1// SPDX-License-Identifier: ISC
2/*
3 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
4 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
5 */
6
7#include <linux/etherdevice.h>
8#include <net/ieee80211_radiotap.h>
9#include <linux/if_arp.h>
10#include <linux/moduleparam.h>
11#include <linux/ip.h>
12#include <linux/ipv6.h>
13#include <linux/if_vlan.h>
14#include <net/ipv6.h>
15#include <linux/prefetch.h>
16
17#include "wil6210.h"
18#include "wmi.h"
19#include "txrx.h"
20#include "trace.h"
21#include "txrx_edma.h"
22
23bool rx_align_2;
24module_param(rx_align_2, bool, 0444);
25MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
26
27bool rx_large_buf;
28module_param(rx_large_buf, bool, 0444);
29MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
30
31/* Drop Tx packets in case Tx ring is full */
32bool drop_if_ring_full;
33
34static inline uint wil_rx_snaplen(void)
35{
36	return rx_align_2 ? 6 : 0;
37}
38
39/* wil_ring_wmark_low - low watermark for available descriptor space */
40static inline int wil_ring_wmark_low(struct wil_ring *ring)
41{
42	return ring->size / 8;
43}
44
45/* wil_ring_wmark_high - high watermark for available descriptor space */
46static inline int wil_ring_wmark_high(struct wil_ring *ring)
47{
48	return ring->size / 4;
49}
50
51/* returns true if num avail descriptors is lower than wmark_low */
52static inline int wil_ring_avail_low(struct wil_ring *ring)
53{
54	return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
55}
56
57/* returns true if num avail descriptors is higher than wmark_high */
58static inline int wil_ring_avail_high(struct wil_ring *ring)
59{
60	return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
61}
62
63/* returns true when all tx vrings are empty */
64bool wil_is_tx_idle(struct wil6210_priv *wil)
65{
66	int i;
67	unsigned long data_comp_to;
68	int min_ring_id = wil_get_min_tx_ring_id(wil);
69
70	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
71		struct wil_ring *vring = &wil->ring_tx[i];
72		int vring_index = vring - wil->ring_tx;
73		struct wil_ring_tx_data *txdata =
74			&wil->ring_tx_data[vring_index];
75
76		spin_lock(&txdata->lock);
77
78		if (!vring->va || !txdata->enabled) {
79			spin_unlock(&txdata->lock);
80			continue;
81		}
82
83		data_comp_to = jiffies + msecs_to_jiffies(
84					WIL_DATA_COMPLETION_TO_MS);
85		if (test_bit(wil_status_napi_en, wil->status)) {
86			while (!wil_ring_is_empty(vring)) {
87				if (time_after(jiffies, data_comp_to)) {
88					wil_dbg_pm(wil,
89						   "TO waiting for idle tx\n");
90					spin_unlock(&txdata->lock);
91					return false;
92				}
93				wil_dbg_ratelimited(wil,
94						    "tx vring is not empty -> NAPI\n");
95				spin_unlock(&txdata->lock);
96				napi_synchronize(&wil->napi_tx);
97				msleep(20);
98				spin_lock(&txdata->lock);
99				if (!vring->va || !txdata->enabled)
100					break;
101			}
102		}
103
104		spin_unlock(&txdata->lock);
105	}
106
107	return true;
108}
109
110static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
111{
112	struct device *dev = wil_to_dev(wil);
113	size_t sz = vring->size * sizeof(vring->va[0]);
114	uint i;
115
116	wil_dbg_misc(wil, "vring_alloc:\n");
117
118	BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
119
120	vring->swhead = 0;
121	vring->swtail = 0;
122	vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
123	if (!vring->ctx) {
124		vring->va = NULL;
125		return -ENOMEM;
126	}
127
128	/* vring->va should be aligned on its size rounded up to power of 2
129	 * This is granted by the dma_alloc_coherent.
130	 *
131	 * HW has limitation that all vrings addresses must share the same
132	 * upper 16 msb bits part of 48 bits address. To workaround that,
133	 * if we are using more than 32 bit addresses switch to 32 bit
134	 * allocation before allocating vring memory.
135	 *
136	 * There's no check for the return value of dma_set_mask_and_coherent,
137	 * since we assume if we were able to set the mask during
138	 * initialization in this system it will not fail if we set it again
139	 */
140	if (wil->dma_addr_size > 32)
141		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
142
143	vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
144	if (!vring->va) {
145		kfree(vring->ctx);
146		vring->ctx = NULL;
147		return -ENOMEM;
148	}
149
150	if (wil->dma_addr_size > 32)
151		dma_set_mask_and_coherent(dev,
152					  DMA_BIT_MASK(wil->dma_addr_size));
153
154	/* initially, all descriptors are SW owned
155	 * For Tx and Rx, ownership bit is at the same location, thus
156	 * we can use any
157	 */
158	for (i = 0; i < vring->size; i++) {
159		volatile struct vring_tx_desc *_d =
160			&vring->va[i].tx.legacy;
161
162		_d->dma.status = TX_DMA_STATUS_DU;
163	}
164
165	wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
166		     vring->va, &vring->pa, vring->ctx);
167
168	return 0;
169}
170
171static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
172			     struct wil_ctx *ctx)
173{
174	struct vring_tx_desc *d = &desc->legacy;
175	dma_addr_t pa = wil_desc_addr(&d->dma.addr);
176	u16 dmalen = le16_to_cpu(d->dma.length);
177
178	switch (ctx->mapped_as) {
179	case wil_mapped_as_single:
180		dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
181		break;
182	case wil_mapped_as_page:
183		dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
184		break;
185	default:
186		break;
187	}
188}
189
190static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
191{
192	struct device *dev = wil_to_dev(wil);
193	size_t sz = vring->size * sizeof(vring->va[0]);
194
195	lockdep_assert_held(&wil->mutex);
196	if (!vring->is_rx) {
197		int vring_index = vring - wil->ring_tx;
198
199		wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
200			     vring_index, vring->size, vring->va,
201			     &vring->pa, vring->ctx);
202	} else {
203		wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
204			     vring->size, vring->va,
205			     &vring->pa, vring->ctx);
206	}
207
208	while (!wil_ring_is_empty(vring)) {
209		dma_addr_t pa;
210		u16 dmalen;
211		struct wil_ctx *ctx;
212
213		if (!vring->is_rx) {
214			struct vring_tx_desc dd, *d = &dd;
215			volatile struct vring_tx_desc *_d =
216					&vring->va[vring->swtail].tx.legacy;
217
218			ctx = &vring->ctx[vring->swtail];
219			if (!ctx) {
220				wil_dbg_txrx(wil,
221					     "ctx(%d) was already completed\n",
222					     vring->swtail);
223				vring->swtail = wil_ring_next_tail(vring);
224				continue;
225			}
226			*d = *_d;
227			wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
228			if (ctx->skb)
229				dev_kfree_skb_any(ctx->skb);
230			vring->swtail = wil_ring_next_tail(vring);
231		} else { /* rx */
232			struct vring_rx_desc dd, *d = &dd;
233			volatile struct vring_rx_desc *_d =
234				&vring->va[vring->swhead].rx.legacy;
235
236			ctx = &vring->ctx[vring->swhead];
237			*d = *_d;
238			pa = wil_desc_addr(&d->dma.addr);
239			dmalen = le16_to_cpu(d->dma.length);
240			dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
241			kfree_skb(ctx->skb);
242			wil_ring_advance_head(vring, 1);
243		}
244	}
245	dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
246	kfree(vring->ctx);
247	vring->pa = 0;
248	vring->va = NULL;
249	vring->ctx = NULL;
250}
251
252/* Allocate one skb for Rx VRING
253 *
254 * Safe to call from IRQ
255 */
256static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
257			       u32 i, int headroom)
258{
259	struct device *dev = wil_to_dev(wil);
260	unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
261	struct vring_rx_desc dd, *d = &dd;
262	volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
263	dma_addr_t pa;
264	struct sk_buff *skb = dev_alloc_skb(sz + headroom);
265
266	if (unlikely(!skb))
267		return -ENOMEM;
268
269	skb_reserve(skb, headroom);
270	skb_put(skb, sz);
271
272	/**
273	 * Make sure that the network stack calculates checksum for packets
274	 * which failed the HW checksum calculation
275	 */
276	skb->ip_summed = CHECKSUM_NONE;
277
278	pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
279	if (unlikely(dma_mapping_error(dev, pa))) {
280		kfree_skb(skb);
281		return -ENOMEM;
282	}
283
284	d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
285	wil_desc_addr_set(&d->dma.addr, pa);
286	/* ip_length don't care */
287	/* b11 don't care */
288	/* error don't care */
289	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
290	d->dma.length = cpu_to_le16(sz);
291	*_d = *d;
292	vring->ctx[i].skb = skb;
293
294	return 0;
295}
296
297/* Adds radiotap header
298 *
299 * Any error indicated as "Bad FCS"
300 *
301 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
302 *  - Rx descriptor: 32 bytes
303 *  - Phy info
304 */
305static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
306				       struct sk_buff *skb)
307{
308	struct wil6210_rtap {
309		struct ieee80211_radiotap_header rthdr;
310		/* fields should be in the order of bits in rthdr.it_present */
311		/* flags */
312		u8 flags;
313		/* channel */
314		__le16 chnl_freq __aligned(2);
315		__le16 chnl_flags;
316		/* MCS */
317		u8 mcs_present;
318		u8 mcs_flags;
319		u8 mcs_index;
320	} __packed;
321	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
322	struct wil6210_rtap *rtap;
323	int rtap_len = sizeof(struct wil6210_rtap);
324	struct ieee80211_channel *ch = wil->monitor_chandef.chan;
325
326	if (skb_headroom(skb) < rtap_len &&
327	    pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
328		wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
329		return;
330	}
331
332	rtap = skb_push(skb, rtap_len);
333	memset(rtap, 0, rtap_len);
334
335	rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
336	rtap->rthdr.it_len = cpu_to_le16(rtap_len);
337	rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
338			(1 << IEEE80211_RADIOTAP_CHANNEL) |
339			(1 << IEEE80211_RADIOTAP_MCS));
340	if (d->dma.status & RX_DMA_STATUS_ERROR)
341		rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
342
343	rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
344	rtap->chnl_flags = cpu_to_le16(0);
345
346	rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
347	rtap->mcs_flags = 0;
348	rtap->mcs_index = wil_rxdesc_mcs(d);
349}
350
351static bool wil_is_rx_idle(struct wil6210_priv *wil)
352{
353	struct vring_rx_desc *_d;
354	struct wil_ring *ring = &wil->ring_rx;
355
356	_d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
357	if (_d->dma.status & RX_DMA_STATUS_DU)
358		return false;
359
360	return true;
361}
362
363static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
364{
365	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
366	int mid = wil_rxdesc_mid(d);
367	struct wil6210_vif *vif = wil->vifs[mid];
368	/* cid from DMA descriptor is limited to 3 bits.
