1// SPDX-License-Identifier: GPL-2.0
2#include <linux/debugfs.h>
3#include <linux/delay.h>
4#include <linux/gpio/consumer.h>
5#include <linux/hwmon.h>
6#include <linux/i2c.h>
7#include <linux/interrupt.h>
8#include <linux/jiffies.h>
9#include <linux/mdio/mdio-i2c.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "sfp.h"
20#include "swphy.h"
21
22enum {
23	GPIO_MODDEF0,
24	GPIO_LOS,
25	GPIO_TX_FAULT,
26	GPIO_TX_DISABLE,
27	GPIO_RS0,
28	GPIO_RS1,
29	GPIO_MAX,
30
31	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32	SFP_F_LOS = BIT(GPIO_LOS),
33	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35	SFP_F_RS0 = BIT(GPIO_RS0),
36	SFP_F_RS1 = BIT(GPIO_RS1),
37
38	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40	SFP_E_INSERT = 0,
41	SFP_E_REMOVE,
42	SFP_E_DEV_ATTACH,
43	SFP_E_DEV_DETACH,
44	SFP_E_DEV_DOWN,
45	SFP_E_DEV_UP,
46	SFP_E_TX_FAULT,
47	SFP_E_TX_CLEAR,
48	SFP_E_LOS_HIGH,
49	SFP_E_LOS_LOW,
50	SFP_E_TIMEOUT,
51
52	SFP_MOD_EMPTY = 0,
53	SFP_MOD_ERROR,
54	SFP_MOD_PROBE,
55	SFP_MOD_WAITDEV,
56	SFP_MOD_HPOWER,
57	SFP_MOD_WAITPWR,
58	SFP_MOD_PRESENT,
59
60	SFP_DEV_DETACHED = 0,
61	SFP_DEV_DOWN,
62	SFP_DEV_UP,
63
64	SFP_S_DOWN = 0,
65	SFP_S_FAIL,
66	SFP_S_WAIT,
67	SFP_S_INIT,
68	SFP_S_INIT_PHY,
69	SFP_S_INIT_TX_FAULT,
70	SFP_S_WAIT_LOS,
71	SFP_S_LINK_UP,
72	SFP_S_TX_FAULT,
73	SFP_S_REINIT,
74	SFP_S_TX_DISABLE,
75};
76
77static const char  * const mod_state_strings[] = {
78	[SFP_MOD_EMPTY] = "empty",
79	[SFP_MOD_ERROR] = "error",
80	[SFP_MOD_PROBE] = "probe",
81	[SFP_MOD_WAITDEV] = "waitdev",
82	[SFP_MOD_HPOWER] = "hpower",
83	[SFP_MOD_WAITPWR] = "waitpwr",
84	[SFP_MOD_PRESENT] = "present",
85};
86
87static const char *mod_state_to_str(unsigned short mod_state)
88{
89	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90		return "Unknown module state";
91	return mod_state_strings[mod_state];
92}
93
94static const char * const dev_state_strings[] = {
95	[SFP_DEV_DETACHED] = "detached",
96	[SFP_DEV_DOWN] = "down",
97	[SFP_DEV_UP] = "up",
98};
99
100static const char *dev_state_to_str(unsigned short dev_state)
101{
102	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103		return "Unknown device state";
104	return dev_state_strings[dev_state];
105}
106
107static const char * const event_strings[] = {
108	[SFP_E_INSERT] = "insert",
109	[SFP_E_REMOVE] = "remove",
110	[SFP_E_DEV_ATTACH] = "dev_attach",
111	[SFP_E_DEV_DETACH] = "dev_detach",
112	[SFP_E_DEV_DOWN] = "dev_down",
113	[SFP_E_DEV_UP] = "dev_up",
114	[SFP_E_TX_FAULT] = "tx_fault",
115	[SFP_E_TX_CLEAR] = "tx_clear",
116	[SFP_E_LOS_HIGH] = "los_high",
117	[SFP_E_LOS_LOW] = "los_low",
118	[SFP_E_TIMEOUT] = "timeout",
119};
120
121static const char *event_to_str(unsigned short event)
122{
123	if (event >= ARRAY_SIZE(event_strings))
124		return "Unknown event";
125	return event_strings[event];
126}
127
128static const char * const sm_state_strings[] = {
129	[SFP_S_DOWN] = "down",
130	[SFP_S_FAIL] = "fail",
131	[SFP_S_WAIT] = "wait",
132	[SFP_S_INIT] = "init",
133	[SFP_S_INIT_PHY] = "init_phy",
134	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135	[SFP_S_WAIT_LOS] = "wait_los",
136	[SFP_S_LINK_UP] = "link_up",
137	[SFP_S_TX_FAULT] = "tx_fault",
138	[SFP_S_REINIT] = "reinit",
139	[SFP_S_TX_DISABLE] = "tx_disable",
140};
141
142static const char *sm_state_to_str(unsigned short sm_state)
143{
144	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145		return "Unknown state";
146	return sm_state_strings[sm_state];
147}
148
149static const char *gpio_names[] = {
150	"mod-def0",
151	"los",
152	"tx-fault",
153	"tx-disable",
154	"rate-select0",
155	"rate-select1",
156};
157
158static const enum gpiod_flags gpio_flags[] = {
159	GPIOD_IN,
160	GPIOD_IN,
161	GPIOD_IN,
162	GPIOD_ASIS,
163	GPIOD_ASIS,
164	GPIOD_ASIS,
165};
166
167/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172#define T_WAIT			msecs_to_jiffies(50)
173#define T_START_UP		msecs_to_jiffies(300)
174#define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175
176/* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179#define T_RESET_US		10
180#define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181
182/* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187#define N_FAULT_INIT		5
188#define N_FAULT			5
189
190/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193#define T_PHY_RETRY		msecs_to_jiffies(50)
194#define R_PHY_RETRY		25
195
196/* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203#define T_SERIAL		msecs_to_jiffies(300)
204#define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205#define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206#define R_PROBE_RETRY_INIT	10
207#define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208#define R_PROBE_RETRY_SLOW	12
209
210/* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215#define SFP_PHY_ADDR		22
216#define SFP_PHY_ADDR_ROLLBALL	17
217
218/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222#define SFP_EEPROM_BLOCK_SIZE	16
223
224struct sff_data {
225	unsigned int gpios;
226	bool (*module_supported)(const struct sfp_eeprom_id *id);
227};
228
229struct sfp {
230	struct device *dev;
231	struct i2c_adapter *i2c;
232	struct mii_bus *i2c_mii;
233	struct sfp_bus *sfp_bus;
234	enum mdio_i2c_proto mdio_protocol;
235	struct phy_device *mod_phy;
236	const struct sff_data *type;
237	size_t i2c_block_size;
238	u32 max_power_mW;
239
240	unsigned int (*get_state)(struct sfp *);
241	void (*set_state)(struct sfp *, unsigned int);
242	int (*read)(struct sfp *, bool, u8, void *, size_t);
243	int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245	struct gpio_desc *gpio[GPIO_MAX];
246	int gpio_irq[GPIO_MAX];
247
248	bool need_poll;
249
250	/* Access rules:
251	 * state_hw_drive: st_mutex held
252	 * state_hw_mask: st_mutex held
253	 * state_soft_mask: st_mutex held
254	 * state: st_mutex held unless reading input bits
255	 */
256	struct mutex st_mutex;			/* Protects state */
257	unsigned int state_hw_drive;
258	unsigned int state_hw_mask;
259	unsigned int state_soft_mask;
260	unsigned int state_ignore_mask;
261	unsigned int state;
262
263	struct delayed_work poll;
264	struct delayed_work timeout;
265	struct mutex sm_mutex;			/* Protects state machine */
266	unsigned char sm_mod_state;
267	unsigned char sm_mod_tries_init;
268	unsigned char sm_mod_tries;
269	unsigned char sm_dev_state;
270	unsigned short sm_state;
271	unsigned char sm_fault_retries;
272	unsigned char sm_phy_retries;
273
274	struct sfp_eeprom_id id;
275	unsigned int module_power_mW;
276	unsigned int module_t_start_up;
277	unsigned int module_t_wait;
278	unsigned int phy_t_retry;
279
280	unsigned int rate_kbd;
281	unsigned int rs_threshold_kbd;
282	unsigned int rs_state_mask;
283
284	bool have_a2;
285
286	const struct sfp_quirk *quirk;
287
288#if IS_ENABLED(CONFIG_HWMON)
289	struct sfp_diag diag;
290	struct delayed_work hwmon_probe;
291	unsigned int hwmon_tries;
292	struct device *hwmon_dev;
293	char *hwmon_name;
294#endif
295
296#if IS_ENABLED(CONFIG_DEBUG_FS)
297	struct dentry *debugfs_dir;
298#endif
299};
300
301static bool sff_module_supported(const struct sfp_eeprom_id *id)
302{
303	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
304	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
305}
306
307static const struct sff_data sff_data = {
308	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
309	.module_supported = sff_module_supported,
310};
311
312static bool sfp_module_supported(const struct sfp_eeprom_id *id)
313{
314	if (id->base.phys_id == SFF8024_ID_SFP &&
315	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
316		return true;
317
318	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
319	 * phys id SFF instead of SFP. Therefore mark this module explicitly
320	 * as supported based on vendor name and pn match.
321	 */
322	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
323	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
324	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
325	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
326		return true;
327
328	return false;
329}
330
331static const struct sff_data sfp_data = {
332	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
333		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
334	.module_supported = sfp_module_supported,
335};
336
337static const struct of_device_id sfp_of_match[] = {
338	{ .compatible = "sff,sff", .data = &sff_data, },
339	{ .compatible = "sff,sfp", .data = &sfp_data, },
340	{ },
341};
342MODULE_DEVICE_TABLE(of, sfp_of_match);
343
344static void sfp_fixup_long_startup(struct sfp *sfp)
345{
346	sfp->module_t_start_up = T_START_UP_BAD_GPON;
347}
348
349static void sfp_fixup_ignore_los(struct sfp *sfp)
350{
351	/* This forces LOS to zero, so we ignore transitions */
352	sfp->state_ignore_mask |= SFP_F_LOS;
353	/* Make sure that LOS options are clear */
354	sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
355					    SFP_OPTIONS_LOS_NORMAL);
356}
357
358static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
359{
360	sfp->state_ignore_mask |= SFP_F_TX_FAULT;
361}
362
363static void sfp_fixup_nokia(struct sfp *sfp)
364{
365	sfp_fixup_long_startup(sfp);
366	sfp_fixup_ignore_los(sfp);
367}
368
369// For 10GBASE-T short-reach modules
370static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
371{
372	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
373	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
374}
375
376static void sfp_fixup_rollball(struct sfp *sfp)
377{
378	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
379
380	/* RollBall modules may disallow access to PHY registers for up to 25
381	 * seconds, and the reads return 0xffff before that. Increase the time
382	 * between PHY probe retries from 50ms to 1s so that we will wait for
383	 * the PHY for a sufficient amount of time.
