1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Freescale QUICC Engine HDLC Device Driver
3 *
4 * Copyright 2016 Freescale Semiconductor Inc.
5 */
6
7#include <linux/delay.h>
8#include <linux/dma-mapping.h>
9#include <linux/hdlc.h>
10#include <linux/init.h>
11#include <linux/interrupt.h>
12#include <linux/io.h>
13#include <linux/irq.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/netdevice.h>
17#include <linux/of_address.h>
18#include <linux/of_irq.h>
19#include <linux/of_platform.h>
20#include <linux/platform_device.h>
21#include <linux/sched.h>
22#include <linux/skbuff.h>
23#include <linux/slab.h>
24#include <linux/spinlock.h>
25#include <linux/stddef.h>
26#include <soc/fsl/qe/qe_tdm.h>
27#include <uapi/linux/if_arp.h>
28
29#include "fsl_ucc_hdlc.h"
30
31#define DRV_DESC "Freescale QE UCC HDLC Driver"
32#define DRV_NAME "ucc_hdlc"
33
34#define TDM_PPPOHT_SLIC_MAXIN
35#define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S)
36
37static int uhdlc_close(struct net_device *dev);
38
39static struct ucc_tdm_info utdm_primary_info = {
40	.uf_info = {
41		.tsa = 0,
42		.cdp = 0,
43		.cds = 1,
44		.ctsp = 1,
45		.ctss = 1,
46		.revd = 0,
47		.urfs = 256,
48		.utfs = 256,
49		.urfet = 128,
50		.urfset = 192,
51		.utfet = 128,
52		.utftt = 0x40,
53		.ufpt = 256,
54		.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
55		.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
56		.tenc = UCC_FAST_TX_ENCODING_NRZ,
57		.renc = UCC_FAST_RX_ENCODING_NRZ,
58		.tcrc = UCC_FAST_16_BIT_CRC,
59		.synl = UCC_FAST_SYNC_LEN_NOT_USED,
60	},
61
62	.si_info = {
63#ifdef TDM_PPPOHT_SLIC_MAXIN
64		.simr_rfsd = 1,
65		.simr_tfsd = 2,
66#else
67		.simr_rfsd = 0,
68		.simr_tfsd = 0,
69#endif
70		.simr_crt = 0,
71		.simr_sl = 0,
72		.simr_ce = 1,
73		.simr_fe = 1,
74		.simr_gm = 0,
75	},
76};
77
78static struct ucc_tdm_info utdm_info[UCC_MAX_NUM];
79
80static int uhdlc_init(struct ucc_hdlc_private *priv)
81{
82	struct ucc_tdm_info *ut_info;
83	struct ucc_fast_info *uf_info;
84	u32 cecr_subblock;
85	u16 bd_status;
86	int ret, i;
87	void *bd_buffer;
88	dma_addr_t bd_dma_addr;
89	s32 riptr;
90	s32 tiptr;
91	u32 gumr;
92
93	ut_info = priv->ut_info;
94	uf_info = &ut_info->uf_info;
95
96	if (priv->tsa) {
97		uf_info->tsa = 1;
98		uf_info->ctsp = 1;
99		uf_info->cds = 1;
100		uf_info->ctss = 1;
101	} else {
102		uf_info->cds = 0;
103		uf_info->ctsp = 0;
104		uf_info->ctss = 0;
105	}
106
107	/* This sets HPM register in CMXUCR register which configures a
108	 * open drain connected HDLC bus
109	 */
110	if (priv->hdlc_bus)
111		uf_info->brkpt_support = 1;
112
113	uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
114				UCC_HDLC_UCCE_TXB) << 16);
115
116	ret = ucc_fast_init(uf_info, &priv->uccf);
117	if (ret) {
118		dev_err(priv->dev, "Failed to init uccf.");
119		return ret;
120	}
121
122	priv->uf_regs = priv->uccf->uf_regs;
123	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
124
125	/* Loopback mode */
126	if (priv->loopback) {
127		dev_info(priv->dev, "Loopback Mode\n");
128		/* use the same clock when work in loopback */
129		qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
130
131		gumr = ioread32be(&priv->uf_regs->gumr);
132		gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
133			 UCC_FAST_GUMR_TCI);
134		gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
135		iowrite32be(gumr, &priv->uf_regs->gumr);
136	}
137
138	/* Initialize SI */
139	if (priv->tsa)
140		ucc_tdm_init(priv->utdm, priv->ut_info);
141
142	/* Write to QE CECR, UCCx channel to Stop Transmission */
143	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
144	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
145			   QE_CR_PROTOCOL_UNSPECIFIED, 0);
146
147	/* Set UPSMR normal mode (need fixed)*/
148	iowrite32be(0, &priv->uf_regs->upsmr);
149
150	/* hdlc_bus mode */
151	if (priv->hdlc_bus) {
152		u32 upsmr;
153
154		dev_info(priv->dev, "HDLC bus Mode\n");
155		upsmr = ioread32be(&priv->uf_regs->upsmr);
156
157		/* bus mode and retransmit enable, with collision window
158		 * set to 8 bytes
159		 */
160		upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
161				UCC_HDLC_UPSMR_CW8;
162		iowrite32be(upsmr, &priv->uf_regs->upsmr);
163
164		/* explicitly disable CDS & CTSP */
165		gumr = ioread32be(&priv->uf_regs->gumr);
166		gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
167		/* set automatic sync to explicitly ignore CD signal */
168		gumr |= UCC_FAST_GUMR_SYNL_AUTO;
169		iowrite32be(gumr, &priv->uf_regs->gumr);