369	 * In case of cid>=8, the value would be cid modulo 8 and we need to
370	 * find real cid by locating the transmitter (ta) inside sta array
371	 */
372	int cid = wil_rxdesc_cid(d);
373	unsigned int snaplen = wil_rx_snaplen();
374	struct ieee80211_hdr_3addr *hdr;
375	int i;
376	unsigned char *ta;
377	u8 ftype;
378
379	/* in monitor mode there are no connections */
380	if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
381		return cid;
382
383	ftype = wil_rxdesc_ftype(d) << 2;
384	if (likely(ftype == IEEE80211_FTYPE_DATA)) {
385		if (unlikely(skb->len < ETH_HLEN + snaplen)) {
386			wil_err_ratelimited(wil,
387					    "Short data frame, len = %d\n",
388					    skb->len);
389			return -ENOENT;
390		}
391		ta = wil_skb_get_sa(skb);
392	} else {
393		if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
394			wil_err_ratelimited(wil, "Short frame, len = %d\n",
395					    skb->len);
396			return -ENOENT;
397		}
398		hdr = (void *)skb->data;
399		ta = hdr->addr2;
400	}
401
402	if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
403		return cid;
404
405	/* assuming no concurrency between AP interfaces and STA interfaces.
406	 * multista is used only in P2P_GO or AP mode. In other modes return
407	 * cid from the rx descriptor
408	 */
409	if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
410	    vif->wdev.iftype != NL80211_IFTYPE_AP)
411		return cid;
412
413	/* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
414	 * to find the real cid, compare transmitter address with the stored
415	 * stations mac address in the driver sta array
416	 */
417	for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
418		if (wil->sta[i].status != wil_sta_unused &&
419		    ether_addr_equal(wil->sta[i].addr, ta)) {
420			cid = i;
421			break;
422		}
423	}
424	if (i >= wil->max_assoc_sta) {
425		wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
426				    ta, vif->wdev.iftype, ftype, skb->len);
427		cid = -ENOENT;
428	}
429
430	return cid;
431}
432
433/* reap 1 frame from @swhead
434 *
435 * Rx descriptor copied to skb->cb
436 *
437 * Safe to call from IRQ
438 */
439static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
440					 struct wil_ring *vring)
441{
442	struct device *dev = wil_to_dev(wil);
443	struct wil6210_vif *vif;
444	struct net_device *ndev;
445	volatile struct vring_rx_desc *_d;
446	struct vring_rx_desc *d;
447	struct sk_buff *skb;
448	dma_addr_t pa;
449	unsigned int snaplen = wil_rx_snaplen();
450	unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
451	u16 dmalen;
452	u8 ftype;
453	int cid, mid;
454	int i;
455	struct wil_net_stats *stats;
456
457	BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
458
459again:
460	if (unlikely(wil_ring_is_empty(vring)))
461		return NULL;
462
463	i = (int)vring->swhead;
464	_d = &vring->va[i].rx.legacy;
465	if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
466		/* it is not error, we just reached end of Rx done area */
467		return NULL;
468	}
469
470	skb = vring->ctx[i].skb;
471	vring->ctx[i].skb = NULL;
472	wil_ring_advance_head(vring, 1);
473	if (!skb) {
474		wil_err(wil, "No Rx skb at [%d]\n", i);
475		goto again;
476	}
477	d = wil_skb_rxdesc(skb);
478	*d = *_d;
479	pa = wil_desc_addr(&d->dma.addr);
480
481	dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
482	dmalen = le16_to_cpu(d->dma.length);
483
484	trace_wil6210_rx(i, d);
485	wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
486	wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
487			  (const void *)d, sizeof(*d), false);
488
489	mid = wil_rxdesc_mid(d);
490	vif = wil->vifs[mid];
491
492	if (unlikely(!vif)) {
493		wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
494			     mid);
495		kfree_skb(skb);
496		goto again;
497	}
498	ndev = vif_to_ndev(vif);
499	if (unlikely(dmalen > sz)) {
500		wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
501				    dmalen);
502		kfree_skb(skb);
503		goto again;
504	}
505	skb_trim(skb, dmalen);
506
507	prefetch(skb->data);
508
509	wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
510			  skb->data, skb_headlen(skb), false);
511
512	cid = wil_rx_get_cid_by_skb(wil, skb);
513	if (cid == -ENOENT) {
514		kfree_skb(skb);
515		goto again;
516	}
517	wil_skb_set_cid(skb, (u8)cid);
518	stats = &wil->sta[cid].stats;
519
520	stats->last_mcs_rx = wil_rxdesc_mcs(d);
521	if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
522		stats->rx_per_mcs[stats->last_mcs_rx]++;
523
524	/* use radiotap header only if required */
525	if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
526		wil_rx_add_radiotap_header(wil, skb);
527
528	/* no extra checks if in sniffer mode */
529	if (ndev->type != ARPHRD_ETHER)
530		return skb;
531	/* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
532	 * Driver should recognize it by frame type, that is found
533	 * in Rx descriptor. If type is not data, it is 802.11 frame as is
534	 */
535	ftype = wil_rxdesc_ftype(d) << 2;
536	if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
537		u8 fc1 = wil_rxdesc_fc1(d);
538		int tid = wil_rxdesc_tid(d);
539		u16 seq = wil_rxdesc_seq(d);
540
541		wil_dbg_txrx(wil,
542			     "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
543			     fc1, mid, cid, tid, seq);
544		stats->rx_non_data_frame++;
545		if (wil_is_back_req(fc1)) {
546			wil_dbg_txrx(wil,
547				     "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
548				     mid, cid, tid, seq);
549			wil_rx_bar(wil, vif, cid, tid, seq);
550		} else {
551			/* print again all info. One can enable only this
552			 * without overhead for printing every Rx frame
553			 */
554			wil_dbg_txrx(wil,
555				     "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
556				     fc1, mid, cid, tid, seq);
557			wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
558					  (const void *)d, sizeof(*d), false);
559			wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
560					  skb->data, skb_headlen(skb), false);
561		}
562		kfree_skb(skb);
563		goto again;
564	}
565
566	/* L4 IDENT is on when HW calculated checksum, check status
567	 * and in case of error drop the packet
568	 * higher stack layers will handle retransmission (if required)
569	 */
570	if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
571		/* L4 protocol identified, csum calculated */
572		if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
573			skb->ip_summed = CHECKSUM_UNNECESSARY;
574		/* If HW reports bad checksum, let IP stack re-check it
575		 * For example, HW don't understand Microsoft IP stack that
576		 * mis-calculates TCP checksum - if it should be 0x0,
577		 * it writes 0xffff in violation of RFC 1624
578		 */
579		else
580			stats->rx_csum_err++;
581	}
582
583	if (snaplen) {
584		/* Packet layout
585		 * +-------+-------+---------+------------+------+
586		 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
587		 * +-------+-------+---------+------------+------+
588		 * Need to remove SNAP, shifting SA and DA forward
589		 */
590		memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
591		skb_pull(skb, snaplen);
592	}
593
594	return skb;
595}
596
597/* allocate and fill up to @count buffers in rx ring
598 * buffers posted at @swtail
599 * Note: we have a single RX queue for servicing all VIFs, but we
600 * allocate skbs with headroom according to main interface only. This
601 * means it will not work with monitor interface together with other VIFs.
602 * Currently we only support monitor interface on its own without other VIFs,
603 * and we will need to fix this code once we add support.
604 */
605static int wil_rx_refill(struct wil6210_priv *wil, int count)
606{
607	struct net_device *ndev = wil->main_ndev;
608	struct wil_ring *v = &wil->ring_rx;
609	u32 next_tail;
610	int rc = 0;
611	int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
612			WIL6210_RTAP_SIZE : 0;
613
614	for (; next_tail = wil_ring_next_tail(v),
615	     (next_tail != v->swhead) && (count-- > 0);
616	     v->swtail = next_tail) {
617		rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
618		if (unlikely(rc)) {
619			wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
620					    rc, v->swtail);
621			break;
622		}
623	}
624
625	/* make sure all writes to descriptors (shared memory) are done before
626	 * committing them to HW
627	 */
628	wmb();
629
630	wil_w(wil, v->hwtail, v->swtail);
631
632	return rc;
633}
634
635/**
636 * reverse_memcmp - Compare two areas of memory, in reverse order
637 * @cs: One area of memory
638 * @ct: Another area of memory
639 * @count: The size of the area.