384	 */
385	sfp->phy_t_retry = msecs_to_jiffies(1000);
386}
387
388static void sfp_fixup_fs_10gt(struct sfp *sfp)
389{
390	sfp_fixup_10gbaset_30m(sfp);
391	sfp_fixup_rollball(sfp);
392
393	/* The RollBall fixup is not enough for FS modules, the AQR chip inside
394	 * them does not return 0xffff for PHY ID registers in all MMDs for the
395	 * while initializing. They need a 4 second wait before accessing PHY.
396	 */
397	sfp->module_t_wait = msecs_to_jiffies(4000);
398}
399
400static void sfp_fixup_halny_gsfp(struct sfp *sfp)
401{
402	/* Ignore the TX_FAULT and LOS signals on this module.
403	 * these are possibly used for other purposes on this
404	 * module, e.g. a serial port.
405	 */
406	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
407}
408
409static void sfp_fixup_rollball_cc(struct sfp *sfp)
410{
411	sfp_fixup_rollball(sfp);
412
413	/* Some RollBall SFPs may have wrong (zero) extended compliance code
414	 * burned in EEPROM. For PHY probing we need the correct one.
415	 */
416	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
417}
418
419static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
420				unsigned long *modes,
421				unsigned long *interfaces)
422{
423	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
424	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
425}
426
427static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
428				      unsigned long *modes,
429				      unsigned long *interfaces)
430{
431	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
432}
433
434static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
435			       unsigned long *modes,
436			       unsigned long *interfaces)
437{
438	/* Copper 2.5G SFP */
439	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
440	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
441	sfp_quirk_disable_autoneg(id, modes, interfaces);
442}
443
444static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
445				      unsigned long *modes,
446				      unsigned long *interfaces)
447{
448	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
449	 * types including 10G Ethernet which is not truth. So clear all claimed
450	 * modes and set only one mode which module supports: 1000baseX_Full.
451	 */
452	linkmode_zero(modes);
453	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
454}
455
456#define SFP_QUIRK(_v, _p, _m, _f) \
457	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
458#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
459#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
460
461static const struct sfp_quirk sfp_quirks[] = {
462	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
463	// report 2500MBd NRZ in their EEPROM
464	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
465
466	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
467	// NRZ in their EEPROM
468	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
469		  sfp_fixup_nokia),
470
471	// Fiberstore SFP-10G-T doesn't identify as copper, and uses the
472	// Rollball protocol to talk to the PHY.
473	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
474
475	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
476	// NRZ in their EEPROM
477	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
478		  sfp_fixup_ignore_tx_fault),
479
480	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
481
482	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
483	// 2600MBd in their EERPOM
484	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
485
486	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
487	// their EEPROM
488	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
489		  sfp_fixup_ignore_tx_fault),
490
491	// FS 2.5G Base-T
492	SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
493
494	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
495	// 2500MBd NRZ in their EEPROM
496	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
497
498	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
499
500	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
501	// Rollball protocol to talk to the PHY.
502	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
503	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
504
505	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
506	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
507	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
508	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
509	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
510	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
511};
512
513static size_t sfp_strlen(const char *str, size_t maxlen)
514{
515	size_t size, i;
516
517	/* Trailing characters should be filled with space chars, but
518	 * some manufacturers can't read SFF-8472 and use NUL.
519	 */
520	for (i = 0, size = 0; i < maxlen; i++)
521		if (str[i] != ' ' && str[i] != '\0')
522			size = i + 1;
523
524	return size;
525}
526
527static bool sfp_match(const char *qs, const char *str, size_t len)
528{
529	if (!qs)
530		return true;
531	if (strlen(qs) != len)
532		return false;
533	return !strncmp(qs, str, len);
534}
535
536static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
537{
538	const struct sfp_quirk *q;
539	unsigned int i;
540	size_t vs, ps;
541
542	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
543	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
544
545	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
546		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
547		    sfp_match(q->part, id->base.vendor_pn, ps))
548			return q;
549
550	return NULL;
551}
552
553static unsigned long poll_jiffies;
554
555static unsigned int sfp_gpio_get_state(struct sfp *sfp)
556{
557	unsigned int i, state, v;
558
559	for (i = state = 0; i < GPIO_MAX; i++) {
560		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
561			continue;
562
563		v = gpiod_get_value_cansleep(sfp->gpio[i]);
564		if (v)
565			state |= BIT(i);
566	}
567
568	return state;
569}
570
571static unsigned int sff_gpio_get_state(struct sfp *sfp)
572{
573	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
574}
575
576static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
577{
578	unsigned int drive;
579
580	if (state & SFP_F_PRESENT)
581		/* If the module is present, drive the requested signals */
582		drive = sfp->state_hw_drive;
583	else
584		/* Otherwise, let them float to the pull-ups */
585		drive = 0;
586
587	if (sfp->gpio[GPIO_TX_DISABLE]) {
588		if (drive & SFP_F_TX_DISABLE)
589			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
590					       state & SFP_F_TX_DISABLE);
591		else
592			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
593	}
594
595	if (sfp->gpio[GPIO_RS0]) {
596		if (drive & SFP_F_RS0)
597			gpiod_direction_output(sfp->gpio[GPIO_RS0],
598					       state & SFP_F_RS0);
599		else
600			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
601	}
602
603	if (sfp->gpio[GPIO_RS1]) {
604		if (drive & SFP_F_RS1)
605			gpiod_direction_output(sfp->gpio[GPIO_RS1],
606					       state & SFP_F_RS1);
607		else
608			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
609	}
610}
611
612static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
613			size_t len)
614{
615	struct i2c_msg msgs[2];
616	u8 bus_addr = a2 ? 0x51 : 0x50;
617	size_t block_size = sfp->i2c_block_size;
618	size_t this_len;
619	int ret;
620
621	msgs[0].addr = bus_addr;
622	msgs[0].flags = 0;
623	msgs[0].len = 1;
624	msgs[0].buf = &dev_addr;
625	msgs[1].addr = bus_addr;
626	msgs[1].flags = I2C_M_RD;
627	msgs[1].len = len;
628	msgs[1].buf = buf;
629
630	while (len) {
631		this_len = len;
632		if (this_len > block_size)
633			this_len = block_size;
634
635		msgs[1].len = this_len;
636
637		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
638		if (ret < 0)
639			return ret;
640
641		if (ret != ARRAY_SIZE(msgs))
642			break;
643
644		msgs[1].buf += this_len;
645		dev_addr += this_len;
646		len -= this_len;
647	}
648
649	return msgs[1].buf - (u8 *)buf;
650}
651
652static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
653	size_t len)
654{
655	struct i2c_msg msgs[1];
656	u8 bus_addr = a2 ? 0x51 : 0x50;
657	int ret;
658
659	msgs[0].addr = bus_addr;
660	msgs[0].flags = 0;
661	msgs[0].len = 1 + len;
662	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
663	if (!msgs[0].buf)
664		return -ENOMEM;
665
666	msgs[0].buf[0] = dev_addr;
667	memcpy(&msgs[0].buf[1], buf, len);
668
669	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
670
671	kfree(msgs[0].buf);
672
673	if (ret < 0)
674		return ret;
675
676	return ret == ARRAY_SIZE(msgs) ? len : 0;
677}
678
679static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
680{
681	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
682		return -EINVAL;
683
684	sfp->i2c = i2c;
685	sfp->read = sfp_i2c_read;
686	sfp->write = sfp_i2c_write;
687
688	return 0;
689}
690
691static int sfp_i2c_mdiobus_create(struct sfp *sfp)
692{
693	struct mii_bus *i2c_mii;
694	int ret;
695
696	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
697	if (IS_ERR(i2c_mii))
698		return PTR_ERR(i2c_mii);
699
700	i2c_mii->name = "SFP I2C Bus";
701	i2c_mii->phy_mask = ~0;
702
703	ret = mdiobus_register(i2c_mii);
704	if (ret < 0) {
705		mdiobus_free(i2c_mii);
706		return ret;
707	}
708
709	sfp->i2c_mii = i2c_mii;
710
711	return 0;
712}
713
714static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
715{
716	mdiobus_unregister(sfp->i2c_mii);
717	sfp->i2c_mii = NULL;
718}
719
720/* Interface */
721static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
722{
723	return sfp->read(sfp, a2, addr, buf, len);
724}
725
726static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
727{
728	return sfp->write(sfp, a2, addr, buf, len);
729}
730
731static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
732{
733	int ret;
734	u8 old, v;
735
736	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
737	if (ret != sizeof(old))
738		return ret;
739
740	v = (old & ~mask) | (val & mask);
741	if (v == old)
742		return sizeof(v);
743
744	return sfp_write(sfp, a2, addr, &v, sizeof(v));
745}
746
747static unsigned int sfp_soft_get_state(struct sfp *sfp)
748{
749	unsigned int state = 0;
750	u8 status;
751	int ret;
752
753	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
754	if (ret == sizeof(status)) {
755		if (status & SFP_STATUS_RX_LOS)
756			state |= SFP_F_LOS;
757		if (status & SFP_STATUS_TX_FAULT)
758			state |= SFP_F_TX_FAULT;
759	} else {
760		dev_err_ratelimited(sfp->dev,
761				    "failed to read SFP soft status: %pe\n",
762				    ERR_PTR(ret));
763		/* Preserve the current state */
764		state = sfp->state;
765	}
766
767	return state & sfp->state_soft_mask;
768}
769
770static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
771			       unsigned int soft)
772{
773	u8 mask = 0;
774	u8 val = 0;
775
776	if (soft & SFP_F_TX_DISABLE)
777		mask |= SFP_STATUS_TX_DISABLE_FORCE;
778	if (state & SFP_F_TX_DISABLE)
779		val |= SFP_STATUS_TX_DISABLE_FORCE;
780
781	if (soft & SFP_F_RS0)
782		mask |= SFP_STATUS_RS0_SELECT;
783	if (state & SFP_F_RS0)
784		val |= SFP_STATUS_RS0_SELECT;
785
786	if (mask)
787		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
788
789	val = mask = 0;
790	if (soft & SFP_F_RS1)
791		mask |= SFP_EXT_STATUS_RS1_SELECT;
792	if (state & SFP_F_RS1)
793		val |= SFP_EXT_STATUS_RS1_SELECT;
794
795	if (mask)
796		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
797}
798
799static void sfp_soft_start_poll(struct sfp *sfp)
800{
801	const struct sfp_eeprom_id *id = &sfp->id;
802	unsigned int mask = 0;
803
804	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
805		mask |= SFP_F_TX_DISABLE;
806	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
807		mask |= SFP_F_TX_FAULT;
808	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
809		mask |= SFP_F_LOS;
810	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
811		mask |= sfp->rs_state_mask;
812
813	mutex_lock(&sfp->st_mutex);
814	// Poll the soft state for hardware pins we want to ignore
815	sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
816			       mask;
817
818	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
819	    !sfp->need_poll)
820		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
821	mutex_unlock(&sfp->st_mutex);
822}
823
824static void sfp_soft_stop_poll(struct sfp *sfp)
825{
826	mutex_lock(&sfp->st_mutex);
827	sfp->state_soft_mask = 0;
828	mutex_unlock(&sfp->st_mutex);
829}
830
831/* sfp_get_state() - must be called with st_mutex held, or in the
832 * initialisation path.