170	}
171
172	priv->rx_ring_size = RX_BD_RING_LEN;
173	priv->tx_ring_size = TX_BD_RING_LEN;
174	/* Alloc Rx BD */
175	priv->rx_bd_base = dma_alloc_coherent(priv->dev,
176			RX_BD_RING_LEN * sizeof(struct qe_bd),
177			&priv->dma_rx_bd, GFP_KERNEL);
178
179	if (!priv->rx_bd_base) {
180		dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
181		ret = -ENOMEM;
182		goto free_uccf;
183	}
184
185	/* Alloc Tx BD */
186	priv->tx_bd_base = dma_alloc_coherent(priv->dev,
187			TX_BD_RING_LEN * sizeof(struct qe_bd),
188			&priv->dma_tx_bd, GFP_KERNEL);
189
190	if (!priv->tx_bd_base) {
191		dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
192		ret = -ENOMEM;
193		goto free_rx_bd;
194	}
195
196	/* Alloc parameter ram for ucc hdlc */
197	priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
198				ALIGNMENT_OF_UCC_HDLC_PRAM);
199
200	if (priv->ucc_pram_offset < 0) {
201		dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
202		ret = -ENOMEM;
203		goto free_tx_bd;
204	}
205
206	priv->rx_skbuff = kcalloc(priv->rx_ring_size,
207				  sizeof(*priv->rx_skbuff),
208				  GFP_KERNEL);
209	if (!priv->rx_skbuff) {
210		ret = -ENOMEM;
211		goto free_ucc_pram;
212	}
213
214	priv->tx_skbuff = kcalloc(priv->tx_ring_size,
215				  sizeof(*priv->tx_skbuff),
216				  GFP_KERNEL);
217	if (!priv->tx_skbuff) {
218		ret = -ENOMEM;
219		goto free_rx_skbuff;
220	}
221
222	priv->skb_curtx = 0;
223	priv->skb_dirtytx = 0;
224	priv->curtx_bd = priv->tx_bd_base;
225	priv->dirty_tx = priv->tx_bd_base;
226	priv->currx_bd = priv->rx_bd_base;
227	priv->currx_bdnum = 0;
228
229	/* init parameter base */
230	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
231	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
232			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
233
234	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
235					qe_muram_addr(priv->ucc_pram_offset);
236
237	/* Zero out parameter ram */
238	memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
239
240	/* Alloc riptr, tiptr */
241	riptr = qe_muram_alloc(32, 32);
242	if (riptr < 0) {
243		dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
244		ret = -ENOMEM;
245		goto free_tx_skbuff;
246	}
247
248	tiptr = qe_muram_alloc(32, 32);
249	if (tiptr < 0) {
250		dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
251		ret = -ENOMEM;
252		goto free_riptr;
253	}
254	if (riptr != (u16)riptr || tiptr != (u16)tiptr) {
255		dev_err(priv->dev, "MURAM allocation out of addressable range\n");
256		ret = -ENOMEM;
257		goto free_tiptr;
258	}
259
260	/* Set RIPTR, TIPTR */
261	iowrite16be(riptr, &priv->ucc_pram->riptr);
262	iowrite16be(tiptr, &priv->ucc_pram->tiptr);
263
264	/* Set MRBLR */
265	iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
266
267	/* Set RBASE, TBASE */
268	iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
269	iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
270
271	/* Set RSTATE, TSTATE */
272	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
273	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
274
275	/* Set C_MASK, C_PRES for 16bit CRC */
276	iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
277	iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
278
279	iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
280	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
281	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
282	iowrite16be(priv->hmask, &priv->ucc_pram->hmask);
283	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
284	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
285	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
286	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
287
288	/* Get BD buffer */
289	bd_buffer = dma_alloc_coherent(priv->dev,
290				       (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH,
291				       &bd_dma_addr, GFP_KERNEL);
292
293	if (!bd_buffer) {
294		dev_err(priv->dev, "Could not allocate buffer descriptors\n");
295		ret = -ENOMEM;
296		goto free_tiptr;
297	}
298
299	priv->rx_buffer = bd_buffer;
300	priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
301
302	priv->dma_rx_addr = bd_dma_addr;
303	priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
304
305	for (i = 0; i < RX_BD_RING_LEN; i++) {
306		if (i < (RX_BD_RING_LEN - 1))
307			bd_status = R_E_S | R_I_S;
308		else
309			bd_status = R_E_S | R_I_S | R_W_S;
310
311		priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