640 *
641 * Cut'n'paste from original memcmp (see lib/string.c)
642 * with minimal modifications
643 */
644int reverse_memcmp(const void *cs, const void *ct, size_t count)
645{
646	const unsigned char *su1, *su2;
647	int res = 0;
648
649	for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
650	     --su1, --su2, count--) {
651		res = *su1 - *su2;
652		if (res)
653			break;
654	}
655	return res;
656}
657
658static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
659{
660	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
661	int cid = wil_skb_get_cid(skb);
662	int tid = wil_rxdesc_tid(d);
663	int key_id = wil_rxdesc_key_id(d);
664	int mc = wil_rxdesc_mcast(d);
665	struct wil_sta_info *s = &wil->sta[cid];
666	struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
667				      &s->tid_crypto_rx[tid];
668	struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
669	const u8 *pn = (u8 *)&d->mac.pn;
670
671	if (!cc->key_set) {
672		wil_err_ratelimited(wil,
673				    "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
674				    cid, tid, mc, key_id);
675		return -EINVAL;
676	}
677
678	if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
679		wil_err_ratelimited(wil,
680				    "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
681				    cid, tid, mc, key_id, pn, cc->pn);
682		return -EINVAL;
683	}
684	memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
685
686	return 0;
687}
688
689static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
690			      struct wil_net_stats *stats)
691{
692	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
693
694	if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
695	    (d->dma.error & RX_DMA_ERROR_MIC)) {
696		stats->rx_mic_error++;
697		wil_dbg_txrx(wil, "MIC error, dropping packet\n");
698		return -EFAULT;
699	}
700
701	return 0;
702}
703
704static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
705				    int *security)
706{
707	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
708
709	*cid = wil_skb_get_cid(skb);
710	*security = wil_rxdesc_security(d);
711}
712
713/*
714 * Check if skb is ptk eapol key message
715 *
716 * returns a pointer to the start of the eapol key structure, NULL
717 * if frame is not PTK eapol key
718 */
719static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil,
720						  struct sk_buff *skb)
721{
722	u8 *buf;
723	const struct wil_1x_hdr *hdr;
724	struct wil_eapol_key *key;
725	u16 key_info;
726	int len = skb->len;
727
728	if (!skb_mac_header_was_set(skb)) {
729		wil_err(wil, "mac header was not set\n");
730		return NULL;
731	}
732
733	len -= skb_mac_offset(skb);
734
735	if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) +
736	    sizeof(struct wil_eapol_key))
737		return NULL;
738
739	buf = skb_mac_header(skb) + sizeof(struct ethhdr);
740
741	hdr = (const struct wil_1x_hdr *)buf;
742	if (hdr->type != WIL_1X_TYPE_EAPOL_KEY)
743		return NULL;
744
745	key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr));
746	if (key->type != WIL_EAPOL_KEY_TYPE_WPA &&
747	    key->type != WIL_EAPOL_KEY_TYPE_RSN)
748		return NULL;
749
750	key_info = be16_to_cpu(key->key_info);
751	if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */
752		return NULL;
753
754	return key;
755}
756
757static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb)
758{
759	struct wil_eapol_key *key;
760	u16 key_info;
761
762	key = wil_is_ptk_eapol_key(wil, skb);
763	if (!key)
764		return false;
765
766	key_info = be16_to_cpu(key->key_info);
767	if (key_info & (WIL_KEY_INFO_MIC |
768			WIL_KEY_INFO_ENCR_KEY_DATA)) {
769		/* 3/4 of 4-Way Handshake */
770		wil_dbg_misc(wil, "EAPOL key message 3\n");
771		return true;
772	}
773	/* 1/4 of 4-Way Handshake */
774	wil_dbg_misc(wil, "EAPOL key message 1\n");
775
776	return false;
777}
778
779static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb)
780{
781	struct wil_eapol_key *key;
782	u32 *nonce, i;
783
784	key = wil_is_ptk_eapol_key(wil, skb);
785	if (!key)
786		return false;
787
788	nonce = (u32 *)key->key_nonce;
789	for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) {
790		if (*nonce != 0) {
791			/* message 2/4 */
792			wil_dbg_misc(wil, "EAPOL key message 2\n");
793			return false;
794		}
795	}
796	wil_dbg_misc(wil, "EAPOL key message 4\n");
797
798	return true;
799}
800
801void wil_enable_tx_key_worker(struct work_struct *work)
802{
803	struct wil6210_vif *vif = container_of(work,
804			struct wil6210_vif, enable_tx_key_worker);
805	struct wil6210_priv *wil = vif_to_wil(vif);
806	int rc, cid;
807
808	rtnl_lock();
809	if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) {
810		wil_dbg_misc(wil, "Invalid rekey state = %d\n",
811			     vif->ptk_rekey_state);
812		rtnl_unlock();
813		return;
814	}
815
816	cid =  wil_find_cid_by_idx(wil, vif->mid, 0);
817	if (!wil_cid_valid(wil, cid)) {
818		wil_err(wil, "Invalid cid = %d\n", cid);
819		rtnl_unlock();
820		return;
821	}
822
823	wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n");
824	rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL,
825				WMI_KEY_USE_APPLY_PTK);
826
827	vif->ptk_rekey_state = WIL_REKEY_IDLE;
828	rtnl_unlock();
829
830	if (rc)
831		wil_err(wil, "Apply PTK key failed %d\n", rc);
832}
833
834void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
835{
836	struct wil6210_priv *wil = vif_to_wil(vif);
837	struct wireless_dev *wdev = vif_to_wdev(vif);
838	bool q = false;
839
840	if (wdev->iftype != NL80211_IFTYPE_STATION ||
841	    !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
842		return;
843
844	/* check if skb is an EAP message 4/4 */
845	if (!wil_skb_is_eap_4(wil, skb))
846		return;
847
848	spin_lock_bh(&wil->eap_lock);
849	switch (vif->ptk_rekey_state) {
850	case WIL_REKEY_IDLE:
851		/* ignore idle state, can happen due to M4 retransmission */
852		break;
853	case WIL_REKEY_M3_RECEIVED:
854		vif->ptk_rekey_state = WIL_REKEY_IDLE;
855		break;
856	case WIL_REKEY_WAIT_M4_SENT:
857		q = true;
858		break;
859	default:
860		wil_err(wil, "Unknown rekey state = %d",
861			vif->ptk_rekey_state);
862	}
863	spin_unlock_bh(&wil->eap_lock);
864
865	if (q) {
866		q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker);
867		wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n",
868			     q);
869	}
870}
871
872static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
873{
874	struct wil6210_priv *wil = vif_to_wil(vif);
875	struct wireless_dev *wdev = vif_to_wdev(vif);
876
877	if (wdev->iftype != NL80211_IFTYPE_STATION ||
878	    !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
879		return;
880
881	/* check if skb is a EAP message 3/4 */
882	if (!wil_skb_is_eap_3(wil, skb))
883		return;
884
885	if (vif->ptk_rekey_state == WIL_REKEY_IDLE)
886		vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED;
887}
888
889/*
890 * Pass Rx packet to the netif. Update statistics.
891 * Called in softirq context (NAPI poll).
892 */
893void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid,
894		  struct wil_net_stats *stats, bool gro)
895{
896	struct wil6210_vif *vif = ndev_to_vif(ndev);
897	struct wil6210_priv *wil = ndev_to_wil(ndev);
898	struct wireless_dev *wdev = vif_to_wdev(vif);
899	unsigned int len = skb->len;
900	u8 *sa, *da = wil_skb_get_da(skb);
901	/* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
902	 * is not suitable, need to look at data
903	 */
904	int mcast = is_multicast_ether_addr(da);
905	struct sk_buff *xmit_skb = NULL;
906
907	if (wdev->iftype == NL80211_IFTYPE_STATION) {
908		sa = wil_skb_get_sa(skb);
909		if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
910			/* mcast packet looped back to us */
911			dev_kfree_skb(skb);
912			ndev->stats.rx_dropped++;
913			stats->rx_dropped++;
914			wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
915			return;
916		}
917	} else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
918		if (mcast) {
919			/* send multicast frames both to higher layers in
920			 * local net stack and back to the wireless medium
921			 */
922			xmit_skb = skb_copy(skb, GFP_ATOMIC);
923		} else {
924			int xmit_cid = wil_find_cid(wil, vif->mid, da);
925
926			if (xmit_cid >= 0) {
927				/* The destination station is associated to
928				 * this AP (in this VLAN), so send the frame
929				 * directly to it and do not pass it to local
930				 * net stack.
931				 */
932				xmit_skb = skb;
933				skb = NULL;
934			}
935		}
936	}
937	if (xmit_skb) {
938		/* Send to wireless media and increase priority by 256 to
939		 * keep the received priority instead of reclassifying
940		 * the frame (see cfg80211_classify8021d).
941		 */
942		xmit_skb->dev = ndev;
943		xmit_skb->priority += 256;
944		xmit_skb->protocol = htons(ETH_P_802_3);
945		skb_reset_network_header(xmit_skb);
946		skb_reset_mac_header(xmit_skb);
947		wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
948		dev_queue_xmit(xmit_skb);
949	}
950
951	if (skb) { /* deliver to local stack */
952		skb->protocol = eth_type_trans(skb, ndev);
953		skb->dev = ndev;
954
955		if (skb->protocol == cpu_to_be16(ETH_P_PAE))
956			wil_rx_handle_eapol(vif, skb);
957
958		if (gro)
959			napi_gro_receive(&wil->napi_rx, skb);
960		else
961			netif_rx(skb);
962	}
963	ndev->stats.rx_packets++;
964	stats->rx_packets++;
965	ndev->stats.rx_bytes += len;
966	stats->rx_bytes += len;
967	if (mcast)
968		ndev->stats.multicast++;
969}
970
971void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
972{
973	int cid, security;
974	struct wil6210_priv *wil = ndev_to_wil(ndev);
975	struct wil_net_stats *stats;
976
977	wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
978
979	stats = &wil->sta[cid].stats;
980
981	skb_orphan(skb);
982
983	if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
984		wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len);
985		dev_kfree_skb(skb);
986		ndev->stats.rx_dropped++;
987		stats->rx_replay++;
988		stats->rx_dropped++;
989		return;
990	}
991
992	/* check errors reported by HW and update statistics */
993	if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
994		dev_kfree_skb(skb);
995		return;
996	}
997
998	wil_netif_rx(skb, ndev, cid, stats, true);
999}
1000
1001/* Proceed all completed skb's from Rx VRING
1002 *
1003 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
1004 */
1005void wil_rx_handle(struct wil6210_priv *wil, int *quota)
1006{
1007	struct net_device *ndev = wil->main_ndev;
1008	struct wireless_dev *wdev = ndev->ieee80211_ptr;
1009	struct wil_ring *v = &wil->ring_rx;
1010	struct sk_buff *skb;
1011
1012	if (unlikely(!v->va)) {
1013		wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
1014		return;
1015	}
1016	wil_dbg_txrx(wil, "rx_handle\n");
1017	while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
1018		(*quota)--;
1019
1020		/* monitor is currently supported on main interface only */
1021		if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
1022			skb->dev = ndev;
1023			skb_reset_mac_header(skb);
1024			skb->ip_summed = CHECKSUM_UNNECESSARY;
1025			skb->pkt_type = PACKET_OTHERHOST;
1026			skb->protocol = htons(ETH_P_802_2);
1027			wil_netif_rx_any(skb, ndev);
1028		} else {
1029			wil_rx_reorder(wil, skb);
1030		}
1031	}
1032	wil_rx_refill(wil, v->size);
1033}
1034
1035static void wil_rx_buf_len_init(struct wil6210_priv *wil)
1036{
1037	wil->rx_buf_len = rx_large_buf ?
