2,
8340							       header->addr3);
8341						break;
8342					}
8343
8344					ipw_handle_data_packet(priv, rxb,
8345							       &stats);
8346
8347					break;
8348				}
8349				break;
8350			}
8351
8352		case RX_HOST_NOTIFICATION_TYPE:{
8353				IPW_DEBUG_RX
8354				    ("Notification: subtype=%02X flags=%02X size=%d\n",
8355				     pkt->u.notification.subtype,
8356				     pkt->u.notification.flags,
8357				     le16_to_cpu(pkt->u.notification.size));
8358				ipw_rx_notification(priv, &pkt->u.notification);
8359				break;
8360			}
8361
8362		default:
8363			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8364				     pkt->header.message_type);
8365			break;
8366		}
8367
8368		/* For now we just don't re-use anything.  We can tweak this
8369		 * later to try and re-use notification packets and SKBs that
8370		 * fail to Rx correctly */
8371		if (rxb->skb != NULL) {
8372			dev_kfree_skb_any(rxb->skb);
8373			rxb->skb = NULL;
8374		}
8375
8376		dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr,
8377				 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8378		list_add_tail(&rxb->list, &priv->rxq->rx_used);
8379
8380		i = (i + 1) % RX_QUEUE_SIZE;
8381
8382		/* If there are a lot of unsued frames, restock the Rx queue
8383		 * so the ucode won't assert */
8384		if (fill_rx) {
8385			priv->rxq->read = i;
8386			ipw_rx_queue_replenish(priv);
8387		}
8388	}
8389
8390	/* Backtrack one entry */
8391	priv->rxq->read = i;
8392	ipw_rx_queue_restock(priv);
8393}
8394
8395#define DEFAULT_RTS_THRESHOLD     2304U
8396#define MIN_RTS_THRESHOLD         1U
8397#define MAX_RTS_THRESHOLD         2304U
8398#define DEFAULT_BEACON_INTERVAL   100U
8399#define	DEFAULT_SHORT_RETRY_LIMIT 7U
8400#define	DEFAULT_LONG_RETRY_LIMIT  4U
8401
8402/*
8403 * ipw_sw_reset
8404 * @option: options to control different reset behaviour
8405 * 	    0 = reset everything except the 'disable' module_param
8406 * 	    1 = reset everything and print out driver info (for probe only)
8407 * 	    2 = reset everything
8408 */
8409static int ipw_sw_reset(struct ipw_priv *priv, int option)
8410{
8411	int band, modulation;
8412	int old_mode = priv->ieee->iw_mode;
8413
8414	/* Initialize module parameter values here */
8415	priv->config = 0;
8416
8417	/* We default to disabling the LED code as right now it causes
8418	 * too many systems to lock up... */
8419	if (!led_support)
8420		priv->config |= CFG_NO_LED;
8421
8422	if (associate)
8423		priv->config |= CFG_ASSOCIATE;
8424	else
8425		IPW_DEBUG_INFO("Auto associate disabled.\n");
8426
8427	if (auto_create)
8428		priv->config |= CFG_ADHOC_CREATE;
8429	else
8430		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8431
8432	priv->config &= ~CFG_STATIC_ESSID;
8433	priv->essid_len = 0;
8434	memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8435
8436	if (disable && option) {
8437		priv->status |= STATUS_RF_KILL_SW;
8438		IPW_DEBUG_INFO("Radio disabled.\n");
8439	}
8440
8441	if (default_channel != 0) {
8442		priv->config |= CFG_STATIC_CHANNEL;
8443		priv->channel = default_channel;
8444		IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8445		/* TODO: Validate that provided channel is in range */
8446	}
8447#ifdef CONFIG_IPW2200_QOS
8448	ipw_qos_init(priv, qos_enable, qos_burst_enable,
8449		     burst_duration_CCK, burst_duration_OFDM);
8450#endif				/* CONFIG_IPW2200_QOS */
8451
8452	switch (network_mode) {
8453	case 1:
8454		priv->ieee->iw_mode = IW_MODE_ADHOC;
8455		priv->net_dev->type = ARPHRD_ETHER;
8456
8457		break;
8458#ifdef CONFIG_IPW2200_MONITOR
8459	case 2:
8460		priv->ieee->iw_mode = IW_MODE_MONITOR;
8461#ifdef CONFIG_IPW2200_RADIOTAP
8462		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8463#else
8464		priv->net_dev->type = ARPHRD_IEEE80211;
8465#endif
8466		break;
8467#endif
8468	default:
8469	case 0:
8470		priv->net_dev->type = ARPHRD_ETHER;
8471		priv->ieee->iw_mode = IW_MODE_INFRA;
8472		break;
8473	}
8474
8475	if (hwcrypto) {
8476		priv->ieee->host_encrypt = 0;
8477		priv->ieee->host_encrypt_msdu = 0;
8478		priv->ieee->host_decrypt = 0;
8479		priv->ieee->host_mc_decrypt = 0;
8480	}
8481	IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8482
8483	/* IPW2200/2915 is abled to do hardware fragmentation. */
8484	priv->ieee->host_open_frag = 0;
8485
8486	if ((priv->pci_dev->device == 0x4223) ||
8487	    (priv->pci_dev->device == 0x4224)) {
8488		if (option == 1)
8489			printk(KERN_INFO DRV_NAME
8490			       ": Detected Intel PRO/Wireless 2915ABG Network "
8491			       "Connection\n");
8492		priv->ieee->abg_true = 1;
8493		band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8494		modulation = LIBIPW_OFDM_MODULATION |
8495		    LIBIPW_CCK_MODULATION;
8496		priv->adapter = IPW_2915ABG;
8497		priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8498	} else {
8499		if (option == 1)
8500			printk(KERN_INFO DRV_NAME
8501			       ": Detected Intel PRO/Wireless 2200BG Network "
8502			       "Connection\n");
8503
8504		priv->ieee->abg_true = 0;
8505		band = LIBIPW_24GHZ_BAND;
8506		modulation = LIBIPW_OFDM_MODULATION |
8507		    LIBIPW_CCK_MODULATION;
8508		priv->adapter = IPW_2200BG;
8509		priv->ieee->mode = IEEE_G | IEEE_B;
8510	}
8511
8512	priv->ieee->freq_band = band;
8513	priv->ieee->modulation = modulation;
8514
8515	priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8516
8517	priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8518	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8519
8520	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8521	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8522	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8523
8524	/* If power management is turned on, default to AC mode */
8525	priv->power_mode = IPW_POWER_AC;
8526	priv->tx_power = IPW_TX_POWER_DEFAULT;
8527
8528	return old_mode == priv->ieee->iw_mode;
8529}
8530
8531/*
8532 * This file defines the Wireless Extension handlers.  It does not
8533 * define any methods of hardware manipulation and relies on the
8534 * functions defined in ipw_main to provide the HW interaction.
8535 *
8536 * The exception to this is the use of the ipw_get_ordinal()
8537 * function used to poll the hardware vs. making unnecessary calls.
8538 *
8539 */
8540
8541static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8542{
8543	if (channel == 0) {
8544		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8545		priv->config &= ~CFG_STATIC_CHANNEL;
8546		IPW_DEBUG_ASSOC("Attempting to associate with new "
8547				"parameters.\n");
8548		ipw_associate(priv);
8549		return 0;
8550	}
8551
8552	priv->config |= CFG_STATIC_CHANNEL;
8553
8554	if (priv->channel == channel) {
8555		IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8556			       channel);
8557		return 0;
8558	}
8559
8560	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8561	priv->channel = channel;
8562
8563#ifdef CONFIG_IPW2200_MONITOR
8564	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8565		int i;
8566		if (priv->status & STATUS_SCANNING) {
8567			IPW_DEBUG_SCAN("Scan abort triggered due to "
8568				       "channel change.\n");
8569			ipw_abort_scan(priv);
8570		}
8571
8572		for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8573			udelay(10);
8574
8575		if (priv->status & STATUS_SCANNING)
8576			IPW_DEBUG_SCAN("Still scanning...\n");
8577		else
8578			IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8579				       1000 - i);
8580
8581		return 0;
8582	}
8583#endif				/* CONFIG_IPW2200_MONITOR */
8584
8585	/* Network configuration changed -- force [re]association */
8586	IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8587	if (!ipw_disassociate(priv))
8588		ipw_associate(priv);
8589
8590	return 0;
8591}
8592
8593static int ipw_wx_set_freq(struct net_device *dev,
8594			   struct iw_request_info *info,
8595			   union iwreq_data *wrqu, char *extra)
8596{
8597	struct ipw_priv *priv = libipw_priv(dev);
8598	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8599	struct iw_freq *fwrq = &wrqu->freq;
8600	int ret = 0, i;
8601	u8 channel, flags;
8602	int band;
8603
8604	if (fwrq->m == 0) {
8605		IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8606		mutex_lock(&priv->mutex);
8607		ret = ipw_set_channel(priv, 0);
8608		mutex_unlock(&priv->mutex);
8609		return ret;
8610	}
8611	/* if setting by freq convert to channel */
8612	if (fwrq->e == 1) {
8613		channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8614		if (channel == 0)
8615			return -EINVAL;
8616	} else
8617		channel = fwrq->m;
8618
8619	if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8620		return -EINVAL;
8621
8622	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8623		i = libipw_channel_to_index(priv->ieee, channel);
8624		if (i == -1)
8625			return -EINVAL;
8626
8627		flags = (band == LIBIPW_24GHZ_BAND) ?
8628		    geo->bg[i].flags : geo->a[i].flags;
8629		if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8630			IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8631			return -EINVAL;
8632		}
8633	}
8634
8635	IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8636	mutex_lock(&priv->mutex);
8637	ret = ipw_set_channel(priv, channel);
8638	mutex_unlock(&priv->mutex);
8639	return ret;
8640}
8641
8642static int ipw_wx_get_freq(struct net_device *dev,
8643			   struct iw_request_info *info,
8644			   union iwreq_data *wrqu, char *extra)
8645{
8646	struct ipw_priv *priv = libipw_priv(dev);
8647
8648	wrqu->freq.e = 0;
8649
8650	/* If we are associated, trying to associate, or have a statically
8651	 * configured CHANNEL then return that; otherwise return ANY */
8652	mutex_lock(&priv->mutex);
8653	if (priv->config & CFG_STATIC_CHANNEL ||
8654	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8655		int i;
8656
8657		i = libipw_channel_to_index(priv->ieee, priv->channel);
8658		BUG_ON(i == -1);
8659		wrqu->freq.e = 1;
8660
8661		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8662		case LIBIPW_52GHZ_BAND:
8663			wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8664			break;
8665
8666		case LIBIPW_24GHZ_BAND:
8667			wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8668			break;
8669
8670		default:
8671			BUG();
8672		}
8673	} else
8674		wrqu->freq.m = 0;
8675
8676	mutex_unlock(&priv->mutex);
8677	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8678	return 0;
8679}
8680
8681static int ipw_wx_set_mode(struct net_device *dev,
8682			   struct iw_request_info *info,
8683			   union iwreq_data *wrqu, char *extra)
8684{
8685	struct ipw_priv *priv = libipw_priv(dev);
8686	int err = 0;
8687
8688	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8689
8690	switch (wrqu->mode) {
8691#ifdef CONFIG_IPW2200_MONITOR
8692	case IW_MODE_MONITOR:
8693#endif
8694	case IW_MODE_ADHOC:
8695	case IW_MODE_INFRA:
8696		break;
8697	case IW_MODE_AUTO:
8698		wrqu->mode = IW_MODE_INFRA;
8699		break;
8700	default:
8701		return -EINVAL;
8702	}
8703	if (wrqu->mode == priv->ieee->iw_mode)
8704		return 0;
8705
8706	mutex_lock(&priv->mutex);
8707
8708	ipw_sw_reset(priv, 0);
8709
8710#ifdef CONFIG_IPW2200_MONITOR
8711	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8712		priv->net_dev->type = ARPHRD_ETHER;
8713
8714	if (wrqu->mode == IW_MODE_MONITOR)
8715#ifdef CONFIG_IPW2200_RADIOTAP
8716		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8717#else
8718		priv->net_dev->type = ARPHRD_IEEE80211;
8719#endif
8720#endif				/* CONFIG_IPW2200_MONITOR */
8721
8722	/* Free the existing firmware and reset the fw_loaded
8723	 * flag so ipw_load() will bring in the new firmware */
8724	free_firmware();
8725
8726	priv->ieee->iw_mode = wrqu->mode;
8727
8728	schedule_work(&priv->adapter_restart);
8729	mutex_unlock(&priv->mutex);
8730	return err;
8731}
8732
8733static int ipw_wx_get_mode(struct net_device *dev,
8734			   struct iw_request_info *info,
8735			   union iwreq_data *wrqu, char *extra)
8736{
8737	struct ipw_priv *priv = libipw_priv(dev);
8738	mutex_lock(&priv->mutex);
8739	wrqu->mode = priv->ieee->iw_mode;
8740	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8741	mutex_unlock(&priv->mutex);
8742	return 0;
8743}
8744
8745/* Values are in microsecond */
8746static const s32 timeout_duration[] = {
8747	350000,
8748	250000,
8749	75000,
8750	37000,
8751	25000,
8752};
8753
8754static const s32 period_duration[] = {
8755	400000,
8756	700000,
8757	1000000,
8758	1000000,
8759	1000000
8760};
8761
8762static int ipw_wx_get_range(struct net_device *dev,
8763			    struct iw_request_info *info,
8764			    union iwreq_data *wrqu, char *extra)
8765{
8766	struct ipw_priv *priv = libipw_priv(dev);
8767	struct iw_range *range = (struct iw_range *)extra;
8768	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8769	int i = 0, j;
8770
8771	wrqu->data.length = sizeof(*range);
8772	memset(range, 0, sizeof(*range));
8773
8774	/* 54Mbs == ~27 Mb/s real (802.11g) */
8775	range->throughput = 27 * 1000 * 1000;
8776
8777	range->max_qual.qual = 100;
8778	/* TODO: Find real max RSSI and stick here */
8779	range->max_qual.level = 0;
8780	range->max_qual.noise = 0;
8781	range->max_qual.updated = 7;	/* Updated all three */
8782
8783	range->avg_qual.qual = 70;
8784	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8785	range->avg_qual.level = 0;	/* FIXME to real average level */
8786	range->avg_qual.noise = 0;
8787	range->avg_qual.updated = 7;	/* Updated all three */
8788	mutex_lock(&priv->mutex);
8789	range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8790
