1/*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include <linux/module.h>
19#include <linux/mmc/card.h>
20#include <linux/mmc/mmc.h>
21#include <linux/mmc/host.h>
22#include <linux/mmc/sdio_func.h>
23#include <linux/mmc/sdio_ids.h>
24#include <linux/mmc/sdio.h>
25#include <linux/mmc/sd.h>
26#include "hif.h"
27#include "hif-ops.h"
28#include "target.h"
29#include "debug.h"
30#include "cfg80211.h"
31#include "trace.h"
32
33struct ath6kl_sdio {
34	struct sdio_func *func;
35
36	/* protects access to bus_req_freeq */
37	spinlock_t lock;
38
39	/* free list */
40	struct list_head bus_req_freeq;
41
42	/* available bus requests */
43	struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
44
45	struct ath6kl *ar;
46
47	u8 *dma_buffer;
48
49	/* protects access to dma_buffer */
50	struct mutex dma_buffer_mutex;
51
52	/* scatter request list head */
53	struct list_head scat_req;
54
55	atomic_t irq_handling;
56	wait_queue_head_t irq_wq;
57
58	/* protects access to scat_req */
59	spinlock_t scat_lock;
60
61	bool scatter_enabled;
62
63	bool is_disabled;
64	const struct sdio_device_id *id;
65	struct work_struct wr_async_work;
66	struct list_head wr_asyncq;
67
68	/* protects access to wr_asyncq */
69	spinlock_t wr_async_lock;
70};
71
72#define CMD53_ARG_READ          0
73#define CMD53_ARG_WRITE         1
74#define CMD53_ARG_BLOCK_BASIS   1
75#define CMD53_ARG_FIXED_ADDRESS 0
76#define CMD53_ARG_INCR_ADDRESS  1
77
78static int ath6kl_sdio_config(struct ath6kl *ar);
79
80static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
81{
82	return ar->hif_priv;
83}
84
85/*
86 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
87 * Most host controllers assume the buffer is DMA'able and will
88 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
89 * check fails on stack memory.
90 */
91static inline bool buf_needs_bounce(u8 *buf)
92{
93	return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
94}
95
96static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
97{
98	struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
99
100	/* EP1 has an extended range */
101	mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
102	mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
103	mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
104	mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
105	mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
106	mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
107}
108
109static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
110					     u8 mode, u8 opcode, u32 addr,
111					     u16 blksz)
112{
113	*arg = (((rw & 1) << 31) |
114		((func & 0x7) << 28) |
115		((mode & 1) << 27) |
116		((opcode & 1) << 26) |
117		((addr & 0x1FFFF) << 9) |
118		(blksz & 0x1FF));
119}
120
121static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
122					     unsigned int address,
123					     unsigned char val)
124{
125	const u8 func = 0;
126
127	*arg = ((write & 1) << 31) |
128	       ((func & 0x7) << 28) |
129	       ((raw & 1) << 27) |
130	       (1 << 26) |
131	       ((address & 0x1FFFF) << 9) |
132	       (1 << 8) |
133	       (val & 0xFF);
134}
135
136static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
137					   unsigned int address,
138					   unsigned char byte)
139{
140	struct mmc_command io_cmd;
141
142	memset(&io_cmd, 0, sizeof(io_cmd));
143	ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
144	io_cmd.opcode = SD_IO_RW_DIRECT;
145	io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
146
147	return mmc_wait_for_cmd(card->host, &io_cmd, 0);
148}
149
150static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
151			  u8 *buf, u32 len)
152{
153	int ret = 0;
154
155	sdio_claim_host(func);
156
157	if (request & HIF_WRITE) {
158		/* FIXME: looks like ugly workaround for something */
159		if (addr >= HIF_MBOX_BASE_ADDR &&
160		    addr <= HIF_MBOX_END_ADDR)
161			addr += (HIF_MBOX_WIDTH - len);
162
163		/* FIXME: this also looks like ugly workaround */
164		if (addr == HIF_MBOX0_EXT_BASE_ADDR)
165			addr += HIF_MBOX0_EXT_WIDTH - len;
166
167		if (request & HIF_FIXED_ADDRESS)
168			ret = sdio_writesb(func, addr, buf, len);
169		else
170			ret = sdio_memcpy_toio(func, addr, buf, len);
171	} else {
172		if (request & HIF_FIXED_ADDRESS)
173			ret = sdio_readsb(func, buf, addr, len);
174		else
175			ret = sdio_memcpy_fromio(func, buf, addr, len);
176	}
177
178	sdio_release_host(func);
179
180	ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
181		   request & HIF_WRITE ? "wr" : "rd", addr,
182		   request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
183	ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
184
185	trace_ath6kl_sdio(addr, request, buf, len);
