1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2022 Meta Platforms Inc.
4 * Copyright (C) 2022 Jonathan Lemon <jonathan.lemon@gmail.com>
5 */
6
7#include <asm/unaligned.h>
8#include <linux/mii.h>
9#include <linux/phy.h>
10#include <linux/ptp_classify.h>
11#include <linux/ptp_clock_kernel.h>
12#include <linux/net_tstamp.h>
13#include <linux/netdevice.h>
14#include <linux/workqueue.h>
15
16#include "bcm-phy-lib.h"
17
18/* IEEE 1588 Expansion registers */
19#define SLICE_CTRL		0x0810
20#define  SLICE_TX_EN			BIT(0)
21#define  SLICE_RX_EN			BIT(8)
22#define TX_EVENT_MODE		0x0811
23#define  MODE_TX_UPDATE_CF		BIT(0)
24#define  MODE_TX_REPLACE_TS_CF		BIT(1)
25#define  MODE_TX_REPLACE_TS		GENMASK(1, 0)
26#define RX_EVENT_MODE		0x0819
27#define  MODE_RX_UPDATE_CF		BIT(0)
28#define  MODE_RX_INSERT_TS_48		BIT(1)
29#define  MODE_RX_INSERT_TS_64		GENMASK(1, 0)
30
31#define MODE_EVT_SHIFT_SYNC		0
32#define MODE_EVT_SHIFT_DELAY_REQ	2
33#define MODE_EVT_SHIFT_PDELAY_REQ	4
34#define MODE_EVT_SHIFT_PDELAY_RESP	6
35
36#define MODE_SEL_SHIFT_PORT		0
37#define MODE_SEL_SHIFT_CPU		8
38
39#define RX_MODE_SEL(sel, evt, act) \
40	(((MODE_RX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel))
41
42#define TX_MODE_SEL(sel, evt, act) \
43	(((MODE_TX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel))
44
45/* needs global TS capture first */
46#define TX_TS_CAPTURE		0x0821
47#define  TX_TS_CAP_EN			BIT(0)
48#define RX_TS_CAPTURE		0x0822
49#define  RX_TS_CAP_EN			BIT(0)
50
51#define TIME_CODE_0		0x0854
52#define TIME_CODE_1		0x0855
53#define TIME_CODE_2		0x0856
54#define TIME_CODE_3		0x0857
55#define TIME_CODE_4		0x0858
56
57#define DPLL_SELECT		0x085b
58#define  DPLL_HB_MODE2			BIT(6)
59
60#define SHADOW_CTRL		0x085c
61#define SHADOW_LOAD		0x085d
62#define  TIME_CODE_LOAD			BIT(10)
63#define  SYNC_OUT_LOAD			BIT(9)
64#define  NCO_TIME_LOAD			BIT(7)
65#define  FREQ_LOAD			BIT(6)
66#define INTR_MASK		0x085e
67#define INTR_STATUS		0x085f
68#define  INTC_FSYNC			BIT(0)
69#define  INTC_SOP			BIT(1)
70
71#define NCO_FREQ_LSB		0x0873
72#define NCO_FREQ_MSB		0x0874
73
74#define NCO_TIME_0		0x0875
75#define NCO_TIME_1		0x0876
76#define NCO_TIME_2_CTRL		0x0877
77#define  FREQ_MDIO_SEL			BIT(14)
78
79#define SYNC_OUT_0		0x0878
80#define SYNC_OUT_1		0x0879
81#define SYNC_OUT_2		0x087a
82
83#define SYNC_IN_DIVIDER		0x087b
84
85#define SYNOUT_TS_0		0x087c
86#define SYNOUT_TS_1		0x087d
87#define SYNOUT_TS_2		0x087e
88
89#define NSE_CTRL		0x087f
90#define  NSE_GMODE_EN			GENMASK(15, 14)
91#define  NSE_CAPTURE_EN			BIT(13)
92#define  NSE_INIT			BIT(12)
93#define  NSE_CPU_FRAMESYNC		BIT(5)
94#define  NSE_SYNC1_FRAMESYNC		BIT(3)
95#define  NSE_FRAMESYNC_MASK		GENMASK(5, 2)
96#define  NSE_PEROUT_EN			BIT(1)
97#define  NSE_ONESHOT_EN			BIT(0)