8791	for (i = 0; i < range->num_bitrates; i++)
8792		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8793		    500000;
8794
8795	range->max_rts = DEFAULT_RTS_THRESHOLD;
8796	range->min_frag = MIN_FRAG_THRESHOLD;
8797	range->max_frag = MAX_FRAG_THRESHOLD;
8798
8799	range->encoding_size[0] = 5;
8800	range->encoding_size[1] = 13;
8801	range->num_encoding_sizes = 2;
8802	range->max_encoding_tokens = WEP_KEYS;
8803
8804	/* Set the Wireless Extension versions */
8805	range->we_version_compiled = WIRELESS_EXT;
8806	range->we_version_source = 18;
8807
8808	i = 0;
8809	if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8810		for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8811			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8812			    (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8813				continue;
8814
8815			range->freq[i].i = geo->bg[j].channel;
8816			range->freq[i].m = geo->bg[j].freq * 100000;
8817			range->freq[i].e = 1;
8818			i++;
8819		}
8820	}
8821
8822	if (priv->ieee->mode & IEEE_A) {
8823		for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8824			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8825			    (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8826				continue;
8827
8828			range->freq[i].i = geo->a[j].channel;
8829			range->freq[i].m = geo->a[j].freq * 100000;
8830			range->freq[i].e = 1;
8831			i++;
8832		}
8833	}
8834
8835	range->num_channels = i;
8836	range->num_frequency = i;
8837
8838	mutex_unlock(&priv->mutex);
8839
8840	/* Event capability (kernel + driver) */
8841	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8842				IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8843				IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8844				IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8845	range->event_capa[1] = IW_EVENT_CAPA_K_1;
8846
8847	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8848		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8849
8850	range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8851
8852	IPW_DEBUG_WX("GET Range\n");
8853	return 0;
8854}
8855
8856static int ipw_wx_set_wap(struct net_device *dev,
8857			  struct iw_request_info *info,
8858			  union iwreq_data *wrqu, char *extra)
8859{
8860	struct ipw_priv *priv = libipw_priv(dev);
8861
8862	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8863		return -EINVAL;
8864	mutex_lock(&priv->mutex);
8865	if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8866	    is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8867		/* we disable mandatory BSSID association */
8868		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8869		priv->config &= ~CFG_STATIC_BSSID;
8870		IPW_DEBUG_ASSOC("Attempting to associate with new "
8871				"parameters.\n");
8872		ipw_associate(priv);
8873		mutex_unlock(&priv->mutex);
8874		return 0;
8875	}
8876
8877	priv->config |= CFG_STATIC_BSSID;
8878	if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8879		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8880		mutex_unlock(&priv->mutex);
8881		return 0;
8882	}
8883
8884	IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8885		     wrqu->ap_addr.sa_data);
8886
8887	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8888
8889	/* Network configuration changed -- force [re]association */
8890	IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8891	if (!ipw_disassociate(priv))
8892		ipw_associate(priv);
8893
8894	mutex_unlock(&priv->mutex);
8895	return 0;
8896}
8897
8898static int ipw_wx_get_wap(struct net_device *dev,
8899			  struct iw_request_info *info,
8900			  union iwreq_data *wrqu, char *extra)
8901{
8902	struct ipw_priv *priv = libipw_priv(dev);
8903
8904	/* If we are associated, trying to associate, or have a statically
8905	 * configured BSSID then return that; otherwise return ANY */
8906	mutex_lock(&priv->mutex);
8907	if (priv->config & CFG_STATIC_BSSID ||
8908	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8909		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8910		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8911	} else
8912		eth_zero_addr(wrqu->ap_addr.sa_data);
8913
8914	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8915		     wrqu->ap_addr.sa_data);
8916	mutex_unlock(&priv->mutex);
8917	return 0;
8918}
8919
8920static int ipw_wx_set_essid(struct net_device *dev,
8921			    struct iw_request_info *info,
8922			    union iwreq_data *wrqu, char *extra)
8923{
8924	struct ipw_priv *priv = libipw_priv(dev);
8925        int length;
8926
8927        mutex_lock(&priv->mutex);
8928
8929        if (!wrqu->essid.flags)
8930        {
8931                IPW_DEBUG_WX("Setting ESSID to ANY\n");
8932                ipw_disassociate(priv);
8933                priv->config &= ~CFG_STATIC_ESSID;
8934                ipw_associate(priv);
8935                mutex_unlock(&priv->mutex);
8936                return 0;
8937        }
8938
8939	length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8940
8941	priv->config |= CFG_STATIC_ESSID;
8942
8943	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8944	    && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8945		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8946		mutex_unlock(&priv->mutex);
8947		return 0;
8948	}
8949
8950	IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
8951
8952	priv->essid_len = length;
8953	memcpy(priv->essid, extra, priv->essid_len);
8954
8955	/* Network configuration changed -- force [re]association */
8956	IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8957	if (!ipw_disassociate(priv))
8958		ipw_associate(priv);
8959
8960	mutex_unlock(&priv->mutex);
8961	return 0;
8962}
8963
8964static int ipw_wx_get_essid(struct net_device *dev,
8965			    struct iw_request_info *info,
8966			    union iwreq_data *wrqu, char *extra)
8967{
8968	struct ipw_priv *priv = libipw_priv(dev);
8969
8970	/* If we are associated, trying to associate, or have a statically
8971	 * configured ESSID then return that; otherwise return ANY */
8972	mutex_lock(&priv->mutex);
8973	if (priv->config & CFG_STATIC_ESSID ||
8974	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8975		IPW_DEBUG_WX("Getting essid: '%*pE'\n",
8976			     priv->essid_len, priv->essid);
8977		memcpy(extra, priv->essid, priv->essid_len);
8978		wrqu->essid.length = priv->essid_len;
8979		wrqu->essid.flags = 1;	/* active */
8980	} else {
8981		IPW_DEBUG_WX("Getting essid: ANY\n");
8982		wrqu->essid.length = 0;
8983		wrqu->essid.flags = 0;	/* active */
8984	}
8985	mutex_unlock(&priv->mutex);
8986	return 0;
8987}
8988
8989static int ipw_wx_set_nick(struct net_device *dev,
8990			   struct iw_request_info *info,
8991			   union iwreq_data *wrqu, char *extra)
8992{
8993	struct ipw_priv *priv = libipw_priv(dev);
8994
8995	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8996	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8997		return -E2BIG;
8998	mutex_lock(&priv->mutex);
8999	wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9000	memset(priv->nick, 0, sizeof(priv->nick));
9001	memcpy(priv->nick, extra, wrqu->data.length);
9002	IPW_DEBUG_TRACE("<<\n");
9003	mutex_unlock(&priv->mutex);
9004	return 0;
9005
9006}
9007
9008static int ipw_wx_get_nick(struct net_device *dev,
9009			   struct iw_request_info *info,
9010			   union iwreq_data *wrqu, char *extra)
9011{
9012	struct ipw_priv *priv = libipw_priv(dev);
9013	IPW_DEBUG_WX("Getting nick\n");
9014	mutex_lock(&priv->mutex);
9015	wrqu->data.length = strlen(priv->nick);
9016	memcpy(extra, priv->nick, wrqu->data.length);
9017	wrqu->data.flags = 1;	/* active */
9018	mutex_unlock(&priv->mutex);
9019	return 0;
9020}
9021
9022static int ipw_wx_set_sens(struct net_device *dev,
9023			    struct iw_request_info *info,
9024			    union iwreq_data *wrqu, char *extra)
9025{
9026	struct ipw_priv *priv = libipw_priv(dev);
9027	int err = 0;
9028
9029	IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9030	IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9031	mutex_lock(&priv->mutex);
9032
9033	if (wrqu->sens.fixed == 0)
9034	{
9035		priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9036		priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9037		goto out;
9038	}
9039	if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9040	    (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9041		err = -EINVAL;
9042		goto out;
9043	}
9044
9045	priv->roaming_threshold = wrqu->sens.value;
9046	priv->disassociate_threshold = 3*wrqu->sens.value;
9047      out:
9048	mutex_unlock(&priv->mutex);
9049	return err;
9050}
9051
9052static int ipw_wx_get_sens(struct net_device *dev,
9053			    struct iw_request_info *info,
9054			    union iwreq_data *wrqu, char *extra)
9055{
9056	struct ipw_priv *priv = libipw_priv(dev);
9057	mutex_lock(&priv->mutex);
9058	wrqu->sens.fixed = 1;
9059	wrqu->sens.value = priv->roaming_threshold;
9060	mutex_unlock(&priv->mutex);
9061
9062	IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9063		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9064
9065	return 0;
9066}
9067
9068static int ipw_wx_set_rate(struct net_device *dev,
9069			   struct iw_request_info *info,
9070			   union iwreq_data *wrqu, char *extra)
9071{
9072	/* TODO: We should use semaphores or locks for access to priv */
9073	struct ipw_priv *priv = libipw_priv(dev);
9074	u32 target_rate = wrqu->bitrate.value;
9075	u32 fixed, mask;
9076
9077	/* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9078	/* value = X, fixed = 1 means only rate X */
9079	/* value = X, fixed = 0 means all rates lower equal X */
9080
9081	if (target_rate == -1) {
9082		fixed = 0;
9083		mask = LIBIPW_DEFAULT_RATES_MASK;
9084		/* Now we should reassociate */
9085		goto apply;
9086	}
9087
9088	mask = 0;
9089	fixed = wrqu->bitrate.fixed;
9090
9091	if (target_rate == 1000000 || !fixed)
9092		mask |= LIBIPW_CCK_RATE_1MB_MASK;
9093	if (target_rate == 1000000)
9094		goto apply;
9095
9096	if (target_rate == 2000000 || !fixed)
9097		mask |= LIBIPW_CCK_RATE_2MB_MASK;
9098	if (target_rate == 2000000)
9099		goto apply;
9100
9101	if (target_rate == 5500000 || !fixed)
9102		mask |= LIBIPW_CCK_RATE_5MB_MASK;
9103	if (target_rate == 5500000)
9104		goto apply;
9105
9106	if (target_rate == 6000000 || !fixed)
9107		mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9108	if (target_rate == 6000000)
9109		goto apply;
9110
9111	if (target_rate == 9000000 || !fixed)
9112		mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9113	if (target_rate == 9000000)
9114		goto apply;
9115
9116	if (target_rate == 11000000 || !fixed)
9117		mask |= LIBIPW_CCK_RATE_11MB_MASK;
9118	if (target_rate == 11000000)
9119		goto apply;
9120
9121	if (target_rate == 12000000 || !fixed)
9122		mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9123	if (target_rate == 12000000)
9124		goto apply;
9125
9126	if (target_rate == 18000000 || !fixed)
9127		mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9128	if (target_rate == 18000000)
9129		goto apply;
9130
9131	if (target_rate == 24000000 || !fixed)
9132		mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9133	if (target_rate == 24000000)
9134		goto apply;
9135
9136	if (target_rate == 36000000 || !fixed)
9137		mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9138	if (target_rate == 36000000)
9139		goto apply;
9140
9141	if (target_rate == 48000000 || !fixed)
9142		mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9143	if (target_rate == 48000000)
9144		goto apply;
9145
9146	if (target_rate == 54000000 || !fixed)
9147		mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9148	if (target_rate == 54000000)
9149		goto apply;
9150
9151	IPW_DEBUG_WX("invalid rate specified, returning error\n");
9152	return -EINVAL;
9153
9154      apply:
9155	IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9156		     mask, fixed ? "fixed" : "sub-rates");
9157	mutex_lock(&priv->mutex);
9158	if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9159		priv->config &= ~CFG_FIXED_RATE;
9160		ipw_set_fixed_rate(priv, priv->ieee->mode);
9161	} else
9162		priv->config |= CFG_FIXED_RATE;
9163
9164	if (priv->rates_mask == mask) {
9165		IPW_DEBUG_WX("Mask set to current mask.\n");
9166		mutex_unlock(&priv->mutex);
9167		return 0;
9168	}
9169
9170	priv->rates_mask = mask;
9171
9172	/* Network configuration changed -- force [re]association */
9173	IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9174	if (!ipw_disassociate(priv))
9175		ipw_associate(priv);
9176
9177	mutex_unlock(&priv->mutex);
9178	return 0;
9179}
9180
9181static int ipw_wx_get_rate(struct net_device *dev,
9182			   struct iw_request_info *info,
9183			   union iwreq_data *wrqu, char *extra)
9184{
9185	struct ipw_priv *priv = libipw_priv(dev);
9186	mutex_lock(&priv->mutex);
9187	wrqu->bitrate.value = priv->last_rate;
9188	wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9189	mutex_unlock(&priv->mutex);
9190	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9191	return 0;
9192}
9193
9194static int ipw_wx_set_rts(struct net_device *dev,
9195			  struct iw_request_info *info,
9196			  union iwreq_data *wrqu, char *extra)
9197{
9198	struct ipw_priv *priv = libipw_priv(dev);
9199	mutex_lock(&priv->mutex);
9200	if (wrqu->rts.disabled || !wrqu->rts.fixed)
9201		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9202	else {