1038		WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
1039	if (mtu_max > wil->rx_buf_len) {
1040		/* do not allow RX buffers to be smaller than mtu_max, for
1041		 * backward compatibility (mtu_max parameter was also used
1042		 * to support receiving large packets)
1043		 */
1044		wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
1045		wil->rx_buf_len = mtu_max;
1046	}
1047}
1048
1049static int wil_rx_init(struct wil6210_priv *wil, uint order)
1050{
1051	struct wil_ring *vring = &wil->ring_rx;
1052	int rc;
1053
1054	wil_dbg_misc(wil, "rx_init\n");
1055
1056	if (vring->va) {
1057		wil_err(wil, "Rx ring already allocated\n");
1058		return -EINVAL;
1059	}
1060
1061	wil_rx_buf_len_init(wil);
1062
1063	vring->size = 1 << order;
1064	vring->is_rx = true;
1065	rc = wil_vring_alloc(wil, vring);
1066	if (rc)
1067		return rc;
1068
1069	rc = wmi_rx_chain_add(wil, vring);
1070	if (rc)
1071		goto err_free;
1072
1073	rc = wil_rx_refill(wil, vring->size);
1074	if (rc)
1075		goto err_free;
1076
1077	return 0;
1078 err_free:
1079	wil_vring_free(wil, vring);
1080
1081	return rc;
1082}
1083
1084static void wil_rx_fini(struct wil6210_priv *wil)
1085{
1086	struct wil_ring *vring = &wil->ring_rx;
1087
1088	wil_dbg_misc(wil, "rx_fini\n");
1089
1090	if (vring->va)
1091		wil_vring_free(wil, vring);
1092}
1093
1094static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
1095			   u32 len, int vring_index)
1096{
1097	struct vring_tx_desc *d = &desc->legacy;
1098
1099	wil_desc_addr_set(&d->dma.addr, pa);
1100	d->dma.ip_length = 0;
1101	/* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1102	d->dma.b11 = 0/*14 | BIT(7)*/;
1103	d->dma.error = 0;
1104	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1105	d->dma.length = cpu_to_le16((u16)len);
1106	d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1107	d->mac.d[0] = 0;
1108	d->mac.d[1] = 0;
1109	d->mac.d[2] = 0;
1110	d->mac.ucode_cmd = 0;
1111	/* translation type:  0 - bypass; 1 - 802.3; 2 - native wifi */
1112	d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1113		      (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1114
1115	return 0;
1116}
1117
1118void wil_tx_data_init(struct wil_ring_tx_data *txdata)
1119{
1120	spin_lock_bh(&txdata->lock);
1121	txdata->dot1x_open = false;
1122	txdata->enabled = 0;
1123	txdata->idle = 0;
1124	txdata->last_idle = 0;
1125	txdata->begin = 0;
1126	txdata->agg_wsize = 0;
1127	txdata->agg_timeout = 0;
1128	txdata->agg_amsdu = 0;
1129	txdata->addba_in_progress = false;
1130	txdata->mid = U8_MAX;
1131	spin_unlock_bh(&txdata->lock);
1132}
1133
1134static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
1135			     int cid, int tid)
1136{
1137	struct wil6210_priv *wil = vif_to_wil(vif);
1138	int rc;
1139	struct wmi_vring_cfg_cmd cmd = {
1140		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
1141		.vring_cfg = {
1142			.tx_sw_ring = {
1143				.max_mpdu_size =
1144					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1145				.ring_size = cpu_to_le16(size),
1146			},
1147			.ringid = id,
1148			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1149			.mac_ctrl = 0,
1150			.to_resolution = 0,
1151			.agg_max_wsize = 0,
1152			.schd_params = {
1153				.priority = cpu_to_le16(0),
1154				.timeslot_us = cpu_to_le16(0xfff),
1155			},
1156		},
1157	};
1158	struct {
1159		struct wmi_cmd_hdr wmi;
1160		struct wmi_vring_cfg_done_event cmd;
1161	} __packed reply = {
1162		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1163	};
1164	struct wil_ring *vring = &wil->ring_tx[id];
1165	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1166
1167	if (cid >= WIL6210_RX_DESC_MAX_CID) {
1168		cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
1169		cmd.vring_cfg.cid = cid;
1170		cmd.vring_cfg.tid = tid;
1171	} else {
1172		cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
1173	}
1174
1175	wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
1176		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1177	lockdep_assert_held(&wil->mutex);
1178
1179	if (vring->va) {
1180		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1181		rc = -EINVAL;
1182		goto out;
1183	}
1184
1185	wil_tx_data_init(txdata);
1186	vring->is_rx = false;
1187	vring->size = size;
1188	rc = wil_vring_alloc(wil, vring);
1189	if (rc)
1190		goto out;
1191
1192	wil->ring2cid_tid[id][0] = cid;
1193	wil->ring2cid_tid[id][1] = tid;
1194
1195	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1196
1197	if (!vif->privacy)
1198		txdata->dot1x_open = true;
1199	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1200		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1201		      WIL_WMI_CALL_GENERAL_TO_MS);
1202	if (rc)
1203		goto out_free;
1204
1205	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1206		wil_err(wil, "Tx config failed, status 0x%02x\n",
1207			reply.cmd.status);
1208		rc = -EINVAL;
1209		goto out_free;
1210	}
1211
1212	spin_lock_bh(&txdata->lock);
1213	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1214	txdata->mid = vif->mid;
1215	txdata->enabled = 1;
1216	spin_unlock_bh(&txdata->lock);
1217
1218	if (txdata->dot1x_open && (agg_wsize >= 0))
1219		wil_addba_tx_request(wil, id, agg_wsize);
1220
1221	return 0;
1222 out_free:
1223	spin_lock_bh(&txdata->lock);
1224	txdata->dot1x_open = false;
1225	txdata->enabled = 0;
1226	spin_unlock_bh(&txdata->lock);
1227	wil_vring_free(wil, vring);
1228	wil->ring2cid_tid[id][0] = wil->max_assoc_sta;
1229	wil->ring2cid_tid[id][1] = 0;
1230
1231 out:
1232
1233	return rc;
1234}
1235
1236static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
1237			       int tid)
1238{
1239	struct wil6210_priv *wil = vif_to_wil(vif);
1240	int rc;
1241	struct wmi_vring_cfg_cmd cmd = {
1242		.action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
1243		.vring_cfg = {
1244			.tx_sw_ring = {
1245				.max_mpdu_size =
1246					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1247				.ring_size = 0,
1248			},
1249			.ringid = ring_id,
1250			.cidxtid = mk_cidxtid(cid, tid),
1251			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1252			.mac_ctrl = 0,
1253			.to_resolution = 0,
1254			.agg_max_wsize = 0,
1255			.schd_params = {
1256				.priority = cpu_to_le16(0),
1257				.timeslot_us = cpu_to_le16(0xfff),
1258			},
1259		},
1260	};
1261	struct {
1262		struct wmi_cmd_hdr wmi;
1263		struct wmi_vring_cfg_done_event cmd;
1264	} __packed reply = {
1265		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1266	};
1267	struct wil_ring *vring = &wil->ring_tx[ring_id];
1268	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
1269
1270	wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
1271		     cid, tid);
1272	lockdep_assert_held(&wil->mutex);
1273
1274	if (!vring->va) {
1275		wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
1276		return -EINVAL;
1277	}
1278
1279	if (wil->ring2cid_tid[ring_id][0] != cid ||
1280	    wil->ring2cid_tid[ring_id][1] != tid) {
1281		wil_err(wil, "ring info does not match cid=%u tid=%u\n",
1282			wil->ring2cid_tid[ring_id][0],
1283			wil->ring2cid_tid[ring_id][1]);
1284	}
1285
1286	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1287
1288	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1289		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1290		      WIL_WMI_CALL_GENERAL_TO_MS);
1291	if (rc)
1292		goto fail;
1293
1294	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1295		wil_err(wil, "Tx modify failed, status 0x%02x\n",
1296			reply.cmd.status);
1297		rc = -EINVAL;
1298		goto fail;
1299	}
1300
1301	/* set BA aggregation window size to 0 to force a new BA with the
1302	 * new AP
1303	 */
1304	txdata->agg_wsize = 0;
1305	if (txdata->dot1x_open && agg_wsize >= 0)
1306		wil_addba_tx_request(wil, ring_id, agg_wsize);
1307
1308	return 0;
1309fail:
1310	spin_lock_bh(&txdata->lock);
1311	txdata->dot1x_open = false;
1312	txdata->enabled = 0;
1313	spin_unlock_bh(&txdata->lock);
1314	wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta;
1315	wil->ring2cid_tid[ring_id][1] = 0;
1316	return rc;
1317}
1318
1319int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1320{
1321	struct wil6210_priv *wil = vif_to_wil(vif);
1322	int rc;
1323	struct wmi_bcast_vring_cfg_cmd cmd = {
1324		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
1325		.vring_cfg = {
1326			.tx_sw_ring = {
1327				.max_mpdu_size =
1328					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1329				.ring_size = cpu_to_le16(size),
1330			},
1331			.ringid = id,
1332			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1333		},
1334	};
1335	struct {
1336		struct wmi_cmd_hdr wmi;
1337		struct wmi_vring_cfg_done_event cmd;
1338	} __packed reply = {
1339		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1340	};
1341	struct wil_ring *vring = &wil->ring_tx[id];
1342	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1343
1344	wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1345		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1346	lockdep_assert_held(&wil->mutex);
1347
1348	if (vring->va) {
1349		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1350		rc = -EINVAL;
1351		goto out;
1352	}
1353
1354	wil_tx_data_init(txdata);
1355	vring->is_rx = false;
1356	vring->size = size;
1357	rc = wil_vring_alloc(wil, vring);
1358	if (rc)
1359		goto out;
1360
1361	wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */
1362	wil->ring2cid_tid[id][1] = 0; /* TID */
1363
1364	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1365
1366	if (!vif->privacy)
1367		txdata->dot1x_open = true;
1368	rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1369		      &cmd, sizeof(cmd),
1370		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1371		      WIL_WMI_CALL_GENERAL_TO_MS);
1372	if (rc)
1373		goto out_free;
1374
1375	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1376		wil_err(wil, "Tx config failed, status 0x%02x\n",
1377			reply.cmd.status);
1378		rc = -EINVAL;
1379		goto out_free;
1380	}
1381
1382	spin_lock_bh(&txdata->lock);
1383	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1384	txdata->mid = vif->mid;
1385	txdata->enabled = 1;
1386	spin_unlock_bh(&txdata->lock);
1387
1388	return 0;
1389 out_free:
1390	spin_lock_bh(&txdata->lock);
1391	txdata->enabled = 0;
1392	txdata->dot1x_open = false;
1393	spin_unlock_bh(&txdata->lock);
1394	wil_vring_free(wil, vring);
1395 out:
1396
1397	return rc;
1398}
1399
1400static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1401					  struct wil6210_vif *vif,
1402					  struct sk_buff *skb)
1403{
1404	int i, cid;
1405	const u8 *da = wil_skb_get_da(skb);
1406	int min_ring_id = wil_get_min_tx_ring_id(wil);
1407
1408	cid = wil_find_cid(wil, vif->mid, da);
1409
1410	if (cid < 0 || cid >= wil->max_assoc_sta)
1411		return NULL;
1412
1413	/* TODO: fix for multiple TID */
1414	for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1415		if (!wil->ring_tx_data[i].dot1x_open &&
1416		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1417			continue;
1418		if (wil->ring2cid_tid[i][0] == cid) {
1419			struct wil_ring *v = &wil->ring_tx[i];
1420			struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1421
1422			wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1423				     da, i);
1424			if (v->va && txdata->enabled) {
1425				return v;
1426			} else {
1427				wil_dbg_txrx(wil,
1428					     "find_tx_ucast: vring[%d] not valid\n",
1429					     i);
1430				return NULL;
1431			}
1432		}
1433	}
1434
1435	return NULL;
1436}
1437
1438static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1439		       struct wil_ring *ring, struct sk_buff *skb);
1440
1441static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1442					     struct wil6210_vif *vif,
1443					     struct sk_buff *skb)
1444{
1445	struct wil_ring *ring;
1446	int i;
1447	u8 cid;
1448	struct wil_ring_tx_data  *txdata;
1449	int min_ring_id = wil_get_min_tx_ring_id(wil);
1450
1451	/* In the STA mode, it is expected to have only 1 VRING
1452	 * for the AP we connected to.
1453	 * find 1-st vring eligible for this skb and use it.
1454	 */
1455	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1456		ring = &wil->ring_tx[i];
1457		txdata = &wil->ring_tx_data[i];
1458		if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1459			continue;
1460
1461		cid = wil->ring2cid_tid[i][0];
1462		if (cid >= wil->max_assoc_sta) /* skip BCAST */
1463			continue;
1464
1465		if (!wil->ring_tx_data[i].dot1x_open &&
1466		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1467			continue;
1468
1469		wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1470
1471		return ring;
1472	}
1473
1474	wil_dbg_txrx(wil, "Tx while no rings active?\n");
1475
1476	return NULL;
1477}
1478
1479/* Use one of 2 strategies:
1480 *
1481 * 1. New (real broadcast):
1482 *    use dedicated broadcast vring
1483 * 2. Old (pseudo-DMS):
1484 *    Find 1-st vring and return it;
1485 *    duplicate skb and send it to other active vrings;
1486 *    in all cases override dest address to unicast peer's address
1487 * Use old strategy when new is not supported yet:
1488 *  - for PBSS
1489 */
1490static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1491					    struct wil6210_vif *vif,
1492					    struct sk_buff *skb)
1493{
1494	struct wil_ring *v;
1495	struct wil_ring_tx_data *txdata;
1496	int i = vif->bcast_ring;
1497
1498	if (i < 0)
1499		return NULL;
1500	v = &wil->ring_tx[i];
1501	txdata = &wil->ring_tx_data[i];
1502	if (!v->va || !txdata->enabled)
1503		return NULL;
1504	if (!wil->ring_tx_data[i].dot1x_open &&
1505	    skb->protocol != cpu_to_be16(ETH_P_PAE))
1506		return NULL;
1507
1508	return v;
1509}
1510
1511/* apply multicast to unicast only for ARP and IP packets
1512 * (see NL80211_CMD_SET_MULTICAST_TO_UNICAST for more info)
1513 */
1514static bool wil_check_multicast_to_unicast(struct wil6210_priv *wil,
1515					   struct sk_buff *skb)
1516{
1517	const struct ethhdr *eth = (void *)skb->data;
1518	const struct vlan_ethhdr *ethvlan = (void *)skb->data;
1519	__be16 ethertype;
1520
1521	if (!wil->multicast_to_unicast)
1522		return false;
1523
1524	/* multicast to unicast conversion only for some payload */
1525	ethertype = eth->h_proto;
1526	if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN)
1527		ethertype = ethvlan->h_vlan_encapsulated_proto;
1528	switch (ethertype) {
1529	case htons(ETH_P_ARP):
1530	case htons(ETH_P_IP):
1531	case htons(ETH_P_IPV6):
1532		break;
1533	default:
1534		return false;
1535	}
1536
1537	return true;
1538}
1539
1540static void wil_set_da_for_vring(struct wil6210_priv *wil,
1541				 struct sk_buff *skb, int vring_index)
1542{
1543	u8 *da = wil_skb_get_da(skb);
1544	int cid = wil->ring2cid_tid[vring_index][0];
1545
1546	ether_addr_copy(da, wil->sta[cid].addr);
1547}
1548
1549static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1550					    struct wil6210_vif *vif,
1551					    struct sk_buff *skb)
1552{
1553	struct wil_ring *v, *v2;
1554	struct sk_buff *skb2;
1555	int i;
1556	u8 cid;
1557	const u8 *src = wil_skb_get_sa(skb);
1558	struct wil_ring_tx_data *txdata, *txdata2;
1559	int min_ring_id = wil_get_min_tx_ring_id(wil);
1560
1561	/* find 1-st vring eligible for data */
1562	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1563		v = &wil->ring_tx[i];
1564		txdata = &wil->ring_tx_data[i];
1565		if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1566			continue;
1567
1568		cid = wil->ring2cid_tid[i][0];
1569		if (cid >= wil->max_assoc_sta) /* skip BCAST */
1570			continue;
1571		if (!wil->ring_tx_data[i].dot1x_open &&
1572		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1573			continue;
1574
1575		/* don't Tx back to source when re-routing Rx->Tx at the AP */
1576		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1577			continue;
1578
1579		goto found;
1580	}
1581
1582	wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1583
1584	return NULL;
1585
1586found:
1587	wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1588	wil_set_da_for_vring(wil, skb, i);
1589
1590	/* find other active vrings and duplicate skb for each */
1591	for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1592		v2 = &wil->ring_tx[i];
1593		txdata2 = &wil->ring_tx_data[i];
1594		if (!v2->va || txdata2->mid != vif->mid)
1595			continue;
1596		cid = wil->ring2cid_tid[i][0];
1597		if (cid >= wil->max_assoc_sta) /* skip BCAST */
1598			continue;
1599		if (!wil->ring_tx_data[i].dot1x_open &&
1600		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1601			continue;
1602
1603		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1604			continue;
1605
1606		skb2 = skb_copy(skb, GFP_ATOMIC);
1607		if (skb2) {
1608			wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1609			wil_set_da_for_vring(wil, skb2, i);
1610			wil_tx_ring(wil, vif, v2, skb2);
1611			/* successful call to wil_tx_ring takes skb2 ref */
1612			dev_kfree_skb_any(skb2);
1613		} else {
1614			wil_err(wil, "skb_copy failed\n");
1615		}
1616	}
1617
1618	return v;
1619}
1620
1621static inline
1622void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1623{
1624	d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1625}
1626
1627/* Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1628 * @skb is used to obtain the protocol and headers length.
1629 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1630 * 2 - middle, 3 - last descriptor.
1631 */
1632
1633static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1634					  struct sk_buff *skb,
1635					  int tso_desc_type, bool is_ipv4,
1636					  int tcp_hdr_len, int skb_net_hdr_len)
1637{
1638	d->dma.b11 = ETH_HLEN; /* MAC header length */
1639	d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1640
1641	d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1642	/* L4 header len: TCP header length */
1643	d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1644
1645	/* Setup TSO: bit and desc type */
1646	d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1647		(tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1648	d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1649
1650	d->dma.ip_length = skb_net_hdr_len;
1651	/* Enable TCP/UDP checksum */
1652	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1653	/* Calculate pseudo-header */
1654	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1655}
1656
1657/* Sets the descriptor @d up for csum. The corresponding
1658 * @skb is used to obtain the protocol and headers length.
1659 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1660 * Note, if d==NULL, the function only returns the protocol result.
1661 *
1662 * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1663 * is "if unrolling" to optimize the critical path.