98#define  NSE_SYNC_OUT_MASK		GENMASK(1, 0)
99
100#define TS_READ_CTRL		0x0885
101#define  TS_READ_START			BIT(0)
102#define  TS_READ_END			BIT(1)
103
104#define HB_REG_0		0x0886
105#define HB_REG_1		0x0887
106#define HB_REG_2		0x0888
107#define HB_REG_3		0x08ec
108#define HB_REG_4		0x08ed
109#define HB_STAT_CTRL		0x088e
110#define  HB_READ_START			BIT(10)
111#define  HB_READ_END			BIT(11)
112#define  HB_READ_MASK			GENMASK(11, 10)
113
114#define TS_REG_0		0x0889
115#define TS_REG_1		0x088a
116#define TS_REG_2		0x088b
117#define TS_REG_3		0x08c4
118
119#define TS_INFO_0		0x088c
120#define TS_INFO_1		0x088d
121
122#define TIMECODE_CTRL		0x08c3
123#define  TX_TIMECODE_SEL		GENMASK(7, 0)
124#define  RX_TIMECODE_SEL		GENMASK(15, 8)
125
126#define TIME_SYNC		0x0ff5
127#define  TIME_SYNC_EN			BIT(0)
128
129struct bcm_ptp_private {
130	struct phy_device *phydev;
131	struct mii_timestamper mii_ts;
132	struct ptp_clock *ptp_clock;
133	struct ptp_clock_info ptp_info;
134	struct ptp_pin_desc pin;
135	struct mutex mutex;
136	struct sk_buff_head tx_queue;
137	int tx_type;
138	bool hwts_rx;
139	u16 nse_ctrl;
140	bool pin_active;
141	struct delayed_work pin_work;
142};
143
144struct bcm_ptp_skb_cb {
145	unsigned long timeout;
146	u16 seq_id;
147	u8 msgtype;
148	bool discard;
149};
150
151struct bcm_ptp_capture {
152	ktime_t	hwtstamp;
153	u16 seq_id;
154	u8 msgtype;
155	bool tx_dir;
156};
157
158#define BCM_SKB_CB(skb)		((struct bcm_ptp_skb_cb *)(skb)->cb)
159#define SKB_TS_TIMEOUT		10			/* jiffies */
160
161#define BCM_MAX_PULSE_8NS	((1U << 9) - 1)
162#define BCM_MAX_PERIOD_8NS	((1U << 30) - 1)
163
164#define BRCM_PHY_MODEL(phydev) \
165	((phydev)->drv->phy_id & (phydev)->drv->phy_id_mask)
166
167static struct bcm_ptp_private *mii2priv(struct mii_timestamper *mii_ts)
168{
169	return container_of(mii_ts, struct bcm_ptp_private, mii_ts);
170}
171
172static struct bcm_ptp_private *ptp2priv(struct ptp_clock_info *info)
173{
174	return container_of(info, struct bcm_ptp_private, ptp_info);
175}
176
177static void bcm_ptp_get_framesync_ts(struct phy_device *phydev,
178				     struct timespec64 *ts)
179{
180	u16 hb[4];
181
182	bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_START);
183
184	hb[0] = bcm_phy_read_exp(phydev, HB_REG_0);
185	hb[1] = bcm_phy_read_exp(phydev, HB_REG_1);
186	hb[2] = bcm_phy_read_exp(phydev, HB_REG_2);
187	hb[3] = bcm_phy_read_exp(phydev, HB_REG_3);
188
189	bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_END);
190	bcm_phy_write_exp(phydev, HB_STAT_CTRL, 0);
191
192	ts->tv_sec = (hb[3] << 16) | hb[2];
193	ts->tv_nsec = (hb[1] << 16) | hb[0];
194}
195
196static u16 bcm_ptp_framesync_disable(struct phy_device *phydev, u16 orig_ctrl)
197{
