1/*
2 * Copyright (c) 2010 Broadcom Corporation
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/slab.h>
18#include <linux/delay.h>
19#include <linux/pci.h>
20#include <net/cfg80211.h>
21#include <net/mac80211.h>
22
23#include <brcmu_utils.h>
24#include <aiutils.h>
25#include "types.h"
26#include "main.h"
27#include "dma.h"
28#include "soc.h"
29#include "scb.h"
30#include "ampdu.h"
31#include "debug.h"
32#include "brcms_trace_events.h"
33
34/*
35 * dma register field offset calculation
36 */
37#define DMA64REGOFFS(field)		offsetof(struct dma64regs, field)
38#define DMA64TXREGOFFS(di, field)	(di->d64txregbase + DMA64REGOFFS(field))
39#define DMA64RXREGOFFS(di, field)	(di->d64rxregbase + DMA64REGOFFS(field))
40
41/*
42 * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
43 * a contiguous 8kB physical address.
44 */
45#define D64RINGALIGN_BITS	13
46#define	D64MAXRINGSZ		(1 << D64RINGALIGN_BITS)
47#define	D64RINGALIGN		(1 << D64RINGALIGN_BITS)
48
49#define	D64MAXDD	(D64MAXRINGSZ / sizeof(struct dma64desc))
50
51/* transmit channel control */
52#define	D64_XC_XE		0x00000001	/* transmit enable */
53#define	D64_XC_SE		0x00000002	/* transmit suspend request */
54#define	D64_XC_LE		0x00000004	/* loopback enable */
55#define	D64_XC_FL		0x00000010	/* flush request */
56#define	D64_XC_PD		0x00000800	/* parity check disable */
57#define	D64_XC_AE		0x00030000	/* address extension bits */
58#define	D64_XC_AE_SHIFT		16
59
60/* transmit descriptor table pointer */
61#define	D64_XP_LD_MASK		0x00000fff	/* last valid descriptor */
62
63/* transmit channel status */
64#define	D64_XS0_CD_MASK		0x00001fff	/* current descriptor pointer */
65#define	D64_XS0_XS_MASK		0xf0000000	/* transmit state */
66#define	D64_XS0_XS_SHIFT		28
67#define	D64_XS0_XS_DISABLED	0x00000000	/* disabled */
68#define	D64_XS0_XS_ACTIVE	0x10000000	/* active */
69#define	D64_XS0_XS_IDLE		0x20000000	/* idle wait */
70#define	D64_XS0_XS_STOPPED	0x30000000	/* stopped */
71#define	D64_XS0_XS_SUSP		0x40000000	/* suspend pending */
72
73#define	D64_XS1_AD_MASK		0x00001fff	/* active descriptor */
74#define	D64_XS1_XE_MASK		0xf0000000	/* transmit errors */
75#define	D64_XS1_XE_SHIFT		28
76#define	D64_XS1_XE_NOERR	0x00000000	/* no error */
77#define	D64_XS1_XE_DPE		0x10000000	/* descriptor protocol error */
78#define	D64_XS1_XE_DFU		0x20000000	/* data fifo underrun */
79#define	D64_XS1_XE_DTE		0x30000000	/* data transfer error */
80#define	D64_XS1_XE_DESRE	0x40000000	/* descriptor read error */
81#define	D64_XS1_XE_COREE	0x50000000	/* core error */
82
83/* receive channel control */
84/* receive enable */
85#define	D64_RC_RE		0x00000001
86/* receive frame offset */
87#define	D64_RC_RO_MASK		0x000000fe
88#define	D64_RC_RO_SHIFT		1
89/* direct fifo receive (pio) mode */
90#define	D64_RC_FM		0x00000100
91/* separate rx header descriptor enable */
92#define	D64_RC_SH		0x00000200
93/* overflow continue */
94#define	D64_RC_OC		0x00000400
95/* parity check disable */
96#define	D64_RC_PD		0x00000800
97/* address extension bits */
98#define	D64_RC_AE		0x00030000
99#define	D64_RC_AE_SHIFT		16
100
101/* flags for dma controller */
102/* partity enable */
103#define DMA_CTRL_PEN		(1 << 0)
104/* rx overflow continue */
105#define DMA_CTRL_ROC		(1 << 1)
106/* allow rx scatter to multiple descriptors */
107#define DMA_CTRL_RXMULTI	(1 << 2)
108/* Unframed Rx/Tx data */
109#define DMA_CTRL_UNFRAMED	(1 << 3)
110
111/* receive descriptor table pointer */
112#define	D64_RP_LD_MASK		0x00000fff	/* last valid descriptor */
113
114/* receive channel status */
115#define	D64_RS0_CD_MASK		0x00001fff	/* current descriptor pointer */
116#define	D64_RS0_RS_MASK		0xf0000000	/* receive state */
117#define	D64_RS0_RS_SHIFT		28
118#define	D64_RS0_RS_DISABLED	0x00000000	/* disabled */
119#define	D64_RS0_RS_ACTIVE	0x10000000	/* active */
120#define	D64_RS0_RS_IDLE		0x20000000	/* idle wait */
121#define	D64_RS0_RS_STOPPED	0x30000000	/* stopped */
122#define	D64_RS0_RS_SUSP		0x40000000	/* suspend pending */
123
124#define	D64_RS1_AD_MASK		0x0001ffff	/* active descriptor */
125#define	D64_RS1_RE_MASK		0xf0000000	/* receive errors */
126#define	D64_RS1_RE_SHIFT		28
127#define	D64_RS1_RE_NOERR	0x00000000	/* no error */
128#define	D64_RS1_RE_DPO		0x10000000	/* descriptor protocol error */
129#define	D64_RS1_RE_DFU		0x20000000	/* data fifo overflow */
130#define	D64_RS1_RE_DTE		0x30000000	/* data transfer error */
131#define	D64_RS1_RE_DESRE	0x40000000	/* descriptor read error */
132#define	D64_RS1_RE_COREE	0x50000000	/* core error */
133
134/* fifoaddr */
135#define	D64_FA_OFF_MASK		0xffff	/* offset */
136#define	D64_FA_SEL_MASK		0xf0000	/* select */
137#define	D64_FA_SEL_SHIFT	16
138#define	D64_FA_SEL_XDD		0x00000	/* transmit dma data */
139#define	D64_FA_SEL_XDP		0x10000	/* transmit dma pointers */
140#define	D64_FA_SEL_RDD		0x40000	/* receive dma data */
141#define	D64_FA_SEL_RDP		0x50000	/* receive dma pointers */
142#define	D64_FA_SEL_XFD		0x80000	/* transmit fifo data */
143#define	D64_FA_SEL_XFP		0x90000	/* transmit fifo pointers */
144#define	D64_FA_SEL_RFD		0xc0000	/* receive fifo data */