9203		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9204		    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9205			mutex_unlock(&priv->mutex);
9206			return -EINVAL;
9207		}
9208		priv->rts_threshold = wrqu->rts.value;
9209	}
9210
9211	ipw_send_rts_threshold(priv, priv->rts_threshold);
9212	mutex_unlock(&priv->mutex);
9213	IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9214	return 0;
9215}
9216
9217static int ipw_wx_get_rts(struct net_device *dev,
9218			  struct iw_request_info *info,
9219			  union iwreq_data *wrqu, char *extra)
9220{
9221	struct ipw_priv *priv = libipw_priv(dev);
9222	mutex_lock(&priv->mutex);
9223	wrqu->rts.value = priv->rts_threshold;
9224	wrqu->rts.fixed = 0;	/* no auto select */
9225	wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9226	mutex_unlock(&priv->mutex);
9227	IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9228	return 0;
9229}
9230
9231static int ipw_wx_set_txpow(struct net_device *dev,
9232			    struct iw_request_info *info,
9233			    union iwreq_data *wrqu, char *extra)
9234{
9235	struct ipw_priv *priv = libipw_priv(dev);
9236	int err = 0;
9237
9238	mutex_lock(&priv->mutex);
9239	if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9240		err = -EINPROGRESS;
9241		goto out;
9242	}
9243
9244	if (!wrqu->power.fixed)
9245		wrqu->power.value = IPW_TX_POWER_DEFAULT;
9246
9247	if (wrqu->power.flags != IW_TXPOW_DBM) {
9248		err = -EINVAL;
9249		goto out;
9250	}
9251
9252	if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9253	    (wrqu->power.value < IPW_TX_POWER_MIN)) {
9254		err = -EINVAL;
9255		goto out;
9256	}
9257
9258	priv->tx_power = wrqu->power.value;
9259	err = ipw_set_tx_power(priv);
9260      out:
9261	mutex_unlock(&priv->mutex);
9262	return err;
9263}
9264
9265static int ipw_wx_get_txpow(struct net_device *dev,
9266			    struct iw_request_info *info,
9267			    union iwreq_data *wrqu, char *extra)
9268{
9269	struct ipw_priv *priv = libipw_priv(dev);
9270	mutex_lock(&priv->mutex);
9271	wrqu->power.value = priv->tx_power;
9272	wrqu->power.fixed = 1;
9273	wrqu->power.flags = IW_TXPOW_DBM;
9274	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9275	mutex_unlock(&priv->mutex);
9276
9277	IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9278		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9279
9280	return 0;
9281}
9282
9283static int ipw_wx_set_frag(struct net_device *dev,
9284			   struct iw_request_info *info,
9285			   union iwreq_data *wrqu, char *extra)
9286{
9287	struct ipw_priv *priv = libipw_priv(dev);
9288	mutex_lock(&priv->mutex);
9289	if (wrqu->frag.disabled || !wrqu->frag.fixed)
9290		priv->ieee->fts = DEFAULT_FTS;
9291	else {
9292		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9293		    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9294			mutex_unlock(&priv->mutex);
9295			return -EINVAL;
9296		}
9297
9298		priv->ieee->fts = wrqu->frag.value & ~0x1;
9299	}
9300
9301	ipw_send_frag_threshold(priv, wrqu->frag.value);
9302	mutex_unlock(&priv->mutex);
9303	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9304	return 0;
9305}
9306
9307static int ipw_wx_get_frag(struct net_device *dev,
9308			   struct iw_request_info *info,
9309			   union iwreq_data *wrqu, char *extra)
9310{
9311	struct ipw_priv *priv = libipw_priv(dev);
9312	mutex_lock(&priv->mutex);
9313	wrqu->frag.value = priv->ieee->fts;
9314	wrqu->frag.fixed = 0;	/* no auto select */
9315	wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9316	mutex_unlock(&priv->mutex);
9317	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9318
9319	return 0;
9320}
9321
9322static int ipw_wx_set_retry(struct net_device *dev,
9323			    struct iw_request_info *info,
9324			    union iwreq_data *wrqu, char *extra)
9325{
9326	struct ipw_priv *priv = libipw_priv(dev);
9327
9328	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9329		return -EINVAL;
9330
9331	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9332		return 0;
9333
9334	if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9335		return -EINVAL;
9336
9337	mutex_lock(&priv->mutex);
9338	if (wrqu->retry.flags & IW_RETRY_SHORT)
9339		priv->short_retry_limit = (u8) wrqu->retry.value;
9340	else if (wrqu->retry.flags & IW_RETRY_LONG)
9341		priv->long_retry_limit = (u8) wrqu->retry.value;
9342	else {
9343		priv->short_retry_limit = (u8) wrqu->retry.value;
9344		priv->long_retry_limit = (u8) wrqu->retry.value;
9345	}
9346
9347	ipw_send_retry_limit(priv, priv->short_retry_limit,
9348			     priv->long_retry_limit);
9349	mutex_unlock(&priv->mutex);
9350	IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9351		     priv->short_retry_limit, priv->long_retry_limit);
9352	return 0;
9353}
9354
9355static int ipw_wx_get_retry(struct net_device *dev,
9356			    struct iw_request_info *info,
9357			    union iwreq_data *wrqu, char *extra)
9358{
9359	struct ipw_priv *priv = libipw_priv(dev);
9360
9361	mutex_lock(&priv->mutex);
9362	wrqu->retry.disabled = 0;
9363
9364	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9365		mutex_unlock(&priv->mutex);
9366		return -EINVAL;
9367	}
9368
9369	if (wrqu->retry.flags & IW_RETRY_LONG) {
9370		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9371		wrqu->retry.value = priv->long_retry_limit;
9372	} else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9373		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9374		wrqu->retry.value = priv->short_retry_limit;
9375	} else {
9376		wrqu->retry.flags = IW_RETRY_LIMIT;
9377		wrqu->retry.value = priv->short_retry_limit;
9378	}
9379	mutex_unlock(&priv->mutex);
9380
9381	IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9382
9383	return 0;
9384}
9385
9386static int ipw_wx_set_scan(struct net_device *dev,
9387			   struct iw_request_info *info,
9388			   union iwreq_data *wrqu, char *extra)
9389{
9390	struct ipw_priv *priv = libipw_priv(dev);
9391	struct iw_scan_req *req = (struct iw_scan_req *)extra;
9392	struct delayed_work *work = NULL;
9393
9394	mutex_lock(&priv->mutex);
9395
9396	priv->user_requested_scan = 1;
9397
9398	if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9399		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9400			int len = min((int)req->essid_len,
9401			              (int)sizeof(priv->direct_scan_ssid));
9402			memcpy(priv->direct_scan_ssid, req->essid, len);
9403			priv->direct_scan_ssid_len = len;
9404			work = &priv->request_direct_scan;
9405		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9406			work = &priv->request_passive_scan;
9407		}
9408	} else {
9409		/* Normal active broadcast scan */
9410		work = &priv->request_scan;
9411	}
9412
9413	mutex_unlock(&priv->mutex);
9414
9415	IPW_DEBUG_WX("Start scan\n");
9416
9417	schedule_delayed_work(work, 0);
9418
9419	return 0;
9420}
9421
9422static int ipw_wx_get_scan(struct net_device *dev,
9423			   struct iw_request_info *info,
9424			   union iwreq_data *wrqu, char *extra)
9425{
9426	struct ipw_priv *priv = libipw_priv(dev);
9427	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9428}
9429
9430static int ipw_wx_set_encode(struct net_device *dev,
9431			     struct iw_request_info *info,
9432			     union iwreq_data *wrqu, char *key)
9433{
9434	struct ipw_priv *priv = libipw_priv(dev);
9435	int ret;
9436	u32 cap = priv->capability;
9437
9438	mutex_lock(&priv->mutex);
9439	ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9440
9441	/* In IBSS mode, we need to notify the firmware to update
9442	 * the beacon info after we changed the capability. */
9443	if (cap != priv->capability &&
9444	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
9445	    priv->status & STATUS_ASSOCIATED)
9446		ipw_disassociate(priv);
9447
9448	mutex_unlock(&priv->mutex);
9449	return ret;
9450}
9451
9452static int ipw_wx_get_encode(struct net_device *dev,
9453			     struct iw_request_info *info,
9454			     union iwreq_data *wrqu, char *key)
9455{
9456	struct ipw_priv *priv = libipw_priv(dev);
9457	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9458}
9459
9460static int ipw_wx_set_power(struct net_device *dev,
9461			    struct iw_request_info *info,
9462			    union iwreq_data *wrqu, char *extra)
9463{
9464	struct ipw_priv *priv = libipw_priv(dev);
9465	int err;
9466	mutex_lock(&priv->mutex);
9467	if (wrqu->power.disabled) {
9468		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9469		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9470		if (err) {
9471			IPW_DEBUG_WX("failed setting power mode.\n");
9472			mutex_unlock(&priv->mutex);
9473			return err;
9474		}
9475		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9476		mutex_unlock(&priv->mutex);
9477		return 0;
9478	}
9479
9480	switch (wrqu->power.flags & IW_POWER_MODE) {
9481	case IW_POWER_ON:	/* If not specified */
9482	case IW_POWER_MODE:	/* If set all mask */
9483	case IW_POWER_ALL_R:	/* If explicitly state all */
9484		break;
9485	default:		/* Otherwise we don't support it */
9486		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9487			     wrqu->power.flags);
9488		mutex_unlock(&priv->mutex);
9489		return -EOPNOTSUPP;
9490	}
9491
9492	/* If the user hasn't specified a power management mode yet, default
9493	 * to BATTERY */
9494	if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9495		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9496	else
9497		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9498
9499	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9500	if (err) {
9501		IPW_DEBUG_WX("failed setting power mode.\n");
9502		mutex_unlock(&priv->mutex);
9503		return err;
9504	}
9505
9506	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9507	mutex_unlock(&priv->mutex);
9508	return 0;
9509}
9510
9511static int ipw_wx_get_power(struct net_device *dev,
9512			    struct iw_request_info *info,
9513			    union iwreq_data *wrqu, char *extra)
9514{
9515	struct ipw_priv *priv = libipw_priv(dev);
9516	mutex_lock(&priv->mutex);
9517	if (!(priv->power_mode & IPW_POWER_ENABLED))
9518		wrqu->power.disabled = 1;
9519	else
9520		wrqu->power.disabled = 0;
9521
9522	mutex_unlock(&priv->mutex);
9523	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9524
9525	return 0;
9526}
9527
9528static int ipw_wx_set_powermode(struct net_device *dev,
9529				struct iw_request_info *info,
9530				union iwreq_data *wrqu, char *extra)
9531{
9532	struct ipw_priv *priv = libipw_priv(dev);
9533	int mode = *(int *)extra;
9534	int err;
9535
9536	mutex_lock(&priv->mutex);
9537	if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9538		mode = IPW_POWER_AC;
9539
9540	if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9541		err = ipw_send_power_mode(priv, mode);
9542		if (err) {
9543			IPW_DEBUG_WX("failed setting power mode.\n");
9544			mutex_unlock(&priv->mutex);
9545			return err;
9546		}
9547		priv->power_mode = IPW_POWER_ENABLED | mode;
9548	}
9549	mutex_unlock(&priv->mutex);
9550	return 0;
9551}
9552
9553#define MAX_WX_STRING 80
9554static int ipw_wx_get_powermode(struct net_device *dev,
9555				struct iw_request_info *info,
9556				union iwreq_data *wrqu, char *extra)
9557{
9558	struct ipw_priv *priv = libipw_priv(dev);
9559	int level = IPW_POWER_LEVEL(priv->power_mode);
9560	char *p = extra;
9561
9562	p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9563
9564	switch (level) {
9565	case IPW_POWER_AC:
9566		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9567		break;
9568	case IPW_POWER_BATTERY:
9569		p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9570		break;
9571	default:
9572		p += scnprintf(p, MAX_WX_STRING - (p - extra),
9573			      "(Timeout %dms, Period %dms)",
9574			      timeout_duration[level - 1] / 1000,
9575			      period_duration[level - 1] / 1000);
9576	}
9577
9578	if (!(priv->power_mode & IPW_POWER_ENABLED))
9579		p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9580
9581	wrqu->data.length = p - extra + 1;
9582
9583	return 0;
9584}
9585
9586static int ipw_wx_set_wireless_mode(struct net_device *dev,
9587				    struct iw_request_info *info,
9588				    union iwreq_data *wrqu, char *extra)
9589{
9590	struct ipw_priv *priv = libipw_priv(dev);
9591	int mode = *(int *)extra;
9592	u8 band = 0, modulation = 0;
9593
9594	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9595		IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9596		return -EINVAL;
9597	}
9598	mutex_lock(&priv->mutex);
9599	if (priv->adapter == IPW_2915ABG) {
9600		priv->ieee->abg_true = 1;
9601		if (mode & IEEE_A) {
9602			band |= LIBIPW_52GHZ_BAND;
9603			modulation |= LIBIPW_OFDM_MODULATION;
9604		} else
9605			priv->ieee->abg_true = 0;
9606	} else {
9607		if (mode & IEEE_A) {
9608			IPW_WARNING("Attempt to set 2200BG into "
9609				    "802.11a mode\n");
9610			mutex_unlock(&priv->mutex);
9611			return -EINVAL;
9612		}
9613
9614		priv->ieee->abg_true = 0;
9615	}
9616
9617	if (mode & IEEE_B) {
9618		band |= LIBIPW_24GHZ_BAND;
9619		modulation |= LIBIPW_CCK_MODULATION;
9620	} else
9621		priv->ieee->abg_true = 0;
9622
9623	if (mode & IEEE_G) {
9624		band |= LIBIPW_24GHZ_BAND;
9625		modulation |= LIBIPW_OFDM_MODULATION;
9626	} else
9627		priv->ieee->abg_true = 0;
9628
9629	priv->ieee->mode = mode;
9630	priv->ieee->freq_band = band;
9631	priv->ieee->modulation = modulation;
9632	init_supported_rates(priv, &priv->rates);
9633
9634	/* Network configuration changed -- force [re]association */
9635	IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9636	if (!ipw_disassociate(priv)) {
