1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/dma-mapping.h>
18#include "ath9k.h"
19#include "ar9003_mac.h"
20
21#define SKB_CB_ATHBUF(__skb)	(*((struct ath_rxbuf **)__skb->cb))
22
23static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24{
25	return sc->ps_enabled &&
26	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27}
28
29/*
30 * Setup and link descriptors.
31 *
32 * 11N: we can no longer afford to self link the last descriptor.
33 * MAC acknowledges BA status as long as it copies frames to host
34 * buffer (or rx fifo). This can incorrectly acknowledge packets
35 * to a sender if last desc is self-linked.
36 */
37static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
38			    bool flush)
39{
40	struct ath_hw *ah = sc->sc_ah;
41	struct ath_common *common = ath9k_hw_common(ah);
42	struct ath_desc *ds;
43	struct sk_buff *skb;
44
45	ds = bf->bf_desc;
46	ds->ds_link = 0; /* link to null */
47	ds->ds_data = bf->bf_buf_addr;
48
49	/* virtual addr of the beginning of the buffer. */
50	skb = bf->bf_mpdu;
51	BUG_ON(skb == NULL);
52	ds->ds_vdata = skb->data;
53
54	/*
55	 * setup rx descriptors. The rx_bufsize here tells the hardware
56	 * how much data it can DMA to us and that we are prepared
57	 * to process
58	 */
59	ath9k_hw_setuprxdesc(ah, ds,
60			     common->rx_bufsize,
61			     0);
62
63	if (sc->rx.rxlink)
64		*sc->rx.rxlink = bf->bf_daddr;
65	else if (!flush)
66		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
67
68	sc->rx.rxlink = &ds->ds_link;
69}
70
71static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
72			      bool flush)
73{
74	if (sc->rx.buf_hold)
75		ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
76
77	sc->rx.buf_hold = bf;
78}
79
80static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
81{
82	/* XXX block beacon interrupts */
83	ath9k_hw_setantenna(sc->sc_ah, antenna);
84	sc->rx.defant = antenna;
85	sc->rx.rxotherant = 0;
86}
87
88static void ath_opmode_init(struct ath_softc *sc)
89{
90	struct ath_hw *ah = sc->sc_ah;
91	struct ath_common *common = ath9k_hw_common(ah);
92
93	u32 rfilt, mfilt[2];
94
95	/* configure rx filter */
96	rfilt = ath_calcrxfilter(sc);
97	ath9k_hw_setrxfilter(ah, rfilt);
98
99	/* configure bssid mask */
100	ath_hw_setbssidmask(common);
101
102	/* configure operational mode */
103	ath9k_hw_setopmode(ah);
104
105	/* calculate and install multicast filter */
106	mfilt[0] = mfilt[1] = ~0;
107	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
108}
109
110static bool ath_rx_edma_buf_link(struct ath_softc *sc,
111				 enum ath9k_rx_qtype qtype)
112{
113	struct ath_hw *ah = sc->sc_ah;
114	struct ath_rx_edma *rx_edma;
115	struct sk_buff *skb;
116	struct ath_rxbuf *bf;
117
118	rx_edma = &sc->rx.rx_edma[qtype];
119	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
120		return false;
121
122	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
123	list_del_init(&bf->list);
124
125	skb = bf->bf_mpdu;
126
127	memset(skb->data, 0, ah->caps.rx_status_len);
128	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
129				ah->caps.rx_status_len, DMA_TO_DEVICE);
130
131	SKB_CB_ATHBUF(skb) = bf;
132	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
133	__skb_queue_tail(&rx_edma->rx_fifo, skb);
134
135	return true;
136}
137
138static void ath_rx_addbuffer_edma(struct ath_softc *sc,
139				  enum ath9k_rx_qtype qtype)
140{
141	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
142	struct ath_rxbuf *bf, *tbf;
143
144	if (list_empty(&sc->rx.rxbuf)) {
145		ath_dbg(common, QUEUE, "No free rx buf available\n");
146		return;
147	}
148
149	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
150		if (!ath_rx_edma_buf_link(sc, qtype))
151			break;
152
153}
154
155static void ath_rx_remove_buffer(struct ath_softc *sc,
156				 enum ath9k_rx_qtype qtype)
157{
158	struct ath_rxbuf *bf;
159	struct ath_rx_edma *rx_edma;
160	struct sk_buff *skb;
161
162	rx_edma = &sc->rx.rx_edma[qtype];
163
164	while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
165		bf = SKB_CB_ATHBUF(skb);
166		BUG_ON(!bf);
167		list_add_tail(&bf->list, &sc->rx.rxbuf);
168	}
169}
170
171static void ath_rx_edma_cleanup(struct ath_softc *sc)
172{
173	struct ath_hw *ah = sc->sc_ah;