833 */
834static unsigned int sfp_get_state(struct sfp *sfp)
835{
836	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
837	unsigned int state;
838
839	state = sfp->get_state(sfp) & sfp->state_hw_mask;
840	if (state & SFP_F_PRESENT && soft)
841		state |= sfp_soft_get_state(sfp);
842
843	return state;
844}
845
846/* sfp_set_state() - must be called with st_mutex held, or in the
847 * initialisation path.
848 */
849static void sfp_set_state(struct sfp *sfp, unsigned int state)
850{
851	unsigned int soft;
852
853	sfp->set_state(sfp, state);
854
855	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
856	if (state & SFP_F_PRESENT && soft)
857		sfp_soft_set_state(sfp, state, soft);
858}
859
860static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
861{
862	mutex_lock(&sfp->st_mutex);
863	sfp->state = (sfp->state & ~mask) | set;
864	sfp_set_state(sfp, sfp->state);
865	mutex_unlock(&sfp->st_mutex);
866}
867
868static unsigned int sfp_check(void *buf, size_t len)
869{
870	u8 *p, check;
871
872	for (p = buf, check = 0; len; p++, len--)
873		check += *p;
874
875	return check;
876}
877
878/* hwmon */
879#if IS_ENABLED(CONFIG_HWMON)
880static umode_t sfp_hwmon_is_visible(const void *data,
881				    enum hwmon_sensor_types type,
882				    u32 attr, int channel)
883{
884	const struct sfp *sfp = data;
885
886	switch (type) {
887	case hwmon_temp:
888		switch (attr) {
889		case hwmon_temp_min_alarm:
890		case hwmon_temp_max_alarm:
891		case hwmon_temp_lcrit_alarm:
892		case hwmon_temp_crit_alarm:
893		case hwmon_temp_min:
894		case hwmon_temp_max:
895		case hwmon_temp_lcrit:
896		case hwmon_temp_crit:
897			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
898				return 0;
899			fallthrough;
900		case hwmon_temp_input:
901		case hwmon_temp_label:
902			return 0444;
903		default:
904			return 0;
905		}
906	case hwmon_in:
907		switch (attr) {
908		case hwmon_in_min_alarm:
909		case hwmon_in_max_alarm:
910		case hwmon_in_lcrit_alarm:
911		case hwmon_in_crit_alarm:
912		case hwmon_in_min:
913		case hwmon_in_max:
914		case hwmon_in_lcrit:
915		case hwmon_in_crit:
916			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
917				return 0;
918			fallthrough;
919		case hwmon_in_input:
920		case hwmon_in_label:
921			return 0444;
922		default:
923			return 0;
924		}
925	case hwmon_curr:
926		switch (attr) {
927		case hwmon_curr_min_alarm:
928		case hwmon_curr_max_alarm:
929		case hwmon_curr_lcrit_alarm:
930		case hwmon_curr_crit_alarm:
931		case hwmon_curr_min:
932		case hwmon_curr_max:
933		case hwmon_curr_lcrit:
934		case hwmon_curr_crit:
935			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
936				return 0;
937			fallthrough;
938		case hwmon_curr_input:
939		case hwmon_curr_label:
940			return 0444;
941		default:
942			return 0;
943		}
944	case hwmon_power:
945		/* External calibration of receive power requires
946		 * floating point arithmetic. Doing that in the kernel
947		 * is not easy, so just skip it. If the module does
948		 * not require external calibration, we can however
949		 * show receiver power, since FP is then not needed.
950		 */
951		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
952		    channel == 1)
953			return 0;
954		switch (attr) {
955		case hwmon_power_min_alarm:
956		case hwmon_power_max_alarm:
957		case hwmon_power_lcrit_alarm:
958		case hwmon_power_crit_alarm:
959		case hwmon_power_min:
960		case hwmon_power_max:
961		case hwmon_power_lcrit:
962		case hwmon_power_crit:
963			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
964				return 0;
965			fallthrough;
966		case hwmon_power_input:
967		case hwmon_power_label:
968			return 0444;
969		default:
970			return 0;
971		}
972	default:
973		return 0;
974	}
975}
976
977static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
978{
979	__be16 val;
980	int err;
981
982	err = sfp_read(sfp, true, reg, &val, sizeof(val));
983	if (err < 0)
984		return err;
985
986	*value = be16_to_cpu(val);
987
988	return 0;
989}
990
991static void sfp_hwmon_to_rx_power(long *value)
992{
993	*value = DIV_ROUND_CLOSEST(*value, 10);
994}
995
996static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
997				long *value)
998{
999	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1000		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1001}
1002
1003static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1004{
1005	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1006			    be16_to_cpu(sfp->diag.cal_t_offset), value);
1007
1008	if (*value >= 0x8000)
1009		*value -= 0x10000;
1010
1011	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1012}
1013
1014static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1015{
1016	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1017			    be16_to_cpu(sfp->diag.cal_v_offset), value);
1018
1019	*value = DIV_ROUND_CLOSEST(*value, 10);
1020}
1021
1022static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1023{
1024	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1025			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1026
1027	*value = DIV_ROUND_CLOSEST(*value, 500);
1028}
1029
1030static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1031{
1032	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1033			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1034
1035	*value = DIV_ROUND_CLOSEST(*value, 10);
1036}
1037
1038static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1039{
1040	int err;
1041
1042	err = sfp_hwmon_read_sensor(sfp, reg, value);
1043	if (err < 0)
1044		return err;
1045
1046	sfp_hwmon_calibrate_temp(sfp, value);
1047
1048	return 0;
1049}
1050
1051static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1052{
1053	int err;
1054
1055	err = sfp_hwmon_read_sensor(sfp, reg, value);
1056	if (err < 0)
1057		return err;
1058
1059	sfp_hwmon_calibrate_vcc(sfp, value);
1060
1061	return 0;
1062}
1063
1064static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1065{
1066	int err;
1067
1068	err = sfp_hwmon_read_sensor(sfp, reg, value);
1069	if (err < 0)
1070		return err;
1071
1072	sfp_hwmon_calibrate_bias(sfp, value);
1073
1074	return 0;
1075}
1076
1077static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1078{
1079	int err;
1080
1081	err = sfp_hwmon_read_sensor(sfp, reg, value);
1082	if (err < 0)
1083		return err;
1084
1085	sfp_hwmon_calibrate_tx_power(sfp, value);
1086
1087	return 0;
1088}
1089
1090static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1091{
1092	int err;
1093
1094	err = sfp_hwmon_read_sensor(sfp, reg, value);
1095	if (err < 0)
1096		return err;
1097
1098	sfp_hwmon_to_rx_power(value);
1099
1100	return 0;
1101}
1102
1103static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1104{
1105	u8 status;
1106	int err;
1107
1108	switch (attr) {
1109	case hwmon_temp_input:
1110		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1111
1112	case hwmon_temp_lcrit:
1113		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1114		sfp_hwmon_calibrate_temp(sfp, value);
1115		return 0;
1116
1117	case hwmon_temp_min:
1118		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1119		sfp_hwmon_calibrate_temp(sfp, value);
1120		return 0;
1121	case hwmon_temp_max:
1122		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1123		sfp_hwmon_calibrate_temp(sfp, value);
1124		return 0;
1125
1126	case hwmon_temp_crit:
1127		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1128		sfp_hwmon_calibrate_temp(sfp, value);
1129		return 0;
1130
1131	case hwmon_temp_lcrit_alarm:
1132		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1133		if (err < 0)
1134			return err;
1135
1136		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1137		return 0;
1138
1139	case hwmon_temp_min_alarm:
1140		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1141		if (err < 0)
1142			return err;
1143
1144		*value = !!(status & SFP_WARN0_TEMP_LOW);
1145		return 0;
1146
1147	case hwmon_temp_max_alarm:
1148		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1149		if (err < 0)
1150			return err;
1151
1152		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1153		return 0;
1154
1155	case hwmon_temp_crit_alarm:
1156		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1157		if (err < 0)
1158			return err;
1159
1160		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1161		return 0;
1162	default:
1163		return -EOPNOTSUPP;
1164	}
1165
1166	return -EOPNOTSUPP;
1167}
1168
1169static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1170{
1171	u8 status;
1172	int err;
1173
1174	switch (attr) {
1175	case hwmon_in_input:
1176		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1177
1178	case hwmon_in_lcrit:
1179		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1180		sfp_hwmon_calibrate_vcc(sfp, value);
1181		return 0;
1182
1183	case hwmon_in_min:
1184		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1185		sfp_hwmon_calibrate_vcc(sfp, value);
1186		return 0;
1187
1188	case hwmon_in_max:
1189		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1190		sfp_hwmon_calibrate_vcc(sfp, value);
1191		return 0;
1192
1193	case hwmon_in_crit:
1194		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1195		sfp_hwmon_calibrate_vcc(sfp, value);
1196		return 0;
1197
1198	case hwmon_in_lcrit_alarm:
1199		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1200		if (err < 0)
1201			return err;
1202
1203		*value = !!(status & SFP_ALARM0_VCC_LOW);
1204		return 0;
1205
1206	case hwmon_in_min_alarm:
1207		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1208		if (err < 0)
1209			return err;
1210
1211		*value = !!(status & SFP_WARN0_VCC_LOW);
1212		return 0;
1213
1214	case hwmon_in_max_alarm:
1215		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1216		if (err < 0)
1217			return err;
1218
1219		*value = !!(status & SFP_WARN0_VCC_HIGH);