9637		ipw_send_supported_rates(priv, &priv->rates);
9638		ipw_associate(priv);
9639	}
9640
9641	/* Update the band LEDs */
9642	ipw_led_band_on(priv);
9643
9644	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9645		     mode & IEEE_A ? 'a' : '.',
9646		     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9647	mutex_unlock(&priv->mutex);
9648	return 0;
9649}
9650
9651static int ipw_wx_get_wireless_mode(struct net_device *dev,
9652				    struct iw_request_info *info,
9653				    union iwreq_data *wrqu, char *extra)
9654{
9655	struct ipw_priv *priv = libipw_priv(dev);
9656	mutex_lock(&priv->mutex);
9657	switch (priv->ieee->mode) {
9658	case IEEE_A:
9659		strscpy_pad(extra, "802.11a (1)", MAX_WX_STRING);
9660		break;
9661	case IEEE_B:
9662		strscpy_pad(extra, "802.11b (2)", MAX_WX_STRING);
9663		break;
9664	case IEEE_A | IEEE_B:
9665		strscpy_pad(extra, "802.11ab (3)", MAX_WX_STRING);
9666		break;
9667	case IEEE_G:
9668		strscpy_pad(extra, "802.11g (4)", MAX_WX_STRING);
9669		break;
9670	case IEEE_A | IEEE_G:
9671		strscpy_pad(extra, "802.11ag (5)", MAX_WX_STRING);
9672		break;
9673	case IEEE_B | IEEE_G:
9674		strscpy_pad(extra, "802.11bg (6)", MAX_WX_STRING);
9675		break;
9676	case IEEE_A | IEEE_B | IEEE_G:
9677		strscpy_pad(extra, "802.11abg (7)", MAX_WX_STRING);
9678		break;
9679	default:
9680		strscpy_pad(extra, "unknown", MAX_WX_STRING);
9681		break;
9682	}
9683
9684	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9685
9686	wrqu->data.length = strlen(extra) + 1;
9687	mutex_unlock(&priv->mutex);
9688
9689	return 0;
9690}
9691
9692static int ipw_wx_set_preamble(struct net_device *dev,
9693			       struct iw_request_info *info,
9694			       union iwreq_data *wrqu, char *extra)
9695{
9696	struct ipw_priv *priv = libipw_priv(dev);
9697	int mode = *(int *)extra;
9698	mutex_lock(&priv->mutex);
9699	/* Switching from SHORT -> LONG requires a disassociation */
9700	if (mode == 1) {
9701		if (!(priv->config & CFG_PREAMBLE_LONG)) {
9702			priv->config |= CFG_PREAMBLE_LONG;
9703
9704			/* Network configuration changed -- force [re]association */
9705			IPW_DEBUG_ASSOC
9706			    ("[re]association triggered due to preamble change.\n");
9707			if (!ipw_disassociate(priv))
9708				ipw_associate(priv);
9709		}
9710		goto done;
9711	}
9712
9713	if (mode == 0) {
9714		priv->config &= ~CFG_PREAMBLE_LONG;
9715		goto done;
9716	}
9717	mutex_unlock(&priv->mutex);
9718	return -EINVAL;
9719
9720      done:
9721	mutex_unlock(&priv->mutex);
9722	return 0;
9723}
9724
9725static int ipw_wx_get_preamble(struct net_device *dev,
9726			       struct iw_request_info *info,
9727			       union iwreq_data *wrqu, char *extra)
9728{
9729	struct ipw_priv *priv = libipw_priv(dev);
9730	mutex_lock(&priv->mutex);
9731	if (priv->config & CFG_PREAMBLE_LONG)
9732		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9733	else
9734		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9735	mutex_unlock(&priv->mutex);
9736	return 0;
9737}
9738
9739#ifdef CONFIG_IPW2200_MONITOR
9740static int ipw_wx_set_monitor(struct net_device *dev,
9741			      struct iw_request_info *info,
9742			      union iwreq_data *wrqu, char *extra)
9743{
9744	struct ipw_priv *priv = libipw_priv(dev);
9745	int *parms = (int *)extra;
9746	int enable = (parms[0] > 0);
9747	mutex_lock(&priv->mutex);
9748	IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9749	if (enable) {
9750		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9751#ifdef CONFIG_IPW2200_RADIOTAP
9752			priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9753#else
9754			priv->net_dev->type = ARPHRD_IEEE80211;
9755#endif
9756			schedule_work(&priv->adapter_restart);
9757		}
9758
9759		ipw_set_channel(priv, parms[1]);
9760	} else {
9761		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9762			mutex_unlock(&priv->mutex);
9763			return 0;
9764		}
9765		priv->net_dev->type = ARPHRD_ETHER;
9766		schedule_work(&priv->adapter_restart);
9767	}
9768	mutex_unlock(&priv->mutex);
9769	return 0;
9770}
9771
9772#endif				/* CONFIG_IPW2200_MONITOR */
9773
9774static int ipw_wx_reset(struct net_device *dev,
9775			struct iw_request_info *info,
9776			union iwreq_data *wrqu, char *extra)
9777{
9778	struct ipw_priv *priv = libipw_priv(dev);
9779	IPW_DEBUG_WX("RESET\n");
9780	schedule_work(&priv->adapter_restart);
9781	return 0;
9782}
9783
9784static int ipw_wx_sw_reset(struct net_device *dev,
9785			   struct iw_request_info *info,
9786			   union iwreq_data *wrqu, char *extra)
9787{
9788	struct ipw_priv *priv = libipw_priv(dev);
9789	union iwreq_data wrqu_sec = {
9790		.encoding = {
9791			     .flags = IW_ENCODE_DISABLED,
9792			     },
9793	};
9794	int ret;
9795
9796	IPW_DEBUG_WX("SW_RESET\n");
9797
9798	mutex_lock(&priv->mutex);
9799
9800	ret = ipw_sw_reset(priv, 2);
9801	if (!ret) {
9802		free_firmware();
9803		ipw_adapter_restart(priv);
9804	}
9805
9806	/* The SW reset bit might have been toggled on by the 'disable'
9807	 * module parameter, so take appropriate action */
9808	ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9809
9810	mutex_unlock(&priv->mutex);
9811	libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9812	mutex_lock(&priv->mutex);
9813
9814	if (!(priv->status & STATUS_RF_KILL_MASK)) {
9815		/* Configuration likely changed -- force [re]association */
9816		IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9817				"reset.\n");
9818		if (!ipw_disassociate(priv))
9819			ipw_associate(priv);
9820	}
9821
9822	mutex_unlock(&priv->mutex);
9823
9824	return 0;
9825}
9826
9827/* Rebase the WE IOCTLs to zero for the handler array */
9828static iw_handler ipw_wx_handlers[] = {
9829	IW_HANDLER(SIOCGIWNAME, cfg80211_wext_giwname),
9830	IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9831	IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9832	IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9833	IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9834	IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9835	IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9836	IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9837	IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9838	IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9839	IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9840	IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9841	IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9842	IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9843	IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9844	IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9845	IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9846	IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9847	IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9848	IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9849	IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9850	IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9851	IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9852	IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9853	IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9854	IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9855	IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9856	IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9857	IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9858	IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9859	IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9860	IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9861	IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9862	IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9863	IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9864	IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9865	IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9866	IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9867	IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9868	IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9869	IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9870};
9871
9872enum {
9873	IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9874	IPW_PRIV_GET_POWER,
9875	IPW_PRIV_SET_MODE,
9876	IPW_PRIV_GET_MODE,
9877	IPW_PRIV_SET_PREAMBLE,
9878	IPW_PRIV_GET_PREAMBLE,
9879	IPW_PRIV_RESET,
9880	IPW_PRIV_SW_RESET,
9881#ifdef CONFIG_IPW2200_MONITOR
9882	IPW_PRIV_SET_MONITOR,
9883#endif
9884};
9885
9886static struct iw_priv_args ipw_priv_args[] = {
9887	{
9888	 .cmd = IPW_PRIV_SET_POWER,
9889	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9890	 .name = "set_power"},
9891	{
9892	 .cmd = IPW_PRIV_GET_POWER,
9893	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9894	 .name = "get_power"},
9895	{
9896	 .cmd = IPW_PRIV_SET_MODE,
9897	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9898	 .name = "set_mode"},
9899	{
9900	 .cmd = IPW_PRIV_GET_MODE,
9901	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9902	 .name = "get_mode"},
9903	{
9904	 .cmd = IPW_PRIV_SET_PREAMBLE,
9905	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9906	 .name = "set_preamble"},
9907	{
9908	 .cmd = IPW_PRIV_GET_PREAMBLE,
9909	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9910	 .name = "get_preamble"},
9911	{
9912	 IPW_PRIV_RESET,
9913	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9914	{
9915	 IPW_PRIV_SW_RESET,
9916	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9917#ifdef CONFIG_IPW2200_MONITOR
9918	{
9919	 IPW_PRIV_SET_MONITOR,
9920	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9921#endif				/* CONFIG_IPW2200_MONITOR */
9922};
9923
9924static iw_handler ipw_priv_handler[] = {
9925	ipw_wx_set_powermode,
9926	ipw_wx_get_powermode,
9927	ipw_wx_set_wireless_mode,
9928	ipw_wx_get_wireless_mode,
9929	ipw_wx_set_preamble,
9930	ipw_wx_get_preamble,
9931	ipw_wx_reset,
9932	ipw_wx_sw_reset,
9933#ifdef CONFIG_IPW2200_MONITOR
9934	ipw_wx_set_monitor,
9935#endif
9936};
9937
9938static const struct iw_handler_def ipw_wx_handler_def = {
9939	.standard = ipw_wx_handlers,
9940	.num_standard = ARRAY_SIZE(ipw_wx_handlers),
9941	.num_private = ARRAY_SIZE(ipw_priv_handler),
9942	.num_private_args = ARRAY_SIZE(ipw_priv_args),
9943	.private = ipw_priv_handler,
9944	.private_args = ipw_priv_args,
9945	.get_wireless_stats = ipw_get_wireless_stats,
9946};
9947
9948/*
9949 * Get wireless statistics.
9950 * Called by /proc/net/wireless
9951 * Also called by SIOCGIWSTATS
9952 */
9953static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9954{
9955	struct ipw_priv *priv = libipw_priv(dev);
9956	struct iw_statistics *wstats;
9957
9958	wstats = &priv->wstats;
9959
9960	/* if hw is disabled, then ipw_get_ordinal() can't be called.
9961	 * netdev->get_wireless_stats seems to be called before fw is
9962	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9963	 * and associated; if not associcated, the values are all meaningless
9964	 * anyway, so set them all to NULL and INVALID */
9965	if (!(priv->status & STATUS_ASSOCIATED)) {
9966		wstats->miss.beacon = 0;
9967		wstats->discard.retries = 0;
9968		wstats->qual.qual = 0;
9969		wstats->qual.level = 0;
9970		wstats->qual.noise = 0;
9971		wstats->qual.updated = 7;
9972		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9973		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9974		return wstats;
9975	}
9976
9977	wstats->qual.qual = priv->quality;
9978	wstats->qual.level = priv->exp_avg_rssi;
9979	wstats->qual.noise = priv->exp_avg_noise;
9980	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9981	    IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9982
9983	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9984	wstats->discard.retries = priv->last_tx_failures;
9985	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9986
9987/*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9988	goto fail_get_ordinal;
9989	wstats->discard.retries += tx_retry; */
9990
9991	return wstats;
9992}
9993
9994/* net device stuff */
9995
9996static  void init_sys_config(struct ipw_sys_config *sys_config)
9997{
9998	memset(sys_config, 0, sizeof(struct ipw_sys_config));
9999	sys_config->bt_coexistence = 0;
10000	sys_config->answer_broadcast_ssid_probe = 0;
10001	sys_config->accept_all_data_frames = 0;
10002	sys_config->accept_non_directed_frames = 1;
10003	sys_config->exclude_unicast_unencrypted = 0;
10004	sys_config->disable_unicast_decryption = 1;
10005	sys_config->exclude_multicast_unencrypted = 0;
10006	sys_config->disable_multicast_decryption = 1;
10007	if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10008		antenna = CFG_SYS_ANTENNA_BOTH;
10009	sys_config->antenna_diversity = antenna;
10010	sys_config->pass_crc_to_host = 0;	/* TODO: See if 1 gives us FCS */
10011	sys_config->dot11g_auto_detection = 0;
10012	sys_config->enable_cts_to_self = 0;
10013	sys_config->bt_coexist_collision_thr = 0;
10014	sys_config->pass_noise_stats_to_host = 1;	/* 1 -- fix for 256 */
10015	sys_config->silence_threshold = 0x1e;
10016}
10017
10018static int ipw_net_open(struct net_device *dev)
10019{
10020	IPW_DEBUG_INFO("dev->open\n");
10021	netif_start_queue(dev);
10022	return 0;
10023}
10024
10025static int ipw_net_stop(struct net_device *dev)
10026{
10027	IPW_DEBUG_INFO("dev->close\n");
10028	netif_stop_queue(dev);
10029	return 0;
10030}
10031
10032/*
10033todo:
10034
10035modify to send one tfd per fragment instead of using chunking.  otherwise
10036we need to heavily modify the libipw_skb_to_txb.