198	u16 ctrl = orig_ctrl & ~(NSE_FRAMESYNC_MASK | NSE_CAPTURE_EN);
199
200	bcm_phy_write_exp(phydev, NSE_CTRL, ctrl);
201
202	return ctrl;
203}
204
205static void bcm_ptp_framesync_restore(struct phy_device *phydev, u16 orig_ctrl)
206{
207	if (orig_ctrl & NSE_FRAMESYNC_MASK)
208		bcm_phy_write_exp(phydev, NSE_CTRL, orig_ctrl);
209}
210
211static void bcm_ptp_framesync(struct phy_device *phydev, u16 ctrl)
212{
213	/* trigger framesync - must have 0->1 transition. */
214	bcm_phy_write_exp(phydev, NSE_CTRL, ctrl | NSE_CPU_FRAMESYNC);
215}
216
217static int bcm_ptp_framesync_ts(struct phy_device *phydev,
218				struct ptp_system_timestamp *sts,
219				struct timespec64 *ts,
220				u16 orig_ctrl)
221{
222	u16 ctrl, reg;
223	int i;
224
225	ctrl = bcm_ptp_framesync_disable(phydev, orig_ctrl);
226
227	ptp_read_system_prets(sts);
228
229	/* trigger framesync + capture */
230	bcm_ptp_framesync(phydev, ctrl | NSE_CAPTURE_EN);
231
232	ptp_read_system_postts(sts);
233
234	/* poll for FSYNC interrupt from TS capture */
235	for (i = 0; i < 10; i++) {
236		reg = bcm_phy_read_exp(phydev, INTR_STATUS);
237		if (reg & INTC_FSYNC) {
238			bcm_ptp_get_framesync_ts(phydev, ts);
239			break;
240		}
241	}
242
243	bcm_ptp_framesync_restore(phydev, orig_ctrl);
244
245	return reg & INTC_FSYNC ? 0 : -ETIMEDOUT;
246}
247
248static int bcm_ptp_gettimex(struct ptp_clock_info *info,
249			    struct timespec64 *ts,
250			    struct ptp_system_timestamp *sts)
251{
252	struct bcm_ptp_private *priv = ptp2priv(info);
253	int err;
254
255	mutex_lock(&priv->mutex);
256	err = bcm_ptp_framesync_ts(priv->phydev, sts, ts, priv->nse_ctrl);
257	mutex_unlock(&priv->mutex);
258
259	return err;
260}
261
262static int bcm_ptp_settime_locked(struct bcm_ptp_private *priv,
263				  const struct timespec64 *ts)
264{
265	struct phy_device *phydev = priv->phydev;
266	u16 ctrl;
267	u64 ns;
268
269	ctrl = bcm_ptp_framesync_disable(phydev, priv->nse_ctrl);
270
271	/* set up time code */
272	bcm_phy_write_exp(phydev, TIME_CODE_0, ts->tv_nsec);
273	bcm_phy_write_exp(phydev, TIME_CODE_1, ts->tv_nsec >> 16);
274	bcm_phy_write_exp(phydev, TIME_CODE_2, ts->tv_sec);
275	bcm_phy_write_exp(phydev, TIME_CODE_3, ts->tv_sec >> 16);
276	bcm_phy_write_exp(phydev, TIME_CODE_4, ts->tv_sec >> 32);
277
278	/* set NCO counter to match */
279	ns = timespec64_to_ns(ts);
280	bcm_phy_write_exp(phydev, NCO_TIME_0, ns >> 4);
281	bcm_phy_write_exp(phydev, NCO_TIME_1, ns >> 20);
282	bcm_phy_write_exp(phydev, NCO_TIME_2_CTRL, (ns >> 36) & 0xfff);
283
284	/* set up load on next frame sync (auto-clears due to NSE_INIT) */
285	bcm_phy_write_exp(phydev, SHADOW_LOAD, TIME_CODE_LOAD | NCO_TIME_LOAD);
286
287	/* must have NSE_INIT in order to write time code */
288	bcm_ptp_framesync(phydev, ctrl | NSE_INIT);
289