174	struct ath_common *common = ath9k_hw_common(ah);
175	struct ath_rxbuf *bf;
176
177	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
178	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
179
180	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
181		if (bf->bf_mpdu) {
182			dma_unmap_single(sc->dev, bf->bf_buf_addr,
183					common->rx_bufsize,
184					DMA_BIDIRECTIONAL);
185			dev_kfree_skb_any(bf->bf_mpdu);
186			bf->bf_buf_addr = 0;
187			bf->bf_mpdu = NULL;
188		}
189	}
190}
191
192static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
193{
194	__skb_queue_head_init(&rx_edma->rx_fifo);
195	rx_edma->rx_fifo_hwsize = size;
196}
197
198static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
199{
200	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
201	struct ath_hw *ah = sc->sc_ah;
202	struct sk_buff *skb;
203	struct ath_rxbuf *bf;
204	int error = 0, i;
205	u32 size;
206
207	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
208				    ah->caps.rx_status_len);
209
210	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
211			       ah->caps.rx_lp_qdepth);
212	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
213			       ah->caps.rx_hp_qdepth);
214
215	size = sizeof(struct ath_rxbuf) * nbufs;
216	bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
217	if (!bf)
218		return -ENOMEM;
219
220	INIT_LIST_HEAD(&sc->rx.rxbuf);
221
222	for (i = 0; i < nbufs; i++, bf++) {
223		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
224		if (!skb) {
225			error = -ENOMEM;
226			goto rx_init_fail;
227		}
228
229		memset(skb->data, 0, common->rx_bufsize);
230		bf->bf_mpdu = skb;
231
232		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
233						 common->rx_bufsize,
234						 DMA_BIDIRECTIONAL);
235		if (unlikely(dma_mapping_error(sc->dev,
236						bf->bf_buf_addr))) {
237				dev_kfree_skb_any(skb);
238				bf->bf_mpdu = NULL;
239				bf->bf_buf_addr = 0;
240				ath_err(common,
241					"dma_mapping_error() on RX init\n");
242				error = -ENOMEM;
243				goto rx_init_fail;
244		}
245
246		list_add_tail(&bf->list, &sc->rx.rxbuf);
247	}
248
249	return 0;
250
251rx_init_fail:
252	ath_rx_edma_cleanup(sc);
253	return error;
254}
255
256static void ath_edma_start_recv(struct ath_softc *sc)
257{
258	ath9k_hw_rxena(sc->sc_ah);
259	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
260	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
261	ath_opmode_init(sc);
262	ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel);
263}
264
265static void ath_edma_stop_recv(struct ath_softc *sc)
266{
267	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
268	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
269}
270
271int ath_rx_init(struct ath_softc *sc, int nbufs)
272{
273	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
274	struct sk_buff *skb;
275	struct ath_rxbuf *bf;
276	int error = 0;
277
278	spin_lock_init(&sc->sc_pcu_lock);
279
280	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
281			     sc->sc_ah->caps.rx_status_len;
282
283	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
284		return ath_rx_edma_init(sc, nbufs);
285
286	ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
287		common->cachelsz, common->rx_bufsize);
288
289	/* Initialize rx descriptors */
290
291	error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
292				  "rx", nbufs, 1, 0);
293	if (error != 0) {
294		ath_err(common,
295			"failed to allocate rx descriptors: %d\n",
296			error);
297		goto err;
298	}
299
300	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
301		skb = ath_rxbuf_alloc(common, common->rx_bufsize,
302				      GFP_KERNEL);
303		if (skb == NULL) {
304			error = -ENOMEM;
305			goto err;
306		}
307
308		bf->bf_mpdu = skb;
309		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
310						 common->rx_bufsize,
311						 DMA_FROM_DEVICE);
312		if (unlikely(dma_mapping_error(sc->dev,
313					       bf->bf_buf_addr))) {
314			dev_kfree_skb_any(skb);
315			bf->bf_mpdu = NULL;
316			bf->bf_buf_addr = 0;
317			ath_err(common,
318				"dma_mapping_error() on RX init\n");
319			error = -ENOMEM;
320			goto err;
321		}
322	}
323	sc->rx.rxlink = NULL;
324err:
325	if (error)
326		ath_rx_cleanup(sc);
327
328	return error;