1220		return 0;
1221
1222	case hwmon_in_crit_alarm:
1223		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1224		if (err < 0)
1225			return err;
1226
1227		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1228		return 0;
1229	default:
1230		return -EOPNOTSUPP;
1231	}
1232
1233	return -EOPNOTSUPP;
1234}
1235
1236static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1237{
1238	u8 status;
1239	int err;
1240
1241	switch (attr) {
1242	case hwmon_curr_input:
1243		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1244
1245	case hwmon_curr_lcrit:
1246		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1247		sfp_hwmon_calibrate_bias(sfp, value);
1248		return 0;
1249
1250	case hwmon_curr_min:
1251		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1252		sfp_hwmon_calibrate_bias(sfp, value);
1253		return 0;
1254
1255	case hwmon_curr_max:
1256		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1257		sfp_hwmon_calibrate_bias(sfp, value);
1258		return 0;
1259
1260	case hwmon_curr_crit:
1261		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1262		sfp_hwmon_calibrate_bias(sfp, value);
1263		return 0;
1264
1265	case hwmon_curr_lcrit_alarm:
1266		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1267		if (err < 0)
1268			return err;
1269
1270		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1271		return 0;
1272
1273	case hwmon_curr_min_alarm:
1274		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1275		if (err < 0)
1276			return err;
1277
1278		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1279		return 0;
1280
1281	case hwmon_curr_max_alarm:
1282		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1283		if (err < 0)
1284			return err;
1285
1286		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1287		return 0;
1288
1289	case hwmon_curr_crit_alarm:
1290		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1291		if (err < 0)
1292			return err;
1293
1294		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1295		return 0;
1296	default:
1297		return -EOPNOTSUPP;
1298	}
1299
1300	return -EOPNOTSUPP;
1301}
1302
1303static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1304{
1305	u8 status;
1306	int err;
1307
1308	switch (attr) {
1309	case hwmon_power_input:
1310		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1311
1312	case hwmon_power_lcrit:
1313		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1314		sfp_hwmon_calibrate_tx_power(sfp, value);
1315		return 0;
1316
1317	case hwmon_power_min:
1318		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1319		sfp_hwmon_calibrate_tx_power(sfp, value);
1320		return 0;
1321
1322	case hwmon_power_max:
1323		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1324		sfp_hwmon_calibrate_tx_power(sfp, value);
1325		return 0;
1326
1327	case hwmon_power_crit:
1328		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1329		sfp_hwmon_calibrate_tx_power(sfp, value);
1330		return 0;
1331
1332	case hwmon_power_lcrit_alarm:
1333		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1334		if (err < 0)
1335			return err;
1336
1337		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1338		return 0;
1339
1340	case hwmon_power_min_alarm:
1341		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1342		if (err < 0)
1343			return err;
1344
1345		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1346		return 0;
1347
1348	case hwmon_power_max_alarm:
1349		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1350		if (err < 0)
1351			return err;
1352
1353		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1354		return 0;
1355
1356	case hwmon_power_crit_alarm:
1357		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1358		if (err < 0)
1359			return err;
1360
1361		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1362		return 0;
1363	default:
1364		return -EOPNOTSUPP;
1365	}
1366
1367	return -EOPNOTSUPP;
1368}
1369
1370static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1371{
1372	u8 status;
1373	int err;
1374
1375	switch (attr) {
1376	case hwmon_power_input:
1377		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1378
1379	case hwmon_power_lcrit:
1380		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1381		sfp_hwmon_to_rx_power(value);
1382		return 0;
1383
1384	case hwmon_power_min:
1385		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1386		sfp_hwmon_to_rx_power(value);
1387		return 0;
1388
1389	case hwmon_power_max:
1390		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1391		sfp_hwmon_to_rx_power(value);
1392		return 0;
1393
1394	case hwmon_power_crit:
1395		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1396		sfp_hwmon_to_rx_power(value);
1397		return 0;
1398
1399	case hwmon_power_lcrit_alarm:
1400		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1401		if (err < 0)
1402			return err;
1403
1404		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1405		return 0;
1406
1407	case hwmon_power_min_alarm:
1408		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1409		if (err < 0)
1410			return err;
1411
1412		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1413		return 0;
1414
1415	case hwmon_power_max_alarm:
1416		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1417		if (err < 0)
1418			return err;
1419
1420		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1421		return 0;
1422
1423	case hwmon_power_crit_alarm:
1424		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1425		if (err < 0)
1426			return err;
1427
1428		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1429		return 0;
1430	default:
1431		return -EOPNOTSUPP;
1432	}
1433
1434	return -EOPNOTSUPP;
1435}
1436
1437static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1438			  u32 attr, int channel, long *value)
1439{
1440	struct sfp *sfp = dev_get_drvdata(dev);
1441
1442	switch (type) {
1443	case hwmon_temp:
1444		return sfp_hwmon_temp(sfp, attr, value);
1445	case hwmon_in:
1446		return sfp_hwmon_vcc(sfp, attr, value);
1447	case hwmon_curr:
1448		return sfp_hwmon_bias(sfp, attr, value);
1449	case hwmon_power:
1450		switch (channel) {
1451		case 0:
1452			return sfp_hwmon_tx_power(sfp, attr, value);
1453		case 1:
1454			return sfp_hwmon_rx_power(sfp, attr, value);
1455		default:
1456			return -EOPNOTSUPP;
1457		}
1458	default:
1459		return -EOPNOTSUPP;
1460	}
1461}
1462
1463static const char *const sfp_hwmon_power_labels[] = {
1464	"TX_power",
1465	"RX_power",
1466};
1467
1468static int sfp_hwmon_read_string(struct device *dev,
1469				 enum hwmon_sensor_types type,
1470				 u32 attr, int channel, const char **str)
1471{
1472	switch (type) {
1473	case hwmon_curr:
1474		switch (attr) {
1475		case hwmon_curr_label:
1476			*str = "bias";
1477			return 0;
1478		default:
1479			return -EOPNOTSUPP;
1480		}
1481		break;
1482	case hwmon_temp:
1483		switch (attr) {
1484		case hwmon_temp_label:
1485			*str = "temperature";
1486			return 0;
1487		default:
1488			return -EOPNOTSUPP;
1489		}
1490		break;
1491	case hwmon_in:
1492		switch (attr) {
1493		case hwmon_in_label:
1494			*str = "VCC";
1495			return 0;
1496		default:
1497			return -EOPNOTSUPP;
1498		}
1499		break;
1500	case hwmon_power:
1501		switch (attr) {
1502		case hwmon_power_label:
1503			*str = sfp_hwmon_power_labels[channel];
1504			return 0;
1505		default:
1506			return -EOPNOTSUPP;
1507		}
1508		break;
1509	default:
1510		return -EOPNOTSUPP;
1511	}
1512
1513	return -EOPNOTSUPP;
1514}
1515
1516static const struct hwmon_ops sfp_hwmon_ops = {
1517	.is_visible = sfp_hwmon_is_visible,
1518	.read = sfp_hwmon_read,
1519	.read_string = sfp_hwmon_read_string,
1520};
1521
1522static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1523	HWMON_CHANNEL_INFO(chip,
1524			   HWMON_C_REGISTER_TZ),
1525	HWMON_CHANNEL_INFO(in,
1526			   HWMON_I_INPUT |
1527			   HWMON_I_MAX | HWMON_I_MIN |
1528			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1529			   HWMON_I_CRIT | HWMON_I_LCRIT |
1530			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1531			   HWMON_I_LABEL),
1532	HWMON_CHANNEL_INFO(temp,
1533			   HWMON_T_INPUT |
1534			   HWMON_T_MAX | HWMON_T_MIN |
1535			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1536			   HWMON_T_CRIT | HWMON_T_LCRIT |
1537			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1538			   HWMON_T_LABEL),
1539	HWMON_CHANNEL_INFO(curr,
1540			   HWMON_C_INPUT |
1541			   HWMON_C_MAX | HWMON_C_MIN |
1542			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1543			   HWMON_C_CRIT | HWMON_C_LCRIT |
1544			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1545			   HWMON_C_LABEL),
1546	HWMON_CHANNEL_INFO(power,
1547			   /* Transmit power */
1548			   HWMON_P_INPUT |
1549			   HWMON_P_MAX | HWMON_P_MIN |
1550			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1551			   HWMON_P_CRIT | HWMON_P_LCRIT |
1552			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1553			   HWMON_P_LABEL,
1554			   /* Receive power */
1555			   HWMON_P_INPUT |
1556			   HWMON_P_MAX | HWMON_P_MIN |
1557			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1558			   HWMON_P_CRIT | HWMON_P_LCRIT |
1559			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1560			   HWMON_P_LABEL),
1561	NULL,
1562};
1563
1564static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1565	.ops = &sfp_hwmon_ops,
1566	.info = sfp_hwmon_info,
1567};
1568
1569static void sfp_hwmon_probe(struct work_struct *work)
1570{
1571	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1572	int err;
1573
1574	/* hwmon interface needs to access 16bit registers in atomic way to
1575	 * guarantee coherency of the diagnostic monitoring data. If it is not
1576	 * possible to guarantee coherency because EEPROM is broken in such way
1577	 * that does not support atomic 16bit read operation then we have to
1578	 * skip registration of hwmon device.