290	bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
291
292	return 0;
293}
294
295static int bcm_ptp_settime(struct ptp_clock_info *info,
296			   const struct timespec64 *ts)
297{
298	struct bcm_ptp_private *priv = ptp2priv(info);
299	int err;
300
301	mutex_lock(&priv->mutex);
302	err = bcm_ptp_settime_locked(priv, ts);
303	mutex_unlock(&priv->mutex);
304
305	return err;
306}
307
308static int bcm_ptp_adjtime_locked(struct bcm_ptp_private *priv,
309				  s64 delta_ns)
310{
311	struct timespec64 ts;
312	int err;
313	s64 ns;
314
315	err = bcm_ptp_framesync_ts(priv->phydev, NULL, &ts, priv->nse_ctrl);
316	if (!err) {
317		ns = timespec64_to_ns(&ts) + delta_ns;
318		ts = ns_to_timespec64(ns);
319		err = bcm_ptp_settime_locked(priv, &ts);
320	}
321	return err;
322}
323
324static int bcm_ptp_adjtime(struct ptp_clock_info *info, s64 delta_ns)
325{
326	struct bcm_ptp_private *priv = ptp2priv(info);
327	int err;
328
329	mutex_lock(&priv->mutex);
330	err = bcm_ptp_adjtime_locked(priv, delta_ns);
331	mutex_unlock(&priv->mutex);
332
333	return err;
334}
335
336/* A 125Mhz clock should adjust 8ns per pulse.
337 * The frequency adjustment base is 0x8000 0000, or 8*2^28.
338 *
339 * Frequency adjustment is
340 * adj = scaled_ppm * 8*2^28 / (10^6 * 2^16)
341 *   which simplifies to:
342 * adj = scaled_ppm * 2^9 / 5^6
343 */
344static int bcm_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
345{
346	struct bcm_ptp_private *priv = ptp2priv(info);
347	int neg_adj = 0;
348	u32 diff, freq;
349	u16 ctrl;
350	u64 adj;
351
352	if (scaled_ppm < 0) {
353		neg_adj = 1;
354		scaled_ppm = -scaled_ppm;
355	}
356
357	adj = scaled_ppm << 9;
358	diff = div_u64(adj, 15625);
359	freq = (8 << 28) + (neg_adj ? -diff : diff);
360
361	mutex_lock(&priv->mutex);
362
363	ctrl = bcm_ptp_framesync_disable(priv->phydev, priv->nse_ctrl);
364
365	bcm_phy_write_exp(priv->phydev, NCO_FREQ_LSB, freq);
366	bcm_phy_write_exp(priv->phydev, NCO_FREQ_MSB, freq >> 16);
367
368	bcm_phy_write_exp(priv->phydev, NCO_TIME_2_CTRL, FREQ_MDIO_SEL);
369
370	/* load on next framesync */
371	bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, FREQ_LOAD);
372
373	bcm_ptp_framesync(priv->phydev, ctrl);
374
375	/* clear load */
376	bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, 0);
377
378	bcm_ptp_framesync_restore(priv->phydev, priv->nse_ctrl);
379
380	mutex_unlock(&priv->mutex);
381
382	return 0;
383}
384
385static bool bcm_ptp_rxtstamp(struct mii_timestamper *mii_ts,
386			     struct sk_buff *skb, int type)
387{
388	struct bcm_ptp_private *priv = mii2priv(mii_ts);
389	struct skb_shared_hwtstamps *hwts;
390	struct ptp_header *header;
391	u32 sec, nsec;
392	u8 *data;
393	int off;
394
395	if (!priv->hwts_rx)
396		return false;
397