329}
330
331void ath_rx_cleanup(struct ath_softc *sc)
332{
333	struct ath_hw *ah = sc->sc_ah;
334	struct ath_common *common = ath9k_hw_common(ah);
335	struct sk_buff *skb;
336	struct ath_rxbuf *bf;
337
338	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
339		ath_rx_edma_cleanup(sc);
340		return;
341	}
342
343	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
344		skb = bf->bf_mpdu;
345		if (skb) {
346			dma_unmap_single(sc->dev, bf->bf_buf_addr,
347					 common->rx_bufsize,
348					 DMA_FROM_DEVICE);
349			dev_kfree_skb(skb);
350			bf->bf_buf_addr = 0;
351			bf->bf_mpdu = NULL;
352		}
353	}
354}
355
356/*
357 * Calculate the receive filter according to the
358 * operating mode and state:
359 *
360 * o always accept unicast, broadcast, and multicast traffic
361 * o maintain current state of phy error reception (the hal
362 *   may enable phy error frames for noise immunity work)
363 * o probe request frames are accepted only when operating in
364 *   hostap, adhoc, or monitor modes
365 * o enable promiscuous mode according to the interface state
366 * o accept beacons:
367 *   - when operating in adhoc mode so the 802.11 layer creates
368 *     node table entries for peers,
369 *   - when operating in station mode for collecting rssi data when
370 *     the station is otherwise quiet, or
371 *   - when operating as a repeater so we see repeater-sta beacons
372 *   - when scanning
373 */
374
375u32 ath_calcrxfilter(struct ath_softc *sc)
376{
377	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
378	u32 rfilt;
379
380	if (IS_ENABLED(CONFIG_ATH9K_TX99))
381		return 0;
382
383	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
384		| ATH9K_RX_FILTER_MCAST;
385
386	/* if operating on a DFS channel, enable radar pulse detection */
387	if (sc->hw->conf.radar_enabled)
388		rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
389
390	spin_lock_bh(&sc->chan_lock);
391
392	if (sc->cur_chan->rxfilter & FIF_PROBE_REQ)
393		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
394
395	if (sc->sc_ah->is_monitoring)
396		rfilt |= ATH9K_RX_FILTER_PROM;
397
398	if ((sc->cur_chan->rxfilter & FIF_CONTROL) ||
399	    sc->sc_ah->dynack.enabled)
400		rfilt |= ATH9K_RX_FILTER_CONTROL;
401
402	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
403	    (sc->cur_chan->nvifs <= 1) &&
404	    !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC))
405		rfilt |= ATH9K_RX_FILTER_MYBEACON;
406	else if (sc->sc_ah->opmode != NL80211_IFTYPE_OCB)
407		rfilt |= ATH9K_RX_FILTER_BEACON;
408
409	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
410	    (sc->cur_chan->rxfilter & FIF_PSPOLL))
411		rfilt |= ATH9K_RX_FILTER_PSPOLL;
412
413	if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT)
414		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
415
416	if (sc->cur_chan->nvifs > 1 ||
417	    (sc->cur_chan->rxfilter & (FIF_OTHER_BSS | FIF_MCAST_ACTION))) {
418		/* This is needed for older chips */
419		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
420			rfilt |= ATH9K_RX_FILTER_PROM;
421		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
422	}
423
424	if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) ||
425	    AR_SREV_9561(sc->sc_ah))
426		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
427
428	if (AR_SREV_9462(sc->sc_ah) || AR_SREV_9565(sc->sc_ah))
429		rfilt |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
430
431	if (ath9k_is_chanctx_enabled() &&
432	    test_bit(ATH_OP_SCANNING, &common->op_flags))
433		rfilt |= ATH9K_RX_FILTER_BEACON;
434
435	spin_unlock_bh(&sc->chan_lock);
436
437	return rfilt;
438
439}
440
441void ath_startrecv(struct ath_softc *sc)
442{
443	struct ath_hw *ah = sc->sc_ah;
444	struct ath_rxbuf *bf, *tbf;
445
446	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
447		ath_edma_start_recv(sc);
448		return;
449	}
450
451	if (list_empty(&sc->rx.rxbuf))
452		goto start_recv;
453
454	sc->rx.buf_hold = NULL;
455	sc->rx.rxlink = NULL;
456	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
457		ath_rx_buf_link(sc, bf, false);
458	}
459
460	/* We could have deleted elements so the list may be empty now */
461	if (list_empty(&sc->rx.rxbuf))
462		goto start_recv;
463
