1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18#include <linux/ath9k_platform.h>
19
20void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
21{
22        REG_WRITE(ah, reg, val);
23
24        if (ah->config.analog_shiftreg)
25		udelay(100);
26}
27
28void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
29			       u32 shift, u32 val)
30{
31	REG_RMW(ah, reg, ((val << shift) & mask), mask);
32
33	if (ah->config.analog_shiftreg)
34		udelay(100);
35}
36
37int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
38			     int16_t targetLeft, int16_t targetRight)
39{
40	int16_t rv;
41
42	if (srcRight == srcLeft) {
43		rv = targetLeft;
44	} else {
45		rv = (int16_t) (((target - srcLeft) * targetRight +
46				 (srcRight - target) * targetLeft) /
47				(srcRight - srcLeft));
48	}
49	return rv;
50}
51
52bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
53				    u16 *indexL, u16 *indexR)
54{
55	u16 i;
56
57	if (target <= pList[0]) {
58		*indexL = *indexR = 0;
59		return true;
60	}
61	if (target >= pList[listSize - 1]) {
62		*indexL = *indexR = (u16) (listSize - 1);
63		return true;
64	}
65
66	for (i = 0; i < listSize - 1; i++) {
67		if (pList[i] == target) {
68			*indexL = *indexR = i;
69			return true;
70		}
71		if (target < pList[i + 1]) {
72			*indexL = i;
73			*indexR = (u16) (i + 1);
74			return false;
75		}
76	}
77	return false;
78}
79
80void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
81				  int eep_start_loc, int size)
82{
83	int i = 0, j, addr;
84	u32 addrdata[8];
85	u32 data[8];
86
87	for (addr = 0; addr < size; addr++) {
88		addrdata[i] = AR5416_EEPROM_OFFSET +
89			((addr + eep_start_loc) << AR5416_EEPROM_S);
90		i++;
91		if (i == 8) {
92			REG_READ_MULTI(ah, addrdata, data, i);
93
94			for (j = 0; j < i; j++) {
95				*eep_data = data[j];
96				eep_data++;
97			}
98			i = 0;
99		}
100	}
101
102	if (i != 0) {
103		REG_READ_MULTI(ah, addrdata, data, i);
104
105		for (j = 0; j < i; j++) {
106			*eep_data = data[j];
107			eep_data++;
108		}
109	}
110}
111
112static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
113				      off_t offset, u16 *data)
114{
115	if (offset >= blob_size)
116		return false;
117
118	*data =  blob[offset];
119	return true;
120}
121
122static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
123				      off_t offset, u16 *data)
124{
125	return ath9k_hw_nvram_read_array(pdata->eeprom_data,
126					 ARRAY_SIZE(pdata->eeprom_data),
127					 offset, data);
128}
129
130static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
131					 off_t offset, u16 *data)
132{
133	return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
134					 eeprom_blob->size / sizeof(u16),
135					 offset, data);
136}
137
138static bool ath9k_hw_nvram_read_nvmem(struct ath_hw *ah, off_t offset,
139				      u16 *data)
140{
141	return ath9k_hw_nvram_read_array(ah->nvmem_blob,
142					 ah->nvmem_blob_len / sizeof(u16),
143					 offset, data);
144}
145
146bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
147{
148	struct ath_common *common = ath9k_hw_common(ah);
149	struct ath9k_platform_data *pdata = ah->dev->platform_data;
150	bool ret;
151
152	if (ah->nvmem_blob)
153		ret = ath9k_hw_nvram_read_nvmem(ah, off, data);
154	else if (ah->eeprom_blob)
155		ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
156	else if (pdata && !pdata->use_eeprom)
157		ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
158	else
159		ret = common->bus_ops->eeprom_read(common, off, data);
160
161	if (!ret)
162		ath_dbg(common, EEPROM,
163			"unable to read eeprom region at offset %u\n", off);
164
165	return ret;
166}
167
168int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
169{
170	u16 magic;
171	u16 *eepdata;
172	int i;
173	bool needs_byteswap = false;
174	struct ath_common *common = ath9k_hw_common(ah);
175
176	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
177		ath_err(common, "Reading Magic # failed\n");
178		return -EIO;
179	}
180
181	if (swab16(magic) == AR5416_EEPROM_MAGIC) {
182		needs_byteswap = true;
183		ath_dbg(common, EEPROM,
184			"EEPROM needs byte-swapping to correct endianness.\n");
185	} else if (magic != AR5416_EEPROM_MAGIC) {
186		if (ath9k_hw_use_flash(ah)) {
187			ath_dbg(common, EEPROM,
188				"Ignoring invalid EEPROM magic (0x%04x).\n",
189				magic);
190		} else {
191			ath_err(common,
192				"Invalid EEPROM magic (0x%04x).\n", magic);
193			return -EINVAL;
194		}
195	}
196
197	if (needs_byteswap) {
198		if (ah->ah_flags & AH_NO_EEP_SWAP) {
199			ath_info(common,
200				 "Ignoring endianness difference in EEPROM magic bytes.\n");
201		} else {
202			eepdata = (u16 *)(&ah->eeprom);
203
204			for (i = 0; i < size; i++)
205				eepdata[i] = swab16(eepdata[i]);
206		}
207	}
208