145#define	D64_FA_SEL_RFP		0xd0000	/* receive fifo pointers */
146#define	D64_FA_SEL_RSD		0xe0000	/* receive frame status data */
147#define	D64_FA_SEL_RSP		0xf0000	/* receive frame status pointers */
148
149/* descriptor control flags 1 */
150#define D64_CTRL_COREFLAGS	0x0ff00000	/* core specific flags */
151#define	D64_CTRL1_EOT		((u32)1 << 28)	/* end of descriptor table */
152#define	D64_CTRL1_IOC		((u32)1 << 29)	/* interrupt on completion */
153#define	D64_CTRL1_EOF		((u32)1 << 30)	/* end of frame */
154#define	D64_CTRL1_SOF		((u32)1 << 31)	/* start of frame */
155
156/* descriptor control flags 2 */
157/* buffer byte count. real data len must <= 16KB */
158#define	D64_CTRL2_BC_MASK	0x00007fff
159/* address extension bits */
160#define	D64_CTRL2_AE		0x00030000
161#define	D64_CTRL2_AE_SHIFT	16
162/* parity bit */
163#define D64_CTRL2_PARITY	0x00040000
164
165/* control flags in the range [27:20] are core-specific and not defined here */
166#define	D64_CTRL_CORE_MASK	0x0ff00000
167
168#define D64_RX_FRM_STS_LEN	0x0000ffff	/* frame length mask */
169#define D64_RX_FRM_STS_OVFL	0x00800000	/* RxOverFlow */
170#define D64_RX_FRM_STS_DSCRCNT	0x0f000000  /* no. of descriptors used - 1 */
171#define D64_RX_FRM_STS_DATATYPE	0xf0000000	/* core-dependent data type */
172
173/*
174 * packet headroom necessary to accommodate the largest header
175 * in the system, (i.e TXOFF). By doing, we avoid the need to
176 * allocate an extra buffer for the header when bridging to WL.
177 * There is a compile time check in wlc.c which ensure that this
178 * value is at least as big as TXOFF. This value is used in
179 * dma_rxfill().
180 */
181
182#define BCMEXTRAHDROOM 172
183
184#define	MAXNAMEL	8	/* 8 char names */
185
186/* macros to convert between byte offsets and indexes */
187#define	B2I(bytes, type)	((bytes) / sizeof(type))
188#define	I2B(index, type)	((index) * sizeof(type))
189
190#define	PCI32ADDR_HIGH		0xc0000000	/* address[31:30] */
191#define	PCI32ADDR_HIGH_SHIFT	30	/* address[31:30] */
192
193#define	PCI64ADDR_HIGH		0x80000000	/* address[63] */
194#define	PCI64ADDR_HIGH_SHIFT	31	/* address[63] */
195
196/*
197 * DMA Descriptor
198 * Descriptors are only read by the hardware, never written back.
199 */
200struct dma64desc {
201	__le32 ctrl1;	/* misc control bits & bufcount */
202	__le32 ctrl2;	/* buffer count and address extension */
203	__le32 addrlow;	/* memory address of the date buffer, bits 31:0 */
204	__le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
205};
206
207/* dma engine software state */
208struct dma_info {
209	struct dma_pub dma; /* exported structure */
210	char name[MAXNAMEL];	/* callers name for diag msgs */
211
212	struct bcma_device *core;
213	struct device *dmadev;
214
215	/* session information for AMPDU */
216	struct brcms_ampdu_session ampdu_session;
217
218	bool dma64;	/* this dma engine is operating in 64-bit mode */
219	bool addrext;	/* this dma engine supports DmaExtendedAddrChanges */
220
221	/* 64-bit dma tx engine registers */
222	uint d64txregbase;
223	/* 64-bit dma rx engine registers */
224	uint d64rxregbase;
225	/* pointer to dma64 tx descriptor ring */
226	struct dma64desc *txd64;
227	/* pointer to dma64 rx descriptor ring */
228	struct dma64desc *rxd64;
229
230	u16 dmadesc_align;	/* alignment requirement for dma descriptors */
231
232	u16 ntxd;		/* # tx descriptors tunable */
233	u16 txin;		/* index of next descriptor to reclaim */
234	u16 txout;		/* index of next descriptor to post */
235	/* pointer to parallel array of pointers to packets */
236	struct sk_buff **txp;
237	/* Aligned physical address of descriptor ring */
238	dma_addr_t txdpa;
239	/* Original physical address of descriptor ring */
240	dma_addr_t txdpaorig;
241	u16 txdalign;	/* #bytes added to alloc'd mem to align txd */
242	u32 txdalloc;	/* #bytes allocated for the ring */
243	u32 xmtptrbase;	/* When using unaligned descriptors, the ptr register
244			 * is not just an index, it needs all 13 bits to be
245			 * an offset from the addr register.
246			 */
247
248	u16 nrxd;	/* # rx descriptors tunable */
249	u16 rxin;	/* index of next descriptor to reclaim */
250	u16 rxout;	/* index of next descriptor to post */
251	/* pointer to parallel array of pointers to packets */
252	struct sk_buff **rxp;
253	/* Aligned physical address of descriptor ring */
254	dma_addr_t rxdpa;
255	/* Original physical address of descriptor ring */
256	dma_addr_t rxdpaorig;
257	u16 rxdalign;	/* #bytes added to alloc'd mem to align rxd */
258	u32 rxdalloc;	/* #bytes allocated for the ring */
259	u32 rcvptrbase;	/* Base for ptr reg when using unaligned descriptors */
260
261	/* tunables */
262	unsigned int rxbufsize;	/* rx buffer size in bytes, not including
263				 * the extra headroom
264				 */
265	uint rxextrahdrroom;	/* extra rx headroom, reverseved to assist upper
266				 * stack, e.g. some rx pkt buffers will be
267				 * bridged to tx side without byte copying.
268				 * The extra headroom needs to be large enough
269				 * to fit txheader needs. Some dongle driver may
270				 * not need it.