464	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
465	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
466	ath9k_hw_rxena(ah);
467
468start_recv:
469	ath_opmode_init(sc);
470	ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel);
471}
472
473static void ath_flushrecv(struct ath_softc *sc)
474{
475	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
476		ath_rx_tasklet(sc, 1, true);
477	ath_rx_tasklet(sc, 1, false);
478}
479
480bool ath_stoprecv(struct ath_softc *sc)
481{
482	struct ath_hw *ah = sc->sc_ah;
483	bool stopped, reset = false;
484
485	ath9k_hw_abortpcurecv(ah);
486	ath9k_hw_setrxfilter(ah, 0);
487	stopped = ath9k_hw_stopdmarecv(ah, &reset);
488
489	ath_flushrecv(sc);
490
491	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
492		ath_edma_stop_recv(sc);
493	else
494		sc->rx.rxlink = NULL;
495
496	if (!(ah->ah_flags & AH_UNPLUGGED) &&
497	    unlikely(!stopped)) {
498		ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
499			"Failed to stop Rx DMA\n");
500		RESET_STAT_INC(sc, RESET_RX_DMA_ERROR);
501	}
502	return stopped && !reset;
503}
504
505static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
506{
507	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
508	struct ieee80211_mgmt *mgmt;
509	u8 *pos, *end, id, elen;
510	struct ieee80211_tim_ie *tim;
511
512	mgmt = (struct ieee80211_mgmt *)skb->data;
513	pos = mgmt->u.beacon.variable;
514	end = skb->data + skb->len;
515
516	while (pos + 2 < end) {
517		id = *pos++;
518		elen = *pos++;
519		if (pos + elen > end)
520			break;
521
522		if (id == WLAN_EID_TIM) {
523			if (elen < sizeof(*tim))
524				break;
525			tim = (struct ieee80211_tim_ie *) pos;
526			if (tim->dtim_count != 0)
527				break;
528			return tim->bitmap_ctrl & 0x01;
529		}
530
531		pos += elen;
532	}
533
534	return false;
535}
536
537static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
538{
539	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
540	bool skip_beacon = false;
541
542	if (skb->len < 24 + 8 + 2 + 2)
543		return;
544
545	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
546
547	if (sc->ps_flags & PS_BEACON_SYNC) {
548		sc->ps_flags &= ~PS_BEACON_SYNC;
549		ath_dbg(common, PS,
550			"Reconfigure beacon timers based on synchronized timestamp\n");
551
552#ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
553		if (ath9k_is_chanctx_enabled()) {
554			if (sc->cur_chan == &sc->offchannel.chan)
555				skip_beacon = true;
556		}
557#endif
558
559		if (!skip_beacon &&
560		    !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0)))
561			ath9k_set_beacon(sc);
562
563		ath9k_p2p_beacon_sync(sc);
564	}
565
566	if (ath_beacon_dtim_pending_cab(skb)) {
567		/*
568		 * Remain awake waiting for buffered broadcast/multicast
569		 * frames. If the last broadcast/multicast frame is not
570		 * received properly, the next beacon frame will work as
571		 * a backup trigger for returning into NETWORK SLEEP state,
572		 * so we are waiting for it as well.
573		 */
574		ath_dbg(common, PS,
575			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
576		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
577		return;
578	}
579
580	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
581		/*
582		 * This can happen if a broadcast frame is dropped or the AP
583		 * fails to send a frame indicating that all CAB frames have
584		 * been delivered.
585		 */
586		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
587		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
588	}
589}
590
591static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
592{
593	struct ieee80211_hdr *hdr;
594	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
595
596	hdr = (struct ieee80211_hdr *)skb->data;
597
598	/* Process Beacon and CAB receive in PS state */
599	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
600	    && mybeacon) {
601		ath_rx_ps_beacon(sc, skb);
602	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
603		   (ieee80211_is_data(hdr->frame_control) ||
604		    ieee80211_is_action(hdr->frame_control)) &&
605		   is_multicast_ether_addr(hdr->addr1) &&
606		   !ieee80211_has_moredata(hdr->frame_control)) {
607		/*
608		 * No more broadcast/multicast frames to be received at this
609		 * point.