209	if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
210		*swap_needed = true;
211		ath_dbg(common, EEPROM,
212			"Big Endian EEPROM detected according to EEPMISC register.\n");
213	} else {
214		*swap_needed = false;
215	}
216
217	return 0;
218}
219
220bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
221{
222	u32 i, sum = 0;
223	u16 *eepdata = (u16 *)(&ah->eeprom);
224	struct ath_common *common = ath9k_hw_common(ah);
225
226	for (i = 0; i < size; i++)
227		sum ^= eepdata[i];
228
229	if (sum != 0xffff) {
230		ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
231		return false;
232	}
233
234	return true;
235}
236
237bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
238{
239	struct ath_common *common = ath9k_hw_common(ah);
240
241	if (ah->eep_ops->get_eeprom_ver(ah) != version ||
242	    ah->eep_ops->get_eeprom_rev(ah) < minrev) {
243		ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
244			ah->eep_ops->get_eeprom_ver(ah),
245			ah->eep_ops->get_eeprom_rev(ah));
246		return false;
247	}
248
249	return true;
250}
251
252void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
253			     u8 *pVpdList, u16 numIntercepts,
254			     u8 *pRetVpdList)
255{
256	u16 i, k;
257	u8 currPwr = pwrMin;
258	u16 idxL = 0, idxR = 0;
259
260	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
261		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
262					       numIntercepts, &(idxL),
263					       &(idxR));
264		if (idxR < 1)
265			idxR = 1;
266		if (idxL == numIntercepts - 1)
267			idxL = (u16) (numIntercepts - 2);
268		if (pPwrList[idxL] == pPwrList[idxR])
269			k = pVpdList[idxL];
270		else
271			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
272				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
273				  (pPwrList[idxR] - pPwrList[idxL]));
274		pRetVpdList[i] = (u8) k;
275		currPwr += 2;
276	}
277}
278
279void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
280				       struct ath9k_channel *chan,
281				       struct cal_target_power_leg *powInfo,
282				       u16 numChannels,
283				       struct cal_target_power_leg *pNewPower,
284				       u16 numRates, bool isExtTarget)
285{
286	struct chan_centers centers;
287	u16 clo, chi;
288	int i;
289	int matchIndex = -1, lowIndex = -1;
290	u16 freq;
291
292	ath9k_hw_get_channel_centers(ah, chan, &centers);
293	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
294
295	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
296				       IS_CHAN_2GHZ(chan))) {
297		matchIndex = 0;
298	} else {
299		for (i = 0; (i < numChannels) &&
300			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
301			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
302						       IS_CHAN_2GHZ(chan))) {
303				matchIndex = i;
304				break;
305			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
306						IS_CHAN_2GHZ(chan)) && i > 0 &&
307				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
308						IS_CHAN_2GHZ(chan))) {
309				lowIndex = i - 1;
310				break;
311			}
312		}
313		if ((matchIndex == -1) && (lowIndex == -1))
314			matchIndex = i - 1;
315	}
316
317	if (matchIndex != -1) {
318		*pNewPower = powInfo[matchIndex];
319	} else {
320		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
321					 IS_CHAN_2GHZ(chan));
322		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
323					 IS_CHAN_2GHZ(chan));
324
325		for (i = 0; i < numRates; i++) {
326			pNewPower->tPow2x[i] =
327				(u8)ath9k_hw_interpolate(freq, clo, chi,
328						powInfo[lowIndex].tPow2x[i],
329						powInfo[lowIndex + 1].tPow2x[i]);
330		}
331	}
332}
333
334void ath9k_hw_get_target_powers(struct ath_hw *ah,
335				struct ath9k_channel *chan,
336				struct cal_target_power_ht *powInfo,
337				u16 numChannels,
338				struct cal_target_power_ht *pNewPower,
339				u16 numRates, bool isHt40Target)
340{
341	struct chan_centers centers;
342	u16 clo, chi;
343	int i;
344	int matchIndex = -1, lowIndex = -1;
345	u16 freq;
346
347	ath9k_hw_get_channel_centers(ah, chan, &centers);
348	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
349
350	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
351		matchIndex = 0;
352	} else {
353		for (i = 0; (i < numChannels) &&
354			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
355			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
356						       IS_CHAN_2GHZ(chan))) {
357				matchIndex = i;
358				break;
359			} else
360				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
361						IS_CHAN_2GHZ(chan)) && i > 0 &&
362				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
363						IS_CHAN_2GHZ(chan))) {
364					lowIndex = i - 1;
365					break;
366				}
367		}
368		if ((matchIndex == -1) && (lowIndex == -1))
369			matchIndex = i - 1;
370	}
371
372	if (matchIndex != -1) {