1579	 */
1580	if (sfp->i2c_block_size < 2) {
1581		dev_info(sfp->dev,
1582			 "skipping hwmon device registration due to broken EEPROM\n");
1583		dev_info(sfp->dev,
1584			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1585		return;
1586	}
1587
1588	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1589	if (err < 0) {
1590		if (sfp->hwmon_tries--) {
1591			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1592					 T_PROBE_RETRY_SLOW);
1593		} else {
1594			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1595				 ERR_PTR(err));
1596		}
1597		return;
1598	}
1599
1600	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1601	if (IS_ERR(sfp->hwmon_name)) {
1602		dev_err(sfp->dev, "out of memory for hwmon name\n");
1603		return;
1604	}
1605
1606	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1607							 sfp->hwmon_name, sfp,
1608							 &sfp_hwmon_chip_info,
1609							 NULL);
1610	if (IS_ERR(sfp->hwmon_dev))
1611		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1612			PTR_ERR(sfp->hwmon_dev));
1613}
1614
1615static int sfp_hwmon_insert(struct sfp *sfp)
1616{
1617	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1618		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1619		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1620	}
1621
1622	return 0;
1623}
1624
1625static void sfp_hwmon_remove(struct sfp *sfp)
1626{
1627	cancel_delayed_work_sync(&sfp->hwmon_probe);
1628	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1629		hwmon_device_unregister(sfp->hwmon_dev);
1630		sfp->hwmon_dev = NULL;
1631		kfree(sfp->hwmon_name);
1632	}
1633}
1634
1635static int sfp_hwmon_init(struct sfp *sfp)
1636{
1637	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1638
1639	return 0;
1640}
1641
1642static void sfp_hwmon_exit(struct sfp *sfp)
1643{
1644	cancel_delayed_work_sync(&sfp->hwmon_probe);
1645}
1646#else
1647static int sfp_hwmon_insert(struct sfp *sfp)
1648{
1649	return 0;
1650}
1651
1652static void sfp_hwmon_remove(struct sfp *sfp)
1653{
1654}
1655
1656static int sfp_hwmon_init(struct sfp *sfp)
1657{
1658	return 0;
1659}
1660
1661static void sfp_hwmon_exit(struct sfp *sfp)
1662{
1663}
1664#endif
1665
1666/* Helpers */
1667static void sfp_module_tx_disable(struct sfp *sfp)
1668{
1669	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1670		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1671	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1672}
1673
1674static void sfp_module_tx_enable(struct sfp *sfp)
1675{
1676	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1677		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1678	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1679}
1680
1681#if IS_ENABLED(CONFIG_DEBUG_FS)
1682static int sfp_debug_state_show(struct seq_file *s, void *data)
1683{
1684	struct sfp *sfp = s->private;
1685
1686	seq_printf(s, "Module state: %s\n",
1687		   mod_state_to_str(sfp->sm_mod_state));
1688	seq_printf(s, "Module probe attempts: %d %d\n",
1689		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1690		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1691	seq_printf(s, "Device state: %s\n",
1692		   dev_state_to_str(sfp->sm_dev_state));
1693	seq_printf(s, "Main state: %s\n",
1694		   sm_state_to_str(sfp->sm_state));
1695	seq_printf(s, "Fault recovery remaining retries: %d\n",
1696		   sfp->sm_fault_retries);
1697	seq_printf(s, "PHY probe remaining retries: %d\n",
1698		   sfp->sm_phy_retries);
1699	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1700	seq_printf(s, "Rate select threshold: %u kBd\n",
1701		   sfp->rs_threshold_kbd);
1702	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1703	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1704	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1705	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1706	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1707	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1708	return 0;
1709}
1710DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1711
1712static void sfp_debugfs_init(struct sfp *sfp)
1713{
1714	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1715
1716	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1717			    &sfp_debug_state_fops);
1718}
1719
1720static void sfp_debugfs_exit(struct sfp *sfp)
1721{
1722	debugfs_remove_recursive(sfp->debugfs_dir);
1723}
1724#else
1725static void sfp_debugfs_init(struct sfp *sfp)
1726{
1727}
1728
1729static void sfp_debugfs_exit(struct sfp *sfp)
1730{
1731}
1732#endif
1733
1734static void sfp_module_tx_fault_reset(struct sfp *sfp)
1735{
1736	unsigned int state;
1737
1738	mutex_lock(&sfp->st_mutex);
1739	state = sfp->state;
1740	if (!(state & SFP_F_TX_DISABLE)) {
1741		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1742
1743		udelay(T_RESET_US);
1744
1745		sfp_set_state(sfp, state);
1746	}
1747	mutex_unlock(&sfp->st_mutex);
1748}
1749
1750/* SFP state machine */
1751static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1752{
1753	if (timeout)
1754		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1755				 timeout);
1756	else
1757		cancel_delayed_work(&sfp->timeout);
1758}
1759
1760static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1761			unsigned int timeout)
1762{
1763	sfp->sm_state = state;
1764	sfp_sm_set_timer(sfp, timeout);
1765}
1766
1767static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1768			    unsigned int timeout)
1769{
1770	sfp->sm_mod_state = state;
1771	sfp_sm_set_timer(sfp, timeout);
1772}
1773
1774static void sfp_sm_phy_detach(struct sfp *sfp)
1775{
1776	sfp_remove_phy(sfp->sfp_bus);
1777	phy_device_remove(sfp->mod_phy);
1778	phy_device_free(sfp->mod_phy);
1779	sfp->mod_phy = NULL;
1780}
1781
1782static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1783{
1784	struct phy_device *phy;
1785	int err;
1786
1787	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1788	if (phy == ERR_PTR(-ENODEV))
1789		return PTR_ERR(phy);
1790	if (IS_ERR(phy)) {
1791		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1792		return PTR_ERR(phy);
1793	}
1794
1795	/* Mark this PHY as being on a SFP module */
1796	phy->is_on_sfp_module = true;
1797
1798	err = phy_device_register(phy);
1799	if (err) {
1800		phy_device_free(phy);
1801		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1802			ERR_PTR(err));
1803		return err;
1804	}
1805
1806	err = sfp_add_phy(sfp->sfp_bus, phy);
1807	if (err) {
1808		phy_device_remove(phy);
1809		phy_device_free(phy);
1810		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1811		return err;
1812	}
1813
1814	sfp->mod_phy = phy;
1815
1816	return 0;
1817}
1818
1819static void sfp_sm_link_up(struct sfp *sfp)
1820{
1821	sfp_link_up(sfp->sfp_bus);
1822	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1823}
1824
1825static void sfp_sm_link_down(struct sfp *sfp)
1826{
1827	sfp_link_down(sfp->sfp_bus);
1828}
1829
1830static void sfp_sm_link_check_los(struct sfp *sfp)
1831{
1832	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1833	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1834	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1835	bool los = false;
1836
1837	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1838	 * are set, we assume that no LOS signal is available. If both are
1839	 * set, we assume LOS is not implemented (and is meaningless.)
1840	 */
1841	if (los_options == los_inverted)
1842		los = !(sfp->state & SFP_F_LOS);
1843	else if (los_options == los_normal)
1844		los = !!(sfp->state & SFP_F_LOS);
1845
1846	if (los)
1847		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1848	else
1849		sfp_sm_link_up(sfp);
1850}
1851
1852static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1853{
1854	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1855	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1856	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1857
1858	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1859	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1860}
1861
1862static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1863{
1864	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1865	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1866	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1867
1868	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1869	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1870}
1871
1872static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1873{
1874	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1875		dev_err(sfp->dev,
1876			"module persistently indicates fault, disabling\n");
1877		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1878	} else {
1879		if (warn)
1880			dev_err(sfp->dev, "module transmit fault indicated\n");
1881
1882		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1883	}
1884}
1885
1886static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1887{
1888	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1889		return sfp_i2c_mdiobus_create(sfp);
1890
1891	return 0;
1892}
1893
1894/* Probe a SFP for a PHY device if the module supports copper - the PHY
1895 * normally sits at I2C bus address 0x56, and may either be a clause 22
1896 * or clause 45 PHY.
1897 *
1898 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1899 * negotiation enabled, but some may be in 1000base-X - which is for the
1900 * PHY driver to determine.
1901 *
1902 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1903 * mode according to the negotiated line speed.
1904 */
1905static int sfp_sm_probe_for_phy(struct sfp *sfp)
1906{
1907	int err = 0;
1908
1909	switch (sfp->mdio_protocol) {
1910	case MDIO_I2C_NONE:
1911		break;
1912
1913	case MDIO_I2C_MARVELL_C22:
1914		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1915		break;
1916
1917	case MDIO_I2C_C45:
1918		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1919		break;
1920
1921	case MDIO_I2C_ROLLBALL:
1922		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1923		break;
1924	}
1925
1926	return err;
1927}
1928
1929static int sfp_module_parse_power(struct sfp *sfp)
1930{
1931	u32 power_mW = 1000;
1932	bool supports_a2;
1933
1934	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1935	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1936		power_mW = 1500;
1937	/* Added in Rev 11.9, but there is no compliance code for this */
1938	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1939	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1940		power_mW = 2000;
1941
1942	/* Power level 1 modules (max. 1W) are always supported. */
1943	if (power_mW <= 1000) {
1944		sfp->module_power_mW = power_mW;
1945		return 0;
1946	}
1947
1948	supports_a2 = sfp->id.ext.sff8472_compliance !=
1949				SFP_SFF8472_COMPLIANCE_NONE ||
1950		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1951
1952	if (power_mW > sfp->max_power_mW) {
1953		/* Module power specification exceeds the allowed maximum. */
1954		if (!supports_a2) {
1955			/* The module appears not to implement bus address
1956			 * 0xa2, so assume that the module powers up in the
1957			 * indicated mode.
1958			 */
1959			dev_err(sfp->dev,
1960				"Host does not support %u.%uW modules\n",
1961				power_mW / 1000, (power_mW / 100) % 10);
1962			return -EINVAL;
1963		} else {
1964			dev_warn(sfp->dev,
1965				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1966				 power_mW / 1000, (power_mW / 100) % 10);
1967			return 0;
1968		}
1969	}
1970
1971	if (!supports_a2) {
1972		/* The module power level is below the host maximum and the
1973		 * module appears not to implement bus address 0xa2, so assume
1974		 * that the module powers up in the indicated mode.
1975		 */
1976		return 0;
1977	}
1978
1979	/* If the module requires a higher power mode, but also requires
1980	 * an address change sequence, warn the user that the module may
1981	 * not be functional.
1982	 */
1983	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1984		dev_warn(sfp->dev,
1985			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1986			 power_mW / 1000, (power_mW / 100) % 10);
1987		return 0;
1988	}
1989
1990	sfp->module_power_mW = power_mW;
1991
1992	return 0;
1993}
1994
1995static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1996{
1997	int err;
1998
1999	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2000			    SFP_EXT_STATUS_PWRLVL_SELECT,
2001			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2002	if (err != sizeof(u8)) {
2003		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2004			enable ? "en" : "dis", ERR_PTR(err));
2005		return -EAGAIN;
2006	}
2007
2008	if (enable)
2009		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2010			 sfp->module_power_mW / 1000,
2011			 (sfp->module_power_mW / 100) % 10);
2012
2013	return 0;
2014}
2015
2016static void sfp_module_parse_rate_select(struct sfp *sfp)
2017{
2018	u8 rate_id;
2019
2020	sfp->rs_threshold_kbd = 0;
2021	sfp->rs_state_mask = 0;
2022
2023	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2024		/* No support for RateSelect */
2025		return;
2026
2027	/* Default to INF-8074 RateSelect operation. The signalling threshold
2028	 * rate is not well specified, so always select "Full Bandwidth", but
2029	 * SFF-8079 reveals that it is understood that RS0 will be low for
2030	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2031	 * This method exists prior to SFF-8472.
2032	 */
2033	sfp->rs_state_mask = SFP_F_RS0;
2034	sfp->rs_threshold_kbd = 1594;
2035
2036	/* Parse the rate identifier, which is complicated due to history:
2037	 * SFF-8472 rev 9.5 marks this field as reserved.
2038	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2039	 *  compliance is not required.
2040	 * SFF-8472 rev 10.2 defines this field using values 0..4
2041	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2042	 * and even values.
2043	 */
2044	rate_id = sfp->id.base.rate_id;
2045	if (rate_id == 0)
2046		/* Unspecified */
2047		return;
2048
2049	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2050	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2051	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2052	 */
2053	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2054	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2055	    rate_id == 3)
2056		rate_id = SFF_RID_8431;
2057
2058	if (rate_id & SFF_RID_8079) {
2059		/* SFF-8079 RateSelect / Application Select in conjunction with
2060		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2061		 * with only bit 0 used, which takes precedence over SFF-8472.