610		 */
611		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
612		ath_dbg(common, PS,
613			"All PS CAB frames received, back to sleep\n");
614	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
615		   !is_multicast_ether_addr(hdr->addr1) &&
616		   !ieee80211_has_morefrags(hdr->frame_control)) {
617		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
618		ath_dbg(common, PS,
619			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
620			sc->ps_flags & (PS_WAIT_FOR_BEACON |
621					PS_WAIT_FOR_CAB |
622					PS_WAIT_FOR_PSPOLL_DATA |
623					PS_WAIT_FOR_TX_ACK));
624	}
625}
626
627static bool ath_edma_get_buffers(struct ath_softc *sc,
628				 enum ath9k_rx_qtype qtype,
629				 struct ath_rx_status *rs,
630				 struct ath_rxbuf **dest)
631{
632	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
633	struct ath_hw *ah = sc->sc_ah;
634	struct ath_common *common = ath9k_hw_common(ah);
635	struct sk_buff *skb;
636	struct ath_rxbuf *bf;
637	int ret;
638
639	skb = skb_peek(&rx_edma->rx_fifo);
640	if (!skb)
641		return false;
642
643	bf = SKB_CB_ATHBUF(skb);
644	BUG_ON(!bf);
645
646	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
647				common->rx_bufsize, DMA_FROM_DEVICE);
648
649	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
650	if (ret == -EINPROGRESS) {
651		/*let device gain the buffer again*/
652		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
653				common->rx_bufsize, DMA_FROM_DEVICE);
654		return false;
655	}
656
657	__skb_unlink(skb, &rx_edma->rx_fifo);
658	if (ret == -EINVAL) {
659		/* corrupt descriptor, skip this one and the following one */
660		list_add_tail(&bf->list, &sc->rx.rxbuf);
661		ath_rx_edma_buf_link(sc, qtype);
662
663		skb = skb_peek(&rx_edma->rx_fifo);
664		if (skb) {
665			bf = SKB_CB_ATHBUF(skb);
666			BUG_ON(!bf);
667
668			__skb_unlink(skb, &rx_edma->rx_fifo);
669			list_add_tail(&bf->list, &sc->rx.rxbuf);
670			ath_rx_edma_buf_link(sc, qtype);
671		}
672
673		bf = NULL;
674	}
675
676	*dest = bf;
677	return true;
678}
679
680static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
681						struct ath_rx_status *rs,
682						enum ath9k_rx_qtype qtype)
683{
684	struct ath_rxbuf *bf = NULL;
685
686	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
687		if (!bf)
688			continue;
689
690		return bf;
691	}
692	return NULL;
693}
694
695static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
696					   struct ath_rx_status *rs)
697{
698	struct ath_hw *ah = sc->sc_ah;
699	struct ath_common *common = ath9k_hw_common(ah);
700	struct ath_desc *ds;
701	struct ath_rxbuf *bf;
702	int ret;
703
704	if (list_empty(&sc->rx.rxbuf)) {
705		sc->rx.rxlink = NULL;
706		return NULL;
707	}
708
709	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
710	if (bf == sc->rx.buf_hold)
711		return NULL;
712
713	ds = bf->bf_desc;
714
715	/*
716	 * Must provide the virtual address of the current
717	 * descriptor, the physical address, and the virtual
718	 * address of the next descriptor in the h/w chain.
719	 * This allows the HAL to look ahead to see if the
720	 * hardware is done with a descriptor by checking the
721	 * done bit in the following descriptor and the address
722	 * of the current descriptor the DMA engine is working
723	 * on.  All this is necessary because of our use of
724	 * a self-linked list to avoid rx overruns.
725	 */
726	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
727	if (ret == -EINPROGRESS) {
728		struct ath_rx_status trs;
729		struct ath_rxbuf *tbf;
730		struct ath_desc *tds;
731
732		memset(&trs, 0, sizeof(trs));
733		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
734			sc->rx.rxlink = NULL;
735			return NULL;
736		}
737
738		tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
739
740		/*
741		 * On some hardware the descriptor status words could
742		 * get corrupted, including the done bit. Because of
743		 * this, check if the next descriptor's done bit is
744		 * set or not.
745		 *
746		 * If the next descriptor's done bit is set, the current
747		 * descriptor has been corrupted. Force s/w to discard
748		 * this descriptor and continue...
749		 */
750
751		tds = tbf->bf_desc;
752		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
753		if (ret == -EINPROGRESS)
754			return NULL;
755
756		/*
757		 * Re-check previous descriptor, in case it has been filled
758		 * in the mean time.
759		 */
760		ret = ath9k_hw_rxprocdesc(ah, ds, rs);
761		if (ret == -EINPROGRESS) {
762			/*
763			 * mark descriptor as zero-length and set the 'more'
764			 * flag to ensure that both buffers get discarded
765			 */
766			rs->rs_datalen = 0;
767			rs->rs_more = true;
768		}
769	}
770
771	list_del(&bf->list);
772	if (!bf->bf_mpdu)
773		return bf;
774
775	/*
776	 * Synchronize the DMA transfer with CPU before
777	 * 1. accessing the frame
778	 * 2. requeueing the same buffer to h/w
779	 */
780	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
781			common->rx_bufsize,
782			DMA_FROM_DEVICE);
783
784	return bf;
785}
786
787static void ath9k_process_tsf(struct ath_rx_status *rs,
788			      struct ieee80211_rx_status *rxs,
789			      u64 tsf)
790{
791	u32 tsf_lower = tsf & 0xffffffff;
792
793	rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
794	if (rs->rs_tstamp > tsf_lower &&
795	    unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
796		rxs->mactime -= 0x100000000ULL;
797
798	if (rs->rs_tstamp < tsf_lower &&
799	    unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
800		rxs->mactime += 0x100000000ULL;
801}
802
803/*
804 * For Decrypt or Demic errors, we only mark packet status here and always push
805 * up the frame up to let mac80211 handle the actual error case, be it no
806 * decryption key or real decryption error. This let us keep statistics there.