312		priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
313	}
314
315	for (i = 0; i < TX_BD_RING_LEN; i++) {
316		if (i < (TX_BD_RING_LEN - 1))
317			bd_status =  T_I_S | T_TC_S;
318		else
319			bd_status =  T_I_S | T_TC_S | T_W_S;
320
321		priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
322		priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
323	}
324	dma_wmb();
325
326	return 0;
327
328free_tiptr:
329	qe_muram_free(tiptr);
330free_riptr:
331	qe_muram_free(riptr);
332free_tx_skbuff:
333	kfree(priv->tx_skbuff);
334free_rx_skbuff:
335	kfree(priv->rx_skbuff);
336free_ucc_pram:
337	qe_muram_free(priv->ucc_pram_offset);
338free_tx_bd:
339	dma_free_coherent(priv->dev,
340			  TX_BD_RING_LEN * sizeof(struct qe_bd),
341			  priv->tx_bd_base, priv->dma_tx_bd);
342free_rx_bd:
343	dma_free_coherent(priv->dev,
344			  RX_BD_RING_LEN * sizeof(struct qe_bd),
345			  priv->rx_bd_base, priv->dma_rx_bd);
346free_uccf:
347	ucc_fast_free(priv->uccf);
348
349	return ret;
350}
351
352static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
353{
354	hdlc_device *hdlc = dev_to_hdlc(dev);
355	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
356	struct qe_bd *bd;
357	u16 bd_status;
358	unsigned long flags;
359	__be16 *proto_head;
360
361	switch (dev->type) {
362	case ARPHRD_RAWHDLC:
363		if (skb_headroom(skb) < HDLC_HEAD_LEN) {
364			dev->stats.tx_dropped++;
365			dev_kfree_skb(skb);
366			netdev_err(dev, "No enough space for hdlc head\n");
367			return -ENOMEM;
368		}
369
370		skb_push(skb, HDLC_HEAD_LEN);
371
372		proto_head = (__be16 *)skb->data;
373		*proto_head = htons(DEFAULT_HDLC_HEAD);
374
375		dev->stats.tx_bytes += skb->len;
376		break;
377
378	case ARPHRD_PPP:
379		proto_head = (__be16 *)skb->data;
380		if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
381			dev->stats.tx_dropped++;
382			dev_kfree_skb(skb);
383			netdev_err(dev, "Wrong ppp header\n");
384			return -ENOMEM;
385		}
386
387		dev->stats.tx_bytes += skb->len;
388		break;
389
390	case ARPHRD_ETHER:
391		dev->stats.tx_bytes += skb->len;
392		break;
393
394	default:
395		dev->stats.tx_dropped++;
396		dev_kfree_skb(skb);
397		return -ENOMEM;
398	}
399	netdev_sent_queue(dev, skb->len);
400	spin_lock_irqsave(&priv->lock, flags);
401
402	dma_rmb();
403	/* Start from the next BD that should be filled */
404	bd = priv->curtx_bd;
405	bd_status = be16_to_cpu(bd->status);
406	/* Save the skb pointer so we can free it later */
407	priv->tx_skbuff[priv->skb_curtx] = skb;
408
409	/* Update the current skb pointer (wrapping if this was the last) */
410	priv->skb_curtx =
411	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
412
413	/* copy skb data to tx buffer for sdma processing */
414	memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
415	       skb->data, skb->len);
416
417	/* set bd status and length */
418	bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
419
420	bd->length = cpu_to_be16(skb->len);
421	bd->status = cpu_to_be16(bd_status);
422
423	/* Move to next BD in the ring */
424	if (!(bd_status & T_W_S))
425		bd += 1;
426	else
427		bd = priv->tx_bd_base;
428
429	if (bd == priv->dirty_tx) {
430		if (!netif_queue_stopped(dev))
431			netif_stop_queue(dev);
432	}
433
434	priv->curtx_bd = bd;
435
436	spin_unlock_irqrestore(&priv->lock, flags);
437
438	return NETDEV_TX_OK;
439}
440
441static int hdlc_tx_restart(struct ucc_hdlc_private *priv)
442{
443	u32 cecr_subblock;
444
445	cecr_subblock =
446		ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num);
447
448	qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
449		     QE_CR_PROTOCOL_UNSPECIFIED, 0);
450	return 0;
451}
452
453static int hdlc_tx_done(struct ucc_hdlc_private *priv)
454{
455	/* Start from the next BD that should be filled */
456	struct net_device *dev = priv->ndev;
457	unsigned int bytes_sent = 0;
458	int howmany = 0;
459	struct qe_bd *bd;		/* BD pointer */
460	u16 bd_status;
461	int tx_restart = 0;
462
463	dma_rmb();
464	bd = priv->dirty_tx;
465	bd_status = be16_to_cpu(bd->status);
466
467	/* Normal processing. */
468	while ((bd_status & T_R_S) == 0) {
469		struct sk_buff *skb;
470
471		if (bd_status & T_UN_S) { /* Underrun */
472			dev->stats.tx_fifo_errors++;
473			tx_restart = 1;
474		}
475		if (bd_status & T_CT_S) { /* Carrier lost */
476			dev->stats.tx_carrier_errors++;
477			tx_restart = 1;
478		}
479
480		/* BD contains already transmitted buffer.   */
481		/* Handle the transmitted buffer and release */