271				 */
272	uint nrxpost;		/* # rx buffers to keep posted */
273	unsigned int rxoffset;	/* rxcontrol offset */
274	/* add to get dma address of descriptor ring, low 32 bits */
275	uint ddoffsetlow;
276	/*   high 32 bits */
277	uint ddoffsethigh;
278	/* add to get dma address of data buffer, low 32 bits */
279	uint dataoffsetlow;
280	/*   high 32 bits */
281	uint dataoffsethigh;
282	/* descriptor base need to be aligned or not */
283	bool aligndesc_4k;
284};
285
286/* Check for odd number of 1's */
287static u32 parity32(__le32 data)
288{
289	/* no swap needed for counting 1's */
290	u32 par_data = *(u32 *)&data;
291
292	par_data ^= par_data >> 16;
293	par_data ^= par_data >> 8;
294	par_data ^= par_data >> 4;
295	par_data ^= par_data >> 2;
296	par_data ^= par_data >> 1;
297
298	return par_data & 1;
299}
300
301static bool dma64_dd_parity(struct dma64desc *dd)
302{
303	return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
304}
305
306/* descriptor bumping functions */
307
308static uint xxd(uint x, uint n)
309{
310	return x & (n - 1); /* faster than %, but n must be power of 2 */
311}
312
313static uint txd(struct dma_info *di, uint x)
314{
315	return xxd(x, di->ntxd);
316}
317
318static uint rxd(struct dma_info *di, uint x)
319{
320	return xxd(x, di->nrxd);
321}
322
323static uint nexttxd(struct dma_info *di, uint i)
324{
325	return txd(di, i + 1);
326}
327
328static uint prevtxd(struct dma_info *di, uint i)
329{
330	return txd(di, i - 1);
331}
332
333static uint nextrxd(struct dma_info *di, uint i)
334{
335	return rxd(di, i + 1);
336}
337
338static uint ntxdactive(struct dma_info *di, uint h, uint t)
339{
340	return txd(di, t-h);
341}
342
343static uint nrxdactive(struct dma_info *di, uint h, uint t)
344{
345	return rxd(di, t-h);
346}
347
348static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
349{
350	uint dmactrlflags;
351
352	if (di == NULL)
353		return 0;
354
355	dmactrlflags = di->dma.dmactrlflags;
356	dmactrlflags &= ~mask;
357	dmactrlflags |= flags;
358
359	/* If trying to enable parity, check if parity is actually supported */
360	if (dmactrlflags & DMA_CTRL_PEN) {
361		u32 control;
362
363		control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
364		bcma_write32(di->core, DMA64TXREGOFFS(di, control),
365		      control | D64_XC_PD);
366		if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
367		    D64_XC_PD)
368			/* We *can* disable it so it is supported,
369			 * restore control register
370			 */
371			bcma_write32(di->core, DMA64TXREGOFFS(di, control),
372				     control);
373		else
374			/* Not supported, don't allow it to be enabled */
375			dmactrlflags &= ~DMA_CTRL_PEN;
376	}
377
378	di->dma.dmactrlflags = dmactrlflags;
379
380	return dmactrlflags;
381}
382
383static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
384{
385	u32 w;
386	bcma_set32(di->core, ctrl_offset, D64_XC_AE);
387	w = bcma_read32(di->core, ctrl_offset);
388	bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
389	return (w & D64_XC_AE) == D64_XC_AE;
390}
391
392/*
393 * return true if this dma engine supports DmaExtendedAddrChanges,
394 * otherwise false
395 */
396static bool _dma_isaddrext(struct dma_info *di)
397{
398	/* DMA64 supports full 32- or 64-bit operation. AE is always valid */
399
400	/* not all tx or rx channel are available */
401	if (di->d64txregbase != 0) {
402		if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
403			brcms_dbg_dma(di->core,
404				      "%s: DMA64 tx doesn't have AE set\n",
405				      di->name);
406		return true;
407	} else if (di->d64rxregbase != 0) {
408		if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
409			brcms_dbg_dma(di->core,
410				      "%s: DMA64 rx doesn't have AE set\n",
411				      di->name);
412		return true;
413	}
414
415	return false;
416}
417
418static bool _dma_descriptor_align(struct dma_info *di)
419{
420	u32 addrl;
421
422	/* Check to see if the descriptors need to be aligned on 4K/8K or not */
423	if (di->d64txregbase != 0) {
424		bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
425		addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
426		if (addrl != 0)
427			return false;
428	} else if (di->d64rxregbase != 0) {
429		bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
430		addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
431		if (addrl != 0)
432			return false;
433	}
434	return true;
435}
436
437/*
438 * Descriptor table must start at the DMA hardware dictated alignment, so
439 * allocated memory must be large enough to support this requirement.
440 */
441static void *dma_alloc_consistent(struct dma_info *di, uint size,
442				  u16 align_bits, uint *alloced,
443				  dma_addr_t *pap)
444{
445	if (align_bits) {
446		u16 align = (1 << align_bits);
447		if (!IS_ALIGNED(PAGE_SIZE, align))
448			size += align;
449		*alloced = size;
450	}
451	return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
452}
453
454static
455u8 dma_align_sizetobits(uint size)
456{
457	u8 bitpos = 0;
458	while (size >>= 1)
459		bitpos++;
460	return bitpos;
461}
462
463/* This function ensures that the DMA descriptor ring will not get allocated
464 * across Page boundary. If the allocation is done across the page boundary
465 * at the first time, then it is freed and the allocation is done at
466 * descriptor ring size aligned location. This will ensure that the ring will
467 * not cross page boundary
468 */
469static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
470			   u16 *alignbits, uint *alloced,
471			   dma_addr_t *descpa)
472{
473	void *va;
474	u32 desc_strtaddr;
475	u32 alignbytes = 1 << *alignbits;
476
477	va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
478
479	if (NULL == va)
480		return NULL;
481
482	desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
483	if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
484							& boundary)) {
485		*alignbits = dma_align_sizetobits(size);
486		dma_free_coherent(di->dmadev, size, va, *descpa);
487		va = dma_alloc_consistent(di, size, *alignbits,
488			alloced, descpa);
489	}
490	return va;
491}
492
493static bool dma64_alloc(struct dma_info *di, uint direction)
494{
495	u16 size;
496	uint ddlen;
497	void *va;
498	uint alloced = 0;
499	u16 align;
500	u16 align_bits;
501
502	ddlen = sizeof(struct dma64desc);
503
504	size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
505	align_bits = di->dmadesc_align;
506	align = (1 << align_bits);
507
508	if (direction == DMA_TX) {
509		va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
510			&alloced, &di->txdpaorig);
511		if (va == NULL) {
512			brcms_dbg_dma(di->core,
513				      "%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
514				      di->name);
515			return false;
516		}
517		align = (1 << align_bits);
518		di->txd64 = (struct dma64desc *)
519					roundup((unsigned long)va, align);
520		di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
521		di->txdpa = di->txdpaorig + di->txdalign;
522		di->txdalloc = alloced;
523	} else {
524		va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
525			&alloced, &di->rxdpaorig);
526		if (va == NULL) {
527			brcms_dbg_dma(di->core,
528				      "%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
529				      di->name);
530			return false;
531		}
532		align = (1 << align_bits);
533		di->rxd64 = (struct dma64desc *)
534					roundup((unsigned long)va, align);
535		di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
536		di->rxdpa = di->rxdpaorig + di->rxdalign;
537		di->rxdalloc = alloced;
538	}
539
540	return true;
541}
542
543static bool _dma_alloc(struct dma_info *di, uint direction)
544{
545	return dma64_alloc(di, direction);
546}
547
548struct dma_pub *dma_attach(char *name, struct brcms_c_info *wlc,
549			   uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
550			   uint rxbufsize, int rxextheadroom,
551			   uint nrxpost, uint rxoffset)
552{
553	struct si_pub *sih = wlc->hw->sih;
554	struct bcma_device *core = wlc->hw->d11core;
555	struct dma_info *di;
556	u8 rev = core->id.rev;
557	uint size;
558	struct si_info *sii = container_of(sih, struct si_info, pub);
559
560	/* allocate private info structure */
561	di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
562	if (di == NULL)
563		return NULL;
564
565	di->dma64 =
566		((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
567
568	/* init dma reg info */
569	di->core = core;
570	di->d64txregbase = txregbase;
571	di->d64rxregbase = rxregbase;
572
573	/*
574	 * Default flags (which can be changed by the driver calling
575	 * dma_ctrlflags before enable): For backwards compatibility
576	 * both Rx Overflow Continue and Parity are DISABLED.