1664 */
1665
1666static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1667				     struct sk_buff *skb){
1668	int protocol;
1669
1670	if (skb->ip_summed != CHECKSUM_PARTIAL)
1671		return 0;
1672
1673	d->dma.b11 = ETH_HLEN; /* MAC header length */
1674
1675	switch (skb->protocol) {
1676	case cpu_to_be16(ETH_P_IP):
1677		protocol = ip_hdr(skb)->protocol;
1678		d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1679		break;
1680	case cpu_to_be16(ETH_P_IPV6):
1681		protocol = ipv6_hdr(skb)->nexthdr;
1682		break;
1683	default:
1684		return -EINVAL;
1685	}
1686
1687	switch (protocol) {
1688	case IPPROTO_TCP:
1689		d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1690		/* L4 header len: TCP header length */
1691		d->dma.d0 |=
1692		(tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1693		break;
1694	case IPPROTO_UDP:
1695		/* L4 header len: UDP header length */
1696		d->dma.d0 |=
1697		(sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1698		break;
1699	default:
1700		return -EINVAL;
1701	}
1702
1703	d->dma.ip_length = skb_network_header_len(skb);
1704	/* Enable TCP/UDP checksum */
1705	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1706	/* Calculate pseudo-header */
1707	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1708
1709	return 0;
1710}
1711
1712static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1713{
1714	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1715	      BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1716	      BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1717}
1718
1719static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1720{
1721	d->dma.d0 |= wil_tso_type_lst <<
1722		  DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1723}
1724
1725static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1726			      struct wil_ring *vring, struct sk_buff *skb)
1727{
1728	struct device *dev = wil_to_dev(wil);
1729
1730	/* point to descriptors in shared memory */
1731	volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1732				      *_first_desc = NULL;
1733
1734	/* pointers to shadow descriptors */
1735	struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1736			     *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1737			     *first_desc = &first_desc_mem;
1738
1739	/* pointer to shadow descriptors' context */
1740	struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1741
1742	int descs_used = 0; /* total number of used descriptors */
1743	int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1744
1745	u32 swhead = vring->swhead;
1746	int used, avail = wil_ring_avail_tx(vring);
1747	int nr_frags = skb_shinfo(skb)->nr_frags;
1748	int min_desc_required = nr_frags + 1;
1749	int mss = skb_shinfo(skb)->gso_size;	/* payload size w/o headers */
1750	int f, len, hdrlen, headlen;
1751	int vring_index = vring - wil->ring_tx;
1752	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1753	uint i = swhead;
1754	dma_addr_t pa;
1755	const skb_frag_t *frag = NULL;
1756	int rem_data = mss;
1757	int lenmss;
1758	int hdr_compensation_need = true;
1759	int desc_tso_type = wil_tso_type_first;
1760	bool is_ipv4;
1761	int tcp_hdr_len;
1762	int skb_net_hdr_len;
1763	int gso_type;
1764	int rc = -EINVAL;
1765
1766	wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1767		     vring_index);
1768
1769	if (unlikely(!txdata->enabled))
1770		return -EINVAL;
1771
1772	/* A typical page 4K is 3-4 payloads, we assume each fragment
1773	 * is a full payload, that's how min_desc_required has been
1774	 * calculated. In real we might need more or less descriptors,
1775	 * this is the initial check only.
1776	 */
1777	if (unlikely(avail < min_desc_required)) {
1778		wil_err_ratelimited(wil,
1779				    "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1780				    vring_index, min_desc_required);
1781		return -ENOMEM;
1782	}
1783
1784	/* Header Length = MAC header len + IP header len + TCP header len*/
1785	hdrlen = skb_tcp_all_headers(skb);
1786
1787	gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1788	switch (gso_type) {
1789	case SKB_GSO_TCPV4:
1790		/* TCP v4, zero out the IP length and IPv4 checksum fields
1791		 * as required by the offloading doc
1792		 */
1793		ip_hdr(skb)->tot_len = 0;
1794		ip_hdr(skb)->check = 0;
1795		is_ipv4 = true;
1796		break;
1797	case SKB_GSO_TCPV6:
1798		/* TCP v6, zero out the payload length */
1799		ipv6_hdr(skb)->payload_len = 0;
1800		is_ipv4 = false;
1801		break;
1802	default:
1803		/* other than TCPv4 or TCPv6 types are not supported for TSO.
1804		 * It is also illegal for both to be set simultaneously
1805		 */
1806		return -EINVAL;
1807	}
1808
1809	if (skb->ip_summed != CHECKSUM_PARTIAL)
1810		return -EINVAL;
1811
1812	/* tcp header length and skb network header length are fixed for all
1813	 * packet's descriptors - read then once here
1814	 */
1815	tcp_hdr_len = tcp_hdrlen(skb);
1816	skb_net_hdr_len = skb_network_header_len(skb);
1817
1818	_hdr_desc = &vring->va[i].tx.legacy;
1819
1820	pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1821	if (unlikely(dma_mapping_error(dev, pa))) {
1822		wil_err(wil, "TSO: Skb head DMA map error\n");
1823		goto err_exit;
1824	}
1825
1826	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1827				  hdrlen, vring_index);
1828	wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1829				      tcp_hdr_len, skb_net_hdr_len);
1830	wil_tx_last_desc(hdr_desc);
1831
1832	vring->ctx[i].mapped_as = wil_mapped_as_single;
1833	hdr_ctx = &vring->ctx[i];
1834
1835	descs_used++;
1836	headlen = skb_headlen(skb) - hdrlen;
1837
1838	for (f = headlen ? -1 : 0; f < nr_frags; f++)  {
1839		if (headlen) {
1840			len = headlen;
1841			wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1842				     len);
1843		} else {
1844			frag = &skb_shinfo(skb)->frags[f];
1845			len = skb_frag_size(frag);
1846			wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1847		}
1848
1849		while (len) {
1850			wil_dbg_txrx(wil,
1851				     "TSO: len %d, rem_data %d, descs_used %d\n",
1852				     len, rem_data, descs_used);
1853
1854			if (descs_used == avail)  {
1855				wil_err_ratelimited(wil, "TSO: ring overflow\n");
1856				rc = -ENOMEM;
1857				goto mem_error;
1858			}
1859
1860			lenmss = min_t(int, rem_data, len);
1861			i = (swhead + descs_used) % vring->size;
1862			wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1863
1864			if (!headlen) {
1865				pa = skb_frag_dma_map(dev, frag,
1866						      skb_frag_size(frag) - len,
1867						      lenmss, DMA_TO_DEVICE);
1868				vring->ctx[i].mapped_as = wil_mapped_as_page;
1869			} else {
1870				pa = dma_map_single(dev,
1871						    skb->data +
1872						    skb_headlen(skb) - headlen,
1873						    lenmss,
1874						    DMA_TO_DEVICE);
1875				vring->ctx[i].mapped_as = wil_mapped_as_single;
1876				headlen -= lenmss;
1877			}
1878
1879			if (unlikely(dma_mapping_error(dev, pa))) {
1880				wil_err(wil, "TSO: DMA map page error\n");
1881				goto mem_error;
1882			}
1883
1884			_desc = &vring->va[i].tx.legacy;
1885
1886			if (!_first_desc) {
1887				_first_desc = _desc;
1888				first_ctx = &vring->ctx[i];
1889				d = first_desc;
1890			} else {
1891				d = &desc_mem;
1892			}
1893
1894			wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1895						  pa, lenmss, vring_index);
1896			wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1897						      is_ipv4, tcp_hdr_len,
1898						      skb_net_hdr_len);
1899
1900			/* use tso_type_first only once */
1901			desc_tso_type = wil_tso_type_mid;
1902
1903			descs_used++;  /* desc used so far */
1904			sg_desc_cnt++; /* desc used for this segment */
1905			len -= lenmss;
1906			rem_data -= lenmss;
1907
1908			wil_dbg_txrx(wil,
1909				     "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1910				     len, rem_data, descs_used, sg_desc_cnt);
1911
1912			/* Close the segment if reached mss size or last frag*/
1913			if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1914				if (hdr_compensation_need) {
1915					/* first segment include hdr desc for
1916					 * release
1917					 */
1918					hdr_ctx->nr_frags = sg_desc_cnt;
1919					wil_tx_desc_set_nr_frags(first_desc,
1920								 sg_desc_cnt +
1921								 1);
1922					hdr_compensation_need = false;
1923				} else {
1924					wil_tx_desc_set_nr_frags(first_desc,
1925								 sg_desc_cnt);
1926				}
1927				first_ctx->nr_frags = sg_desc_cnt - 1;
1928
1929				wil_tx_last_desc(d);
1930
1931				/* first descriptor may also be the last
1932				 * for this mss - make sure not to copy
1933				 * it twice
1934				 */
1935				if (first_desc != d)
1936					*_first_desc = *first_desc;
1937
1938				/*last descriptor will be copied at the end
1939				 * of this TS processing
1940				 */
1941				if (f < nr_frags - 1 || len > 0)
1942					*_desc = *d;
1943
1944				rem_data = mss;
1945				_first_desc = NULL;
1946				sg_desc_cnt = 0;
1947			} else if (first_desc != d) /* update mid descriptor */
1948					*_desc = *d;
1949		}
1950	}
1951
1952	if (!_desc)
1953		goto mem_error;
1954
1955	/* first descriptor may also be the last.
1956	 * in this case d pointer is invalid
1957	 */
1958	if (_first_desc == _desc)
1959		d = first_desc;
1960
1961	/* Last data descriptor */
1962	wil_set_tx_desc_last_tso(d);
1963	*_desc = *d;
1964
1965	/* Fill the total number of descriptors in first desc (hdr)*/
1966	wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1967	*_hdr_desc = *hdr_desc;
1968
1969	/* hold reference to skb
1970	 * to prevent skb release before accounting
1971	 * in case of immediate "tx done"
1972	 */
1973	vring->ctx[i].skb = skb_get(skb);
1974
1975	/* performance monitoring */
1976	used = wil_ring_used_tx(vring);
1977	if (wil_val_in_range(wil->ring_idle_trsh,
1978			     used, used + descs_used)) {
1979		txdata->idle += get_cycles() - txdata->last_idle;
1980		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1981			     vring_index, used, used + descs_used);
1982	}
1983
1984	/* Make sure to advance the head only after descriptor update is done.
1985	 * This will prevent a race condition where the completion thread
1986	 * will see the DU bit set from previous run and will handle the
1987	 * skb before it was completed.