482		/* the BD to be used with the current frame  */
483
484		skb = priv->tx_skbuff[priv->skb_dirtytx];
485		if (!skb)
486			break;
487		howmany++;
488		bytes_sent += skb->len;
489		dev->stats.tx_packets++;
490		memset(priv->tx_buffer +
491		       (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
492		       0, skb->len);
493		dev_consume_skb_irq(skb);
494
495		priv->tx_skbuff[priv->skb_dirtytx] = NULL;
496		priv->skb_dirtytx =
497		    (priv->skb_dirtytx +
498		     1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
499
500		/* We freed a buffer, so now we can restart transmission */
501		if (netif_queue_stopped(dev))
502			netif_wake_queue(dev);
503
504		/* Advance the confirmation BD pointer */
505		if (!(bd_status & T_W_S))
506			bd += 1;
507		else
508			bd = priv->tx_bd_base;
509		bd_status = be16_to_cpu(bd->status);
510	}
511	priv->dirty_tx = bd;
512
513	if (tx_restart)
514		hdlc_tx_restart(priv);
515
516	netdev_completed_queue(dev, howmany, bytes_sent);
517	return 0;
518}
519
520static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
521{
522	struct net_device *dev = priv->ndev;
523	struct sk_buff *skb = NULL;
524	hdlc_device *hdlc = dev_to_hdlc(dev);
525	struct qe_bd *bd;
526	u16 bd_status;
527	u16 length, howmany = 0;
528	u8 *bdbuffer;
529
530	dma_rmb();
531	bd = priv->currx_bd;
532	bd_status = be16_to_cpu(bd->status);
533
534	/* while there are received buffers and BD is full (~R_E) */
535	while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
536		if (bd_status & (RX_BD_ERRORS)) {
537			dev->stats.rx_errors++;
538
539			if (bd_status & R_CD_S)
540				dev->stats.collisions++;
541			if (bd_status & R_OV_S)
542				dev->stats.rx_fifo_errors++;
543			if (bd_status & R_CR_S)
544				dev->stats.rx_crc_errors++;
545			if (bd_status & R_AB_S)
546				dev->stats.rx_over_errors++;
547			if (bd_status & R_NO_S)
548				dev->stats.rx_frame_errors++;
549			if (bd_status & R_LG_S)
550				dev->stats.rx_length_errors++;
551
552			goto recycle;
553		}
554		bdbuffer = priv->rx_buffer +
555			(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
556		length = be16_to_cpu(bd->length);
557
558		switch (dev->type) {
559		case ARPHRD_RAWHDLC:
560			bdbuffer += HDLC_HEAD_LEN;
561			length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
562
563			skb = dev_alloc_skb(length);
564			if (!skb) {
565				dev->stats.rx_dropped++;
566				return -ENOMEM;
567			}
568
569			skb_put(skb, length);
570			skb->len = length;
571			skb->dev = dev;
572			memcpy(skb->data, bdbuffer, length);
573			break;
574
575		case ARPHRD_PPP:
576		case ARPHRD_ETHER:
577			length -= HDLC_CRC_SIZE;
578
579			skb = dev_alloc_skb(length);
580			if (!skb) {
581				dev->stats.rx_dropped++;
582				return -ENOMEM;
583			}
584
585			skb_put(skb, length);
586			skb->len = length;
587			skb->dev = dev;
588			memcpy(skb->data, bdbuffer, length);
589			break;
590		}
591
592		dev->stats.rx_packets++;
593		dev->stats.rx_bytes += skb->len;
594		howmany++;
595		if (hdlc->proto)
596			skb->protocol = hdlc_type_trans(skb, dev);
597		netif_receive_skb(skb);
598
599recycle:
600		bd->status = cpu_to_be16((bd_status & R_W_S) | R_E_S | R_I_S);
601
602		/* update to point at the next bd */
603		if (bd_status & R_W_S) {
604			priv->currx_bdnum = 0;
605			bd = priv->rx_bd_base;
606		} else {
607			if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
608				priv->currx_bdnum += 1;
609			else
610				priv->currx_bdnum = RX_BD_RING_LEN - 1;
611
612			bd += 1;
613		}
614
615		bd_status = be16_to_cpu(bd->status);
616	}
617	dma_rmb();
618
619	priv->currx_bd = bd;
620	return howmany;
621}
622
623static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
624{
625	struct ucc_hdlc_private *priv = container_of(napi,
626						     struct ucc_hdlc_private,
627						     napi);
628	int howmany;
629
630	/* Tx event processing */
631	spin_lock(&priv->lock);
632	hdlc_tx_done(priv);
633	spin_unlock(&priv->lock);
634
635	howmany = 0;
636	howmany += hdlc_rx_done(priv, budget - howmany);
637
638	if (howmany < budget) {
639		napi_complete_done(napi, howmany);
640		qe_setbits_be32(priv->uccf->p_uccm,
641				(UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
642	}
643
644	return howmany;
645}
646
647static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
648{
649	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
650	struct net_device *dev = priv->ndev;
651	struct ucc_fast_private *uccf;
652	u32 ucce;
653	u32 uccm;
654
655	uccf = priv->uccf;
656