577	 */
578	_dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
579
580	brcms_dbg_dma(di->core, "%s: %s flags 0x%x ntxd %d nrxd %d "
581		      "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
582		      "txregbase %u rxregbase %u\n", name, "DMA64",
583		      di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
584		      rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
585
586	/* make a private copy of our callers name */
587	strscpy(di->name, name, sizeof(di->name));
588
589	di->dmadev = core->dma_dev;
590
591	/* save tunables */
592	di->ntxd = (u16) ntxd;
593	di->nrxd = (u16) nrxd;
594
595	/* the actual dma size doesn't include the extra headroom */
596	di->rxextrahdrroom =
597	    (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
598	if (rxbufsize > BCMEXTRAHDROOM)
599		di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
600	else
601		di->rxbufsize = (u16) rxbufsize;
602
603	di->nrxpost = (u16) nrxpost;
604	di->rxoffset = (u8) rxoffset;
605
606	/*
607	 * figure out the DMA physical address offset for dd and data
608	 *     PCI/PCIE: they map silicon backplace address to zero
609	 *     based memory, need offset
610	 *     Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
611	 *     swapped region for data buffer, not descriptor
612	 */
613	di->ddoffsetlow = 0;
614	di->dataoffsetlow = 0;
615	/* for pci bus, add offset */
616	if (sii->icbus->hosttype == BCMA_HOSTTYPE_PCI) {
617		/* add offset for pcie with DMA64 bus */
618		di->ddoffsetlow = 0;
619		di->ddoffsethigh = SI_PCIE_DMA_H32;
620	}
621	di->dataoffsetlow = di->ddoffsetlow;
622	di->dataoffsethigh = di->ddoffsethigh;
623
624	/* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
625	if ((core->id.id == BCMA_CORE_SDIO_DEV)
626	    && ((rev > 0) && (rev <= 2)))
627		di->addrext = false;
628	else if ((core->id.id == BCMA_CORE_I2S) &&
629		 ((rev == 0) || (rev == 1)))
630		di->addrext = false;
631	else
632		di->addrext = _dma_isaddrext(di);
633
634	/* does the descriptor need to be aligned and if yes, on 4K/8K or not */
635	di->aligndesc_4k = _dma_descriptor_align(di);
636	if (di->aligndesc_4k) {
637		di->dmadesc_align = D64RINGALIGN_BITS;
638		if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
639			/* for smaller dd table, HW relax alignment reqmnt */
640			di->dmadesc_align = D64RINGALIGN_BITS - 1;
641	} else {
642		di->dmadesc_align = 4;	/* 16 byte alignment */
643	}
644
645	brcms_dbg_dma(di->core, "DMA descriptor align_needed %d, align %d\n",
646		      di->aligndesc_4k, di->dmadesc_align);
647
648	/* allocate tx packet pointer vector */
649	if (ntxd) {
650		size = ntxd * sizeof(void *);
651		di->txp = kzalloc(size, GFP_ATOMIC);
652		if (di->txp == NULL)
653			goto fail;
654	}
655
656	/* allocate rx packet pointer vector */
657	if (nrxd) {
658		size = nrxd * sizeof(void *);
659		di->rxp = kzalloc(size, GFP_ATOMIC);
660		if (di->rxp == NULL)
661			goto fail;
662	}
663
664	/*
665	 * allocate transmit descriptor ring, only need ntxd descriptors
666	 * but it must be aligned
667	 */
668	if (ntxd) {
669		if (!_dma_alloc(di, DMA_TX))
670			goto fail;
671	}
672
673	/*
674	 * allocate receive descriptor ring, only need nrxd descriptors
675	 * but it must be aligned
676	 */
677	if (nrxd) {
678		if (!_dma_alloc(di, DMA_RX))
679			goto fail;
680	}
681
682	if ((di->ddoffsetlow != 0) && !di->addrext) {
683		if (di->txdpa > SI_PCI_DMA_SZ) {
684			brcms_dbg_dma(di->core,
685				      "%s: txdpa 0x%x: addrext not supported\n",
686				      di->name, (u32)di->txdpa);
687			goto fail;
688		}
689		if (di->rxdpa > SI_PCI_DMA_SZ) {
690			brcms_dbg_dma(di->core,
691				      "%s: rxdpa 0x%x: addrext not supported\n",
692				      di->name, (u32)di->rxdpa);
693			goto fail;
694		}
695	}
696
697	/* Initialize AMPDU session */
698	brcms_c_ampdu_reset_session(&di->ampdu_session, wlc);
699
700	brcms_dbg_dma(di->core,
701		      "ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
702		      di->ddoffsetlow, di->ddoffsethigh,
703		      di->dataoffsetlow, di->dataoffsethigh,
704		      di->addrext);
705
706	return (struct dma_pub *) di;
707
708 fail:
709	dma_detach((struct dma_pub *)di);
710	return NULL;
711}
712
713static inline void
714dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
715	     dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
716{
717	u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
718
719	/* PCI bus with big(>1G) physical address, use address extension */
720	if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
721		ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
722		ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
723		ddring[outidx].ctrl1 = cpu_to_le32(*flags);
724		ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
725	} else {
726		/* address extension for 32-bit PCI */
727		u32 ae;
728
729		ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
730		pa &= ~PCI32ADDR_HIGH;
731
732		ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
733		ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
734		ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
735		ddring[outidx].ctrl1 = cpu_to_le32(*flags);
736		ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