186
187	return ret;
188}
189
190static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
191{
192	struct bus_request *bus_req;
193
194	spin_lock_bh(&ar_sdio->lock);
195
196	if (list_empty(&ar_sdio->bus_req_freeq)) {
197		spin_unlock_bh(&ar_sdio->lock);
198		return NULL;
199	}
200
201	bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
202				   struct bus_request, list);
203	list_del(&bus_req->list);
204
205	spin_unlock_bh(&ar_sdio->lock);
206	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
207		   __func__, bus_req);
208
209	return bus_req;
210}
211
212static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
213				     struct bus_request *bus_req)
214{
215	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
216		   __func__, bus_req);
217
218	spin_lock_bh(&ar_sdio->lock);
219	list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
220	spin_unlock_bh(&ar_sdio->lock);
221}
222
223static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
224					struct mmc_data *data)
225{
226	struct scatterlist *sg;
227	int i;
228
229	data->blksz = HIF_MBOX_BLOCK_SIZE;
230	data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
231
232	ath6kl_dbg(ATH6KL_DBG_SCATTER,
233		   "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
234		   (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
235		   data->blksz, data->blocks, scat_req->len,
236		   scat_req->scat_entries);
237
238	data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
239						    MMC_DATA_READ;
240
241	/* fill SG entries */
242	sg = scat_req->sgentries;
243	sg_init_table(sg, scat_req->scat_entries);
244
245	/* assemble SG list */
246	for (i = 0; i < scat_req->scat_entries; i++, sg++) {
247		ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
248			   i, scat_req->scat_list[i].buf,
249			   scat_req->scat_list[i].len);
250
251		sg_set_buf(sg, scat_req->scat_list[i].buf,
252			   scat_req->scat_list[i].len);
253	}
254
255	/* set scatter-gather table for request */
256	data->sg = scat_req->sgentries;
257	data->sg_len = scat_req->scat_entries;
258}
259
260static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
261			       struct bus_request *req)
262{
263	struct mmc_request mmc_req;
264	struct mmc_command cmd;
265	struct mmc_data data;
266	struct hif_scatter_req *scat_req;
267	u8 opcode, rw;
268	int status, len;
269
270	scat_req = req->scat_req;
271
272	if (scat_req->virt_scat) {
273		len = scat_req->len;
274		if (scat_req->req & HIF_BLOCK_BASIS)
275			len = round_down(len, HIF_MBOX_BLOCK_SIZE);
276
277		status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
278					scat_req->addr, scat_req->virt_dma_buf,
279					len);
280		goto scat_complete;
281	}
282
283	memset(&mmc_req, 0, sizeof(struct mmc_request));
284	memset(&cmd, 0, sizeof(struct mmc_command));
285	memset(&data, 0, sizeof(struct mmc_data));
286
287	ath6kl_sdio_setup_scat_data(scat_req, &data);
288
289	opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
290		  CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
291
292	rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
293
294	/* Fixup the address so that the last byte will fall on MBOX EOM */
295	if (scat_req->req & HIF_WRITE) {
296		if (scat_req->addr == HIF_MBOX_BASE_ADDR)
297			scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
298		else
299			/* Uses extended address range */
300			scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
301	}
302
303	/* set command argument */
304	ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
305				  CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
306				  data.blocks);
307
308	cmd.opcode = SD_IO_RW_EXTENDED;
309	cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
310
311	mmc_req.cmd = &cmd;
312	mmc_req.data = &data;
313
314	sdio_claim_host(ar_sdio->func);
315
316	mmc_set_data_timeout(&data, ar_sdio->func->card);
317
318	trace_ath6kl_sdio_scat(scat_req->addr,
319			       scat_req->req,
320			       scat_req->len,
321			       scat_req->scat_entries,
322			       scat_req->scat_list);
323
324	/* synchronous call to process request */
325	mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
326
327	sdio_release_host(ar_sdio->func);
328
329	status = cmd.error ? cmd.error : data.error;
330
331scat_complete:
332	scat_req->status = status;
333
334	if (scat_req->status)
335		ath6kl_err("Scatter write request failed:%d\n",
336			   scat_req->status);
337
338	if (scat_req->req & HIF_ASYNCHRONOUS)
339		scat_req->complete(ar_sdio->ar->htc_target, scat_req);
340
341	return status;
342}
343
344static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
345					   int n_scat_entry, int n_scat_req,
346					   bool virt_scat)
347{
348	struct hif_scatter_req *s_req;