807 */
808static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
809				   struct sk_buff *skb,
810				   struct ath_rx_status *rx_stats,
811				   struct ieee80211_rx_status *rx_status,
812				   bool *decrypt_error, u64 tsf)
813{
814	struct ieee80211_hw *hw = sc->hw;
815	struct ath_hw *ah = sc->sc_ah;
816	struct ath_common *common = ath9k_hw_common(ah);
817	struct ieee80211_hdr *hdr;
818	bool discard_current = sc->rx.discard_next;
819	bool is_phyerr;
820
821	/*
822	 * Discard corrupt descriptors which are marked in
823	 * ath_get_next_rx_buf().
824	 */
825	if (discard_current)
826		goto corrupt;
827
828	sc->rx.discard_next = false;
829
830	/*
831	 * Discard zero-length packets and packets smaller than an ACK
832	 * which are not PHY_ERROR (short radar pulses have a length of 3)
833	 */
834	is_phyerr = rx_stats->rs_status & ATH9K_RXERR_PHY;
835	if (!rx_stats->rs_datalen ||
836	    (rx_stats->rs_datalen < 10 && !is_phyerr)) {
837		RX_STAT_INC(sc, rx_len_err);
838		goto corrupt;
839	}
840
841	/*
842	 * rs_status follows rs_datalen so if rs_datalen is too large
843	 * we can take a hint that hardware corrupted it, so ignore
844	 * those frames.
845	 */
846	if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
847		RX_STAT_INC(sc, rx_len_err);
848		goto corrupt;
849	}
850
851	/* Only use status info from the last fragment */
852	if (rx_stats->rs_more)
853		return 0;
854
855	/*
856	 * Return immediately if the RX descriptor has been marked
857	 * as corrupt based on the various error bits.
858	 *
859	 * This is different from the other corrupt descriptor
860	 * condition handled above.
861	 */
862	if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
863		goto corrupt;
864
865	hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
866
867	ath9k_process_tsf(rx_stats, rx_status, tsf);
868	ath_debug_stat_rx(sc, rx_stats);
869
870	/*
871	 * Process PHY errors and return so that the packet
872	 * can be dropped.
873	 */
874	if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
875		/*
876		 * DFS and spectral are mutually exclusive
877		 *
878		 * Since some chips use PHYERR_RADAR as indication for both, we
879		 * need to double check which feature is enabled to prevent
880		 * feeding spectral or dfs-detector with wrong frames.
881		 */
882		if (hw->conf.radar_enabled) {
883			ath9k_dfs_process_phyerr(sc, hdr, rx_stats,
884						 rx_status->mactime);
885		} else if (sc->spec_priv.spectral_mode != SPECTRAL_DISABLED &&
886			   ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats,
887					       rx_status->mactime)) {
888			RX_STAT_INC(sc, rx_spectral);
889		}
890		return -EINVAL;
891	}
892
893	/*
894	 * everything but the rate is checked here, the rate check is done
895	 * separately to avoid doing two lookups for a rate for each frame.
896	 */
897	spin_lock_bh(&sc->chan_lock);
898	if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error,
899				 sc->cur_chan->rxfilter)) {
900		spin_unlock_bh(&sc->chan_lock);
901		return -EINVAL;
902	}
903	spin_unlock_bh(&sc->chan_lock);
904
905	if (ath_is_mybeacon(common, hdr)) {
906		RX_STAT_INC(sc, rx_beacons);
907		rx_stats->is_mybeacon = true;
908	}
909
910	/*
911	 * This shouldn't happen, but have a safety check anyway.
912	 */
913	if (WARN_ON(!ah->curchan))
914		return -EINVAL;
915
916	if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
917		/*
918		 * No valid hardware bitrate found -- we should not get here
919		 * because hardware has already validated this frame as OK.
920		 */
921		ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
922			rx_stats->rs_rate);
923		RX_STAT_INC(sc, rx_rate_err);
924		return -EINVAL;
925	}
926
927	if (ath9k_is_chanctx_enabled()) {
928		if (rx_stats->is_mybeacon)
929			ath_chanctx_beacon_recv_ev(sc,
930					   ATH_CHANCTX_EVENT_BEACON_RECEIVED);
931	}
932
933	ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
934
935	rx_status->band = ah->curchan->chan->band;
936	rx_status->freq = ah->curchan->chan->center_freq;
937	rx_status->antenna = rx_stats->rs_antenna;
938	rx_status->flag |= RX_FLAG_MACTIME_END;
939
940#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
941	if (ieee80211_is_data_present(hdr->frame_control) &&
942	    !ieee80211_is_qos_nullfunc(hdr->frame_control))
943		sc->rx.num_pkts++;
944#endif
945
946	return 0;
947
948corrupt:
949	sc->rx.discard_next = rx_stats->rs_more;
950	return -EINVAL;
951}
952
953/*
954 * Run the LNA combining algorithm only in these cases:
955 *
956 * Standalone WLAN cards with both LNA/Antenna diversity
957 * enabled in the EEPROM.