10037*/
10038
10039static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10040			     int pri)
10041{
10042	struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10043	    txb->fragments[0]->data;
10044	int i = 0;
10045	struct tfd_frame *tfd;
10046#ifdef CONFIG_IPW2200_QOS
10047	int tx_id = ipw_get_tx_queue_number(priv, pri);
10048	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10049#else
10050	struct clx2_tx_queue *txq = &priv->txq[0];
10051#endif
10052	struct clx2_queue *q = &txq->q;
10053	u8 id, hdr_len, unicast;
10054	int fc;
10055
10056	if (!(priv->status & STATUS_ASSOCIATED))
10057		goto drop;
10058
10059	hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10060	switch (priv->ieee->iw_mode) {
10061	case IW_MODE_ADHOC:
10062		unicast = !is_multicast_ether_addr(hdr->addr1);
10063		id = ipw_find_station(priv, hdr->addr1);
10064		if (id == IPW_INVALID_STATION) {
10065			id = ipw_add_station(priv, hdr->addr1);
10066			if (id == IPW_INVALID_STATION) {
10067				IPW_WARNING("Attempt to send data to "
10068					    "invalid cell: %pM\n",
10069					    hdr->addr1);
10070				goto drop;
10071			}
10072		}
10073		break;
10074
10075	case IW_MODE_INFRA:
10076	default:
10077		unicast = !is_multicast_ether_addr(hdr->addr3);
10078		id = 0;
10079		break;
10080	}
10081
10082	tfd = &txq->bd[q->first_empty];
10083	txq->txb[q->first_empty] = txb;
10084	memset(tfd, 0, sizeof(*tfd));
10085	tfd->u.data.station_number = id;
10086
10087	tfd->control_flags.message_type = TX_FRAME_TYPE;
10088	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10089
10090	tfd->u.data.cmd_id = DINO_CMD_TX;
10091	tfd->u.data.len = cpu_to_le16(txb->payload_size);
10092
10093	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10094		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10095	else
10096		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10097
10098	if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10099		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10100
10101	fc = le16_to_cpu(hdr->frame_ctl);
10102	hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10103
10104	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10105
10106	if (likely(unicast))
10107		tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10108
10109	if (txb->encrypted && !priv->ieee->host_encrypt) {
10110		switch (priv->ieee->sec.level) {
10111		case SEC_LEVEL_3:
10112			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10113			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10114			/* XXX: ACK flag must be set for CCMP even if it
10115			 * is a multicast/broadcast packet, because CCMP
10116			 * group communication encrypted by GTK is
10117			 * actually done by the AP. */
10118			if (!unicast)
10119				tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10120
10121			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10122			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10123			tfd->u.data.key_index = 0;
10124			tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10125			break;
10126		case SEC_LEVEL_2:
10127			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10128			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10129			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10130			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10131			tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10132			break;
10133		case SEC_LEVEL_1:
10134			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10135			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10136			tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10137			if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10138			    40)
10139				tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10140			else
10141				tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10142			break;
10143		case SEC_LEVEL_0:
10144			break;
10145		default:
10146			printk(KERN_ERR "Unknown security level %d\n",
10147			       priv->ieee->sec.level);
10148			break;
10149		}
10150	} else
10151		/* No hardware encryption */
10152		tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10153
10154#ifdef CONFIG_IPW2200_QOS
10155	if (fc & IEEE80211_STYPE_QOS_DATA)
10156		ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10157#endif				/* CONFIG_IPW2200_QOS */
10158
10159	/* payload */
10160	tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10161						 txb->nr_frags));
10162	IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10163		       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10164	for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10165		IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10166			       i, le32_to_cpu(tfd->u.data.num_chunks),
10167			       txb->fragments[i]->len - hdr_len);
10168		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10169			     i, tfd->u.data.num_chunks,
10170			     txb->fragments[i]->len - hdr_len);
10171		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10172			   txb->fragments[i]->len - hdr_len);
10173
10174		tfd->u.data.chunk_ptr[i] =
10175		    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10176					       txb->fragments[i]->data + hdr_len,
10177					       txb->fragments[i]->len - hdr_len,
10178					       DMA_TO_DEVICE));
10179		tfd->u.data.chunk_len[i] =
10180		    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10181	}
10182
10183	if (i != txb->nr_frags) {
10184		struct sk_buff *skb;
10185		u16 remaining_bytes = 0;
10186		int j;
10187
10188		for (j = i; j < txb->nr_frags; j++)
10189			remaining_bytes += txb->fragments[j]->len - hdr_len;
10190
10191		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10192		       remaining_bytes);
10193		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10194		if (skb != NULL) {
10195			tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10196			for (j = i; j < txb->nr_frags; j++) {
10197				int size = txb->fragments[j]->len - hdr_len;
10198
10199				printk(KERN_INFO "Adding frag %d %d...\n",
10200				       j, size);
10201				skb_put_data(skb,
10202					     txb->fragments[j]->data + hdr_len,
10203					     size);
10204			}
10205			dev_kfree_skb_any(txb->fragments[i]);
10206			txb->fragments[i] = skb;
10207			tfd->u.data.chunk_ptr[i] =
10208			    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10209						       skb->data,
10210						       remaining_bytes,
10211						       DMA_TO_DEVICE));
10212
10213			le32_add_cpu(&tfd->u.data.num_chunks, 1);
10214		}
10215	}
10216
10217	/* kick DMA */
10218	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10219	ipw_write32(priv, q->reg_w, q->first_empty);
10220
10221	if (ipw_tx_queue_space(q) < q->high_mark)
10222		netif_stop_queue(priv->net_dev);
10223
10224	return NETDEV_TX_OK;
10225
10226      drop:
10227	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10228	libipw_txb_free(txb);
10229	return NETDEV_TX_OK;
10230}
10231
10232static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10233{
10234	struct ipw_priv *priv = libipw_priv(dev);
10235#ifdef CONFIG_IPW2200_QOS
10236	int tx_id = ipw_get_tx_queue_number(priv, pri);
10237	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10238#else
10239	struct clx2_tx_queue *txq = &priv->txq[0];
10240#endif				/* CONFIG_IPW2200_QOS */
10241
10242	if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10243		return 1;
10244
10245	return 0;
10246}
10247
10248#ifdef CONFIG_IPW2200_PROMISCUOUS
10249static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10250				      struct libipw_txb *txb)
10251{
10252	struct libipw_rx_stats dummystats;
10253	struct ieee80211_hdr *hdr;
10254	u8 n;
10255	u16 filter = priv->prom_priv->filter;
10256	int hdr_only = 0;
10257
10258	if (filter & IPW_PROM_NO_TX)
10259		return;
10260
10261	memset(&dummystats, 0, sizeof(dummystats));
10262
10263	/* Filtering of fragment chains is done against the first fragment */
10264	hdr = (void *)txb->fragments[0]->data;
10265	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10266		if (filter & IPW_PROM_NO_MGMT)
10267			return;
10268		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10269			hdr_only = 1;
10270	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10271		if (filter & IPW_PROM_NO_CTL)
10272			return;
10273		if (filter & IPW_PROM_CTL_HEADER_ONLY)
10274			hdr_only = 1;
10275	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10276		if (filter & IPW_PROM_NO_DATA)
10277			return;
10278		if (filter & IPW_PROM_DATA_HEADER_ONLY)
10279			hdr_only = 1;
10280	}
10281
10282	for(n=0; n<txb->nr_frags; ++n) {
10283		struct sk_buff *src = txb->fragments[n];
10284		struct sk_buff *dst;
10285		struct ieee80211_radiotap_header *rt_hdr;
10286		int len;
10287
10288		if (hdr_only) {
10289			hdr = (void *)src->data;
10290			len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10291		} else
10292			len = src->len;
10293
10294		dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10295		if (!dst)
10296			continue;
10297
10298		rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10299
10300		rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10301		rt_hdr->it_pad = 0;
10302		rt_hdr->it_present = 0; /* after all, it's just an idea */
10303		rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10304
10305		*(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10306			ieee80211chan2mhz(priv->channel));
10307		if (priv->channel > 14) 	/* 802.11a */
10308			*(__le16*)skb_put(dst, sizeof(u16)) =
10309				cpu_to_le16(IEEE80211_CHAN_OFDM |
10310					     IEEE80211_CHAN_5GHZ);
10311		else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10312			*(__le16*)skb_put(dst, sizeof(u16)) =
10313				cpu_to_le16(IEEE80211_CHAN_CCK |
10314					     IEEE80211_CHAN_2GHZ);
10315		else 		/* 802.11g */
10316			*(__le16*)skb_put(dst, sizeof(u16)) =
10317				cpu_to_le16(IEEE80211_CHAN_OFDM |
10318				 IEEE80211_CHAN_2GHZ);
10319
10320		rt_hdr->it_len = cpu_to_le16(dst->len);
10321
10322		skb_copy_from_linear_data(src, skb_put(dst, len), len);
10323
10324		if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10325			dev_kfree_skb_any(dst);
10326	}
10327}
10328#endif
10329
10330static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10331					   struct net_device *dev, int pri)
10332{
10333	struct ipw_priv *priv = libipw_priv(dev);
10334	unsigned long flags;
10335	netdev_tx_t ret;
10336
10337	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10338	spin_lock_irqsave(&priv->lock, flags);
10339
10340#ifdef CONFIG_IPW2200_PROMISCUOUS
10341	if (rtap_iface && netif_running(priv->prom_net_dev))
10342		ipw_handle_promiscuous_tx(priv, txb);
10343#endif
10344
10345	ret = ipw_tx_skb(priv, txb, pri);
10346	if (ret == NETDEV_TX_OK)
10347		__ipw_led_activity_on(priv);
10348	spin_unlock_irqrestore(&priv->lock, flags);
10349
10350	return ret;
10351}
10352
10353static void ipw_net_set_multicast_list(struct net_device *dev)
10354{
10355
10356}
10357
10358static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10359{
10360	struct ipw_priv *priv = libipw_priv(dev);
10361	struct sockaddr *addr = p;
10362
10363	if (!is_valid_ether_addr(addr->sa_data))
10364		return -EADDRNOTAVAIL;
10365	mutex_lock(&priv->mutex);
10366	priv->config |= CFG_CUSTOM_MAC;
10367	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10368	printk(KERN_INFO "%s: Setting MAC to %pM\n",
10369	       priv->net_dev->name, priv->mac_addr);
10370	schedule_work(&priv->adapter_restart);
10371	mutex_unlock(&priv->mutex);
10372	return 0;
10373}
10374
10375static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10376				    struct ethtool_drvinfo *info)
10377{
10378	struct ipw_priv *p = libipw_priv(dev);
10379	char vers[64];
10380	u32 len;
10381
10382	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
10383	strscpy(info->version, DRV_VERSION, sizeof(info->version));
10384
10385	len = sizeof(vers);
10386	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10387
10388	strscpy(info->fw_version, vers, sizeof(info->fw_version));
10389	strscpy(info->bus_info, pci_name(p->pci_dev),
10390		sizeof(info->bus_info));
10391}
10392
10393static u32 ipw_ethtool_get_link(struct net_device *dev)
10394{
10395	struct ipw_priv *priv = libipw_priv(dev);
10396	return (priv->status & STATUS_ASSOCIATED) != 0;
10397}
10398
10399static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10400{
10401	return IPW_EEPROM_IMAGE_SIZE;
10402}
10403
10404static int ipw_ethtool_get_eeprom(struct net_device *dev,
10405				  struct ethtool_eeprom *eeprom, u8 * bytes)
10406{
10407	struct ipw_priv *p = libipw_priv(dev);
10408
10409	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10410		return -EINVAL;
10411	mutex_lock(&p->mutex);
10412	memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10413	mutex_unlock(&p->mutex);
10414	return 0;
10415}
10416
10417static int ipw_ethtool_set_eeprom(struct net_device *dev,
10418				  struct ethtool_eeprom *eeprom, u8 * bytes)
10419{
10420	struct ipw_priv *p = libipw_priv(dev);
10421	int i;
10422
10423	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10424		return -EINVAL;
10425	mutex_lock(&p->mutex);
10426	memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10427	for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10428		ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10429	mutex_unlock(&p->mutex);
10430	return 0;
10431}
10432
10433static const struct ethtool_ops ipw_ethtool_ops = {
10434	.get_link = ipw_ethtool_get_link,
10435	.get_drvinfo = ipw_ethtool_get_drvinfo,
10436	.get_eeprom_len = ipw_ethtool_get_eeprom_len,
10437	.get_eeprom = ipw_ethtool_get_eeprom,
10438	.set_eeprom = ipw_ethtool_set_eeprom,
10439};
10440
10441static irqreturn_t ipw_isr(int irq, void *data)
10442{
10443	struct ipw_priv *priv = data;
10444	u32 inta, inta_mask;
10445
10446	if (!priv)
10447		return IRQ_NONE;
10448
10449	spin_lock(&priv->irq_lock);
10450
10451	if (!(priv->status & STATUS_INT_ENABLED)) {
10452		/* IRQ is disabled */
10453		goto none;
10454	}
10455
10456	inta = ipw_read32(priv, IPW_INTA_RW);
10457	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10458
10459	if (inta == 0xFFFFFFFF) {
10460		/* Hardware disappeared */
10461		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10462		goto none;
10463	}
10464
10465	if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10466		/* Shared interrupt */
10467		goto none;
10468	}
10469
10470	/* tell the device to stop sending interrupts */
10471	__ipw_disable_interrupts(priv);
10472
10473	/* ack current interrupts */
10474	inta &= (IPW_INTA_MASK_ALL & inta_mask);
10475	ipw_write32(priv, IPW_INTA_RW, inta);
10476
10477	/* Cache INTA value for our tasklet */
10478	priv->isr_inta = inta;
10479
10480	tasklet_schedule(&priv->irq_tasklet);
10481
10482	spin_unlock(&priv->irq_lock);
10483
10484	return IRQ_HANDLED;
10485      none:
10486	spin_unlock(&priv->irq_lock);
10487	return IRQ_NONE;
10488}
10489
10490static void ipw_rf_kill(void *adapter)
10491{
10492	struct ipw_priv *priv = adapter;
10493	unsigned long flags;
10494
10495	spin_lock_irqsave(&priv->lock, flags);
10496
10497	if (rf_kill_active(priv)) {
10498		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10499		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10500		goto exit_unlock;
10501	}
10502
10503	/* RF Kill is now disabled, so bring the device back up */
10504
10505	if (!(priv->status & STATUS_RF_KILL_MASK)) {
10506		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10507				  "device\n");
10508
10509		/* we can not do an adapter restart while inside an irq lock */
10510		schedule_work(&priv->adapter_restart);
10511	} else
10512		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10513				  "enabled\n");
10514
10515      exit_unlock:
10516	spin_unlock_irqrestore(&priv->lock, flags);
10517}
10518
10519static void ipw_bg_rf_kill(struct work_struct *work)
10520{
10521	struct ipw_priv *priv =
10522		container_of(work, struct ipw_priv, rf_kill.work);
10523	mutex_lock(&priv->mutex);
10524	ipw_rf_kill(priv);
10525	mutex_unlock(&priv->mutex);
10526}
10527
10528static void ipw_link_up(struct ipw_priv *priv)
10529{
10530	priv->last_seq_num = -1;
10531	priv->last_frag_num = -1;
10532	priv->last_packet_time = 0;
10533
10534	netif_carrier_on(priv->net_dev);
10535
10536	cancel_delayed_work(&priv->request_scan);
10537	cancel_delayed_work(&priv->request_direct_scan);
10538	cancel_delayed_work(&priv->request_passive_scan);
10539	cancel_delayed_work(&priv->scan_event);
10540	ipw_reset_stats(priv);
10541	/* Ensure the rate is updated immediately */
10542	priv->last_rate = ipw_get_current_rate(priv);
10543	ipw_gather_stats(priv);
10544	ipw_led_link_up(priv);
10545	notify_wx_assoc_event(priv);
10546
10547	if (priv->config & CFG_BACKGROUND_SCAN)
10548		schedule_delayed_work(&priv->request_scan, HZ);
10549}
10550
10551static void ipw_bg_link_up(struct work_struct *work)
10552{
10553	struct ipw_priv *priv =
10554		container_of(work, struct ipw_priv, link_up);
10555	mutex_lock(&priv->mutex);
10556	ipw_link_up(priv);
10557	mutex_unlock(&priv->mutex);
10558}
10559
10560static void ipw_link_down(struct ipw_priv *priv)
10561{
10562	ipw_led_link_down(priv);
10563	netif_carrier_off(priv->net_dev);
10564	notify_wx_assoc_event(priv);
10565
10566	/* Cancel any queued work ... */
10567	cancel_delayed_work(&priv->request_scan);
10568	cancel_delayed_work(&priv->request_direct_scan);
10569	cancel_delayed_work(&priv->request_passive_scan);
10570	cancel_delayed_work(&priv->adhoc_check);
10571	cancel_delayed_work(&priv->gather_stats);
10572
10573	ipw_reset_stats(priv);
10574
10575	if (!(priv->status & STATUS_EXIT_PENDING)) {
10576		/* Queue up another scan... */
10577		schedule_delayed_work(&priv->request_scan, 0);
10578	} else
10579		cancel_delayed_work(&priv->scan_event);
10580}
10581
10582static void ipw_bg_link_down(struct work_struct *work)
10583{
10584	struct ipw_priv *priv =
10585		container_of(work, struct ipw_priv, link_down);
10586	mutex_lock(&priv->mutex);
10587	ipw_link_down(priv);
10588	mutex_unlock(&priv->mutex);
10589}
10590
10591static void ipw_setup_deferred_work(struct ipw_priv *priv)
10592{
10593	init_waitqueue_head(&priv->wait_command_queue);
10594	init_waitqueue_head(&priv->wait_state);
10595
10596	INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10597	INIT_WORK(&priv->associate, ipw_bg_associate);
10598	INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10599	INIT_WORK(&priv->system_config, ipw_system_config);
10600	INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10601	INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10602	INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10603	INIT_WORK(&priv->up, ipw_bg_up);
10604	INIT_WORK(&priv->down, ipw_bg_down);