349	struct bus_request *bus_req;
350	int i, scat_req_sz, scat_list_sz, size;
351	u8 *virt_buf;
352
353	scat_list_sz = n_scat_entry * sizeof(struct hif_scatter_item);
354	scat_req_sz = sizeof(*s_req) + scat_list_sz;
355
356	if (!virt_scat)
357		size = sizeof(struct scatterlist) * n_scat_entry;
358	else
359		size =  2 * L1_CACHE_BYTES +
360			ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
361
362	for (i = 0; i < n_scat_req; i++) {
363		/* allocate the scatter request */
364		s_req = kzalloc(scat_req_sz, GFP_KERNEL);
365		if (!s_req)
366			return -ENOMEM;
367
368		if (virt_scat) {
369			virt_buf = kzalloc(size, GFP_KERNEL);
370			if (!virt_buf) {
371				kfree(s_req);
372				return -ENOMEM;
373			}
374
375			s_req->virt_dma_buf =
376				(u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
377		} else {
378			/* allocate sglist */
379			s_req->sgentries = kzalloc(size, GFP_KERNEL);
380
381			if (!s_req->sgentries) {
382				kfree(s_req);
383				return -ENOMEM;
384			}
385		}
386
387		/* allocate a bus request for this scatter request */
388		bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
389		if (!bus_req) {
390			kfree(s_req->sgentries);
391			kfree(s_req->virt_dma_buf);
392			kfree(s_req);
393			return -ENOMEM;
394		}
395
396		/* assign the scatter request to this bus request */
397		bus_req->scat_req = s_req;
398		s_req->busrequest = bus_req;
399
400		s_req->virt_scat = virt_scat;
401
402		/* add it to the scatter pool */
403		hif_scatter_req_add(ar_sdio->ar, s_req);
404	}
405
406	return 0;
407}
408
409static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
410				       u32 len, u32 request)
411{
412	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
413	u8  *tbuf = NULL;
414	int ret;
415	bool bounced = false;
416
417	if (request & HIF_BLOCK_BASIS)
418		len = round_down(len, HIF_MBOX_BLOCK_SIZE);
419
420	if (buf_needs_bounce(buf)) {
421		if (!ar_sdio->dma_buffer)
422			return -ENOMEM;
423		mutex_lock(&ar_sdio->dma_buffer_mutex);
424		tbuf = ar_sdio->dma_buffer;
425
426		if (request & HIF_WRITE)
427			memcpy(tbuf, buf, len);
428
429		bounced = true;
430	} else {
431		tbuf = buf;
432	}
433
434	ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
435	if ((request & HIF_READ) && bounced)
436		memcpy(buf, tbuf, len);
437
438	if (bounced)
439		mutex_unlock(&ar_sdio->dma_buffer_mutex);
440
441	return ret;
442}
443
444static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
445				      struct bus_request *req)
446{
447	if (req->scat_req) {
448		ath6kl_sdio_scat_rw(ar_sdio, req);
449	} else {
450		void *context;
451		int status;
452
453		status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
454						     req->buffer, req->length,
455						     req->request);
456		context = req->packet;
457		ath6kl_sdio_free_bus_req(ar_sdio, req);
458		ath6kl_hif_rw_comp_handler(context, status);
459	}
460}
461
462static void ath6kl_sdio_write_async_work(struct work_struct *work)
463{
464	struct ath6kl_sdio *ar_sdio;
465	struct bus_request *req, *tmp_req;
466
467	ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
468
469	spin_lock_bh(&ar_sdio->wr_async_lock);
470	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
471		list_del(&req->list);
472		spin_unlock_bh(&ar_sdio->wr_async_lock);
473		__ath6kl_sdio_write_async(ar_sdio, req);
474		spin_lock_bh(&ar_sdio->wr_async_lock);
475	}
476	spin_unlock_bh(&ar_sdio->wr_async_lock);
477}
478
479static void ath6kl_sdio_irq_handler(struct sdio_func *func)
480{
481	int status;
482	struct ath6kl_sdio *ar_sdio;
483
484	ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
485
486	ar_sdio = sdio_get_drvdata(func);
487	atomic_set(&ar_sdio->irq_handling, 1);
488	/*
489	 * Release the host during interrups so we can pick it back up when
490	 * we process commands.
491	 */
492	sdio_release_host(ar_sdio->func);
493
494	status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
495	sdio_claim_host(ar_sdio->func);
496
497	atomic_set(&ar_sdio->irq_handling, 0);
498	wake_up(&ar_sdio->irq_wq);
499
500	WARN_ON(status && status != -ECANCELED);
501}
502
503static int ath6kl_sdio_power_on(struct ath6kl *ar)
504{
505	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
506	struct sdio_func *func = ar_sdio->func;
507	int ret = 0;
508
509	if (!ar_sdio->is_disabled)
510		return 0;
511
512	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
513
514	sdio_claim_host(func);
515
516	ret = sdio_enable_func(func);
517	if (ret) {
518		ath6kl_err("Unable to enable sdio func: %d)\n", ret);
519		sdio_release_host(func);
520		return ret;
521	}
522
523	sdio_release_host(func);
524
525	/*
526	 * Wait for hardware to initialise. It should take a lot less than
527	 * 10 ms but let's be conservative here.