1988	 */
1989	wmb();
1990
1991	/* advance swhead */
1992	wil_ring_advance_head(vring, descs_used);
1993	wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1994
1995	/* make sure all writes to descriptors (shared memory) are done before
1996	 * committing them to HW
1997	 */
1998	wmb();
1999
2000	if (wil->tx_latency)
2001		*(ktime_t *)&skb->cb = ktime_get();
2002	else
2003		memset(skb->cb, 0, sizeof(ktime_t));
2004
2005	wil_w(wil, vring->hwtail, vring->swhead);
2006	return 0;
2007
2008mem_error:
2009	while (descs_used > 0) {
2010		struct wil_ctx *ctx;
2011
2012		i = (swhead + descs_used - 1) % vring->size;
2013		d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
2014		_desc = &vring->va[i].tx.legacy;
2015		*d = *_desc;
2016		_desc->dma.status = TX_DMA_STATUS_DU;
2017		ctx = &vring->ctx[i];
2018		wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
2019		memset(ctx, 0, sizeof(*ctx));
2020		descs_used--;
2021	}
2022err_exit:
2023	return rc;
2024}
2025
2026static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2027			 struct wil_ring *ring, struct sk_buff *skb)
2028{
2029	struct device *dev = wil_to_dev(wil);
2030	struct vring_tx_desc dd, *d = &dd;
2031	volatile struct vring_tx_desc *_d;
2032	u32 swhead = ring->swhead;
2033	int avail = wil_ring_avail_tx(ring);
2034	int nr_frags = skb_shinfo(skb)->nr_frags;
2035	uint f = 0;
2036	int ring_index = ring - wil->ring_tx;
2037	struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[ring_index];
2038	uint i = swhead;
2039	dma_addr_t pa;
2040	int used;
2041	bool mcast = (ring_index == vif->bcast_ring);
2042	uint len = skb_headlen(skb);
2043
2044	wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
2045		     skb->len, ring_index, nr_frags);
2046
2047	if (unlikely(!txdata->enabled))
2048		return -EINVAL;
2049
2050	if (unlikely(avail < 1 + nr_frags)) {
2051		wil_err_ratelimited(wil,
2052				    "Tx ring[%2d] full. No space for %d fragments\n",
2053				    ring_index, 1 + nr_frags);
2054		return -ENOMEM;
2055	}
2056	_d = &ring->va[i].tx.legacy;
2057
2058	pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
2059
2060	wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
2061		     skb_headlen(skb), skb->data, &pa);
2062	wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
2063			  skb->data, skb_headlen(skb), false);
2064
2065	if (unlikely(dma_mapping_error(dev, pa)))
2066		return -EINVAL;
2067	ring->ctx[i].mapped_as = wil_mapped_as_single;
2068	/* 1-st segment */
2069	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
2070				   ring_index);
2071	if (unlikely(mcast)) {
2072		d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
2073		if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
2074			d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
2075	}
2076	/* Process TCP/UDP checksum offloading */
2077	if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
2078		wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
2079			ring_index);
2080		goto dma_error;
2081	}
2082
2083	ring->ctx[i].nr_frags = nr_frags;
2084	wil_tx_desc_set_nr_frags(d, nr_frags + 1);
2085
2086	/* middle segments */
2087	for (; f < nr_frags; f++) {
2088		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2089		int len = skb_frag_size(frag);
2090
2091		*_d = *d;
2092		wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2093		wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2094				  (const void *)d, sizeof(*d), false);
2095		i = (swhead + f + 1) % ring->size;
2096		_d = &ring->va[i].tx.legacy;
2097		pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
2098				      DMA_TO_DEVICE);
2099		if (unlikely(dma_mapping_error(dev, pa))) {
2100			wil_err(wil, "Tx[%2d] failed to map fragment\n",
2101				ring_index);
2102			goto dma_error;
2103		}
2104		ring->ctx[i].mapped_as = wil_mapped_as_page;
2105		wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
2106					   pa, len, ring_index);
2107		/* no need to check return code -
2108		 * if it succeeded for 1-st descriptor,
2109		 * it will succeed here too
2110		 */
2111		wil_tx_desc_offload_setup(d, skb);
2112	}
2113	/* for the last seg only */
2114	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
2115	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
2116	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
2117	*_d = *d;
2118	wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2119	wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2120			  (const void *)d, sizeof(*d), false);
2121
2122	/* hold reference to skb
2123	 * to prevent skb release before accounting
2124	 * in case of immediate "tx done"
2125	 */
2126	ring->ctx[i].skb = skb_get(skb);
2127
2128	/* performance monitoring */
2129	used = wil_ring_used_tx(ring);
2130	if (wil_val_in_range(wil->ring_idle_trsh,
2131			     used, used + nr_frags + 1)) {
2132		txdata->idle += get_cycles() - txdata->last_idle;
2133		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
2134			     ring_index, used, used + nr_frags + 1);
2135	}
2136
2137	/* Make sure to advance the head only after descriptor update is done.
2138	 * This will prevent a race condition where the completion thread
2139	 * will see the DU bit set from previous run and will handle the
2140	 * skb before it was completed.
2141	 */
2142	wmb();
2143
2144	/* advance swhead */
2145	wil_ring_advance_head(ring, nr_frags + 1);
2146	wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
2147		     ring->swhead);
2148	trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
2149
2150	/* make sure all writes to descriptors (shared memory) are done before
2151	 * committing them to HW
2152	 */
2153	wmb();
2154
2155	if (wil->tx_latency)
2156		*(ktime_t *)&skb->cb = ktime_get();
2157	else
2158		memset(skb->cb, 0, sizeof(ktime_t));
2159
2160	wil_w(wil, ring->hwtail, ring->swhead);
2161
2162	return 0;
2163 dma_error:
2164	/* unmap what we have mapped */
2165	nr_frags = f + 1; /* frags mapped + one for skb head */
2166	for (f = 0; f < nr_frags; f++) {
2167		struct wil_ctx *ctx;
2168
2169		i = (swhead + f) % ring->size;
2170		ctx = &ring->ctx[i];
2171		_d = &ring->va[i].tx.legacy;
2172		*d = *_d;
2173		_d->dma.status = TX_DMA_STATUS_DU;
2174		wil->txrx_ops.tx_desc_unmap(dev,
2175					    (union wil_tx_desc *)d,
2176					    ctx);
2177
2178		memset(ctx, 0, sizeof(*ctx));
2179	}
2180
2181	return -EINVAL;
2182}
2183
2184static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2185		       struct wil_ring *ring, struct sk_buff *skb)
2186{
2187	int ring_index = ring - wil->ring_tx;
2188	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2189	int rc;
2190
2191	spin_lock(&txdata->lock);
2192
2193	if (test_bit(wil_status_suspending, wil->status) ||
2194	    test_bit(wil_status_suspended, wil->status) ||
2195	    test_bit(wil_status_resuming, wil->status)) {
2196		wil_dbg_txrx(wil,
2197			     "suspend/resume in progress. drop packet\n");
2198		spin_unlock(&txdata->lock);
2199		return -EINVAL;
2200	}
2201
2202	rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
2203	     (wil, vif, ring, skb);
2204
2205	spin_unlock(&txdata->lock);
2206
2207	return rc;
2208}
2209
2210/* Check status of tx vrings and stop/wake net queues if needed
2211 * It will start/stop net queues of a specific VIF net_device.
2212 *
2213 * This function does one of two checks:
2214 * In case check_stop is true, will check if net queues need to be stopped. If
2215 * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
2216 * In case check_stop is false, will check if net queues need to be waked. If
2217 * the conditions for waking are met, netif_tx_wake_all_queues() is called.
2218 * vring is the vring which is currently being modified by either adding
2219 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
2220 * be null when irrelevant (e.g. connect/disconnect events).
2221 *
2222 * The implementation is to stop net queues if modified vring has low
2223 * descriptor availability. Wake if all vrings are not in low descriptor
2224 * availability and modified vring has high descriptor availability.