10605	INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10606	INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10607	INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10608	INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10609	INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10610	INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10611	INIT_WORK(&priv->roam, ipw_bg_roam);
10612	INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10613	INIT_WORK(&priv->link_up, ipw_bg_link_up);
10614	INIT_WORK(&priv->link_down, ipw_bg_link_down);
10615	INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10616	INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10617	INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10618	INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10619
10620#ifdef CONFIG_IPW2200_QOS
10621	INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10622#endif				/* CONFIG_IPW2200_QOS */
10623
10624	tasklet_setup(&priv->irq_tasklet, ipw_irq_tasklet);
10625}
10626
10627static void shim__set_security(struct net_device *dev,
10628			       struct libipw_security *sec)
10629{
10630	struct ipw_priv *priv = libipw_priv(dev);
10631	int i;
10632	for (i = 0; i < 4; i++) {
10633		if (sec->flags & (1 << i)) {
10634			priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10635			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10636			if (sec->key_sizes[i] == 0)
10637				priv->ieee->sec.flags &= ~(1 << i);
10638			else {
10639				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10640				       sec->key_sizes[i]);
10641				priv->ieee->sec.flags |= (1 << i);
10642			}
10643			priv->status |= STATUS_SECURITY_UPDATED;
10644		} else if (sec->level != SEC_LEVEL_1)
10645			priv->ieee->sec.flags &= ~(1 << i);
10646	}
10647
10648	if (sec->flags & SEC_ACTIVE_KEY) {
10649		priv->ieee->sec.active_key = sec->active_key;
10650		priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10651		priv->status |= STATUS_SECURITY_UPDATED;
10652	} else
10653		priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10654
10655	if ((sec->flags & SEC_AUTH_MODE) &&
10656	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10657		priv->ieee->sec.auth_mode = sec->auth_mode;
10658		priv->ieee->sec.flags |= SEC_AUTH_MODE;
10659		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10660			priv->capability |= CAP_SHARED_KEY;
10661		else
10662			priv->capability &= ~CAP_SHARED_KEY;
10663		priv->status |= STATUS_SECURITY_UPDATED;
10664	}
10665
10666	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10667		priv->ieee->sec.flags |= SEC_ENABLED;
10668		priv->ieee->sec.enabled = sec->enabled;
10669		priv->status |= STATUS_SECURITY_UPDATED;
10670		if (sec->enabled)
10671			priv->capability |= CAP_PRIVACY_ON;
10672		else
10673			priv->capability &= ~CAP_PRIVACY_ON;
10674	}
10675
10676	if (sec->flags & SEC_ENCRYPT)
10677		priv->ieee->sec.encrypt = sec->encrypt;
10678
10679	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10680		priv->ieee->sec.level = sec->level;
10681		priv->ieee->sec.flags |= SEC_LEVEL;
10682		priv->status |= STATUS_SECURITY_UPDATED;
10683	}
10684
10685	if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10686		ipw_set_hwcrypto_keys(priv);
10687
10688	/* To match current functionality of ipw2100 (which works well w/
10689	 * various supplicants, we don't force a disassociate if the
10690	 * privacy capability changes ... */
10691#if 0
10692	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10693	    (((priv->assoc_request.capability &
10694	       cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10695	     (!(priv->assoc_request.capability &
10696		cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10697		IPW_DEBUG_ASSOC("Disassociating due to capability "
10698				"change.\n");
10699		ipw_disassociate(priv);
10700	}
10701#endif
10702}
10703
10704static int init_supported_rates(struct ipw_priv *priv,
10705				struct ipw_supported_rates *rates)
10706{
10707	/* TODO: Mask out rates based on priv->rates_mask */
10708
10709	memset(rates, 0, sizeof(*rates));
10710	/* configure supported rates */
10711	switch (priv->ieee->freq_band) {
10712	case LIBIPW_52GHZ_BAND:
10713		rates->ieee_mode = IPW_A_MODE;
10714		rates->purpose = IPW_RATE_CAPABILITIES;
10715		ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10716					LIBIPW_OFDM_DEFAULT_RATES_MASK);
10717		break;
10718
10719	default:		/* Mixed or 2.4Ghz */
10720		rates->ieee_mode = IPW_G_MODE;
10721		rates->purpose = IPW_RATE_CAPABILITIES;
10722		ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10723				       LIBIPW_CCK_DEFAULT_RATES_MASK);
10724		if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10725			ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10726						LIBIPW_OFDM_DEFAULT_RATES_MASK);
10727		}
10728		break;
10729	}
10730
10731	return 0;
10732}
10733
10734static int ipw_config(struct ipw_priv *priv)
10735{
10736	/* This is only called from ipw_up, which resets/reloads the firmware
10737	   so, we don't need to first disable the card before we configure
10738	   it */
10739	if (ipw_set_tx_power(priv))
10740		goto error;
10741
10742	/* initialize adapter address */
10743	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10744		goto error;
10745
10746	/* set basic system config settings */
10747	init_sys_config(&priv->sys_config);
10748
10749	/* Support Bluetooth if we have BT h/w on board, and user wants to.
10750	 * Does not support BT priority yet (don't abort or defer our Tx) */
10751	if (bt_coexist) {
10752		unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10753
10754		if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10755			priv->sys_config.bt_coexistence
10756			    |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10757		if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10758			priv->sys_config.bt_coexistence
10759			    |= CFG_BT_COEXISTENCE_OOB;
10760	}
10761
10762#ifdef CONFIG_IPW2200_PROMISCUOUS
10763	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10764		priv->sys_config.accept_all_data_frames = 1;
10765		priv->sys_config.accept_non_directed_frames = 1;
10766		priv->sys_config.accept_all_mgmt_bcpr = 1;
10767		priv->sys_config.accept_all_mgmt_frames = 1;
10768	}
10769#endif
10770
10771	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10772		priv->sys_config.answer_broadcast_ssid_probe = 1;
10773	else
10774		priv->sys_config.answer_broadcast_ssid_probe = 0;
10775
10776	if (ipw_send_system_config(priv))
10777		goto error;
10778
10779	init_supported_rates(priv, &priv->rates);
10780	if (ipw_send_supported_rates(priv, &priv->rates))
10781		goto error;
10782
10783	/* Set request-to-send threshold */
10784	if (priv->rts_threshold) {
10785		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10786			goto error;
10787	}
10788#ifdef CONFIG_IPW2200_QOS
10789	IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10790	ipw_qos_activate(priv, NULL);
10791#endif				/* CONFIG_IPW2200_QOS */
10792
10793	if (ipw_set_random_seed(priv))
10794		goto error;
10795
10796	/* final state transition to the RUN state */
10797	if (ipw_send_host_complete(priv))
10798		goto error;
10799
10800	priv->status |= STATUS_INIT;
10801
10802	ipw_led_init(priv);
10803	ipw_led_radio_on(priv);
10804	priv->notif_missed_beacons = 0;
10805
10806	/* Set hardware WEP key if it is configured. */
10807	if ((priv->capability & CAP_PRIVACY_ON) &&
10808	    (priv->ieee->sec.level == SEC_LEVEL_1) &&
10809	    !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10810		ipw_set_hwcrypto_keys(priv);
10811
10812	return 0;
10813
10814      error:
10815	return -EIO;
10816}
10817
10818/*
10819 * NOTE:
10820 *
10821 * These tables have been tested in conjunction with the
10822 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10823 *
10824 * Altering this values, using it on other hardware, or in geographies
10825 * not intended for resale of the above mentioned Intel adapters has
10826 * not been tested.
10827 *
10828 * Remember to update the table in README.ipw2200 when changing this
10829 * table.
10830 *
10831 */
10832static const struct libipw_geo ipw_geos[] = {
10833	{			/* Restricted */
10834	 "---",
10835	 .bg_channels = 11,
10836	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10837		{2427, 4}, {2432, 5}, {2437, 6},
10838		{2442, 7}, {2447, 8}, {2452, 9},
10839		{2457, 10}, {2462, 11}},
10840	 },
10841
10842	{			/* Custom US/Canada */
10843	 "ZZF",
10844	 .bg_channels = 11,
10845	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10846		{2427, 4}, {2432, 5}, {2437, 6},
10847		{2442, 7}, {2447, 8}, {2452, 9},
10848		{2457, 10}, {2462, 11}},
10849	 .a_channels = 8,
10850	 .a = {{5180, 36},
10851	       {5200, 40},
10852	       {5220, 44},
10853	       {5240, 48},
10854	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10855	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10856	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10857	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10858	 },
10859
10860	{			/* Rest of World */
10861	 "ZZD",
10862	 .bg_channels = 13,
10863	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10864		{2427, 4}, {2432, 5}, {2437, 6},
10865		{2442, 7}, {2447, 8}, {2452, 9},
10866		{2457, 10}, {2462, 11}, {2467, 12},
10867		{2472, 13}},
10868	 },
10869
10870	{			/* Custom USA & Europe & High */
10871	 "ZZA",
10872	 .bg_channels = 11,
10873	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10874		{2427, 4}, {2432, 5}, {2437, 6},
10875		{2442, 7}, {2447, 8}, {2452, 9},
10876		{2457, 10}, {2462, 11}},
10877	 .a_channels = 13,
10878	 .a = {{5180, 36},
10879	       {5200, 40},
10880	       {5220, 44},
10881	       {5240, 48},
10882	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10883	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10884	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10885	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10886	       {5745, 149},
10887	       {5765, 153},
10888	       {5785, 157},
10889	       {5805, 161},
10890	       {5825, 165}},
10891	 },
10892
10893	{			/* Custom NA & Europe */
10894	 "ZZB",
10895	 .bg_channels = 11,
10896	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10897		{2427, 4}, {2432, 5}, {2437, 6},
10898		{2442, 7}, {2447, 8}, {2452, 9},
10899		{2457, 10}, {2462, 11}},
10900	 .a_channels = 13,
10901	 .a = {{5180, 36},
10902	       {5200, 40},
10903	       {5220, 44},
10904	       {5240, 48},
10905	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10906	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10907	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10908	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10909	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10910	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10911	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10912	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10913	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10914	 },
10915
10916	{			/* Custom Japan */
10917	 "ZZC",
10918	 .bg_channels = 11,
10919	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10920		{2427, 4}, {2432, 5}, {2437, 6},
10921		{2442, 7}, {2447, 8}, {2452, 9},
10922		{2457, 10}, {2462, 11}},
10923	 .a_channels = 4,
10924	 .a = {{5170, 34}, {5190, 38},
10925	       {5210, 42}, {5230, 46}},
10926	 },
10927
10928	{			/* Custom */
10929	 "ZZM",
10930	 .bg_channels = 11,
10931	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10932		{2427, 4}, {2432, 5}, {2437, 6},
10933		{2442, 7}, {2447, 8}, {2452, 9},
10934		{2457, 10}, {2462, 11}},
10935	 },
10936
10937	{			/* Europe */
10938	 "ZZE",
10939	 .bg_channels = 13,
10940	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10941		{2427, 4}, {2432, 5}, {2437, 6},
10942		{2442, 7}, {2447, 8}, {2452, 9},
10943		{2457, 10}, {2462, 11}, {2467, 12},
10944		{2472, 13}},
10945	 .a_channels = 19,
10946	 .a = {{5180, 36},
10947	       {5200, 40},
10948	       {5220, 44},
10949	       {5240, 48},
10950	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10951	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10952	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10953	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10954	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
10955	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
10956	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
10957	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
10958	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
10959	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
10960	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
10961	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
10962	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
10963	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
10964	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
10965	 },
10966
10967	{			/* Custom Japan */
10968	 "ZZJ",
10969	 .bg_channels = 14,
10970	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10971		{2427, 4}, {2432, 5}, {2437, 6},
10972		{2442, 7}, {2447, 8}, {2452, 9},
10973		{2457, 10}, {2462, 11}, {2467, 12},
10974		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
10975	 .a_channels = 4,
10976	 .a = {{5170, 34}, {5190, 38},
10977	       {5210, 42}, {5230, 46}},
10978	 },
10979
10980	{			/* Rest of World */
10981	 "ZZR",
10982	 .bg_channels = 14,
10983	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10984		{2427, 4}, {2432, 5}, {2437, 6},
10985		{2442, 7}, {2447, 8}, {2452, 9},
10986		{2457, 10}, {2462, 11}, {2467, 12},
10987		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
10988			     LIBIPW_CH_PASSIVE_ONLY}},
10989	 },
10990
10991	{			/* High Band */
10992	 "ZZH",
10993	 .bg_channels = 13,
10994	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10995		{2427, 4}, {2432, 5}, {2437, 6},
10996		{2442, 7}, {2447, 8}, {2452, 9},
10997		{2457, 10}, {2462, 11},
10998		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
10999		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11000	 .a_channels = 4,
11001	 .a = {{5745, 149}, {5765, 153},
11002	       {5785, 157}, {5805, 161}},
11003	 },
11004
11005	{			/* Custom Europe */
11006	 "ZZG",
11007	 .bg_channels = 13,
11008	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11009		{2427, 4}, {2432, 5}, {2437, 6},
11010		{2442, 7}, {2447, 8}, {2452, 9},
11011		{2457, 10}, {2462, 11},
11012		{2467, 12}, {2472, 13}},
11013	 .a_channels = 4,
11014	 .a = {{5180, 36}, {5200, 40},
11015	       {5220, 44}, {5240, 48}},
11016	 },
11017
11018	{			/* Europe */
11019	 "ZZK",
11020	 .bg_channels = 13,
11021	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11022		{2427, 4}, {2432, 5}, {2437, 6},
11023		{2442, 7}, {2447, 8}, {2452, 9},
11024		{2457, 10}, {2462, 11},
11025		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11026		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11027	 .a_channels = 24,
11028	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11029	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11030	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11031	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11032	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11033	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11034	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11035	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11036	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11037	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11038	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11039	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11040	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11041	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11042	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11043	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11044	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11045	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11046	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11047	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11048	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11049	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11050	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11051	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11052	 },
11053
11054	{			/* Europe */
11055	 "ZZL",
11056	 .bg_channels = 11,
11057	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11058		{2427, 4}, {2432, 5}, {2437, 6},
11059		{2442, 7}, {2447, 8}, {2452, 9},
11060		{2457, 10}, {2462, 11}},
11061	 .a_channels = 13,
11062	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11063	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11064	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11065	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11066	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11067	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11068	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11069	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11070	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11071	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11072	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11073	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11074	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11075	 }
11076};
11077
11078static void ipw_set_geo(struct ipw_priv *priv)
11079{
11080	int j;
11081
11082	for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11083		if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11084			    ipw_geos[j].name, 3))
11085			break;
11086	}
11087
11088	if (j == ARRAY_SIZE(ipw_geos)) {
11089		IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11090			    priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11091			    priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11092			    priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11093		j = 0;
11094	}
11095
11096	libipw_set_geo(priv->ieee, &ipw_geos[j]);
11097}
11098
11099#define MAX_HW_RESTARTS 5
11100static int ipw_up(struct ipw_priv *priv)
11101{
11102	int rc, i;
11103
11104	/* Age scan list entries found before suspend */
11105	if (priv->suspend_time) {
11106		libipw_networks_age(priv->ieee, priv->suspend_time);
11107		priv->suspend_time = 0;
11108	}
11109
11110	if (priv->status & STATUS_EXIT_PENDING)
11111		return -EIO;
11112
11113	if (cmdlog && !priv->cmdlog) {
11114		priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11115				       GFP_KERNEL);
11116		if (priv->cmdlog == NULL) {
11117			IPW_ERROR("Error allocating %d command log entries.\n",
11118				  cmdlog);
11119			return -ENOMEM;
11120		} else {
11121			priv->cmdlog_len = cmdlog;
11122		}
11123	}
11124
11125	for (i = 0; i < MAX_HW_RESTARTS; i++) {
11126		/* Load the microcode, firmware, and eeprom.