528	 */
529	msleep(10);
530
531	ret = ath6kl_sdio_config(ar);
532	if (ret) {
533		ath6kl_err("Failed to config sdio: %d\n", ret);
534		goto out;
535	}
536
537	ar_sdio->is_disabled = false;
538
539out:
540	return ret;
541}
542
543static int ath6kl_sdio_power_off(struct ath6kl *ar)
544{
545	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
546	int ret;
547
548	if (ar_sdio->is_disabled)
549		return 0;
550
551	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
552
553	/* Disable the card */
554	sdio_claim_host(ar_sdio->func);
555	ret = sdio_disable_func(ar_sdio->func);
556	sdio_release_host(ar_sdio->func);
557
558	if (ret)
559		return ret;
560
561	ar_sdio->is_disabled = true;
562
563	return ret;
564}
565
566static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
567				   u32 length, u32 request,
568				   struct htc_packet *packet)
569{
570	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
571	struct bus_request *bus_req;
572
573	bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
574
575	if (WARN_ON_ONCE(!bus_req))
576		return -ENOMEM;
577
578	bus_req->address = address;
579	bus_req->buffer = buffer;
580	bus_req->length = length;
581	bus_req->request = request;
582	bus_req->packet = packet;
583
584	spin_lock_bh(&ar_sdio->wr_async_lock);
585	list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
586	spin_unlock_bh(&ar_sdio->wr_async_lock);
587	queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
588
589	return 0;
590}
591
592static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
593{
594	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
595	int ret;
596
597	sdio_claim_host(ar_sdio->func);
598
599	/* Register the isr */
600	ret =  sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
601	if (ret)
602		ath6kl_err("Failed to claim sdio irq: %d\n", ret);
603
604	sdio_release_host(ar_sdio->func);
605}
606
607static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
608{
609	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
610
611	return !atomic_read(&ar_sdio->irq_handling);
612}
613
614static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
615{
616	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
617	int ret;
618
619	sdio_claim_host(ar_sdio->func);
620
621	if (atomic_read(&ar_sdio->irq_handling)) {
622		sdio_release_host(ar_sdio->func);
623
624		ret = wait_event_interruptible(ar_sdio->irq_wq,
625					       ath6kl_sdio_is_on_irq(ar));
626		if (ret)
627			return;
628
629		sdio_claim_host(ar_sdio->func);
630	}
631
632	ret = sdio_release_irq(ar_sdio->func);
633	if (ret)
634		ath6kl_err("Failed to release sdio irq: %d\n", ret);
635
636	sdio_release_host(ar_sdio->func);
637}
638
639static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
640{
641	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
642	struct hif_scatter_req *node = NULL;
643
644	spin_lock_bh(&ar_sdio->scat_lock);
645
646	if (!list_empty(&ar_sdio->scat_req)) {
647		node = list_first_entry(&ar_sdio->scat_req,
648					struct hif_scatter_req, list);
649		list_del(&node->list);
650
651		node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
652	}
653
654	spin_unlock_bh(&ar_sdio->scat_lock);
655
656	return node;
657}
658
659static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
660					struct hif_scatter_req *s_req)
661{
662	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
663
664	spin_lock_bh(&ar_sdio->scat_lock);
665
666	list_add_tail(&s_req->list, &ar_sdio->scat_req);
667
668	spin_unlock_bh(&ar_sdio->scat_lock);
669}
670
671/* scatter gather read write request */
672static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
673					struct hif_scatter_req *scat_req)
674{
675	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
676	u32 request = scat_req->req;
677	int status = 0;
678
679	if (!scat_req->len)
680		return -EINVAL;
681
682	ath6kl_dbg(ATH6KL_DBG_SCATTER,
683		   "hif-scatter: total len: %d scatter entries: %d\n",
684		   scat_req->len, scat_req->scat_entries);
685
686	if (request & HIF_SYNCHRONOUS) {
687		status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
688	} else {
689		spin_lock_bh(&ar_sdio->wr_async_lock);
690		list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
691		spin_unlock_bh(&ar_sdio->wr_async_lock);
692		queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
693	}
694
695	return status;
696}
697
698/* clean up scatter support */
699static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
700{
701	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
702	struct hif_scatter_req *s_req, *tmp_req;
703
704	/* empty the free list */
705	spin_lock_bh(&ar_sdio->scat_lock);
706	list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
707		list_del(&s_req->list);
708		spin_unlock_bh(&ar_sdio->scat_lock);
709
710		/*
711		 * FIXME: should we also call completion handler with
712		 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
713		 * that the packet is properly freed?
714		 */
715		if (s_req->busrequest) {
716			s_req->busrequest->scat_req = NULL;
717			ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
718		}
719		kfree(s_req->virt_dma_buf);
720		kfree(s_req->sgentries);
721		kfree(s_req);
722
723		spin_lock_bh(&ar_sdio->scat_lock);
724	}
725	spin_unlock_bh(&ar_sdio->scat_lock);
726
727	ar_sdio->scatter_enabled = false;
728}
729
730/* setup of HIF scatter resources */
731static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
732{
733	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
734	struct htc_target *target = ar->htc_target;
735	int ret = 0;
736	bool virt_scat = false;
737
738	if (ar_sdio->scatter_enabled)
739		return 0;
740
741	ar_sdio->scatter_enabled = true;
742
743	/* check if host supports scatter and it meets our requirements */
744	if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
745		ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
746			   ar_sdio->func->card->host->max_segs,
747			   MAX_SCATTER_ENTRIES_PER_REQ);
748		virt_scat = true;
749	}
750
751	if (!virt_scat) {
752		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
753				MAX_SCATTER_ENTRIES_PER_REQ,