2062		 */
2063		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2064			/* SFF-8079 Part 1 - rate selection between Fibre
2065			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2066			 * is high for 2125, so we have to subtract 1 to
2067			 * include it.
2068			 */
2069			sfp->rs_threshold_kbd = 2125 - 1;
2070			sfp->rs_state_mask = SFP_F_RS0;
2071		}
2072		return;
2073	}
2074
2075	/* SFF-8472 rev 9.5 does not define the rate identifier */
2076	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2077		return;
2078
2079	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2080	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2081	 */
2082	switch (rate_id) {
2083	case SFF_RID_8431_RX_ONLY:
2084		sfp->rs_threshold_kbd = 4250;
2085		sfp->rs_state_mask = SFP_F_RS0;
2086		break;
2087
2088	case SFF_RID_8431_TX_ONLY:
2089		sfp->rs_threshold_kbd = 4250;
2090		sfp->rs_state_mask = SFP_F_RS1;
2091		break;
2092
2093	case SFF_RID_8431:
2094		sfp->rs_threshold_kbd = 4250;
2095		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2096		break;
2097
2098	case SFF_RID_10G8G:
2099		sfp->rs_threshold_kbd = 9000;
2100		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2101		break;
2102	}
2103}
2104
2105/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2106 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2107 * not support multibyte reads from the EEPROM. Each multi-byte read
2108 * operation returns just one byte of EEPROM followed by zeros. There is
2109 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2110 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2111 * name and vendor id into EEPROM, so there is even no way to detect if
2112 * module is V-SOL V2801F. Therefore check for those zeros in the read
2113 * data and then based on check switch to reading EEPROM to one byte
2114 * at a time.
2115 */
2116static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2117{
2118	size_t i, block_size = sfp->i2c_block_size;
2119
2120	/* Already using byte IO */
2121	if (block_size == 1)
2122		return false;
2123
2124	for (i = 1; i < len; i += block_size) {
2125		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2126			return false;
2127	}
2128	return true;
2129}
2130
2131static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2132{
2133	u8 check;
2134	int err;
2135
2136	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2137	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2138	    id->base.connector != SFF8024_CONNECTOR_LC) {
2139		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2140		id->base.phys_id = SFF8024_ID_SFF_8472;
2141		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2142		id->base.connector = SFF8024_CONNECTOR_LC;
2143		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2144		if (err != 3) {
2145			dev_err(sfp->dev,
2146				"Failed to rewrite module EEPROM: %pe\n",
2147				ERR_PTR(err));
2148			return err;
2149		}
2150
2151		/* Cotsworks modules have been found to require a delay between write operations. */
2152		mdelay(50);
2153
2154		/* Update base structure checksum */
2155		check = sfp_check(&id->base, sizeof(id->base) - 1);
2156		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2157		if (err != 1) {
2158			dev_err(sfp->dev,
2159				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2160				ERR_PTR(err));
2161			return err;
2162		}
2163	}
2164	return 0;
2165}
2166
2167static int sfp_module_parse_sff8472(struct sfp *sfp)
2168{
2169	/* If the module requires address swap mode, warn about it */
2170	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2171		dev_warn(sfp->dev,
2172			 "module address swap to access page 0xA2 is not supported.\n");
2173	else
2174		sfp->have_a2 = true;
2175
2176	return 0;
2177}
2178
2179static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2180{
2181	/* SFP module inserted - read I2C data */
2182	struct sfp_eeprom_id id;
2183	bool cotsworks_sfbg;
2184	unsigned int mask;
2185	bool cotsworks;
2186	u8 check;
2187	int ret;
2188
2189	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2190
2191	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2192	if (ret < 0) {
2193		if (report)
2194			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2195				ERR_PTR(ret));
2196		return -EAGAIN;
2197	}
2198
2199	if (ret != sizeof(id.base)) {
2200		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2201		return -EAGAIN;
2202	}
2203
2204	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2205	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2206	 * that EEPROM supports atomic 16bit read operation for diagnostic
2207	 * fields, so do not switch to one byte reading at a time unless it
2208	 * is really required and we have no other option.
2209	 */
2210	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2211		dev_info(sfp->dev,
2212			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2213		dev_info(sfp->dev,
2214			 "Switching to reading EEPROM to one byte at a time\n");
2215		sfp->i2c_block_size = 1;
2216
2217		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2218		if (ret < 0) {
2219			if (report)
2220				dev_err(sfp->dev,
2221					"failed to read EEPROM: %pe\n",
2222					ERR_PTR(ret));
2223			return -EAGAIN;
2224		}
2225
2226		if (ret != sizeof(id.base)) {
2227			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2228				ERR_PTR(ret));
2229			return -EAGAIN;
2230		}
2231	}
2232
2233	/* Cotsworks do not seem to update the checksums when they
2234	 * do the final programming with the final module part number,
2235	 * serial number and date code.
2236	 */
2237	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2238	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2239
2240	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2241	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2242	 * Cotsworks PN matches and bytes are not correct.
2243	 */
2244	if (cotsworks && cotsworks_sfbg) {
2245		ret = sfp_cotsworks_fixup_check(sfp, &id);
2246		if (ret < 0)
2247			return ret;
2248	}
2249
2250	/* Validate the checksum over the base structure */
2251	check = sfp_check(&id.base, sizeof(id.base) - 1);
2252	if (check != id.base.cc_base) {
2253		if (cotsworks) {
2254			dev_warn(sfp->dev,
2255				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2256				 check, id.base.cc_base);
2257		} else {
2258			dev_err(sfp->dev,
2259				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2260				check, id.base.cc_base);
2261			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2262				       16, 1, &id, sizeof(id), true);
2263			return -EINVAL;
2264		}
2265	}
2266
2267	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2268	if (ret < 0) {
2269		if (report)
2270			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2271				ERR_PTR(ret));
2272		return -EAGAIN;
2273	}
2274
2275	if (ret != sizeof(id.ext)) {
2276		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2277		return -EAGAIN;
2278	}
2279
2280	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2281	if (check != id.ext.cc_ext) {
2282		if (cotsworks) {
2283			dev_warn(sfp->dev,
2284				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2285				 check, id.ext.cc_ext);
2286		} else {
2287			dev_err(sfp->dev,
2288				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2289				check, id.ext.cc_ext);
2290			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2291				       16, 1, &id, sizeof(id), true);
2292			memset(&id.ext, 0, sizeof(id.ext));
2293		}
2294	}
2295
2296	sfp->id = id;
2297
2298	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2299		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2300		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2301		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2302		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2303		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2304
2305	/* Check whether we support this module */
2306	if (!sfp->type->module_supported(&id)) {
2307		dev_err(sfp->dev,
2308			"module is not supported - phys id 0x%02x 0x%02x\n",
2309			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2310		return -EINVAL;
2311	}
2312
2313	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2314		ret = sfp_module_parse_sff8472(sfp);
2315		if (ret < 0)
2316			return ret;
2317	}
2318
2319	/* Parse the module power requirement */
2320	ret = sfp_module_parse_power(sfp);
2321	if (ret < 0)
2322		return ret;
2323
2324	sfp_module_parse_rate_select(sfp);
2325
2326	mask = SFP_F_PRESENT;
2327	if (sfp->gpio[GPIO_TX_DISABLE])
2328		mask |= SFP_F_TX_DISABLE;
2329	if (sfp->gpio[GPIO_TX_FAULT])
2330		mask |= SFP_F_TX_FAULT;
2331	if (sfp->gpio[GPIO_LOS])
2332		mask |= SFP_F_LOS;
2333	if (sfp->gpio[GPIO_RS0])
2334		mask |= SFP_F_RS0;
2335	if (sfp->gpio[GPIO_RS1])
2336		mask |= SFP_F_RS1;
2337
2338	sfp->module_t_start_up = T_START_UP;
2339	sfp->module_t_wait = T_WAIT;
2340	sfp->phy_t_retry = T_PHY_RETRY;
2341
2342	sfp->state_ignore_mask = 0;
2343
2344	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2345	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2346	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2347	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2348		sfp->mdio_protocol = MDIO_I2C_C45;
2349	else if (sfp->id.base.e1000_base_t)
2350		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2351	else
2352		sfp->mdio_protocol = MDIO_I2C_NONE;
2353
2354	sfp->quirk = sfp_lookup_quirk(&id);
2355
2356	mutex_lock(&sfp->st_mutex);
2357	/* Initialise state bits to use from hardware */
2358	sfp->state_hw_mask = mask;
2359
2360	/* We want to drive the rate select pins that the module is using */
2361	sfp->state_hw_drive |= sfp->rs_state_mask;
2362
2363	if (sfp->quirk && sfp->quirk->fixup)
2364		sfp->quirk->fixup(sfp);
2365
2366	sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2367	mutex_unlock(&sfp->st_mutex);
2368
2369	return 0;
2370}
2371
2372static void sfp_sm_mod_remove(struct sfp *sfp)
2373{
2374	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2375		sfp_module_remove(sfp->sfp_bus);
2376
2377	sfp_hwmon_remove(sfp);
2378
2379	memset(&sfp->id, 0, sizeof(sfp->id));
2380	sfp->module_power_mW = 0;
2381	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2382	sfp->have_a2 = false;
2383
2384	dev_info(sfp->dev, "module removed\n");
2385}
2386
2387/* This state machine tracks the upstream's state */
2388static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2389{
2390	switch (sfp->sm_dev_state) {
2391	default:
2392		if (event == SFP_E_DEV_ATTACH)
2393			sfp->sm_dev_state = SFP_DEV_DOWN;
2394		break;
2395
2396	case SFP_DEV_DOWN:
2397		if (event == SFP_E_DEV_DETACH)
2398			sfp->sm_dev_state = SFP_DEV_DETACHED;
2399		else if (event == SFP_E_DEV_UP)
2400			sfp->sm_dev_state = SFP_DEV_UP;
2401		break;
2402
2403	case SFP_DEV_UP:
2404		if (event == SFP_E_DEV_DETACH)
2405			sfp->sm_dev_state = SFP_DEV_DETACHED;
2406		else if (event == SFP_E_DEV_DOWN)
2407			sfp->sm_dev_state = SFP_DEV_DOWN;
2408		break;
2409	}
2410}
2411
2412/* This state machine tracks the insert/remove state of the module, probes
2413 * the on-board EEPROM, and sets up the power level.