398	header = ptp_parse_header(skb, type);
399	if (!header)
400		return false;
401
402	data = (u8 *)(header + 1);
403	sec = get_unaligned_be32(data);
404	nsec = get_unaligned_be32(data + 4);
405
406	hwts = skb_hwtstamps(skb);
407	hwts->hwtstamp = ktime_set(sec, nsec);
408
409	off = data - skb->data + 8;
410	if (off < skb->len) {
411		memmove(data, data + 8, skb->len - off);
412		__pskb_trim(skb, skb->len - 8);
413	}
414
415	return false;
416}
417
418static bool bcm_ptp_get_tstamp(struct bcm_ptp_private *priv,
419			       struct bcm_ptp_capture *capts)
420{
421	struct phy_device *phydev = priv->phydev;
422	u16 ts[4], reg;
423	u32 sec, nsec;
424
425	mutex_lock(&priv->mutex);
426
427	reg = bcm_phy_read_exp(phydev, INTR_STATUS);
428	if ((reg & INTC_SOP) == 0) {
429		mutex_unlock(&priv->mutex);
430		return false;
431	}
432
433	bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_START);
434
435	ts[0] = bcm_phy_read_exp(phydev, TS_REG_0);
436	ts[1] = bcm_phy_read_exp(phydev, TS_REG_1);
437	ts[2] = bcm_phy_read_exp(phydev, TS_REG_2);
438	ts[3] = bcm_phy_read_exp(phydev, TS_REG_3);
439
440	/* not in be32 format for some reason */
441	capts->seq_id = bcm_phy_read_exp(priv->phydev, TS_INFO_0);
442
443	reg = bcm_phy_read_exp(phydev, TS_INFO_1);
444	capts->msgtype = reg >> 12;
445	capts->tx_dir = !!(reg & BIT(11));
446
447	bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_END);
448	bcm_phy_write_exp(phydev, TS_READ_CTRL, 0);
449
450	mutex_unlock(&priv->mutex);
451
452	sec = (ts[3] << 16) | ts[2];
453	nsec = (ts[1] << 16) | ts[0];
454	capts->hwtstamp = ktime_set(sec, nsec);
455
456	return true;
457}
458
459static void bcm_ptp_match_tstamp(struct bcm_ptp_private *priv,
460				 struct bcm_ptp_capture *capts)
461{
462	struct skb_shared_hwtstamps hwts;
463	struct sk_buff *skb, *ts_skb;
464	unsigned long flags;
465	bool first = false;
466
467	ts_skb = NULL;
468	spin_lock_irqsave(&priv->tx_queue.lock, flags);
469	skb_queue_walk(&priv->tx_queue, skb) {
470		if (BCM_SKB_CB(skb)->seq_id == capts->seq_id &&
471		    BCM_SKB_CB(skb)->msgtype == capts->msgtype) {
472			first = skb_queue_is_first(&priv->tx_queue, skb);
473			__skb_unlink(skb, &priv->tx_queue);
474			ts_skb = skb;
475			break;
476		}
477	}
478	spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
479
480	/* TX captures one-step packets, discard them if needed. */
481	if (ts_skb) {
482		if (BCM_SKB_CB(ts_skb)->discard) {
483			kfree_skb(ts_skb);
484		} else {
485			memset(&hwts, 0, sizeof(hwts));
486			hwts.hwtstamp = capts->hwtstamp;
487			skb_complete_tx_timestamp(ts_skb, &hwts);
488		}
489	}
490
491	/* not first match, try and expire entries */
492	if (!first) {
493		while ((skb = skb_dequeue(&priv->tx_queue))) {
494			if (!time_after(jiffies, BCM_SKB_CB(skb)->timeout)) {