754				MAX_SCATTER_REQUESTS, virt_scat);
755
756		if (!ret) {
757			ath6kl_dbg(ATH6KL_DBG_BOOT,
758				   "hif-scatter enabled requests %d entries %d\n",
759				   MAX_SCATTER_REQUESTS,
760				   MAX_SCATTER_ENTRIES_PER_REQ);
761
762			target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
763			target->max_xfer_szper_scatreq =
764						MAX_SCATTER_REQ_TRANSFER_SIZE;
765		} else {
766			ath6kl_sdio_cleanup_scatter(ar);
767			ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
768		}
769	}
770
771	if (virt_scat || ret) {
772		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
773				ATH6KL_SCATTER_ENTRIES_PER_REQ,
774				ATH6KL_SCATTER_REQS, virt_scat);
775
776		if (ret) {
777			ath6kl_err("failed to alloc virtual scatter resources !\n");
778			ath6kl_sdio_cleanup_scatter(ar);
779			return ret;
780		}
781
782		ath6kl_dbg(ATH6KL_DBG_BOOT,
783			   "virtual scatter enabled requests %d entries %d\n",
784			   ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
785
786		target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
787		target->max_xfer_szper_scatreq =
788					ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
789	}
790
791	return 0;
792}
793
794static int ath6kl_sdio_config(struct ath6kl *ar)
795{
796	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
797	struct sdio_func *func = ar_sdio->func;
798	int ret;
799
800	sdio_claim_host(func);
801
802	if (ar_sdio->id->device >= SDIO_DEVICE_ID_ATHEROS_AR6003_00) {
803		/* enable 4-bit ASYNC interrupt on AR6003 or later */
804		ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
805						CCCR_SDIO_IRQ_MODE_REG,
806						SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
807		if (ret) {
808			ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
809				   ret);
810			goto out;
811		}
812
813		ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
814	}
815
816	/* give us some time to enable, in ms */
817	func->enable_timeout = 100;
818
819	ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
820	if (ret) {
821		ath6kl_err("Set sdio block size %d failed: %d)\n",
822			   HIF_MBOX_BLOCK_SIZE, ret);
823		goto out;
824	}
825
826out:
827	sdio_release_host(func);
828
829	return ret;
830}
831
832static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
833{
834	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
835	struct sdio_func *func = ar_sdio->func;
836	mmc_pm_flag_t flags;
837	int ret;
838
839	flags = sdio_get_host_pm_caps(func);
840
841	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
842
843	if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
844	    !(flags & MMC_PM_KEEP_POWER))
845		return -EINVAL;
846
847	ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
848	if (ret) {
849		ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
850		return ret;
851	}
852
853	/* sdio irq wakes up host */
854	ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
855	if (ret)
856		ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
857
858	return ret;
859}
860
861static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
862{
863	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
864	struct sdio_func *func = ar_sdio->func;
865	mmc_pm_flag_t flags;
866	bool try_deepsleep = false;
867	int ret;
868
869	if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
870	    (!ar->suspend_mode && wow)) {
871		ret = ath6kl_set_sdio_pm_caps(ar);
872		if (ret)
873			goto cut_pwr;
874
875		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
876		if (ret && ret != -ENOTCONN)
877			ath6kl_err("wow suspend failed: %d\n", ret);
878
879		if (ret &&
880		    (!ar->wow_suspend_mode ||
881		     ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
882			try_deepsleep = true;
883		else if (ret &&
884			 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
885			goto cut_pwr;
886		if (!ret)
887			return 0;
888	}
889
890	if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
891	    !ar->suspend_mode || try_deepsleep) {
892		flags = sdio_get_host_pm_caps(func);
893		if (!(flags & MMC_PM_KEEP_POWER))
894			goto cut_pwr;
895
896		ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
897		if (ret)
898			goto cut_pwr;
899
900		/*
901		 * Workaround to support Deep Sleep with MSM, set the host pm
902		 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
903		 * the sdc2_clock and internally allows MSM to enter
904		 * TCXO shutdown properly.
905		 */
906		if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
907			ret = sdio_set_host_pm_flags(func,
908						MMC_PM_WAKE_SDIO_IRQ);
909			if (ret)
910				goto cut_pwr;
911		}
912
913		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
914					      NULL);
915		if (ret)
916			goto cut_pwr;
917
918		return 0;
919	}
920
921cut_pwr:
922	if (func->card && func->card->host)
923		func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
924
925	return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
926}
927
928static int ath6kl_sdio_resume(struct ath6kl *ar)
929{
930	switch (ar->state) {
931	case ATH6KL_STATE_OFF:
932	case ATH6KL_STATE_CUTPOWER:
933		ath6kl_dbg(ATH6KL_DBG_SUSPEND,
934			   "sdio resume configuring sdio\n");
935
936		/* need to set sdio settings after power is cut from sdio */
937		ath6kl_sdio_config(ar);
938		break;
939
940	case ATH6KL_STATE_ON:
941		break;
942
943	case ATH6KL_STATE_DEEPSLEEP:
944		break;
945
946	case ATH6KL_STATE_WOW:
947		break;
948
949	case ATH6KL_STATE_SUSPENDING:
950		break;
951
952	case ATH6KL_STATE_RESUMING:
953		break;
954
955	case ATH6KL_STATE_RECOVERY:
956		break;
957	}
958
959	ath6kl_cfg80211_resume(ar);
960
961	return 0;
962}
963
964/* set the window address register (using 4-byte register access ). */
965static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
966{
967	int status;
968	u8 addr_val[4];
969	s32 i;
970
971	/*
972	 * Write bytes 1,2,3 of the register to set the upper address bytes,
973	 * the LSB is written last to initiate the access cycle
974	 */
975
976	for (i = 1; i <= 3; i++) {
977		/*
978		 * Fill the buffer with the address byte value we want to
979		 * hit 4 times.