373		*pNewPower = powInfo[matchIndex];
374	} else {
375		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
376					 IS_CHAN_2GHZ(chan));
377		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
378					 IS_CHAN_2GHZ(chan));
379
380		for (i = 0; i < numRates; i++) {
381			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
382						clo, chi,
383						powInfo[lowIndex].tPow2x[i],
384						powInfo[lowIndex + 1].tPow2x[i]);
385		}
386	}
387}
388
389u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
390				bool is2GHz, int num_band_edges)
391{
392	u16 twiceMaxEdgePower = MAX_RATE_POWER;
393	int i;
394
395	for (i = 0; (i < num_band_edges) &&
396		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
397		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
398			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
399			break;
400		} else if ((i > 0) &&
401			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
402						      is2GHz))) {
403			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
404					       is2GHz) < freq &&
405			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
406				twiceMaxEdgePower =
407					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
408			}
409			break;
410		}
411	}
412
413	return twiceMaxEdgePower;
414}
415
416u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
417			      u8 antenna_reduction)
418{
419	u16 reduction = antenna_reduction;
420
421	/*
422	 * Reduce scaled Power by number of chains active
423	 * to get the per chain tx power level.
424	 */
425	switch (ar5416_get_ntxchains(ah->txchainmask)) {
426	case 1:
427		break;
428	case 2:
429		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
430		break;
431	case 3:
432		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
433		break;
434	}
435
436	if (power_limit > reduction)
437		power_limit -= reduction;
438	else
439		power_limit = 0;
440
441	return min_t(u16, power_limit, MAX_RATE_POWER);
442}
443
444void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
445{
446	struct ath_common *common = ath9k_hw_common(ah);
447	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
448
449	switch (ar5416_get_ntxchains(ah->txchainmask)) {
450	case 1:
451		break;
452	case 2:
453		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
454		break;
455	case 3:
456		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
457		break;
458	default:
459		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
460		break;
461	}
462}
463
464void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
465				struct ath9k_channel *chan,
466				void *pRawDataSet,
467				u8 *bChans, u16 availPiers,
468				u16 tPdGainOverlap,
469				u16 *pPdGainBoundaries, u8 *pPDADCValues,
470				u16 numXpdGains)
471{
472	int i, j, k;
473	int16_t ss;
474	u16 idxL = 0, idxR = 0, numPiers;
475	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
476		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
477	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
478		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
479	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
480		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
481
482	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
483	u8 minPwrT4[AR5416_NUM_PD_GAINS];
484	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
485	int16_t vpdStep;
486	int16_t tmpVal;
487	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
488	bool match;
489	int16_t minDelta = 0;
490	struct chan_centers centers;
491	int pdgain_boundary_default;
492	struct cal_data_per_freq *data_def = pRawDataSet;
493	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
494	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
495	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
496	int intercepts;
497
498	if (AR_SREV_9287(ah))
499		intercepts = AR9287_PD_GAIN_ICEPTS;
500	else
501		intercepts = AR5416_PD_GAIN_ICEPTS;
502
503	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
504	ath9k_hw_get_channel_centers(ah, chan, &centers);
505
506	for (numPiers = 0; numPiers < availPiers; numPiers++) {
507		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
508			break;
509	}
510
511	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
512							     IS_CHAN_2GHZ(chan)),
513					       bChans, numPiers, &idxL, &idxR);
514
515	if (match) {
516		if (AR_SREV_9287(ah)) {
517			for (i = 0; i < numXpdGains; i++) {
518				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
519				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
520				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
521						data_9287[idxL].pwrPdg[i],
522						data_9287[idxL].vpdPdg[i],
523						intercepts,
524						vpdTableI[i]);
525			}
526		} else if (eeprom_4k) {
527			for (i = 0; i < numXpdGains; i++) {