737	}
738	if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
739		if (dma64_dd_parity(&ddring[outidx]))
740			ddring[outidx].ctrl2 =
741			     cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
742	}
743}
744
745/* !! may be called with core in reset */
746void dma_detach(struct dma_pub *pub)
747{
748	struct dma_info *di = container_of(pub, struct dma_info, dma);
749
750	brcms_dbg_dma(di->core, "%s:\n", di->name);
751
752	/* free dma descriptor rings */
753	if (di->txd64)
754		dma_free_coherent(di->dmadev, di->txdalloc,
755				  ((s8 *)di->txd64 - di->txdalign),
756				  (di->txdpaorig));
757	if (di->rxd64)
758		dma_free_coherent(di->dmadev, di->rxdalloc,
759				  ((s8 *)di->rxd64 - di->rxdalign),
760				  (di->rxdpaorig));
761
762	/* free packet pointer vectors */
763	kfree(di->txp);
764	kfree(di->rxp);
765
766	/* free our private info structure */
767	kfree(di);
768
769}
770
771/* initialize descriptor table base address */
772static void
773_dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
774{
775	if (!di->aligndesc_4k) {
776		if (direction == DMA_TX)
777			di->xmtptrbase = pa;
778		else
779			di->rcvptrbase = pa;
780	}
781
782	if ((di->ddoffsetlow == 0)
783	    || !(pa & PCI32ADDR_HIGH)) {
784		if (direction == DMA_TX) {
785			bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
786				     pa + di->ddoffsetlow);
787			bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
788				     di->ddoffsethigh);
789		} else {
790			bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
791				     pa + di->ddoffsetlow);
792			bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
793				     di->ddoffsethigh);
794		}
795	} else {
796		/* DMA64 32bits address extension */
797		u32 ae;
798
799		/* shift the high bit(s) from pa to ae */
800		ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
801		pa &= ~PCI32ADDR_HIGH;
802
803		if (direction == DMA_TX) {
804			bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
805				     pa + di->ddoffsetlow);
806			bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
807				     di->ddoffsethigh);
808			bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
809				       D64_XC_AE, (ae << D64_XC_AE_SHIFT));
810		} else {
811			bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
812				     pa + di->ddoffsetlow);
813			bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
814				     di->ddoffsethigh);
815			bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
816				       D64_RC_AE, (ae << D64_RC_AE_SHIFT));
817		}
818	}
819}
820
821static void _dma_rxenable(struct dma_info *di)
822{
823	uint dmactrlflags = di->dma.dmactrlflags;
824	u32 control;
825
826	brcms_dbg_dma(di->core, "%s:\n", di->name);
827
828	control = D64_RC_RE | (bcma_read32(di->core,
829					   DMA64RXREGOFFS(di, control)) &
830			       D64_RC_AE);
831
832	if ((dmactrlflags & DMA_CTRL_PEN) == 0)
833		control |= D64_RC_PD;
834
835	if (dmactrlflags & DMA_CTRL_ROC)
836		control |= D64_RC_OC;
837
838	bcma_write32(di->core, DMA64RXREGOFFS(di, control),
839		((di->rxoffset << D64_RC_RO_SHIFT) | control));
840}
841
842void dma_rxinit(struct dma_pub *pub)
843{
844	struct dma_info *di = container_of(pub, struct dma_info, dma);
845
846	brcms_dbg_dma(di->core, "%s:\n", di->name);
847
848	if (di->nrxd == 0)
849		return;
850
851	di->rxin = di->rxout = 0;
852
853	/* clear rx descriptor ring */
854	memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
855
856	/* DMA engine with out alignment requirement requires table to be inited
857	 * before enabling the engine
858	 */
859	if (!di->aligndesc_4k)
860		_dma_ddtable_init(di, DMA_RX, di->rxdpa);
861
862	_dma_rxenable(di);
863
864	if (di->aligndesc_4k)
865		_dma_ddtable_init(di, DMA_RX, di->rxdpa);
866}
867
868static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
869{
870	uint i, curr;
871	struct sk_buff *rxp;
872	dma_addr_t pa;
873
874	i = di->rxin;
875
876	/* return if no packets posted */
877	if (i == di->rxout)
878		return NULL;
879
880	curr =
881	    B2I(((bcma_read32(di->core,
882			      DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
883		 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
884
885	/* ignore curr if forceall */
886	if (!forceall && (i == curr))
887		return NULL;
888
889	/* get the packet pointer that corresponds to the rx descriptor */
890	rxp = di->rxp[i];
891	di->rxp[i] = NULL;
892
893	pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
894
895	/* clear this packet from the descriptor ring */
896	dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
897
898	di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
899	di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
900
901	di->rxin = nextrxd(di, i);
902
903	return rxp;
904}
905
906static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
907{
908	if (di->nrxd == 0)
909		return NULL;
910
911	return dma64_getnextrxp(di, forceall);
912}
913
914/*
915 * !! rx entry routine
916 * returns the number packages in the next frame, or 0 if there are no more
917 *   if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
918 *   supported with pkts chain
919 *   otherwise, it's treated as giant pkt and will be tossed.