657	ucce = ioread32be(uccf->p_ucce);
658	uccm = ioread32be(uccf->p_uccm);
659	ucce &= uccm;
660	iowrite32be(ucce, uccf->p_ucce);
661	if (!ucce)
662		return IRQ_NONE;
663
664	if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
665		if (napi_schedule_prep(&priv->napi)) {
666			uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
667				  << 16);
668			iowrite32be(uccm, uccf->p_uccm);
669			__napi_schedule(&priv->napi);
670		}
671	}
672
673	/* Errors and other events */
674	if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
675		dev->stats.rx_missed_errors++;
676	if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
677		dev->stats.tx_errors++;
678
679	return IRQ_HANDLED;
680}
681
682static int uhdlc_ioctl(struct net_device *dev, struct if_settings *ifs)
683{
684	const size_t size = sizeof(te1_settings);
685	te1_settings line;
686	struct ucc_hdlc_private *priv = netdev_priv(dev);
687
688	switch (ifs->type) {
689	case IF_GET_IFACE:
690		ifs->type = IF_IFACE_E1;
691		if (ifs->size < size) {
692			ifs->size = size; /* data size wanted */
693			return -ENOBUFS;
694		}
695		memset(&line, 0, sizeof(line));
696		line.clock_type = priv->clocking;
697
698		if (copy_to_user(ifs->ifs_ifsu.sync, &line, size))
699			return -EFAULT;
700		return 0;
701
702	default:
703		return hdlc_ioctl(dev, ifs);
704	}
705}
706
707static int uhdlc_open(struct net_device *dev)
708{
709	u32 cecr_subblock;
710	hdlc_device *hdlc = dev_to_hdlc(dev);
711	struct ucc_hdlc_private *priv = hdlc->priv;
712	struct ucc_tdm *utdm = priv->utdm;
713	int rc = 0;
714
715	if (priv->hdlc_busy != 1) {
716		if (request_irq(priv->ut_info->uf_info.irq,
717				ucc_hdlc_irq_handler, 0, "hdlc", priv))
718			return -ENODEV;
719
720		cecr_subblock = ucc_fast_get_qe_cr_subblock(
721					priv->ut_info->uf_info.ucc_num);
722
723		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
724			     QE_CR_PROTOCOL_UNSPECIFIED, 0);
725
726		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
727
728		/* Enable the TDM port */
729		if (priv->tsa)
730			qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
731
732		priv->hdlc_busy = 1;
733		netif_device_attach(priv->ndev);
734		napi_enable(&priv->napi);
735		netdev_reset_queue(dev);
736		netif_start_queue(dev);
737
738		rc = hdlc_open(dev);
739		if (rc)
740			uhdlc_close(dev);
741	}
742
743	return rc;
744}
745
746static void uhdlc_memclean(struct ucc_hdlc_private *priv)
747{
748	qe_muram_free(ioread16be(&priv->ucc_pram->riptr));
749	qe_muram_free(ioread16be(&priv->ucc_pram->tiptr));
750
751	if (priv->rx_bd_base) {
752		dma_free_coherent(priv->dev,
753				  RX_BD_RING_LEN * sizeof(struct qe_bd),
754				  priv->rx_bd_base, priv->dma_rx_bd);
755
756		priv->rx_bd_base = NULL;
757		priv->dma_rx_bd = 0;
758	}
759
760	if (priv->tx_bd_base) {
761		dma_free_coherent(priv->dev,
762				  TX_BD_RING_LEN * sizeof(struct qe_bd),
763				  priv->tx_bd_base, priv->dma_tx_bd);
764
765		priv->tx_bd_base = NULL;
766		priv->dma_tx_bd = 0;
767	}
768
769	if (priv->ucc_pram) {
770		qe_muram_free(priv->ucc_pram_offset);
771		priv->ucc_pram = NULL;
772		priv->ucc_pram_offset = 0;
773	 }
774
775	kfree(priv->rx_skbuff);
776	priv->rx_skbuff = NULL;
777
778	kfree(priv->tx_skbuff);
779	priv->tx_skbuff = NULL;
780
781	if (priv->uf_regs) {
782		iounmap(priv->uf_regs);
783		priv->uf_regs = NULL;
784	}
785
786	if (priv->uccf) {
787		ucc_fast_free(priv->uccf);
788		priv->uccf = NULL;
789	}
790
791	if (priv->rx_buffer) {
792		dma_free_coherent(priv->dev,
793				  RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
794				  priv->rx_buffer, priv->dma_rx_addr);
795		priv->rx_buffer = NULL;
796		priv->dma_rx_addr = 0;
797	}
798
799	if (priv->tx_buffer) {
800		dma_free_coherent(priv->dev,
801				  TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
802				  priv->tx_buffer, priv->dma_tx_addr);
803		priv->tx_buffer = NULL;
804		priv->dma_tx_addr = 0;
805	}
806}
807
808static int uhdlc_close(struct net_device *dev)
809{
810	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
811	struct ucc_tdm *utdm = priv->utdm;
812	u32 cecr_subblock;
813
814	napi_disable(&priv->napi);
815	cecr_subblock = ucc_fast_get_qe_cr_subblock(
816				priv->ut_info->uf_info.ucc_num);
817
818	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
819		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
820	qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
821		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
822
823	if (priv->tsa)