528				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
529				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
530				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
531						data_4k[idxL].pwrPdg[i],
532						data_4k[idxL].vpdPdg[i],
533						intercepts,
534						vpdTableI[i]);
535			}
536		} else {
537			for (i = 0; i < numXpdGains; i++) {
538				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
539				maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
540				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
541						data_def[idxL].pwrPdg[i],
542						data_def[idxL].vpdPdg[i],
543						intercepts,
544						vpdTableI[i]);
545			}
546		}
547	} else {
548		for (i = 0; i < numXpdGains; i++) {
549			if (AR_SREV_9287(ah)) {
550				pVpdL = data_9287[idxL].vpdPdg[i];
551				pPwrL = data_9287[idxL].pwrPdg[i];
552				pVpdR = data_9287[idxR].vpdPdg[i];
553				pPwrR = data_9287[idxR].pwrPdg[i];
554			} else if (eeprom_4k) {
555				pVpdL = data_4k[idxL].vpdPdg[i];
556				pPwrL = data_4k[idxL].pwrPdg[i];
557				pVpdR = data_4k[idxR].vpdPdg[i];
558				pPwrR = data_4k[idxR].pwrPdg[i];
559			} else {
560				pVpdL = data_def[idxL].vpdPdg[i];
561				pPwrL = data_def[idxL].pwrPdg[i];
562				pVpdR = data_def[idxR].vpdPdg[i];
563				pPwrR = data_def[idxR].pwrPdg[i];
564			}
565
566			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
567
568			maxPwrT4[i] =
569				min(pPwrL[intercepts - 1],
570				    pPwrR[intercepts - 1]);
571
572
573			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
574						pPwrL, pVpdL,
575						intercepts,
576						vpdTableL[i]);
577			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
578						pPwrR, pVpdR,
579						intercepts,
580						vpdTableR[i]);
581
582			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
583				vpdTableI[i][j] =
584					(u8)(ath9k_hw_interpolate((u16)
585					     FREQ2FBIN(centers.
586						       synth_center,
587						       IS_CHAN_2GHZ
588						       (chan)),
589					     bChans[idxL], bChans[idxR],
590					     vpdTableL[i][j], vpdTableR[i][j]));
591			}
592		}
593	}
594
595	k = 0;
596
597	for (i = 0; i < numXpdGains; i++) {
598		if (i == (numXpdGains - 1))
599			pPdGainBoundaries[i] =
600				(u16)(maxPwrT4[i] / 2);
601		else
602			pPdGainBoundaries[i] =
603				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
604
605		pPdGainBoundaries[i] =
606			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
607
608		minDelta = 0;
609
610		if (i == 0) {
611			if (AR_SREV_9280_20_OR_LATER(ah))
612				ss = (int16_t)(0 - (minPwrT4[i] / 2));
613			else
614				ss = 0;
615		} else {
616			ss = (int16_t)((pPdGainBoundaries[i - 1] -
617					(minPwrT4[i] / 2)) -
618				       tPdGainOverlap + 1 + minDelta);
619		}
620		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
621		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
622
623		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
624			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
625			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
626			ss++;
627		}
628
629		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
630		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
631				(minPwrT4[i] / 2));
632		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
633			tgtIndex : sizeCurrVpdTable;
634
635		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
636			pPDADCValues[k++] = vpdTableI[i][ss++];
637		}
638
639		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
640				    vpdTableI[i][sizeCurrVpdTable - 2]);
641		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
642
643		if (tgtIndex >= maxIndex) {
644			while ((ss <= tgtIndex) &&
645			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
646				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
647						    (ss - maxIndex + 1) * vpdStep));
648				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
649							 255 : tmpVal);
650				ss++;
651			}
652		}
653	}
654
655	if (eeprom_4k)
656		pdgain_boundary_default = 58;
657	else
658		pdgain_boundary_default = pPdGainBoundaries[i - 1];
659
660	while (i < AR5416_PD_GAINS_IN_MASK) {
661		pPdGainBoundaries[i] = pdgain_boundary_default;
662		i++;
663	}
664
665	while (k < AR5416_NUM_PDADC_VALUES) {
666		pPDADCValues[k] = pPDADCValues[k - 1];
667		k++;
668	}
669}
670
671int ath9k_hw_eeprom_init(struct ath_hw *ah)
672{
673	if (AR_SREV_9300_20_OR_LATER(ah))
674		ah->eep_ops = &eep_ar9300_ops;
675	else if (AR_SREV_9287(ah)) {
676		ah->eep_ops = &eep_ar9287_ops;
677	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
678		ah->eep_ops = &eep_4k_ops;
679	} else {
680		ah->eep_ops = &eep_def_ops;
681	}
682
683	if (!ah->eep_ops->fill_eeprom(ah))
684		return -EIO;
685
686	return ah->eep_ops->check_eeprom(ah);
687}
688