920 *   The DMA scattering starts with normal DMA header, followed by first
921 *   buffer data. After it reaches the max size of buffer, the data continues
922 *   in next DMA descriptor buffer WITHOUT DMA header
923 */
924int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
925{
926	struct dma_info *di = container_of(pub, struct dma_info, dma);
927	struct sk_buff_head dma_frames;
928	struct sk_buff *p, *next;
929	uint len;
930	uint pkt_len;
931	int resid = 0;
932	int pktcnt = 1;
933
934	skb_queue_head_init(&dma_frames);
935 next_frame:
936	p = _dma_getnextrxp(di, false);
937	if (p == NULL)
938		return 0;
939
940	len = le16_to_cpu(*(__le16 *) (p->data));
941	brcms_dbg_dma(di->core, "%s: dma_rx len %d\n", di->name, len);
942	dma_spin_for_len(len, p);
943
944	/* set actual length */
945	pkt_len = min((di->rxoffset + len), di->rxbufsize);
946	__skb_trim(p, pkt_len);
947	skb_queue_tail(&dma_frames, p);
948	resid = len - (di->rxbufsize - di->rxoffset);
949
950	/* check for single or multi-buffer rx */
951	if (resid > 0) {
952		while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
953			pkt_len = min_t(uint, resid, di->rxbufsize);
954			__skb_trim(p, pkt_len);
955			skb_queue_tail(&dma_frames, p);
956			resid -= di->rxbufsize;
957			pktcnt++;
958		}
959
960#ifdef DEBUG
961		if (resid > 0) {
962			uint cur;
963			cur =
964			    B2I(((bcma_read32(di->core,
965					      DMA64RXREGOFFS(di, status0)) &
966				  D64_RS0_CD_MASK) - di->rcvptrbase) &
967				D64_RS0_CD_MASK, struct dma64desc);
968			brcms_dbg_dma(di->core,
969				      "rxin %d rxout %d, hw_curr %d\n",
970				      di->rxin, di->rxout, cur);
971		}
972#endif				/* DEBUG */
973
974		if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
975			brcms_dbg_dma(di->core, "%s: bad frame length (%d)\n",
976				      di->name, len);
977			skb_queue_walk_safe(&dma_frames, p, next) {
978				skb_unlink(p, &dma_frames);
979				brcmu_pkt_buf_free_skb(p);
980			}
981			di->dma.rxgiants++;
982			pktcnt = 1;
983			goto next_frame;
984		}
985	}
986
987	skb_queue_splice_tail(&dma_frames, skb_list);
988	return pktcnt;
989}
990
991static bool dma64_rxidle(struct dma_info *di)
992{
993	brcms_dbg_dma(di->core, "%s:\n", di->name);
994
995	if (di->nrxd == 0)
996		return true;
997
998	return ((bcma_read32(di->core,
999			     DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
1000		(bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
1001		 D64_RS0_CD_MASK));
1002}
1003
1004static bool dma64_txidle(struct dma_info *di)
1005{
1006	if (di->ntxd == 0)
1007		return true;
1008
1009	return ((bcma_read32(di->core,
1010			     DMA64TXREGOFFS(di, status0)) & D64_XS0_CD_MASK) ==
1011		(bcma_read32(di->core, DMA64TXREGOFFS(di, ptr)) &
1012		 D64_XS0_CD_MASK));
1013}
1014
1015/*
1016 * post receive buffers
1017 *  Return false if refill failed completely or dma mapping failed. The ring
1018 *  is empty, which will stall the rx dma and user might want to call rxfill
1019 *  again asap. This is unlikely to happen on a memory-rich NIC, but often on
1020 *  memory-constrained dongle.
1021 */
1022bool dma_rxfill(struct dma_pub *pub)
1023{
1024	struct dma_info *di = container_of(pub, struct dma_info, dma);
1025	struct sk_buff *p;
1026	u16 rxin, rxout;
1027	u32 flags = 0;
1028	uint n;
1029	uint i;
1030	dma_addr_t pa;
1031	uint extra_offset = 0;
1032	bool ring_empty;
1033
1034	ring_empty = false;
1035
1036	/*
1037	 * Determine how many receive buffers we're lacking
1038	 * from the full complement, allocate, initialize,
1039	 * and post them, then update the chip rx lastdscr.
1040	 */
1041
1042	rxin = di->rxin;
1043	rxout = di->rxout;
1044
1045	n = di->nrxpost - nrxdactive(di, rxin, rxout);
1046
1047	brcms_dbg_dma(di->core, "%s: post %d\n", di->name, n);
1048
1049	if (di->rxbufsize > BCMEXTRAHDROOM)
1050		extra_offset = di->rxextrahdrroom;
1051
1052	for (i = 0; i < n; i++) {
1053		/*
1054		 * the di->rxbufsize doesn't include the extra headroom,
1055		 * we need to add it to the size to be allocated
1056		 */
1057		p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1058
1059		if (p == NULL) {
1060			brcms_dbg_dma(di->core, "%s: out of rxbufs\n",
1061				      di->name);
1062			if (i == 0 && dma64_rxidle(di)) {
1063				brcms_dbg_dma(di->core, "%s: ring is empty !\n",
1064					      di->name);
1065				ring_empty = true;
1066			}
1067			di->dma.rxnobuf++;
1068			break;
1069		}
1070		/* reserve an extra headroom, if applicable */
1071		if (extra_offset)
1072			skb_pull(p, extra_offset);
1073
1074		/* Do a cached write instead of uncached write since DMA_MAP
1075		 * will flush the cache.
1076		 */
1077		*(u32 *) (p->data) = 0;
1078
1079		pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
1080				    DMA_FROM_DEVICE);
1081		if (dma_mapping_error(di->dmadev, pa)) {
1082			brcmu_pkt_buf_free_skb(p);
1083			return false;
1084		}
1085
1086		/* save the free packet pointer */
1087		di->rxp[rxout] = p;
1088
1089		/* reset flags for each descriptor */
1090		flags = 0;
1091		if (rxout == (di->nrxd - 1))
1092			flags = D64_CTRL1_EOT;
1093
1094		dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1095			     di->rxbufsize);
1096		rxout = nextrxd(di, rxout);
1097	}
1098
1099	di->rxout = rxout;
1100
1101	/* update the chip lastdscr pointer */
1102	bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
1103	      di->rcvptrbase + I2B(rxout, struct dma64desc));
1104
1105	return ring_empty;
1106}
1107
1108void dma_rxreclaim(struct dma_pub *pub)
1109{
1110	struct dma_info *di = container_of(pub, struct dma_info, dma);
1111	struct sk_buff *p;
1112
1113	brcms_dbg_dma(di->core, "%s:\n", di->name);
1114
1115	while ((p = _dma_getnextrxp(di, true)))
1116		brcmu_pkt_buf_free_skb(p);
1117}
1118
1119void dma_counterreset(struct dma_pub *pub)
1120{
1121	/* reset all software counters */
1122	pub->rxgiants = 0;
1123	pub->rxnobuf = 0;
1124	pub->txnobuf = 0;
1125}
1126
1127/* get the address of the var in order to change later */
1128unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1129{
1130	struct dma_info *di = container_of(pub, struct dma_info, dma);
1131
1132	if (!strcmp(name, "&txavail"))
1133		return (unsigned long)&(di->dma.txavail);
1134	return 0;
1135}
1136
1137/* 64-bit DMA functions */
1138
1139void dma_txinit(struct dma_pub *pub)
1140{
1141	struct dma_info *di = container_of(pub, struct dma_info, dma);
1142	u32 control = D64_XC_XE;
1143
1144	brcms_dbg_dma(di->core, "%s:\n", di->name);
1145
1146	if (di->ntxd == 0)
1147		return;
1148
1149	di->txin = di->txout = 0;
1150	di->dma.txavail = di->ntxd - 1;
1151
1152	/* clear tx descriptor ring */