824		qe_clrbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
825
826	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
827
828	free_irq(priv->ut_info->uf_info.irq, priv);
829	netif_stop_queue(dev);
830	netdev_reset_queue(dev);
831	priv->hdlc_busy = 0;
832
833	hdlc_close(dev);
834
835	return 0;
836}
837
838static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
839			   unsigned short parity)
840{
841	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
842
843	if (encoding != ENCODING_NRZ &&
844	    encoding != ENCODING_NRZI)
845		return -EINVAL;
846
847	if (parity != PARITY_NONE &&
848	    parity != PARITY_CRC32_PR1_CCITT &&
849	    parity != PARITY_CRC16_PR0_CCITT &&
850	    parity != PARITY_CRC16_PR1_CCITT)
851		return -EINVAL;
852
853	priv->encoding = encoding;
854	priv->parity = parity;
855
856	return 0;
857}
858
859#ifdef CONFIG_PM
860static void store_clk_config(struct ucc_hdlc_private *priv)
861{
862	struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
863
864	/* store si clk */
865	priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
866	priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
867
868	/* store si sync */
869	priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
870
871	/* store ucc clk */
872	memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
873}
874
875static void resume_clk_config(struct ucc_hdlc_private *priv)
876{
877	struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
878
879	memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
880
881	iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
882	iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
883
884	iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
885}
886
887static int uhdlc_suspend(struct device *dev)
888{
889	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
890	struct ucc_fast __iomem *uf_regs;
891
892	if (!priv)
893		return -EINVAL;
894
895	if (!netif_running(priv->ndev))
896		return 0;
897
898	netif_device_detach(priv->ndev);
899	napi_disable(&priv->napi);
900
901	uf_regs = priv->uf_regs;
902
903	/* backup gumr guemr*/
904	priv->gumr = ioread32be(&uf_regs->gumr);
905	priv->guemr = ioread8(&uf_regs->guemr);
906
907	priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
908					GFP_KERNEL);
909	if (!priv->ucc_pram_bak)
910		return -ENOMEM;
911
912	/* backup HDLC parameter */
913	memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
914		      sizeof(struct ucc_hdlc_param));
915
916	/* store the clk configuration */
917	store_clk_config(priv);
918
919	/* save power */
920	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
921
922	return 0;
923}
924
925static int uhdlc_resume(struct device *dev)
926{
927	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
928	struct ucc_tdm *utdm;
929	struct ucc_tdm_info *ut_info;
930	struct ucc_fast __iomem *uf_regs;
931	struct ucc_fast_private *uccf;
932	struct ucc_fast_info *uf_info;
933	int i;
934	u32 cecr_subblock;
935	u16 bd_status;
936
937	if (!priv)
938		return -EINVAL;
939
940	if (!netif_running(priv->ndev))
941		return 0;
942
943	utdm = priv->utdm;
944	ut_info = priv->ut_info;
945	uf_info = &ut_info->uf_info;
946	uf_regs = priv->uf_regs;
947	uccf = priv->uccf;
948
949	/* restore gumr guemr */
950	iowrite8(priv->guemr, &uf_regs->guemr);
951	iowrite32be(priv->gumr, &uf_regs->gumr);
952
953	/* Set Virtual Fifo registers */
954	iowrite16be(uf_info->urfs, &uf_regs->urfs);
955	iowrite16be(uf_info->urfet, &uf_regs->urfet);
956	iowrite16be(uf_info->urfset, &uf_regs->urfset);
957	iowrite16be(uf_info->utfs, &uf_regs->utfs);
958	iowrite16be(uf_info->utfet, &uf_regs->utfet);
959	iowrite16be(uf_info->utftt, &uf_regs->utftt);
960	/* utfb, urfb are offsets from MURAM base */
961	iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
962	iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
963
964	/* Rx Tx and sync clock routing */
965	resume_clk_config(priv);
966
967	iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
968	iowrite32be(0xffffffff, &uf_regs->ucce);
969
970	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
971
972	/* rebuild SIRAM */
973	if (priv->tsa)
974		ucc_tdm_init(priv->utdm, priv->ut_info);
975
976	/* Write to QE CECR, UCCx channel to Stop Transmission */
977	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
978	qe_issue_cmd(QE_STOP_TX, cecr_subblock,
979		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
980
981	/* Set UPSMR normal mode */
982	iowrite32be(0, &uf_regs->upsmr);
983