11127		 * Also start the clocks. */
11128		rc = ipw_load(priv);
11129		if (rc) {
11130			IPW_ERROR("Unable to load firmware: %d\n", rc);
11131			return rc;
11132		}
11133
11134		ipw_init_ordinals(priv);
11135		if (!(priv->config & CFG_CUSTOM_MAC))
11136			eeprom_parse_mac(priv, priv->mac_addr);
11137		eth_hw_addr_set(priv->net_dev, priv->mac_addr);
11138
11139		ipw_set_geo(priv);
11140
11141		if (priv->status & STATUS_RF_KILL_SW) {
11142			IPW_WARNING("Radio disabled by module parameter.\n");
11143			return 0;
11144		} else if (rf_kill_active(priv)) {
11145			IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11146				    "Kill switch must be turned off for "
11147				    "wireless networking to work.\n");
11148			schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11149			return 0;
11150		}
11151
11152		rc = ipw_config(priv);
11153		if (!rc) {
11154			IPW_DEBUG_INFO("Configured device on count %i\n", i);
11155
11156			/* If configure to try and auto-associate, kick
11157			 * off a scan. */
11158			schedule_delayed_work(&priv->request_scan, 0);
11159
11160			return 0;
11161		}
11162
11163		IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11164		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11165			       i, MAX_HW_RESTARTS);
11166
11167		/* We had an error bringing up the hardware, so take it
11168		 * all the way back down so we can try again */
11169		ipw_down(priv);
11170	}
11171
11172	/* tried to restart and config the device for as long as our
11173	 * patience could withstand */
11174	IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11175
11176	return -EIO;
11177}
11178
11179static void ipw_bg_up(struct work_struct *work)
11180{
11181	struct ipw_priv *priv =
11182		container_of(work, struct ipw_priv, up);
11183	mutex_lock(&priv->mutex);
11184	ipw_up(priv);
11185	mutex_unlock(&priv->mutex);
11186}
11187
11188static void ipw_deinit(struct ipw_priv *priv)
11189{
11190	int i;
11191
11192	if (priv->status & STATUS_SCANNING) {
11193		IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11194		ipw_abort_scan(priv);
11195	}
11196
11197	if (priv->status & STATUS_ASSOCIATED) {
11198		IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11199		ipw_disassociate(priv);
11200	}
11201
11202	ipw_led_shutdown(priv);
11203
11204	/* Wait up to 1s for status to change to not scanning and not
11205	 * associated (disassociation can take a while for a ful 802.11
11206	 * exchange */
11207	for (i = 1000; i && (priv->status &
11208			     (STATUS_DISASSOCIATING |
11209			      STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11210		udelay(10);
11211
11212	if (priv->status & (STATUS_DISASSOCIATING |
11213			    STATUS_ASSOCIATED | STATUS_SCANNING))
11214		IPW_DEBUG_INFO("Still associated or scanning...\n");
11215	else
11216		IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11217
11218	/* Attempt to disable the card */
11219	ipw_send_card_disable(priv, 0);
11220
11221	priv->status &= ~STATUS_INIT;
11222}
11223
11224static void ipw_down(struct ipw_priv *priv)
11225{
11226	int exit_pending = priv->status & STATUS_EXIT_PENDING;
11227
11228	priv->status |= STATUS_EXIT_PENDING;
11229
11230	if (ipw_is_init(priv))
11231		ipw_deinit(priv);
11232
11233	/* Wipe out the EXIT_PENDING status bit if we are not actually
11234	 * exiting the module */
11235	if (!exit_pending)
11236		priv->status &= ~STATUS_EXIT_PENDING;
11237
11238	/* tell the device to stop sending interrupts */
11239	ipw_disable_interrupts(priv);
11240
11241	/* Clear all bits but the RF Kill */
11242	priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11243	netif_carrier_off(priv->net_dev);
11244
11245	ipw_stop_nic(priv);
11246
11247	ipw_led_radio_off(priv);
11248}
11249
11250static void ipw_bg_down(struct work_struct *work)
11251{
11252	struct ipw_priv *priv =
11253		container_of(work, struct ipw_priv, down);
11254	mutex_lock(&priv->mutex);
11255	ipw_down(priv);
11256	mutex_unlock(&priv->mutex);
11257}
11258
11259static int ipw_wdev_init(struct net_device *dev)
11260{
11261	int i, rc = 0;
11262	struct ipw_priv *priv = libipw_priv(dev);
11263	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11264	struct wireless_dev *wdev = &priv->ieee->wdev;
11265
11266	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11267
11268	/* fill-out priv->ieee->bg_band */
11269	if (geo->bg_channels) {
11270		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11271
11272		bg_band->band = NL80211_BAND_2GHZ;
11273		bg_band->n_channels = geo->bg_channels;
11274		bg_band->channels = kcalloc(geo->bg_channels,
11275					    sizeof(struct ieee80211_channel),
11276					    GFP_KERNEL);
11277		if (!bg_band->channels) {
11278			rc = -ENOMEM;
11279			goto out;
11280		}
11281		/* translate geo->bg to bg_band.channels */
11282		for (i = 0; i < geo->bg_channels; i++) {
11283			bg_band->channels[i].band = NL80211_BAND_2GHZ;
11284			bg_band->channels[i].center_freq = geo->bg[i].freq;
11285			bg_band->channels[i].hw_value = geo->bg[i].channel;
11286			bg_band->channels[i].max_power = geo->bg[i].max_power;
11287			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11288				bg_band->channels[i].flags |=
11289					IEEE80211_CHAN_NO_IR;
11290			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11291				bg_band->channels[i].flags |=
11292					IEEE80211_CHAN_NO_IR;
11293			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11294				bg_band->channels[i].flags |=
11295					IEEE80211_CHAN_RADAR;
11296			/* No equivalent for LIBIPW_CH_80211H_RULES,
11297			   LIBIPW_CH_UNIFORM_SPREADING, or
11298			   LIBIPW_CH_B_ONLY... */
11299		}
11300		/* point at bitrate info */
11301		bg_band->bitrates = ipw2200_bg_rates;
11302		bg_band->n_bitrates = ipw2200_num_bg_rates;
11303
11304		wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11305	}
11306
11307	/* fill-out priv->ieee->a_band */
11308	if (geo->a_channels) {
11309		struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11310
11311		a_band->band = NL80211_BAND_5GHZ;
11312		a_band->n_channels = geo->a_channels;
11313		a_band->channels = kcalloc(geo->a_channels,
11314					   sizeof(struct ieee80211_channel),
11315					   GFP_KERNEL);
11316		if (!a_band->channels) {
11317			rc = -ENOMEM;
11318			goto out;
11319		}
11320		/* translate geo->a to a_band.channels */
11321		for (i = 0; i < geo->a_channels; i++) {
11322			a_band->channels[i].band = NL80211_BAND_5GHZ;
11323			a_band->channels[i].center_freq = geo->a[i].freq;
11324			a_band->channels[i].hw_value = geo->a[i].channel;
11325			a_band->channels[i].max_power = geo->a[i].max_power;
11326			if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11327				a_band->channels[i].flags |=
11328					IEEE80211_CHAN_NO_IR;
11329			if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11330				a_band->channels[i].flags |=
11331					IEEE80211_CHAN_NO_IR;
11332			if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11333				a_band->channels[i].flags |=
11334					IEEE80211_CHAN_RADAR;
11335			/* No equivalent for LIBIPW_CH_80211H_RULES,
11336			   LIBIPW_CH_UNIFORM_SPREADING, or
11337			   LIBIPW_CH_B_ONLY... */
11338		}
11339		/* point at bitrate info */
11340		a_band->bitrates = ipw2200_a_rates;
11341		a_band->n_bitrates = ipw2200_num_a_rates;
11342
11343		wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11344	}
11345
11346	wdev->wiphy->cipher_suites = ipw_cipher_suites;
11347	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11348
11349	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11350
11351	/* With that information in place, we can now register the wiphy... */
11352	rc = wiphy_register(wdev->wiphy);
11353	if (rc)
11354		goto out;
11355
11356	return 0;
11357out:
11358	kfree(priv->ieee->a_band.channels);
11359	kfree(priv->ieee->bg_band.channels);
11360	return rc;
11361}
11362
11363/* PCI driver stuff */
11364static const struct pci_device_id card_ids[] = {
11365	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11366	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11367	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11368	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11369	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11370	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11371	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11372	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11373	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11374	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11375	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11376	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11377	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11378	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11379	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11380	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11381	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11382	{PCI_VDEVICE(INTEL, 0x104f), 0},
11383	{PCI_VDEVICE(INTEL, 0x4220), 0},	/* BG */
11384	{PCI_VDEVICE(INTEL, 0x4221), 0},	/* BG */
11385	{PCI_VDEVICE(INTEL, 0x4223), 0},	/* ABG */
11386	{PCI_VDEVICE(INTEL, 0x4224), 0},	/* ABG */
11387
11388	/* required last entry */
11389	{0,}
11390};
11391
11392MODULE_DEVICE_TABLE(pci, card_ids);
11393
11394static struct attribute *ipw_sysfs_entries[] = {
11395	&dev_attr_rf_kill.attr,
11396	&dev_attr_direct_dword.attr,
11397	&dev_attr_indirect_byte.attr,
11398	&dev_attr_indirect_dword.attr,
11399	&dev_attr_mem_gpio_reg.attr,
11400	&dev_attr_command_event_reg.attr,
11401	&dev_attr_nic_type.attr,
11402	&dev_attr_status.attr,
11403	&dev_attr_cfg.attr,
11404	&dev_attr_error.attr,
11405	&dev_attr_event_log.attr,
11406	&dev_attr_cmd_log.attr,
11407	&dev_attr_eeprom_delay.attr,
11408	&dev_attr_ucode_version.attr,
11409	&dev_attr_rtc.attr,
11410	&dev_attr_scan_age.attr,
11411	&dev_attr_led.attr,
11412	&dev_attr_speed_scan.attr,
11413	&dev_attr_net_stats.attr,
11414	&dev_attr_channels.attr,
11415#ifdef CONFIG_IPW2200_PROMISCUOUS
11416	&dev_attr_rtap_iface.attr,
11417	&dev_attr_rtap_filter.attr,
11418#endif
11419	NULL
11420};
11421
11422static const struct attribute_group ipw_attribute_group = {
11423	.name = NULL,		/* put in device directory */
11424	.attrs = ipw_sysfs_entries,
11425};
11426
11427#ifdef CONFIG_IPW2200_PROMISCUOUS
11428static int ipw_prom_open(struct net_device *dev)
11429{
11430	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11431	struct ipw_priv *priv = prom_priv->priv;
11432
11433	IPW_DEBUG_INFO("prom dev->open\n");
11434	netif_carrier_off(dev);
11435
11436	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11437		priv->sys_config.accept_all_data_frames = 1;
11438		priv->sys_config.accept_non_directed_frames = 1;
11439		priv->sys_config.accept_all_mgmt_bcpr = 1;
11440		priv->sys_config.accept_all_mgmt_frames = 1;
11441
11442		ipw_send_system_config(priv);
11443	}
11444
11445	return 0;
11446}
11447
11448static int ipw_prom_stop(struct net_device *dev)
11449{
11450	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11451	struct ipw_priv *priv = prom_priv->priv;
11452
11453	IPW_DEBUG_INFO("prom dev->stop\n");
11454
11455	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11456		priv->sys_config.accept_all_data_frames = 0;
11457		priv->sys_config.accept_non_directed_frames = 0;
11458		priv->sys_config.accept_all_mgmt_bcpr = 0;
11459		priv->sys_config.accept_all_mgmt_frames = 0;
11460
11461		ipw_send_system_config(priv);
11462	}
11463
11464	return 0;
11465}
11466
11467static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11468					    struct net_device *dev)
11469{
11470	IPW_DEBUG_INFO("prom dev->xmit\n");
11471	dev_kfree_skb(skb);
11472	return NETDEV_TX_OK;
11473}
11474
11475static const struct net_device_ops ipw_prom_netdev_ops = {
11476	.ndo_open 		= ipw_prom_open,
11477	.ndo_stop		= ipw_prom_stop,
11478	.ndo_start_xmit		= ipw_prom_hard_start_xmit,
11479	.ndo_set_mac_address 	= eth_mac_addr,
11480	.ndo_validate_addr	= eth_validate_addr,
11481};
11482
11483static int ipw_prom_alloc(struct ipw_priv *priv)
11484{
11485	int rc = 0;
11486
11487	if (priv->prom_net_dev)
11488		return -EPERM;
11489
11490	priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11491	if (priv->prom_net_dev == NULL)
11492		return -ENOMEM;
11493
11494	priv->prom_priv = libipw_priv(priv->prom_net_dev);
11495	priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11496	priv->prom_priv->priv = priv;
11497
11498	strcpy(priv->prom_net_dev->name, "rtap%d");
11499	eth_hw_addr_set(priv->prom_net_dev, priv->mac_addr);
11500
11501	priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11502	priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11503
11504	priv->prom_net_dev->min_mtu = 68;
11505	priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11506
11507	priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11508	SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11509
11510	rc = register_netdev(priv->prom_net_dev);
11511	if (rc) {
11512		free_libipw(priv->prom_net_dev, 1);
11513		priv->prom_net_dev = NULL;
11514		return rc;
11515	}
11516
11517	return 0;
11518}
11519
11520static void ipw_prom_free(struct ipw_priv *priv)
11521{
11522	if (!priv->prom_net_dev)
11523		return;
11524
11525	unregister_netdev(priv->prom_net_dev);
11526	free_libipw(priv->prom_net_dev, 1);
11527
11528	priv->prom_net_dev = NULL;
11529}
11530
11531#endif
11532
11533static const struct net_device_ops ipw_netdev_ops = {