2225 */
2226static inline void __wil_update_net_queues(struct wil6210_priv *wil,
2227					   struct wil6210_vif *vif,
2228					   struct wil_ring *ring,
2229					   bool check_stop)
2230{
2231	int i;
2232	int min_ring_id = wil_get_min_tx_ring_id(wil);
2233
2234	if (unlikely(!vif))
2235		return;
2236
2237	if (ring)
2238		wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
2239			     (int)(ring - wil->ring_tx), vif->mid, check_stop,
2240			     vif->net_queue_stopped);
2241	else
2242		wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
2243			     check_stop, vif->mid, vif->net_queue_stopped);
2244
2245	if (ring && drop_if_ring_full)
2246		/* no need to stop/wake net queues */
2247		return;
2248
2249	if (check_stop == vif->net_queue_stopped)
2250		/* net queues already in desired state */
2251		return;
2252
2253	if (check_stop) {
2254		if (!ring || unlikely(wil_ring_avail_low(ring))) {
2255			/* not enough room in the vring */
2256			netif_tx_stop_all_queues(vif_to_ndev(vif));
2257			vif->net_queue_stopped = true;
2258			wil_dbg_txrx(wil, "netif_tx_stop called\n");
2259		}
2260		return;
2261	}
2262
2263	/* Do not wake the queues in suspend flow */
2264	if (test_bit(wil_status_suspending, wil->status) ||
2265	    test_bit(wil_status_suspended, wil->status))
2266		return;
2267
2268	/* check wake */
2269	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
2270		struct wil_ring *cur_ring = &wil->ring_tx[i];
2271		struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[i];
2272
2273		if (txdata->mid != vif->mid || !cur_ring->va ||
2274		    !txdata->enabled || cur_ring == ring)
2275			continue;
2276
2277		if (wil_ring_avail_low(cur_ring)) {
2278			wil_dbg_txrx(wil, "ring %d full, can't wake\n",
2279				     (int)(cur_ring - wil->ring_tx));
2280			return;
2281		}
2282	}
2283
2284	if (!ring || wil_ring_avail_high(ring)) {
2285		/* enough room in the ring */
2286		wil_dbg_txrx(wil, "calling netif_tx_wake\n");
2287		netif_tx_wake_all_queues(vif_to_ndev(vif));
2288		vif->net_queue_stopped = false;
2289	}
2290}
2291
2292void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
2293			   struct wil_ring *ring, bool check_stop)
2294{
2295	spin_lock(&wil->net_queue_lock);
2296	__wil_update_net_queues(wil, vif, ring, check_stop);
2297	spin_unlock(&wil->net_queue_lock);
2298}
2299
2300void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2301			      struct wil_ring *ring, bool check_stop)
2302{
2303	spin_lock_bh(&wil->net_queue_lock);
2304	__wil_update_net_queues(wil, vif, ring, check_stop);
2305	spin_unlock_bh(&wil->net_queue_lock);
2306}
2307
2308netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2309{
2310	struct wil6210_vif *vif = ndev_to_vif(ndev);
2311	struct wil6210_priv *wil = vif_to_wil(vif);
2312	const u8 *da = wil_skb_get_da(skb);
2313	bool bcast = is_multicast_ether_addr(da);
2314	struct wil_ring *ring;
2315	static bool pr_once_fw;
2316	int rc;
2317
2318	wil_dbg_txrx(wil, "start_xmit\n");
2319	if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2320		if (!pr_once_fw) {
2321			wil_err(wil, "FW not ready\n");
2322			pr_once_fw = true;
2323		}
2324		goto drop;
2325	}
2326	if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2327		wil_dbg_ratelimited(wil,
2328				    "VIF not connected, packet dropped\n");
2329		goto drop;
2330	}
2331	if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2332		wil_err(wil, "Xmit in monitor mode not supported\n");
2333		goto drop;
2334	}
2335	pr_once_fw = false;
2336
2337	/* find vring */
2338	if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2339		/* in STA mode (ESS), all to same VRING (to AP) */
2340		ring = wil_find_tx_ring_sta(wil, vif, skb);
2341	} else if (bcast) {
2342		if (vif->pbss || wil_check_multicast_to_unicast(wil, skb))
2343			/* in pbss, no bcast VRING - duplicate skb in
2344			 * all stations VRINGs
2345			 */
2346			ring = wil_find_tx_bcast_2(wil, vif, skb);
2347		else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2348			/* AP has a dedicated bcast VRING */
2349			ring = wil_find_tx_bcast_1(wil, vif, skb);
2350		else
2351			/* unexpected combination, fallback to duplicating
2352			 * the skb in all stations VRINGs
2353			 */
2354			ring = wil_find_tx_bcast_2(wil, vif, skb);
2355	} else {
2356		/* unicast, find specific VRING by dest. address */
2357		ring = wil_find_tx_ucast(wil, vif, skb);
2358	}
2359	if (unlikely(!ring)) {
2360		wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
2361		goto drop;
2362	}
2363	/* set up vring entry */
2364	rc = wil_tx_ring(wil, vif, ring, skb);
2365
2366	switch (rc) {
2367	case 0:
2368		/* shall we stop net queues? */
2369		wil_update_net_queues_bh(wil, vif, ring, true);
2370		/* statistics will be updated on the tx_complete */
2371		dev_kfree_skb_any(skb);
2372		return NETDEV_TX_OK;
2373	case -ENOMEM:
2374		if (drop_if_ring_full)
2375			goto drop;
2376		return NETDEV_TX_BUSY;
2377	default:
2378		break; /* goto drop; */
2379	}
2380 drop:
2381	ndev->stats.tx_dropped++;
2382	dev_kfree_skb_any(skb);
2383
2384	return NET_XMIT_DROP;
2385}
2386
2387void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2388			 struct wil_sta_info *sta)
2389{
2390	int skb_time_us;
2391	int bin;
2392
2393	if (!wil->tx_latency)
2394		return;
2395
2396	if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2397		return;
2398
2399	skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2400	bin = skb_time_us / wil->tx_latency_res;
2401	bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2402
2403	wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2404	sta->tx_latency_bins[bin]++;
2405	sta->stats.tx_latency_total_us += skb_time_us;
2406	if (skb_time_us < sta->stats.tx_latency_min_us)
2407		sta->stats.tx_latency_min_us = skb_time_us;
2408	if (skb_time_us > sta->stats.tx_latency_max_us)
2409		sta->stats.tx_latency_max_us = skb_time_us;
2410}
2411
2412/* Clean up transmitted skb's from the Tx VRING
2413 *
2414 * Return number of descriptors cleared
2415 *
2416 * Safe to call from IRQ
2417 */
2418int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2419{
2420	struct wil6210_priv *wil = vif_to_wil(vif);
2421	struct net_device *ndev = vif_to_ndev(vif);
2422	struct device *dev = wil_to_dev(wil);
2423	struct wil_ring *vring = &wil->ring_tx[ringid];
2424	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2425	int done = 0;
2426	int cid = wil->ring2cid_tid[ringid][0];
2427	struct wil_net_stats *stats = NULL;
2428	volatile struct vring_tx_desc *_d;
2429	int used_before_complete;
2430	int used_new;
2431
2432	if (unlikely(!vring->va)) {
2433		wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2434		return 0;
2435	}
2436
2437	if (unlikely(!txdata->enabled)) {
2438		wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2439		return 0;
2440	}
2441
2442	wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2443
2444	used_before_complete = wil_ring_used_tx(vring);
2445
2446	if (cid < wil->max_assoc_sta)
2447		stats = &wil->sta[cid].stats;
2448
2449	while (!wil_ring_is_empty(vring)) {
2450		int new_swtail;
2451		struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2452		/* For the fragmented skb, HW will set DU bit only for the
2453		 * last fragment. look for it.
2454		 * In TSO the first DU will include hdr desc
2455		 */
2456		int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2457		/* TODO: check we are not past head */
2458
2459		_d = &vring->va[lf].tx.legacy;
2460		if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2461			break;
2462
2463		new_swtail = (lf + 1) % vring->size;
2464		while (vring->swtail != new_swtail) {
2465			struct vring_tx_desc dd, *d = &dd;
2466			u16 dmalen;
2467			struct sk_buff *skb;
2468
2469			ctx = &vring->ctx[vring->swtail];
2470			skb = ctx->skb;
2471			_d = &vring->va[vring->swtail].tx.legacy;
2472
2473			*d = *_d;
2474
2475			dmalen = le16_to_cpu(d->dma.length);
2476			trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2477					      d->dma.error);
2478			wil_dbg_txrx(wil,
2479				     "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2480				     ringid, vring->swtail, dmalen,
2481				     d->dma.status, d->dma.error);
2482			wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2483					  (const void *)d, sizeof(*d), false);
2484
2485			wil->txrx_ops.tx_desc_unmap(dev,
2486						    (union wil_tx_desc *)d,
2487						    ctx);
2488
2489			if (skb) {
2490				if (likely(d->dma.error == 0)) {
2491					ndev->stats.tx_packets++;
2492					ndev->stats.tx_bytes += skb->len;
2493					if (stats) {
2494						stats->tx_packets++;
2495						stats->tx_bytes += skb->len;
2496
2497						wil_tx_latency_calc(wil, skb,
2498							&wil->sta[cid]);
2499					}
2500				} else {
2501					ndev->stats.tx_errors++;
2502					if (stats)
2503						stats->tx_errors++;
2504				}
2505
2506				if (skb->protocol == cpu_to_be16(ETH_P_PAE))
2507					wil_tx_complete_handle_eapol(vif, skb);
2508
2509				wil_consume_skb(skb, d->dma.error == 0);
2510			}
2511			memset(ctx, 0, sizeof(*ctx));
2512			/* Make sure the ctx is zeroed before updating the tail
2513			 * to prevent a case where wil_tx_ring will see
2514			 * this descriptor as used and handle it before ctx zero
2515			 * is completed.
2516			 */
2517			wmb();
2518			/* There is no need to touch HW descriptor:
2519			 * - ststus bit TX_DMA_STATUS_DU is set by design,
2520			 *   so hardware will not try to process this desc.,
2521			 * - rest of descriptor will be initialized on Tx.
2522			 */
2523			vring->swtail = wil_ring_next_tail(vring);
2524			done++;
2525		}
2526	}
2527
2528	/* performance monitoring */
2529	used_new = wil_ring_used_tx(vring);
2530	if (wil_val_in_range(wil->ring_idle_trsh,
2531			     used_new, used_before_complete)) {
2532		wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2533			     ringid, used_before_complete, used_new);
2534		txdata->last_idle = get_cycles();
2535	}
2536
2537	/* shall we wake net queues? */
2538	if (done)
2539		wil_update_net_queues(wil, vif, vring, false);
2540
2541	return done;
2542}
2543
2544static inline int wil_tx_init(struct wil6210_priv *wil)
2545{
2546	return 0;
2547}
2548
2549static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2550
2551static void wil_get_reorder_params(struct wil6210_priv *wil,
2552				   struct sk_buff *skb, int *tid, int *cid,
2553				   int *mid, u16 *seq, int *mcast, int *retry)
2554{
2555	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2556
2557	*tid = wil_rxdesc_tid(d);
2558	*cid = wil_skb_get_cid(skb);
2559	*mid = wil_rxdesc_mid(d);
2560	*seq = wil_rxdesc_seq(d);
2561	*mcast = wil_rxdesc_mcast(d);
2562	*retry = wil_rxdesc_retry(d);
2563}
2564
2565void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2566{
2567	wil->txrx_ops.configure_interrupt_moderation =
2568		wil_configure_interrupt_moderation;
2569	/* TX ops */
2570	wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2571	wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2572	wil->txrx_ops.tx_ring_tso =  __wil_tx_vring_tso;
2573	wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2574	wil->txrx_ops.ring_fini_tx = wil_vring_free;
2575	wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2576	wil->txrx_ops.tx_init = wil_tx_init;
2577	wil->txrx_ops.tx_fini = wil_tx_fini;
2578	wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
2579	/* RX ops */
2580	wil->txrx_ops.rx_init = wil_rx_init;
2581	wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2582	wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2583	wil->txrx_ops.get_netif_rx_params =
2584		wil_get_netif_rx_params;
2585	wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2586	wil->txrx_ops.rx_error_check = wil_rx_error_check;
2587	wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2588	wil->txrx_ops.rx_fini = wil_rx_fini;
2589}
2590