984	/* init parameter base */
985	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
986	qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
987		     QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
988
989	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
990				qe_muram_addr(priv->ucc_pram_offset);
991
992	/* restore ucc parameter */
993	memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
994		    sizeof(struct ucc_hdlc_param));
995	kfree(priv->ucc_pram_bak);
996
997	/* rebuild BD entry */
998	for (i = 0; i < RX_BD_RING_LEN; i++) {
999		if (i < (RX_BD_RING_LEN - 1))
1000			bd_status = R_E_S | R_I_S;
1001		else
1002			bd_status = R_E_S | R_I_S | R_W_S;
1003
1004		priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
1005		priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
1006	}
1007
1008	for (i = 0; i < TX_BD_RING_LEN; i++) {
1009		if (i < (TX_BD_RING_LEN - 1))
1010			bd_status =  T_I_S | T_TC_S;
1011		else
1012			bd_status =  T_I_S | T_TC_S | T_W_S;
1013
1014		priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
1015		priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
1016	}
1017	dma_wmb();
1018
1019	/* if hdlc is busy enable TX and RX */
1020	if (priv->hdlc_busy == 1) {
1021		cecr_subblock = ucc_fast_get_qe_cr_subblock(
1022					priv->ut_info->uf_info.ucc_num);
1023
1024		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
1025			     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
1026
1027		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
1028
1029		/* Enable the TDM port */
1030		if (priv->tsa)
1031			qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
1032	}
1033
1034	napi_enable(&priv->napi);
1035	netif_device_attach(priv->ndev);
1036
1037	return 0;
1038}
1039
1040static const struct dev_pm_ops uhdlc_pm_ops = {
1041	.suspend = uhdlc_suspend,
1042	.resume = uhdlc_resume,
1043	.freeze = uhdlc_suspend,
1044	.thaw = uhdlc_resume,
1045};
1046
1047#define HDLC_PM_OPS (&uhdlc_pm_ops)
1048
1049#else
1050
1051#define HDLC_PM_OPS NULL
1052
1053#endif
1054static void uhdlc_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1055{
1056	netdev_err(ndev, "%s\n", __func__);
1057}
1058
1059static const struct net_device_ops uhdlc_ops = {
1060	.ndo_open       = uhdlc_open,
1061	.ndo_stop       = uhdlc_close,
1062	.ndo_start_xmit = hdlc_start_xmit,
1063	.ndo_siocwandev = uhdlc_ioctl,
1064	.ndo_tx_timeout	= uhdlc_tx_timeout,
1065};
1066
1067static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr)
1068{
1069	struct device_node *np;
1070	struct platform_device *pdev;
1071	struct resource *res;
1072	static int siram_init_flag;
1073	int ret = 0;
1074
1075	np = of_find_compatible_node(NULL, NULL, name);
1076	if (!np)
1077		return -EINVAL;
1078
1079	pdev = of_find_device_by_node(np);
1080	if (!pdev) {
1081		pr_err("%pOFn: failed to lookup pdev\n", np);
1082		of_node_put(np);
1083		return -EINVAL;
1084	}
1085
1086	of_node_put(np);
1087	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1088	if (!res) {
1089		ret = -EINVAL;
1090		goto error_put_device;
1091	}
1092	*ptr = ioremap(res->start, resource_size(res));
1093	if (!*ptr) {
1094		ret = -ENOMEM;
1095		goto error_put_device;
1096	}
1097
1098	/* We've remapped the addresses, and we don't need the device any
1099	 * more, so we should release it.
1100	 */
1101	put_device(&pdev->dev);
1102
1103	if (init_flag && siram_init_flag == 0) {
1104		memset_io(*ptr, 0, resource_size(res));
1105		siram_init_flag = 1;
1106	}
1107	return  0;
1108
1109error_put_device:
1110	put_device(&pdev->dev);
1111
1112	return ret;
1113}
1114
1115static int ucc_hdlc_probe(struct platform_device *pdev)
1116{
1117	struct device_node *np = pdev->dev.of_node;
1118	struct ucc_hdlc_private *uhdlc_priv = NULL;
1119	struct ucc_tdm_info *ut_info;
1120	struct ucc_tdm *utdm = NULL;
1121	struct resource res;
1122	struct net_device *dev;
1123	hdlc_device *hdlc;
1124	int ucc_num;
1125	const char *sprop;
1126	int ret;
1127	u32 val;
1128
1129	ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1130	if (ret) {
1131		dev_err(&pdev->dev, "Invalid ucc property\n");
1132		return -ENODEV;
1133	}
1134
1135	ucc_num = val - 1;
1136	if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) {
1137		dev_err(&pdev->dev, ": Invalid UCC num\n");
1138		return -EINVAL;
1139	}
1140
1141	memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1142	       sizeof(utdm_primary_info));
1143
1144	ut_info = &utdm_info[ucc_num];
1145	ut_info->uf_info.ucc_num = ucc_num;