980		 */
981		memset(addr_val, ((u8 *)&addr)[i], 4);
982
983		/*
984		 * Hit each byte of the register address with a 4-byte
985		 * write operation to the same address, this is a harmless
986		 * operation.
987		 */
988		status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
989					     4, HIF_WR_SYNC_BYTE_FIX);
990		if (status)
991			break;
992	}
993
994	if (status) {
995		ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
996			   __func__, addr, reg_addr);
997		return status;
998	}
999
1000	/*
1001	 * Write the address register again, this time write the whole
1002	 * 4-byte value. The effect here is that the LSB write causes the
1003	 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
1004	 * effect since we are writing the same values again
1005	 */
1006	status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
1007				     4, HIF_WR_SYNC_BYTE_INC);
1008
1009	if (status) {
1010		ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
1011			   __func__, addr, reg_addr);
1012		return status;
1013	}
1014
1015	return 0;
1016}
1017
1018static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1019{
1020	int status;
1021
1022	/* set window register to start read cycle */
1023	status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1024					address);
1025
1026	if (status)
1027		return status;
1028
1029	/* read the data */
1030	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1031				(u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1032	if (status) {
1033		ath6kl_err("%s: failed to read from window data addr\n",
1034			   __func__);
1035		return status;
1036	}
1037
1038	return status;
1039}
1040
1041static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1042				    __le32 data)
1043{
1044	int status;
1045	u32 val = (__force u32) data;
1046
1047	/* set write data */
1048	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1049				(u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1050	if (status) {
1051		ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1052			   __func__, data);
1053		return status;
1054	}
1055
1056	/* set window register, which starts the write cycle */
1057	return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1058				      address);
1059}
1060
1061static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1062{
1063	u32 addr;
1064	unsigned long timeout;
1065	int ret;
1066
1067	ar->bmi.cmd_credits = 0;
1068
1069	/* Read the counter register to get the command credits */
1070	addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1071
1072	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1073	while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1074		/*
1075		 * Hit the credit counter with a 4-byte access, the first byte
1076		 * read will hit the counter and cause a decrement, while the
1077		 * remaining 3 bytes has no effect. The rationale behind this
1078		 * is to make all HIF accesses 4-byte aligned.
1079		 */
1080		ret = ath6kl_sdio_read_write_sync(ar, addr,
1081					 (u8 *)&ar->bmi.cmd_credits, 4,
1082					 HIF_RD_SYNC_BYTE_INC);
1083		if (ret) {
1084			ath6kl_err("Unable to decrement the command credit count register: %d\n",
1085				   ret);
1086			return ret;
1087		}
1088
1089		/* The counter is only 8 bits.
1090		 * Ignore anything in the upper 3 bytes
1091		 */
1092		ar->bmi.cmd_credits &= 0xFF;
1093	}
1094
1095	if (!ar->bmi.cmd_credits) {
1096		ath6kl_err("bmi communication timeout\n");
1097		return -ETIMEDOUT;
1098	}
1099
1100	return 0;
1101}
1102
1103static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1104{
1105	unsigned long timeout;
1106	u32 rx_word = 0;
1107	int ret = 0;
1108
1109	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1110	while ((time_before(jiffies, timeout)) && !rx_word) {
1111		ret = ath6kl_sdio_read_write_sync(ar,
1112					RX_LOOKAHEAD_VALID_ADDRESS,
1113					(u8 *)&rx_word, sizeof(rx_word),
1114					HIF_RD_SYNC_BYTE_INC);
1115		if (ret) {
1116			ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1117			return ret;
1118		}
1119
1120		 /* all we really want is one bit */
1121		rx_word &= (1 << ENDPOINT1);
1122	}
1123
1124	if (!rx_word) {
1125		ath6kl_err("bmi_recv_buf FIFO empty\n");
1126		return -EINVAL;
1127	}
1128
1129	return ret;
1130}
1131
1132static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1133{
1134	int ret;
1135	u32 addr;
1136
1137	ret = ath6kl_sdio_bmi_credits(ar);
1138	if (ret)
1139		return ret;
1140
1141	addr = ar->mbox_info.htc_addr;
1142
1143	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1144					  HIF_WR_SYNC_BYTE_INC);
1145	if (ret) {
1146		ath6kl_err("unable to send the bmi data to the device\n");
1147		return ret;
1148	}
1149
1150	return 0;
1151}
1152
1153static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1154{
1155	int ret;
1156	u32 addr;
1157
1158	/*
1159	 * During normal bootup, small reads may be required.
1160	 * Rather than issue an HIF Read and then wait as the Target
1161	 * adds successive bytes to the FIFO, we wait here until
1162	 * we know that response data is available.
1163	 *
1164	 * This allows us to cleanly timeout on an unexpected
1165	 * Target failure rather than risk problems at the HIF level.