1153	memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1154
1155	/* DMA engine with out alignment requirement requires table to be inited
1156	 * before enabling the engine
1157	 */
1158	if (!di->aligndesc_4k)
1159		_dma_ddtable_init(di, DMA_TX, di->txdpa);
1160
1161	if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1162		control |= D64_XC_PD;
1163	bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
1164
1165	/* DMA engine with alignment requirement requires table to be inited
1166	 * before enabling the engine
1167	 */
1168	if (di->aligndesc_4k)
1169		_dma_ddtable_init(di, DMA_TX, di->txdpa);
1170}
1171
1172void dma_txsuspend(struct dma_pub *pub)
1173{
1174	struct dma_info *di = container_of(pub, struct dma_info, dma);
1175
1176	brcms_dbg_dma(di->core, "%s:\n", di->name);
1177
1178	if (di->ntxd == 0)
1179		return;
1180
1181	bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1182}
1183
1184void dma_txresume(struct dma_pub *pub)
1185{
1186	struct dma_info *di = container_of(pub, struct dma_info, dma);
1187
1188	brcms_dbg_dma(di->core, "%s:\n", di->name);
1189
1190	if (di->ntxd == 0)
1191		return;
1192
1193	bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
1194}
1195
1196bool dma_txsuspended(struct dma_pub *pub)
1197{
1198	struct dma_info *di = container_of(pub, struct dma_info, dma);
1199
1200	return (di->ntxd == 0) ||
1201	       ((bcma_read32(di->core,
1202			     DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
1203		D64_XC_SE);
1204}
1205
1206void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1207{
1208	struct dma_info *di = container_of(pub, struct dma_info, dma);
1209	struct sk_buff *p;
1210
1211	brcms_dbg_dma(di->core, "%s: %s\n",
1212		      di->name,
1213		      range == DMA_RANGE_ALL ? "all" :
1214		      range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1215		      "transferred");
1216
1217	if (di->txin == di->txout)
1218		return;
1219
1220	while ((p = dma_getnexttxp(pub, range))) {
1221		/* For unframed data, we don't have any packets to free */
1222		if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1223			brcmu_pkt_buf_free_skb(p);
1224	}
1225}
1226
1227bool dma_txreset(struct dma_pub *pub)
1228{
1229	struct dma_info *di = container_of(pub, struct dma_info, dma);
1230	u32 status;
1231
1232	if (di->ntxd == 0)
1233		return true;
1234
1235	/* suspend tx DMA first */
1236	bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1237	SPINWAIT(((status =
1238		   (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1239		    D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
1240		  (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
1241		 10000);
1242
1243	bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
1244	SPINWAIT(((status =
1245		   (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1246		    D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
1247
1248	/* wait for the last transaction to complete */
1249	udelay(300);
1250
1251	return status == D64_XS0_XS_DISABLED;
1252}
1253
1254bool dma_rxreset(struct dma_pub *pub)
1255{
1256	struct dma_info *di = container_of(pub, struct dma_info, dma);
1257	u32 status;
1258
1259	if (di->nrxd == 0)
1260		return true;
1261
1262	bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
1263	SPINWAIT(((status =
1264		   (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
1265		    D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
1266
1267	return status == D64_RS0_RS_DISABLED;
1268}
1269
1270static void dma_txenq(struct dma_info *di, struct sk_buff *p)
1271{
1272	unsigned char *data;
1273	uint len;
1274	u16 txout;
1275	u32 flags = 0;
1276	dma_addr_t pa;
1277
1278	txout = di->txout;
1279
1280	if (WARN_ON(nexttxd(di, txout) == di->txin))
1281		return;
1282
1283	/*
1284	 * obtain and initialize transmit descriptor entry.
1285	 */
1286	data = p->data;
1287	len = p->len;
1288
1289	/* get physical address of buffer start */
1290	pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
1291	/* if mapping failed, free skb */
1292	if (dma_mapping_error(di->dmadev, pa)) {
1293		brcmu_pkt_buf_free_skb(p);
1294		return;
1295	}
1296	/* With a DMA segment list, Descriptor table is filled
1297	 * using the segment list instead of looping over
1298	 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
1299	 * is when end of segment list is reached.
1300	 */
1301	flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
1302	if (txout == (di->ntxd - 1))
1303		flags |= D64_CTRL1_EOT;
1304
1305	dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
1306
1307	txout = nexttxd(di, txout);
1308
1309	/* save the packet */
1310	di->txp[prevtxd(di, txout)] = p;
1311
1312	/* bump the tx descriptor index */
1313	di->txout = txout;
1314}
1315
1316static void ampdu_finalize(struct dma_info *di)
1317{
1318	struct brcms_ampdu_session *session = &di->ampdu_session;
1319	struct sk_buff *p;
1320
1321	trace_brcms_ampdu_session(&session->wlc->hw->d11core->dev,
1322				  session->max_ampdu_len,
1323				  session->max_ampdu_frames,
1324				  session->ampdu_len,
1325				  skb_queue_len(&session->skb_list),
1326				  session->dma_len);
1327
1328	if (WARN_ON(skb_queue_empty(&session->skb_list)))
1329		return;
1330
1331	brcms_c_ampdu_finalize(session);
1332
1333	while (!skb_queue_empty(&session->skb_list)) {
1334		p = skb_dequeue(&session->skb_list);
1335		dma_txenq(di, p);
1336	}
1337
1338	bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1339		     di->xmtptrbase + I2B(di->txout, struct dma64desc));
1340	brcms_c_ampdu_reset_session(session, session->wlc);
1341}
1342
1343static void prep_ampdu_frame(struct dma_info *di, struct sk_buff *p)
1344{
1345	struct brcms_ampdu_session *session = &di->ampdu_session;
1346	int ret;
1347
1348	ret = brcms_c_ampdu_add_frame(session, p);
1349	if (ret == -ENOSPC) {
1350		/*
1351		 * AMPDU cannot accomodate this frame. Close out the in-
1352		 * progress AMPDU session and start a new one.
1353		 */
1354		ampdu_finalize(di);
1355		ret = brcms_c_ampdu_add_frame(session, p);
1356	}
1357
1358	WARN_ON(ret);
1359}
1360
1361/* Update count of available tx descriptors based on current DMA state */
1362static void dma_update_txavail(struct dma_info *di)
1363{
1364	/*
1365	 * Available space is number of descriptors less the number of
1366	 * active descriptors and the number of queued AMPDU frames.
1367	 */
1368	di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) -
1369			  skb_queue_len(&di->ampdu_session.skb_list) - 1;
1370}
1371
1372/*
1373 * !! tx entry routine
1374 * WARNING: call must check the return value for error.