2414 */
2415static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2416{
2417	int err;
2418
2419	/* Handle remove event globally, it resets this state machine */
2420	if (event == SFP_E_REMOVE) {
2421		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2422			sfp_sm_mod_remove(sfp);
2423		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2424		return;
2425	}
2426
2427	/* Handle device detach globally */
2428	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2429	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2430		if (sfp->module_power_mW > 1000 &&
2431		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2432			sfp_sm_mod_hpower(sfp, false);
2433		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2434		return;
2435	}
2436
2437	switch (sfp->sm_mod_state) {
2438	default:
2439		if (event == SFP_E_INSERT) {
2440			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2441			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2442			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2443		}
2444		break;
2445
2446	case SFP_MOD_PROBE:
2447		/* Wait for T_PROBE_INIT to time out */
2448		if (event != SFP_E_TIMEOUT)
2449			break;
2450
2451		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2452		if (err == -EAGAIN) {
2453			if (sfp->sm_mod_tries_init &&
2454			   --sfp->sm_mod_tries_init) {
2455				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2456				break;
2457			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2458				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2459					dev_warn(sfp->dev,
2460						 "please wait, module slow to respond\n");
2461				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2462				break;
2463			}
2464		}
2465		if (err < 0) {
2466			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2467			break;
2468		}
2469
2470		/* Force a poll to re-read the hardware signal state after
2471		 * sfp_sm_mod_probe() changed state_hw_mask.
2472		 */
2473		mod_delayed_work(system_wq, &sfp->poll, 1);
2474
2475		err = sfp_hwmon_insert(sfp);
2476		if (err)
2477			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2478				 ERR_PTR(err));
2479
2480		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2481		fallthrough;
2482	case SFP_MOD_WAITDEV:
2483		/* Ensure that the device is attached before proceeding */
2484		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2485			break;
2486
2487		/* Report the module insertion to the upstream device */
2488		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2489					sfp->quirk);
2490		if (err < 0) {
2491			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2492			break;
2493		}
2494
2495		/* If this is a power level 1 module, we are done */
2496		if (sfp->module_power_mW <= 1000)
2497			goto insert;
2498
2499		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2500		fallthrough;
2501	case SFP_MOD_HPOWER:
2502		/* Enable high power mode */
2503		err = sfp_sm_mod_hpower(sfp, true);
2504		if (err < 0) {
2505			if (err != -EAGAIN) {
2506				sfp_module_remove(sfp->sfp_bus);
2507				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2508			} else {
2509				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2510			}
2511			break;
2512		}
2513
2514		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2515		break;
2516
2517	case SFP_MOD_WAITPWR:
2518		/* Wait for T_HPOWER_LEVEL to time out */
2519		if (event != SFP_E_TIMEOUT)
2520			break;
2521
2522	insert:
2523		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2524		break;
2525
2526	case SFP_MOD_PRESENT:
2527	case SFP_MOD_ERROR:
2528		break;
2529	}
2530}
2531
2532static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2533{
2534	unsigned long timeout;
2535	int ret;
2536
2537	/* Some events are global */
2538	if (sfp->sm_state != SFP_S_DOWN &&
2539	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2540	     sfp->sm_dev_state != SFP_DEV_UP)) {
2541		if (sfp->sm_state == SFP_S_LINK_UP &&
2542		    sfp->sm_dev_state == SFP_DEV_UP)
2543			sfp_sm_link_down(sfp);
2544		if (sfp->sm_state > SFP_S_INIT)
2545			sfp_module_stop(sfp->sfp_bus);
2546		if (sfp->mod_phy)
2547			sfp_sm_phy_detach(sfp);
2548		if (sfp->i2c_mii)
2549			sfp_i2c_mdiobus_destroy(sfp);
2550		sfp_module_tx_disable(sfp);
2551		sfp_soft_stop_poll(sfp);
2552		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2553		return;
2554	}
2555
2556	/* The main state machine */
2557	switch (sfp->sm_state) {
2558	case SFP_S_DOWN:
2559		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2560		    sfp->sm_dev_state != SFP_DEV_UP)
2561			break;
2562
2563		/* Only use the soft state bits if we have access to the A2h
2564		 * memory, which implies that we have some level of SFF-8472
2565		 * compliance.
2566		 */
2567		if (sfp->have_a2)
2568			sfp_soft_start_poll(sfp);
2569
2570		sfp_module_tx_enable(sfp);
2571
2572		/* Initialise the fault clearance retries */
2573		sfp->sm_fault_retries = N_FAULT_INIT;
2574
2575		/* We need to check the TX_FAULT state, which is not defined
2576		 * while TX_DISABLE is asserted. The earliest we want to do
2577		 * anything (such as probe for a PHY) is 50ms (or more on
2578		 * specific modules).
2579		 */
2580		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2581		break;
2582
2583	case SFP_S_WAIT:
2584		if (event != SFP_E_TIMEOUT)
2585			break;
2586
2587		if (sfp->state & SFP_F_TX_FAULT) {
2588			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2589			 * from the TX_DISABLE deassertion for the module to
2590			 * initialise, which is indicated by TX_FAULT
2591			 * deasserting.
2592			 */
2593			timeout = sfp->module_t_start_up;
2594			if (timeout > sfp->module_t_wait)
2595				timeout -= sfp->module_t_wait;
2596			else
2597				timeout = 1;
2598
2599			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2600		} else {
2601			/* TX_FAULT is not asserted, assume the module has
2602			 * finished initialising.
2603			 */
2604			goto init_done;
2605		}
2606		break;
2607
2608	case SFP_S_INIT:
2609		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2610			/* TX_FAULT is still asserted after t_init
2611			 * or t_start_up, so assume there is a fault.
2612			 */
2613			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2614				     sfp->sm_fault_retries == N_FAULT_INIT);
2615		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2616	init_done:
2617			/* Create mdiobus and start trying for PHY */
2618			ret = sfp_sm_add_mdio_bus(sfp);
2619			if (ret < 0) {
2620				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2621				break;
2622			}
2623			sfp->sm_phy_retries = R_PHY_RETRY;
2624			goto phy_probe;
2625		}
2626		break;
2627
2628	case SFP_S_INIT_PHY:
2629		if (event != SFP_E_TIMEOUT)
2630			break;
2631	phy_probe:
2632		/* TX_FAULT deasserted or we timed out with TX_FAULT
2633		 * clear.  Probe for the PHY and check the LOS state.
2634		 */
2635		ret = sfp_sm_probe_for_phy(sfp);
2636		if (ret == -ENODEV) {
2637			if (--sfp->sm_phy_retries) {
2638				sfp_sm_next(sfp, SFP_S_INIT_PHY,
2639					    sfp->phy_t_retry);
2640				dev_dbg(sfp->dev,
2641					"no PHY detected, %u tries left\n",
2642					sfp->sm_phy_retries);
2643				break;
2644			} else {
2645				dev_info(sfp->dev, "no PHY detected\n");
2646			}
2647		} else if (ret) {
2648			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2649			break;
2650		}
2651		if (sfp_module_start(sfp->sfp_bus)) {
2652			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2653			break;
2654		}
2655		sfp_sm_link_check_los(sfp);
2656
2657		/* Reset the fault retry count */
2658		sfp->sm_fault_retries = N_FAULT;
2659		break;
2660
2661	case SFP_S_INIT_TX_FAULT:
2662		if (event == SFP_E_TIMEOUT) {
2663			sfp_module_tx_fault_reset(sfp);
2664			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2665		}
2666		break;
2667
2668	case SFP_S_WAIT_LOS:
2669		if (event == SFP_E_TX_FAULT)
2670			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2671		else if (sfp_los_event_inactive(sfp, event))
2672			sfp_sm_link_up(sfp);
2673		break;
2674
2675	case SFP_S_LINK_UP:
2676		if (event == SFP_E_TX_FAULT) {
2677			sfp_sm_link_down(sfp);
2678			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2679		} else if (sfp_los_event_active(sfp, event)) {
2680			sfp_sm_link_down(sfp);
2681			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2682		}
2683		break;
2684
2685	case SFP_S_TX_FAULT:
2686		if (event == SFP_E_TIMEOUT) {
2687			sfp_module_tx_fault_reset(sfp);
2688			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2689		}
2690		break;
2691
2692	case SFP_S_REINIT:
2693		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2694			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2695		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2696			dev_info(sfp->dev, "module transmit fault recovered\n");
2697			sfp_sm_link_check_los(sfp);
2698		}
2699		break;
2700
2701	case SFP_S_TX_DISABLE:
2702		break;
2703	}
2704}
2705
2706static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2707{
2708	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2709		mod_state_to_str(sfp->sm_mod_state),
2710		dev_state_to_str(sfp->sm_dev_state),
2711		sm_state_to_str(sfp->sm_state),
2712		event_to_str(event));
2713
2714	sfp_sm_device(sfp, event);
2715	sfp_sm_module(sfp, event);
2716	sfp_sm_main(sfp, event);
2717
2718	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2719		mod_state_to_str(sfp->sm_mod_state),
2720		dev_state_to_str(sfp->sm_dev_state),
2721		sm_state_to_str(sfp->sm_state));
2722}
2723
2724static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2725{
2726	mutex_lock(&sfp->sm_mutex);
2727	__sfp_sm_event(sfp, event);
2728	mutex_unlock(&sfp->sm_mutex);
2729}
2730
2731static void sfp_attach(struct sfp *sfp)
2732{
2733	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2734}
2735
2736static void sfp_detach(struct sfp *sfp)
2737{
2738	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2739}
2740
2741static void sfp_start(struct sfp *sfp)
2742{
2743	sfp_sm_event(sfp, SFP_E_DEV_UP);
2744}
2745
2746static void sfp_stop(struct sfp *sfp)
2747{
2748	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2749}
2750
2751static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2752{
2753	unsigned int set;
2754
2755	sfp->rate_kbd = rate_kbd;
2756
2757	if (rate_kbd > sfp->rs_threshold_kbd)
2758		set = sfp->rs_state_mask;
2759	else
2760		set = 0;
2761
2762	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2763}
2764
2765static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2766{
2767	/* locking... and check module is present */
2768
2769	if (sfp->id.ext.sff8472_compliance &&
2770	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2771		modinfo->type = ETH_MODULE_SFF_8472;
2772		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2773	} else {
2774		modinfo->type = ETH_MODULE_SFF_8079;
2775		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2776	}
2777	return 0;
2778}
2779
2780static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2781			     u8 *data)
2782{
2783	unsigned int first, last, len;
2784	int ret;
2785
2786	if (!(sfp->state & SFP_F_PRESENT))
2787		return -ENODEV;
2788
2789	if (ee->len == 0)
2790		return -EINVAL;
2791
2792	first = ee->offset;
2793	last = ee->offset + ee->len;
2794	if (first < ETH_MODULE_SFF_8079_LEN) {
2795		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2796		len -= first;
2797
2798		ret = sfp_read(sfp, false, first, data, len);
2799		if (ret < 0)
2800			return ret;
2801
2802		first += len;
2803		data += len;
2804	}
2805	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2806		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2807		len -= first;
2808		first -= ETH_MODULE_SFF_8079_LEN;
2809
2810		ret = sfp_read(sfp, true, first, data, len);
2811		if (ret < 0)
2812			return ret;
2813	}
2814	return 0;
2815}
2816
2817static int sfp_module_eeprom_by_page(struct sfp *sfp,
2818				     const struct ethtool_module_eeprom *page,
2819				     struct netlink_ext_ack *extack)
2820{
2821	if (!(sfp->state & SFP_F_PRESENT))
2822		return -ENODEV;
2823
2824	if (page->bank) {
2825		NL_SET_ERR_MSG(extack, "Banks not supported");
2826		return -EOPNOTSUPP;
2827	}
2828
2829	if (page->page) {
2830		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2831		return -EOPNOTSUPP;
2832	}
2833
2834	if (page->i2c_address != 0x50 &&
2835	    page->i2c_address != 0x51) {
2836		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2837		return -EOPNOTSUPP;
2838	}
2839
2840	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2841			page->data, page->length);
2842};
2843
2844static const struct sfp_socket_ops sfp_module_ops = {
2845	.attach = sfp_attach,
2846	.detach = sfp_detach,
2847	.start = sfp_start,
2848	.stop = sfp_stop,
2849	.set_signal_rate = sfp_set_signal_rate,
2850	.module_info = sfp_module_info,
2851	.module_eeprom = sfp_module_eeprom,
2852	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2853};
2854
2855static void sfp_timeout(struct work_struct *work)
2856{
2857	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2858
2859	rtnl_lock();
2860	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2861	rtnl_unlock();
2862}
2863
2864static void sfp_check_state(struct sfp *sfp)
2865{
2866	unsigned int state, i, changed;
2867
2868	rtnl_lock();
2869	mutex_lock(&sfp->st_mutex);
2870	state = sfp_get_state(sfp);
2871	changed = state ^ sfp->state;
2872	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2873
2874	for (i = 0; i < GPIO_MAX; i++)
2875		if (changed & BIT(i))
2876			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2877				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2878
2879	state |= sfp->state & SFP_F_OUTPUTS;
2880	sfp->state = state;
2881	mutex_unlock(&sfp->st_mutex);
2882
2883	mutex_lock(&sfp->sm_mutex);
2884	if (changed & SFP_F_PRESENT)
2885		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2886				    SFP_E_INSERT : SFP_E_REMOVE);
2887
2888	if (changed & SFP_F_TX_FAULT)
2889		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2890				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2891
2892	if (changed & SFP_F_LOS)
2893		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2894				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2895	mutex_unlock(&sfp->sm_mutex);
2896	rtnl_unlock();
2897}
2898
2899static irqreturn_t sfp_irq(int irq, void *data)
2900{
2901	struct sfp *sfp = data;
2902
2903	sfp_check_state(sfp);
2904
2905	return IRQ_HANDLED;
2906}
2907
2908static void sfp_poll(struct work_struct *work)
2909{
2910	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2911
2912	sfp_check_state(sfp);
2913
2914	// st_mutex doesn't need to be held here for state_soft_mask,
2915	// it's unimportant if we race while reading this.