11534	.ndo_open		= ipw_net_open,
11535	.ndo_stop		= ipw_net_stop,
11536	.ndo_set_rx_mode	= ipw_net_set_multicast_list,
11537	.ndo_set_mac_address	= ipw_net_set_mac_address,
11538	.ndo_start_xmit		= libipw_xmit,
11539	.ndo_validate_addr	= eth_validate_addr,
11540};
11541
11542static int ipw_pci_probe(struct pci_dev *pdev,
11543				   const struct pci_device_id *ent)
11544{
11545	int err = 0;
11546	struct net_device *net_dev;
11547	void __iomem *base;
11548	u32 length, val;
11549	struct ipw_priv *priv;
11550	int i;
11551
11552	net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11553	if (net_dev == NULL) {
11554		err = -ENOMEM;
11555		goto out;
11556	}
11557
11558	priv = libipw_priv(net_dev);
11559	priv->ieee = netdev_priv(net_dev);
11560
11561	priv->net_dev = net_dev;
11562	priv->pci_dev = pdev;
11563	ipw_debug_level = debug;
11564	spin_lock_init(&priv->irq_lock);
11565	spin_lock_init(&priv->lock);
11566	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11567		INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11568
11569	mutex_init(&priv->mutex);
11570	if (pci_enable_device(pdev)) {
11571		err = -ENODEV;
11572		goto out_free_libipw;
11573	}
11574
11575	pci_set_master(pdev);
11576
11577	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
11578	if (!err)
11579		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
11580	if (err) {
11581		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11582		goto out_pci_disable_device;
11583	}
11584
11585	pci_set_drvdata(pdev, priv);
11586
11587	err = pci_request_regions(pdev, DRV_NAME);
11588	if (err)
11589		goto out_pci_disable_device;
11590
11591	/* We disable the RETRY_TIMEOUT register (0x41) to keep
11592	 * PCI Tx retries from interfering with C3 CPU state */
11593	pci_read_config_dword(pdev, 0x40, &val);
11594	if ((val & 0x0000ff00) != 0)
11595		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11596
11597	length = pci_resource_len(pdev, 0);
11598	priv->hw_len = length;
11599
11600	base = pci_ioremap_bar(pdev, 0);
11601	if (!base) {
11602		err = -ENODEV;
11603		goto out_pci_release_regions;
11604	}
11605
11606	priv->hw_base = base;
11607	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11608	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11609
11610	ipw_setup_deferred_work(priv);
11611
11612	ipw_sw_reset(priv, 1);
11613
11614	err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11615	if (err) {
11616		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11617		goto out_iounmap;
11618	}
11619
11620	SET_NETDEV_DEV(net_dev, &pdev->dev);
11621
11622	mutex_lock(&priv->mutex);
11623
11624	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11625	priv->ieee->set_security = shim__set_security;
11626	priv->ieee->is_queue_full = ipw_net_is_queue_full;
11627
11628#ifdef CONFIG_IPW2200_QOS
11629	priv->ieee->is_qos_active = ipw_is_qos_active;
11630	priv->ieee->handle_probe_response = ipw_handle_beacon;
11631	priv->ieee->handle_beacon = ipw_handle_probe_response;
11632	priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11633#endif				/* CONFIG_IPW2200_QOS */
11634
11635	priv->ieee->perfect_rssi = -20;
11636	priv->ieee->worst_rssi = -85;
11637
11638	net_dev->netdev_ops = &ipw_netdev_ops;
11639	priv->wireless_data.spy_data = &priv->ieee->spy_data;
11640	net_dev->wireless_data = &priv->wireless_data;
11641	net_dev->wireless_handlers = &ipw_wx_handler_def;
11642	net_dev->ethtool_ops = &ipw_ethtool_ops;
11643
11644	net_dev->min_mtu = 68;
11645	net_dev->max_mtu = LIBIPW_DATA_LEN;
11646
11647	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11648	if (err) {
11649		IPW_ERROR("failed to create sysfs device attributes\n");
11650		mutex_unlock(&priv->mutex);
11651		goto out_release_irq;
11652	}
11653
11654	if (ipw_up(priv)) {
11655		mutex_unlock(&priv->mutex);
11656		err = -EIO;
11657		goto out_remove_sysfs;
11658	}
11659
11660	mutex_unlock(&priv->mutex);
11661
11662	err = ipw_wdev_init(net_dev);
11663	if (err) {
11664		IPW_ERROR("failed to register wireless device\n");
11665		goto out_remove_sysfs;
11666	}
11667
11668	err = register_netdev(net_dev);
11669	if (err) {
11670		IPW_ERROR("failed to register network device\n");
11671		goto out_unregister_wiphy;
11672	}
11673
11674#ifdef CONFIG_IPW2200_PROMISCUOUS
11675	if (rtap_iface) {
11676	        err = ipw_prom_alloc(priv);
11677		if (err) {
11678			IPW_ERROR("Failed to register promiscuous network "
11679				  "device (error %d).\n", err);
11680			unregister_netdev(priv->net_dev);
11681			goto out_unregister_wiphy;
11682		}
11683	}
11684#endif
11685
11686	printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11687	       "channels, %d 802.11a channels)\n",
11688	       priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11689	       priv->ieee->geo.a_channels);
11690
11691	return 0;
11692
11693      out_unregister_wiphy:
11694	wiphy_unregister(priv->ieee->wdev.wiphy);
11695	kfree(priv->ieee->a_band.channels);
11696	kfree(priv->ieee->bg_band.channels);
11697      out_remove_sysfs:
11698	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11699      out_release_irq:
11700	free_irq(pdev->irq, priv);
11701      out_iounmap:
11702	iounmap(priv->hw_base);
11703      out_pci_release_regions:
11704	pci_release_regions(pdev);
11705      out_pci_disable_device:
11706	pci_disable_device(pdev);
11707      out_free_libipw:
11708	free_libipw(priv->net_dev, 0);
11709      out:
11710	return err;
11711}
11712
11713static void ipw_pci_remove(struct pci_dev *pdev)
11714{
11715	struct ipw_priv *priv = pci_get_drvdata(pdev);
11716	struct list_head *p, *q;
11717	int i;
11718
11719	if (!priv)
11720		return;
11721
11722	mutex_lock(&priv->mutex);
11723
11724	priv->status |= STATUS_EXIT_PENDING;
11725	ipw_down(priv);
11726	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11727
11728	mutex_unlock(&priv->mutex);
11729
11730	unregister_netdev(priv->net_dev);
11731
11732	if (priv->rxq) {
11733		ipw_rx_queue_free(priv, priv->rxq);
11734		priv->rxq = NULL;
11735	}
11736	ipw_tx_queue_free(priv);
11737
11738	if (priv->cmdlog) {
11739		kfree(priv->cmdlog);
11740		priv->cmdlog = NULL;
11741	}
11742
11743	/* make sure all works are inactive */
11744	cancel_delayed_work_sync(&priv->adhoc_check);
11745	cancel_work_sync(&priv->associate);
11746	cancel_work_sync(&priv->disassociate);
11747	cancel_work_sync(&priv->system_config);
11748	cancel_work_sync(&priv->rx_replenish);
11749	cancel_work_sync(&priv->adapter_restart);
11750	cancel_delayed_work_sync(&priv->rf_kill);
11751	cancel_work_sync(&priv->up);
11752	cancel_work_sync(&priv->down);
11753	cancel_delayed_work_sync(&priv->request_scan);
11754	cancel_delayed_work_sync(&priv->request_direct_scan);
11755	cancel_delayed_work_sync(&priv->request_passive_scan);
11756	cancel_delayed_work_sync(&priv->scan_event);
11757	cancel_delayed_work_sync(&priv->gather_stats);
11758	cancel_work_sync(&priv->abort_scan);
11759	cancel_work_sync(&priv->roam);
11760	cancel_delayed_work_sync(&priv->scan_check);
11761	cancel_work_sync(&priv->link_up);
11762	cancel_work_sync(&priv->link_down);
11763	cancel_delayed_work_sync(&priv->led_link_on);
11764	cancel_delayed_work_sync(&priv->led_link_off);
11765	cancel_delayed_work_sync(&priv->led_act_off);
11766	cancel_work_sync(&priv->merge_networks);
11767
11768	/* Free MAC hash list for ADHOC */
11769	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11770		list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11771			list_del(p);
11772			kfree(list_entry(p, struct ipw_ibss_seq, list));
11773		}
11774	}
11775
11776	kfree(priv->error);
11777	priv->error = NULL;
11778
11779#ifdef CONFIG_IPW2200_PROMISCUOUS
11780	ipw_prom_free(priv);
11781#endif
11782
11783	free_irq(pdev->irq, priv);
11784	iounmap(priv->hw_base);
11785	pci_release_regions(pdev);
11786	pci_disable_device(pdev);
11787	/* wiphy_unregister needs to be here, before free_libipw */
11788	wiphy_unregister(priv->ieee->wdev.wiphy);
11789	kfree(priv->ieee->a_band.channels);
11790	kfree(priv->ieee->bg_band.channels);
11791	free_libipw(priv->net_dev, 0);
11792	free_firmware();
11793}
11794
11795static int __maybe_unused ipw_pci_suspend(struct device *dev_d)
11796{
11797	struct ipw_priv *priv = dev_get_drvdata(dev_d);
11798	struct net_device *dev = priv->net_dev;
11799
11800	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11801
11802	/* Take down the device; powers it off, etc. */
11803	ipw_down(priv);
11804
11805	/* Remove the PRESENT state of the device */
11806	netif_device_detach(dev);
11807
11808	priv->suspend_at = ktime_get_boottime_seconds();
11809
11810	return 0;
11811}
11812
11813static int __maybe_unused ipw_pci_resume(struct device *dev_d)
11814{
11815	struct pci_dev *pdev = to_pci_dev(dev_d);
11816	struct ipw_priv *priv = pci_get_drvdata(pdev);
11817	struct net_device *dev = priv->net_dev;
11818	u32 val;
11819
11820	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11821
11822	/*
11823	 * Suspend/Resume resets the PCI configuration space, so we have to
11824	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11825	 * from interfering with C3 CPU state. pci_restore_state won't help
11826	 * here since it only restores the first 64 bytes pci config header.
11827	 */
11828	pci_read_config_dword(pdev, 0x40, &val);
11829	if ((val & 0x0000ff00) != 0)
11830		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11831
11832	/* Set the device back into the PRESENT state; this will also wake
11833	 * the queue of needed */
11834	netif_device_attach(dev);
11835
11836	priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11837
11838	/* Bring the device back up */
11839	schedule_work(&priv->up);
11840
11841	return 0;
11842}
11843
11844static void ipw_pci_shutdown(struct pci_dev *pdev)
11845{
11846	struct ipw_priv *priv = pci_get_drvdata(pdev);
11847
11848	/* Take down the device; powers it off, etc. */
11849	ipw_down(priv);
11850
11851	pci_disable_device(pdev);
11852}
11853
11854static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume);
11855
11856/* driver initialization stuff */
11857static struct pci_driver ipw_driver = {
11858	.name = DRV_NAME,
11859	.id_table = card_ids,
11860	.probe = ipw_pci_probe,
11861	.remove = ipw_pci_remove,
11862	.driver.pm = &ipw_pci_pm_ops,
11863	.shutdown = ipw_pci_shutdown,
11864};
11865
11866static int __init ipw_init(void)
11867{
11868	int ret;
11869
11870	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11871	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11872
11873	ret = pci_register_driver(&ipw_driver);
11874	if (ret) {
11875		IPW_ERROR("Unable to initialize PCI module\n");
11876		return ret;
11877	}
11878
11879	ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11880	if (ret) {
11881		IPW_ERROR("Unable to create driver sysfs file\n");
11882		pci_unregister_driver(&ipw_driver);
11883		return ret;
11884	}
11885
11886	return ret;
11887}
11888
11889static void __exit ipw_exit(void)
11890{
11891	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11892	pci_unregister_driver(&ipw_driver);
11893}
11894
11895module_param(disable, int, 0444);
11896MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11897
11898module_param(associate, int, 0444);
11899MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11900
11901module_param(auto_create, int, 0444);
11902MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11903
11904module_param_named(led, led_support, int, 0444);
11905MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11906
11907module_param(debug, int, 0444);
11908MODULE_PARM_DESC(debug, "debug output mask");
11909
11910module_param_named(channel, default_channel, int, 0444);
11911MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11912
11913#ifdef CONFIG_IPW2200_PROMISCUOUS
11914module_param(rtap_iface, int, 0444);
11915MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11916#endif
11917
11918#ifdef CONFIG_IPW2200_QOS
11919module_param(qos_enable, int, 0444);
11920MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11921
11922module_param(qos_burst_enable, int, 0444);
11923MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11924
11925module_param(qos_no_ack_mask, int, 0444);
11926MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11927
11928module_param(burst_duration_CCK, int, 0444);
11929MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11930
11931module_param(burst_duration_OFDM, int, 0444);
11932MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11933#endif				/* CONFIG_IPW2200_QOS */
11934
11935#ifdef CONFIG_IPW2200_MONITOR
11936module_param_named(mode, network_mode, int, 0444);
11937MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11938#else
11939module_param_named(mode, network_mode, int, 0444);
11940MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11941#endif
11942
11943module_param(bt_coexist, int, 0444);
11944MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11945
11946module_param(hwcrypto, int, 0444);
11947MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11948
11949module_param(cmdlog, int, 0444);
11950MODULE_PARM_DESC(cmdlog,
11951		 "allocate a ring buffer for logging firmware commands");
11952
11953module_param(roaming, int, 0444);
11954MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11955
11956module_param(antenna, int, 0444);
11957MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11958
11959module_exit(ipw_exit);
11960module_init(ipw_init);
11961