1375 *   the error(toss frames) could be fatal and cause many subsequent hard
1376 *   to debug problems
1377 */
1378int dma_txfast(struct brcms_c_info *wlc, struct dma_pub *pub,
1379	       struct sk_buff *p)
1380{
1381	struct dma_info *di = container_of(pub, struct dma_info, dma);
1382	struct brcms_ampdu_session *session = &di->ampdu_session;
1383	struct ieee80211_tx_info *tx_info;
1384	bool is_ampdu;
1385
1386	/* no use to transmit a zero length packet */
1387	if (p->len == 0)
1388		return 0;
1389
1390	/* return nonzero if out of tx descriptors */
1391	if (di->dma.txavail == 0 || nexttxd(di, di->txout) == di->txin)
1392		goto outoftxd;
1393
1394	tx_info = IEEE80211_SKB_CB(p);
1395	is_ampdu = tx_info->flags & IEEE80211_TX_CTL_AMPDU;
1396	if (is_ampdu)
1397		prep_ampdu_frame(di, p);
1398	else
1399		dma_txenq(di, p);
1400
1401	/* tx flow control */
1402	dma_update_txavail(di);
1403
1404	/* kick the chip */
1405	if (is_ampdu) {
1406		/*
1407		 * Start sending data if we've got a full AMPDU, there's
1408		 * no more space in the DMA ring, or the ring isn't
1409		 * currently transmitting.
1410		 */
1411		if (skb_queue_len(&session->skb_list) == session->max_ampdu_frames ||
1412		    di->dma.txavail == 0 || dma64_txidle(di))
1413			ampdu_finalize(di);
1414	} else {
1415		bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1416			     di->xmtptrbase + I2B(di->txout, struct dma64desc));
1417	}
1418
1419	return 0;
1420
1421 outoftxd:
1422	brcms_dbg_dma(di->core, "%s: out of txds !!!\n", di->name);
1423	brcmu_pkt_buf_free_skb(p);
1424	di->dma.txavail = 0;
1425	di->dma.txnobuf++;
1426	return -ENOSPC;
1427}
1428
1429void dma_txflush(struct dma_pub *pub)
1430{
1431	struct dma_info *di = container_of(pub, struct dma_info, dma);
1432	struct brcms_ampdu_session *session = &di->ampdu_session;
1433
1434	if (!skb_queue_empty(&session->skb_list))
1435		ampdu_finalize(di);
1436}
1437
1438int dma_txpending(struct dma_pub *pub)
1439{
1440	struct dma_info *di = container_of(pub, struct dma_info, dma);
1441	return ntxdactive(di, di->txin, di->txout);
1442}
1443
1444/*
1445 * If we have an active AMPDU session and are not transmitting,
1446 * this function will force tx to start.
1447 */
1448void dma_kick_tx(struct dma_pub *pub)
1449{
1450	struct dma_info *di = container_of(pub, struct dma_info, dma);
1451	struct brcms_ampdu_session *session = &di->ampdu_session;
1452
1453	if (!skb_queue_empty(&session->skb_list) && dma64_txidle(di))
1454		ampdu_finalize(di);
1455}
1456
1457/*
1458 * Reclaim next completed txd (txds if using chained buffers) in the range
1459 * specified and return associated packet.
1460 * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
1461 * transmitted as noted by the hardware "CurrDescr" pointer.
1462 * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
1463 * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
1464 * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
1465 * return associated packet regardless of the value of hardware pointers.
1466 */
1467struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1468{
1469	struct dma_info *di = container_of(pub, struct dma_info, dma);
1470	u16 start, end, i;
1471	u16 active_desc;
1472	struct sk_buff *txp;
1473
1474	brcms_dbg_dma(di->core, "%s: %s\n",
1475		      di->name,
1476		      range == DMA_RANGE_ALL ? "all" :
1477		      range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1478		      "transferred");
1479
1480	if (di->ntxd == 0)
1481		return NULL;
1482
1483	txp = NULL;
1484
1485	start = di->txin;
1486	if (range == DMA_RANGE_ALL)
1487		end = di->txout;
1488	else {
1489		end = (u16) (B2I(((bcma_read32(di->core,
1490					       DMA64TXREGOFFS(di, status0)) &
1491				   D64_XS0_CD_MASK) - di->xmtptrbase) &
1492				 D64_XS0_CD_MASK, struct dma64desc));
1493
1494		if (range == DMA_RANGE_TRANSFERED) {
1495			active_desc =
1496				(u16)(bcma_read32(di->core,
1497						  DMA64TXREGOFFS(di, status1)) &
1498				      D64_XS1_AD_MASK);
1499			active_desc =
1500			    (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1501			active_desc = B2I(active_desc, struct dma64desc);
1502			if (end != active_desc)
1503				end = prevtxd(di, active_desc);
1504		}
1505	}
1506
1507	if ((start == 0) && (end > di->txout))
1508		goto bogus;
1509
1510	for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1511		dma_addr_t pa;
1512		uint size;
1513
1514		pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1515
1516		size =
1517		    (le32_to_cpu(di->txd64[i].ctrl2) &
1518		     D64_CTRL2_BC_MASK);
1519
1520		di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1521		di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1522
1523		txp = di->txp[i];
1524		di->txp[i] = NULL;
1525
1526		dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
1527	}
1528
1529	di->txin = i;
1530
1531	/* tx flow control */
1532	dma_update_txavail(di);
1533
1534	return txp;
1535
1536 bogus:
1537	brcms_dbg_dma(di->core, "bogus curr: start %d end %d txout %d\n",
1538		      start, end, di->txout);
1539	return NULL;
1540}
1541
1542/*
1543 * Mac80211 initiated actions sometimes require packets in the DMA queue to be
1544 * modified. The modified portion of the packet is not under control of the DMA
1545 * engine. This function calls a caller-supplied function for each packet in
1546 * the caller specified dma chain.
1547 */
1548void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1549		      (void *pkt, void *arg_a), void *arg_a)
1550{
1551	struct dma_info *di = container_of(dmah, struct dma_info, dma);
1552	uint i =   di->txin;
1553	uint end = di->txout;
1554	struct sk_buff *skb;
1555	struct ieee80211_tx_info *tx_info;
1556
1557	while (i != end) {
1558		skb = di->txp[i];
1559		if (skb != NULL) {
1560			tx_info = (struct ieee80211_tx_info *)skb->cb;
1561			(callback_fnc)(tx_info, arg_a);
1562		}
1563		i = nexttxd(di, i);
1564	}
1565}
1566