958 *
959 * WLAN+BT cards which are in the supported card list
960 * in ath_pci_id_table and the user has loaded the
961 * driver with "bt_ant_diversity" set to true.
962 */
963static void ath9k_antenna_check(struct ath_softc *sc,
964				struct ath_rx_status *rs)
965{
966	struct ath_hw *ah = sc->sc_ah;
967	struct ath9k_hw_capabilities *pCap = &ah->caps;
968	struct ath_common *common = ath9k_hw_common(ah);
969
970	if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
971		return;
972
973	/*
974	 * Change the default rx antenna if rx diversity
975	 * chooses the other antenna 3 times in a row.
976	 */
977	if (sc->rx.defant != rs->rs_antenna) {
978		if (++sc->rx.rxotherant >= 3)
979			ath_setdefantenna(sc, rs->rs_antenna);
980	} else {
981		sc->rx.rxotherant = 0;
982	}
983
984	if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
985		if (common->bt_ant_diversity)
986			ath_ant_comb_scan(sc, rs);
987	} else {
988		ath_ant_comb_scan(sc, rs);
989	}
990}
991
992static void ath9k_apply_ampdu_details(struct ath_softc *sc,
993	struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
994{
995	if (rs->rs_isaggr) {
996		rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
997
998		rxs->ampdu_reference = sc->rx.ampdu_ref;
999
1000		if (!rs->rs_moreaggr) {
1001			rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
1002			sc->rx.ampdu_ref++;
1003		}
1004
1005		if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
1006			rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
1007	}
1008}
1009
1010static void ath_rx_count_airtime(struct ath_softc *sc,
1011				 struct ath_rx_status *rs,
1012				 struct sk_buff *skb)
1013{
1014	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1015	struct ath_hw *ah = sc->sc_ah;
1016	struct ath_common *common = ath9k_hw_common(ah);
1017	struct ieee80211_sta *sta;
1018	struct ieee80211_rx_status *rxs;
1019	const struct ieee80211_rate *rate;
1020	bool is_sgi, is_40, is_sp;
1021	int phy;
1022	u16 len = rs->rs_datalen;
1023	u32 airtime = 0;
1024	u8 tidno;
1025
1026	if (!ieee80211_is_data(hdr->frame_control))
1027		return;
1028
1029	rcu_read_lock();
1030
1031	sta = ieee80211_find_sta_by_ifaddr(sc->hw, hdr->addr2, NULL);
1032	if (!sta)
1033		goto exit;
1034	tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
1035
1036	rxs = IEEE80211_SKB_RXCB(skb);
1037
1038	is_sgi = !!(rxs->enc_flags & RX_ENC_FLAG_SHORT_GI);
1039	is_40 = !!(rxs->bw == RATE_INFO_BW_40);
1040	is_sp = !!(rxs->enc_flags & RX_ENC_FLAG_SHORTPRE);
1041
1042	if (!!(rxs->encoding == RX_ENC_HT)) {
1043		/* MCS rates */
1044
1045		airtime += ath_pkt_duration(sc, rxs->rate_idx, len,
1046					is_40, is_sgi, is_sp);
1047	} else {
1048
1049		phy = IS_CCK_RATE(rs->rs_rate) ? WLAN_RC_PHY_CCK : WLAN_RC_PHY_OFDM;
1050		rate = &common->sbands[rxs->band].bitrates[rxs->rate_idx];
1051		airtime += ath9k_hw_computetxtime(ah, phy, rate->bitrate * 100,
1052						len, rxs->rate_idx, is_sp);
1053	}
1054
1055	ieee80211_sta_register_airtime(sta, tidno, 0, airtime);
1056exit:
1057	rcu_read_unlock();
1058}
1059
1060int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1061{
1062	struct ath_rxbuf *bf;
1063	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1064	struct ieee80211_rx_status *rxs;
1065	struct ath_hw *ah = sc->sc_ah;
1066	struct ath_common *common = ath9k_hw_common(ah);
1067	struct ieee80211_hw *hw = sc->hw;
1068	int retval;
1069	struct ath_rx_status rs;
1070	enum ath9k_rx_qtype qtype;
1071	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1072	int dma_type;
1073	u64 tsf = 0;
1074	unsigned long flags;
1075	dma_addr_t new_buf_addr;
1076	unsigned int budget = 512;
1077	struct ieee80211_hdr *hdr;
1078
1079	if (edma)
1080		dma_type = DMA_BIDIRECTIONAL;
1081	else
1082		dma_type = DMA_FROM_DEVICE;
1083
1084	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1085
1086	tsf = ath9k_hw_gettsf64(ah);
1087
1088	do {
1089		bool decrypt_error = false;
1090
1091		memset(&rs, 0, sizeof(rs));
1092		if (edma)
1093			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1094		else
1095			bf = ath_get_next_rx_buf(sc, &rs);
1096
1097		if (!bf)
1098			break;
1099
1100		skb = bf->bf_mpdu;
1101		if (!skb)
1102			continue;
1103
1104		/*
1105		 * Take frame header from the first fragment and RX status from
1106		 * the last one.