1146
1147	sprop = of_get_property(np, "rx-clock-name", NULL);
1148	if (sprop) {
1149		ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1150		if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1151		    (ut_info->uf_info.rx_clock > QE_CLK24)) {
1152			dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1153			return -EINVAL;
1154		}
1155	} else {
1156		dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1157		return -EINVAL;
1158	}
1159
1160	sprop = of_get_property(np, "tx-clock-name", NULL);
1161	if (sprop) {
1162		ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1163		if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1164		    (ut_info->uf_info.tx_clock > QE_CLK24)) {
1165			dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1166			return -EINVAL;
1167		}
1168	} else {
1169		dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1170		return -EINVAL;
1171	}
1172
1173	ret = of_address_to_resource(np, 0, &res);
1174	if (ret)
1175		return -EINVAL;
1176
1177	ut_info->uf_info.regs = res.start;
1178	ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1179
1180	uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1181	if (!uhdlc_priv)
1182		return -ENOMEM;
1183
1184	dev_set_drvdata(&pdev->dev, uhdlc_priv);
1185	uhdlc_priv->dev = &pdev->dev;
1186	uhdlc_priv->ut_info = ut_info;
1187
1188	uhdlc_priv->tsa = of_property_read_bool(np, "fsl,tdm-interface");
1189	uhdlc_priv->loopback = of_property_read_bool(np, "fsl,ucc-internal-loopback");
1190	uhdlc_priv->hdlc_bus = of_property_read_bool(np, "fsl,hdlc-bus");
1191
1192	if (uhdlc_priv->tsa == 1) {
1193		utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1194		if (!utdm) {
1195			ret = -ENOMEM;
1196			dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1197			goto free_uhdlc_priv;
1198		}
1199		uhdlc_priv->utdm = utdm;
1200		ret = ucc_of_parse_tdm(np, utdm, ut_info);
1201		if (ret)
1202			goto free_utdm;
1203
1204		ret = hdlc_map_iomem("fsl,t1040-qe-si", 0,
1205				     (void __iomem **)&utdm->si_regs);
1206		if (ret)
1207			goto free_utdm;
1208		ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1,
1209				     (void __iomem **)&utdm->siram);
1210		if (ret)
1211			goto unmap_si_regs;
1212	}
1213
1214	if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask))
1215		uhdlc_priv->hmask = DEFAULT_ADDR_MASK;
1216
1217	ret = uhdlc_init(uhdlc_priv);
1218	if (ret) {
1219		dev_err(&pdev->dev, "Failed to init uhdlc\n");
1220		goto undo_uhdlc_init;
1221	}
1222
1223	dev = alloc_hdlcdev(uhdlc_priv);
1224	if (!dev) {
1225		ret = -ENOMEM;
1226		pr_err("ucc_hdlc: unable to allocate memory\n");
1227		goto undo_uhdlc_init;
1228	}
1229
1230	uhdlc_priv->ndev = dev;
1231	hdlc = dev_to_hdlc(dev);
1232	dev->tx_queue_len = 16;
1233	dev->netdev_ops = &uhdlc_ops;
1234	dev->watchdog_timeo = 2 * HZ;
1235	hdlc->attach = ucc_hdlc_attach;
1236	hdlc->xmit = ucc_hdlc_tx;
1237	netif_napi_add_weight(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1238	if (register_hdlc_device(dev)) {
1239		ret = -ENOBUFS;
1240		pr_err("ucc_hdlc: unable to register hdlc device\n");
1241		goto free_dev;
1242	}
1243
1244	return 0;
1245
1246free_dev:
1247	free_netdev(dev);
1248undo_uhdlc_init:
1249	if (utdm)
1250		iounmap(utdm->siram);
1251unmap_si_regs:
1252	if (utdm)
1253		iounmap(utdm->si_regs);
1254free_utdm:
1255	if (uhdlc_priv->tsa)
1256		kfree(utdm);
1257free_uhdlc_priv:
1258	kfree(uhdlc_priv);
1259	return ret;
1260}
1261
1262static void ucc_hdlc_remove(struct platform_device *pdev)
1263{
1264	struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1265
1266	uhdlc_memclean(priv);
1267
1268	if (priv->utdm->si_regs) {
1269		iounmap(priv->utdm->si_regs);
1270		priv->utdm->si_regs = NULL;
1271	}
1272
1273	if (priv->utdm->siram) {
1274		iounmap(priv->utdm->siram);
1275		priv->utdm->siram = NULL;
1276	}
1277	kfree(priv);
1278
1279	dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1280}
1281
1282static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1283	{
1284	.compatible = "fsl,ucc-hdlc",
1285	},
1286	{},
1287};
1288
1289MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1290
1291static struct platform_driver ucc_hdlc_driver = {
1292	.probe	= ucc_hdlc_probe,
1293	.remove_new = ucc_hdlc_remove,
1294	.driver	= {
1295		.name		= DRV_NAME,
1296		.pm		= HDLC_PM_OPS,
1297		.of_match_table	= fsl_ucc_hdlc_of_match,
1298	},
1299};
1300
1301module_platform_driver(ucc_hdlc_driver);
1302MODULE_LICENSE("GPL");
1303MODULE_DESCRIPTION(DRV_DESC);
1304