2916	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2917	    sfp->need_poll)
2918		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2919}
2920
2921static struct sfp *sfp_alloc(struct device *dev)
2922{
2923	struct sfp *sfp;
2924
2925	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2926	if (!sfp)
2927		return ERR_PTR(-ENOMEM);
2928
2929	sfp->dev = dev;
2930	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2931
2932	mutex_init(&sfp->sm_mutex);
2933	mutex_init(&sfp->st_mutex);
2934	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2935	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2936
2937	sfp_hwmon_init(sfp);
2938
2939	return sfp;
2940}
2941
2942static void sfp_cleanup(void *data)
2943{
2944	struct sfp *sfp = data;
2945
2946	sfp_hwmon_exit(sfp);
2947
2948	cancel_delayed_work_sync(&sfp->poll);
2949	cancel_delayed_work_sync(&sfp->timeout);
2950	if (sfp->i2c_mii) {
2951		mdiobus_unregister(sfp->i2c_mii);
2952		mdiobus_free(sfp->i2c_mii);
2953	}
2954	if (sfp->i2c)
2955		i2c_put_adapter(sfp->i2c);
2956	kfree(sfp);
2957}
2958
2959static int sfp_i2c_get(struct sfp *sfp)
2960{
2961	struct fwnode_handle *h;
2962	struct i2c_adapter *i2c;
2963	int err;
2964
2965	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2966	if (IS_ERR(h)) {
2967		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2968		return -ENODEV;
2969	}
2970
2971	i2c = i2c_get_adapter_by_fwnode(h);
2972	if (!i2c) {
2973		err = -EPROBE_DEFER;
2974		goto put;
2975	}
2976
2977	err = sfp_i2c_configure(sfp, i2c);
2978	if (err)
2979		i2c_put_adapter(i2c);
2980put:
2981	fwnode_handle_put(h);
2982	return err;
2983}
2984
2985static int sfp_probe(struct platform_device *pdev)
2986{
2987	const struct sff_data *sff;
2988	char *sfp_irq_name;
2989	struct sfp *sfp;
2990	int err, i;
2991
2992	sfp = sfp_alloc(&pdev->dev);
2993	if (IS_ERR(sfp))
2994		return PTR_ERR(sfp);
2995
2996	platform_set_drvdata(pdev, sfp);
2997
2998	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2999	if (err < 0)
3000		return err;
3001
3002	sff = device_get_match_data(sfp->dev);
3003	if (!sff)
3004		sff = &sfp_data;
3005
3006	sfp->type = sff;
3007
3008	err = sfp_i2c_get(sfp);
3009	if (err)
3010		return err;
3011
3012	for (i = 0; i < GPIO_MAX; i++)
3013		if (sff->gpios & BIT(i)) {
3014			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3015					   gpio_names[i], gpio_flags[i]);
3016			if (IS_ERR(sfp->gpio[i]))
3017				return PTR_ERR(sfp->gpio[i]);
3018		}
3019
3020	sfp->state_hw_mask = SFP_F_PRESENT;
3021	sfp->state_hw_drive = SFP_F_TX_DISABLE;
3022
3023	sfp->get_state = sfp_gpio_get_state;
3024	sfp->set_state = sfp_gpio_set_state;
3025
3026	/* Modules that have no detect signal are always present */
3027	if (!(sfp->gpio[GPIO_MODDEF0]))
3028		sfp->get_state = sff_gpio_get_state;
3029
3030	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3031				 &sfp->max_power_mW);
3032	if (sfp->max_power_mW < 1000) {
3033		if (sfp->max_power_mW)
3034			dev_warn(sfp->dev,
3035				 "Firmware bug: host maximum power should be at least 1W\n");
3036		sfp->max_power_mW = 1000;
3037	}
3038
3039	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3040		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3041
3042	/* Get the initial state, and always signal TX disable,
3043	 * since the network interface will not be up.
3044	 */
3045	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3046
3047	if (sfp->gpio[GPIO_RS0] &&
3048	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3049		sfp->state |= SFP_F_RS0;
3050	sfp_set_state(sfp, sfp->state);
3051	sfp_module_tx_disable(sfp);
3052	if (sfp->state & SFP_F_PRESENT) {
3053		rtnl_lock();
3054		sfp_sm_event(sfp, SFP_E_INSERT);
3055		rtnl_unlock();
3056	}
3057
3058	for (i = 0; i < GPIO_MAX; i++) {
3059		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3060			continue;
3061
3062		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3063		if (sfp->gpio_irq[i] < 0) {
3064			sfp->gpio_irq[i] = 0;
3065			sfp->need_poll = true;
3066			continue;
3067		}
3068
3069		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3070					      "%s-%s", dev_name(sfp->dev),
3071					      gpio_names[i]);
3072
3073		if (!sfp_irq_name)
3074			return -ENOMEM;
3075
3076		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3077						NULL, sfp_irq,
3078						IRQF_ONESHOT |
3079						IRQF_TRIGGER_RISING |
3080						IRQF_TRIGGER_FALLING,
3081						sfp_irq_name, sfp);
3082		if (err) {
3083			sfp->gpio_irq[i] = 0;
3084			sfp->need_poll = true;
3085		}
3086	}
3087
3088	if (sfp->need_poll)
3089		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3090
3091	/* We could have an issue in cases no Tx disable pin is available or
3092	 * wired as modules using a laser as their light source will continue to
3093	 * be active when the fiber is removed. This could be a safety issue and
3094	 * we should at least warn the user about that.
3095	 */
3096	if (!sfp->gpio[GPIO_TX_DISABLE])
3097		dev_warn(sfp->dev,
3098			 "No tx_disable pin: SFP modules will always be emitting.\n");
3099
3100	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3101	if (!sfp->sfp_bus)
3102		return -ENOMEM;
3103
3104	sfp_debugfs_init(sfp);
3105
3106	return 0;
3107}
3108
3109static void sfp_remove(struct platform_device *pdev)
3110{
3111	struct sfp *sfp = platform_get_drvdata(pdev);
3112
3113	sfp_debugfs_exit(sfp);
3114	sfp_unregister_socket(sfp->sfp_bus);
3115
3116	rtnl_lock();
3117	sfp_sm_event(sfp, SFP_E_REMOVE);
3118	rtnl_unlock();
3119}
3120
3121static void sfp_shutdown(struct platform_device *pdev)
3122{
3123	struct sfp *sfp = platform_get_drvdata(pdev);
3124	int i;
3125
3126	for (i = 0; i < GPIO_MAX; i++) {
3127		if (!sfp->gpio_irq[i])
3128			continue;
3129
3130		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3131	}
3132
3133	cancel_delayed_work_sync(&sfp->poll);
3134	cancel_delayed_work_sync(&sfp->timeout);
3135}
3136
3137static struct platform_driver sfp_driver = {
3138	.probe = sfp_probe,
3139	.remove_new = sfp_remove,
3140	.shutdown = sfp_shutdown,
3141	.driver = {
3142		.name = "sfp",
3143		.of_match_table = sfp_of_match,
3144	},
3145};
3146
3147static int sfp_init(void)
3148{
3149	poll_jiffies = msecs_to_jiffies(100);
3150
3151	return platform_driver_register(&sfp_driver);
3152}
3153module_init(sfp_init);
3154
3155static void sfp_exit(void)
3156{
3157	platform_driver_unregister(&sfp_driver);
3158}
3159module_exit(sfp_exit);
3160
3161MODULE_ALIAS("platform:sfp");
3162MODULE_AUTHOR("Russell King");
3163MODULE_LICENSE("GPL v2");
3164MODULE_DESCRIPTION("SFP cage support");
3165