1166	 * In particular, this avoids SDIO timeouts and possibly garbage
1167	 * data on some host controllers.  And on an interconnect
1168	 * such as Compact Flash (as well as some SDIO masters) which
1169	 * does not provide any indication on data timeout, it avoids
1170	 * a potential hang or garbage response.
1171	 *
1172	 * Synchronization is more difficult for reads larger than the
1173	 * size of the MBOX FIFO (128B), because the Target is unable
1174	 * to push the 129th byte of data until AFTER the Host posts an
1175	 * HIF Read and removes some FIFO data.  So for large reads the
1176	 * Host proceeds to post an HIF Read BEFORE all the data is
1177	 * actually available to read.  Fortunately, large BMI reads do
1178	 * not occur in practice -- they're supported for debug/development.
1179	 *
1180	 * So Host/Target BMI synchronization is divided into these cases:
1181	 *  CASE 1: length < 4
1182	 *        Should not happen
1183	 *
1184	 *  CASE 2: 4 <= length <= 128
1185	 *        Wait for first 4 bytes to be in FIFO
1186	 *        If CONSERVATIVE_BMI_READ is enabled, also wait for
1187	 *        a BMI command credit, which indicates that the ENTIRE
1188	 *        response is available in the FIFO
1189	 *
1190	 *  CASE 3: length > 128
1191	 *        Wait for the first 4 bytes to be in FIFO
1192	 *
1193	 * For most uses, a small timeout should be sufficient and we will
1194	 * usually see a response quickly; but there may be some unusual
1195	 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1196	 * For now, we use an unbounded busy loop while waiting for
1197	 * BMI_EXECUTE.
1198	 *
1199	 * If BMI_EXECUTE ever needs to support longer-latency execution,
1200	 * especially in production, this code needs to be enhanced to sleep
1201	 * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
1202	 * a function of Host processor speed.
1203	 */
1204	if (len >= 4) { /* NB: Currently, always true */
1205		ret = ath6kl_bmi_get_rx_lkahd(ar);
1206		if (ret)
1207			return ret;
1208	}
1209
1210	addr = ar->mbox_info.htc_addr;
1211	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1212				  HIF_RD_SYNC_BYTE_INC);
1213	if (ret) {
1214		ath6kl_err("Unable to read the bmi data from the device: %d\n",
1215			   ret);
1216		return ret;
1217	}
1218
1219	return 0;
1220}
1221
1222static void ath6kl_sdio_stop(struct ath6kl *ar)
1223{
1224	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1225	struct bus_request *req, *tmp_req;
1226	void *context;
1227
1228	/* FIXME: make sure that wq is not queued again */
1229
1230	cancel_work_sync(&ar_sdio->wr_async_work);
1231
1232	spin_lock_bh(&ar_sdio->wr_async_lock);
1233
1234	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1235		list_del(&req->list);
1236
1237		if (req->scat_req) {
1238			/* this is a scatter gather request */
1239			req->scat_req->status = -ECANCELED;
1240			req->scat_req->complete(ar_sdio->ar->htc_target,
1241						req->scat_req);
1242		} else {
1243			context = req->packet;
1244			ath6kl_sdio_free_bus_req(ar_sdio, req);
1245			ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1246		}
1247	}
1248
1249	spin_unlock_bh(&ar_sdio->wr_async_lock);
1250
1251	WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1252}
1253
1254static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1255	.read_write_sync = ath6kl_sdio_read_write_sync,
1256	.write_async = ath6kl_sdio_write_async,
1257	.irq_enable = ath6kl_sdio_irq_enable,
1258	.irq_disable = ath6kl_sdio_irq_disable,
1259	.scatter_req_get = ath6kl_sdio_scatter_req_get,
1260	.scatter_req_add = ath6kl_sdio_scatter_req_add,
1261	.enable_scatter = ath6kl_sdio_enable_scatter,
1262	.scat_req_rw = ath6kl_sdio_async_rw_scatter,
1263	.cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1264	.suspend = ath6kl_sdio_suspend,
1265	.resume = ath6kl_sdio_resume,
1266	.diag_read32 = ath6kl_sdio_diag_read32,
1267	.diag_write32 = ath6kl_sdio_diag_write32,
1268	.bmi_read = ath6kl_sdio_bmi_read,
1269	.bmi_write = ath6kl_sdio_bmi_write,
1270	.power_on = ath6kl_sdio_power_on,
1271	.power_off = ath6kl_sdio_power_off,
1272	.stop = ath6kl_sdio_stop,
1273};
1274
1275#ifdef CONFIG_PM_SLEEP
1276
1277/*
1278 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1279 * suspend. We instead follow cfg80211 suspend/resume handlers.