1107		 */
1108		if (sc->rx.frag)
1109			hdr_skb = sc->rx.frag;
1110		else
1111			hdr_skb = skb;
1112
1113		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1114		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1115
1116		retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1117						 &decrypt_error, tsf);
1118		if (retval)
1119			goto requeue_drop_frag;
1120
1121		/* Ensure we always have an skb to requeue once we are done
1122		 * processing the current buffer's skb */
1123		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1124
1125		/* If there is no memory we ignore the current RX'd frame,
1126		 * tell hardware it can give us a new frame using the old
1127		 * skb and put it at the tail of the sc->rx.rxbuf list for
1128		 * processing. */
1129		if (!requeue_skb) {
1130			RX_STAT_INC(sc, rx_oom_err);
1131			goto requeue_drop_frag;
1132		}
1133
1134		/* We will now give hardware our shiny new allocated skb */
1135		new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1136					      common->rx_bufsize, dma_type);
1137		if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1138			dev_kfree_skb_any(requeue_skb);
1139			goto requeue_drop_frag;
1140		}
1141
1142		/* Unmap the frame */
1143		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1144				 common->rx_bufsize, dma_type);
1145
1146		bf->bf_mpdu = requeue_skb;
1147		bf->bf_buf_addr = new_buf_addr;
1148
1149		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1150		if (ah->caps.rx_status_len)
1151			skb_pull(skb, ah->caps.rx_status_len);
1152
1153		if (!rs.rs_more)
1154			ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1155						     rxs, decrypt_error);
1156
1157		if (rs.rs_more) {
1158			RX_STAT_INC(sc, rx_frags);
1159			/*
1160			 * rs_more indicates chained descriptors which can be
1161			 * used to link buffers together for a sort of
1162			 * scatter-gather operation.
1163			 */
1164			if (sc->rx.frag) {
1165				/* too many fragments - cannot handle frame */
1166				dev_kfree_skb_any(sc->rx.frag);
1167				dev_kfree_skb_any(skb);
1168				RX_STAT_INC(sc, rx_too_many_frags_err);
1169				skb = NULL;
1170			}
1171			sc->rx.frag = skb;
1172			goto requeue;
1173		}
1174
1175		if (sc->rx.frag) {
1176			int space = skb->len - skb_tailroom(hdr_skb);
1177
1178			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1179				dev_kfree_skb(skb);
1180				RX_STAT_INC(sc, rx_oom_err);
1181				goto requeue_drop_frag;
1182			}
1183
1184			sc->rx.frag = NULL;
1185
1186			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1187						  skb->len);
1188			dev_kfree_skb_any(skb);
1189			skb = hdr_skb;
1190		}
1191
1192		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1193			skb_trim(skb, skb->len - 8);
1194
1195		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1196		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1197				     PS_WAIT_FOR_CAB |
1198				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1199		    ath9k_check_auto_sleep(sc))
1200			ath_rx_ps(sc, skb, rs.is_mybeacon);
1201		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1202
1203		ath9k_antenna_check(sc, &rs);
1204		ath9k_apply_ampdu_details(sc, &rs, rxs);
1205		ath_debug_rate_stats(sc, &rs, skb);
1206		ath_rx_count_airtime(sc, &rs, skb);
1207
1208		hdr = (struct ieee80211_hdr *)skb->data;
1209		if (ieee80211_is_ack(hdr->frame_control))
1210			ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp);
1211
1212		ieee80211_rx(hw, skb);
1213
1214requeue_drop_frag:
1215		if (sc->rx.frag) {
1216			dev_kfree_skb_any(sc->rx.frag);
1217			sc->rx.frag = NULL;
1218		}
1219requeue:
1220		list_add_tail(&bf->list, &sc->rx.rxbuf);
1221
1222		if (!edma) {
1223			ath_rx_buf_relink(sc, bf, flush);
1224			if (!flush)
1225				ath9k_hw_rxena(ah);
1226		} else if (!flush) {
1227			ath_rx_edma_buf_link(sc, qtype);
1228		}
1229
1230		if (!budget--)
1231			break;
1232	} while (1);
1233
1234	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1235		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1236		ath9k_hw_set_interrupts(ah);
1237	}
1238
1239	return 0;
1240}
1241