1280 */
1281static int ath6kl_sdio_pm_suspend(struct device *device)
1282{
1283	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1284
1285	return 0;
1286}
1287
1288static int ath6kl_sdio_pm_resume(struct device *device)
1289{
1290	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1291
1292	return 0;
1293}
1294
1295static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1296			 ath6kl_sdio_pm_resume);
1297
1298#define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1299
1300#else
1301
1302#define ATH6KL_SDIO_PM_OPS NULL
1303
1304#endif /* CONFIG_PM_SLEEP */
1305
1306static int ath6kl_sdio_probe(struct sdio_func *func,
1307			     const struct sdio_device_id *id)
1308{
1309	int ret;
1310	struct ath6kl_sdio *ar_sdio;
1311	struct ath6kl *ar;
1312	int count;
1313
1314	ath6kl_dbg(ATH6KL_DBG_BOOT,
1315		   "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1316		   func->num, func->vendor, func->device,
1317		   func->max_blksize, func->cur_blksize);
1318
1319	ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1320	if (!ar_sdio)
1321		return -ENOMEM;
1322
1323	ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1324	if (!ar_sdio->dma_buffer) {
1325		ret = -ENOMEM;
1326		goto err_hif;
1327	}
1328
1329	ar_sdio->func = func;
1330	sdio_set_drvdata(func, ar_sdio);
1331
1332	ar_sdio->id = id;
1333	ar_sdio->is_disabled = true;
1334
1335	spin_lock_init(&ar_sdio->lock);
1336	spin_lock_init(&ar_sdio->scat_lock);
1337	spin_lock_init(&ar_sdio->wr_async_lock);
1338	mutex_init(&ar_sdio->dma_buffer_mutex);
1339
1340	INIT_LIST_HEAD(&ar_sdio->scat_req);
1341	INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1342	INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1343
1344	INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1345
1346	init_waitqueue_head(&ar_sdio->irq_wq);
1347
1348	for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1349		ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1350
1351	ar = ath6kl_core_create(&ar_sdio->func->dev);
1352	if (!ar) {
1353		ath6kl_err("Failed to alloc ath6kl core\n");
1354		ret = -ENOMEM;
1355		goto err_dma;
1356	}
1357
1358	ar_sdio->ar = ar;
1359	ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1360	ar->hif_priv = ar_sdio;
1361	ar->hif_ops = &ath6kl_sdio_ops;
1362	ar->bmi.max_data_size = 256;
1363
1364	ath6kl_sdio_set_mbox_info(ar);
1365
1366	ret = ath6kl_sdio_config(ar);
1367	if (ret) {
1368		ath6kl_err("Failed to config sdio: %d\n", ret);
1369		goto err_core_alloc;
1370	}
1371
1372	ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1373	if (ret) {
1374		ath6kl_err("Failed to init ath6kl core\n");
1375		goto err_core_alloc;
1376	}
1377
1378	return ret;
1379
1380err_core_alloc:
1381	ath6kl_core_destroy(ar_sdio->ar);
1382err_dma:
1383	kfree(ar_sdio->dma_buffer);
1384err_hif:
1385	kfree(ar_sdio);
1386
1387	return ret;
1388}
1389
1390static void ath6kl_sdio_remove(struct sdio_func *func)
1391{
1392	struct ath6kl_sdio *ar_sdio;
1393
1394	ath6kl_dbg(ATH6KL_DBG_BOOT,
1395		   "sdio removed func %d vendor 0x%x device 0x%x\n",
1396		   func->num, func->vendor, func->device);
1397
1398	ar_sdio = sdio_get_drvdata(func);
1399
1400	ath6kl_stop_txrx(ar_sdio->ar);
1401	cancel_work_sync(&ar_sdio->wr_async_work);
1402
1403	ath6kl_core_cleanup(ar_sdio->ar);
1404	ath6kl_core_destroy(ar_sdio->ar);
1405
1406	kfree(ar_sdio->dma_buffer);
1407	kfree(ar_sdio);
1408}
1409
1410static const struct sdio_device_id ath6kl_sdio_devices[] = {
1411	{SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6003_00)},
1412	{SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6003_01)},
1413	{SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6004_00)},
1414	{SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6004_01)},
1415	{SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6004_02)},
1416	{SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6004_18)},
1417	{SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6004_19)},
1418	{},
1419};
1420
1421MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1422
1423static struct sdio_driver ath6kl_sdio_driver = {
1424	.name = "ath6kl_sdio",
1425	.id_table = ath6kl_sdio_devices,
1426	.probe = ath6kl_sdio_probe,
1427	.remove = ath6kl_sdio_remove,
1428	.drv.pm = ATH6KL_SDIO_PM_OPS,
1429};
1430
1431static int __init ath6kl_sdio_init(void)
1432{
1433	int ret;
1434
1435	ret = sdio_register_driver(&ath6kl_sdio_driver);
1436	if (ret)
1437		ath6kl_err("sdio driver registration failed: %d\n", ret);
1438
1439	return ret;
1440}
1441
1442static void __exit ath6kl_sdio_exit(void)
1443{
1444	sdio_unregister_driver(&ath6kl_sdio_driver);
1445}
1446
1447module_init(ath6kl_sdio_init);
1448module_exit(ath6kl_sdio_exit);
1449
1450MODULE_AUTHOR("Atheros Communications, Inc.");
1451MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1452MODULE_LICENSE("Dual BSD/GPL");
1453
1454MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1455MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1456MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1457MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1458MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1459MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1460MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1461MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1462MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1463MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1464MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1465MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1466MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1467MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1468MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1469MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1470MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1471MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1472MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);
1473MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE);
1474MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE);
1475MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE);
1476