495				skb_queue_head(&priv->tx_queue, skb);
496				break;
497			}
498			kfree_skb(skb);
499		}
500	}
501}
502
503static long bcm_ptp_do_aux_work(struct ptp_clock_info *info)
504{
505	struct bcm_ptp_private *priv = ptp2priv(info);
506	struct bcm_ptp_capture capts;
507	bool reschedule = false;
508
509	while (!skb_queue_empty_lockless(&priv->tx_queue)) {
510		if (!bcm_ptp_get_tstamp(priv, &capts)) {
511			reschedule = true;
512			break;
513		}
514		bcm_ptp_match_tstamp(priv, &capts);
515	}
516
517	return reschedule ? 1 : -1;
518}
519
520static int bcm_ptp_cancel_func(struct bcm_ptp_private *priv)
521{
522	if (!priv->pin_active)
523		return 0;
524
525	priv->pin_active = false;
526
527	priv->nse_ctrl &= ~(NSE_SYNC_OUT_MASK | NSE_SYNC1_FRAMESYNC |
528			    NSE_CAPTURE_EN);
529	bcm_phy_write_exp(priv->phydev, NSE_CTRL, priv->nse_ctrl);
530
531	cancel_delayed_work_sync(&priv->pin_work);
532
533	return 0;
534}
535
536static void bcm_ptp_perout_work(struct work_struct *pin_work)
537{
538	struct bcm_ptp_private *priv =
539		container_of(pin_work, struct bcm_ptp_private, pin_work.work);
540	struct phy_device *phydev = priv->phydev;
541	struct timespec64 ts;
542	u64 ns, next;
543	u16 ctrl;
544
545	mutex_lock(&priv->mutex);
546
547	/* no longer running */
548	if (!priv->pin_active) {
549		mutex_unlock(&priv->mutex);
550		return;
551	}
552
553	bcm_ptp_framesync_ts(phydev, NULL, &ts, priv->nse_ctrl);
554
555	/* this is 1PPS only */
556	next = NSEC_PER_SEC - ts.tv_nsec;
557	ts.tv_sec += next < NSEC_PER_MSEC ? 2 : 1;
558	ts.tv_nsec = 0;
559
560	ns = timespec64_to_ns(&ts);
561
562	/* force 0->1 transition for ONESHOT */
563	ctrl = bcm_ptp_framesync_disable(phydev,
564					 priv->nse_ctrl & ~NSE_ONESHOT_EN);
565
566	bcm_phy_write_exp(phydev, SYNOUT_TS_0, ns & 0xfff0);
567	bcm_phy_write_exp(phydev, SYNOUT_TS_1, ns >> 16);
568	bcm_phy_write_exp(phydev, SYNOUT_TS_2, ns >> 32);
569
570	/* load values on next framesync */
571	bcm_phy_write_exp(phydev, SHADOW_LOAD, SYNC_OUT_LOAD);
572
573	bcm_ptp_framesync(phydev, ctrl | NSE_ONESHOT_EN | NSE_INIT);
574
575	priv->nse_ctrl |= NSE_ONESHOT_EN;
576	bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
577
578	mutex_unlock(&priv->mutex);
579
580	next = next + NSEC_PER_MSEC;
581	schedule_delayed_work(&priv->pin_work, nsecs_to_jiffies(next));
582}
583
584static int bcm_ptp_perout_locked(struct bcm_ptp_private *priv,
585				 struct ptp_perout_request *req, int on)
586{
587	struct phy_device *phydev = priv->phydev;
588	u64 period, pulse;
589	u16 val;
590
591	if (!on)
592		return bcm_ptp_cancel_func(priv);
593
594	/* 1PPS */
595	if (req->period.sec != 1 || req->period.nsec != 0)
596		return -EINVAL;
597
598	period = BCM_MAX_PERIOD_8NS;	/* write nonzero value */
599
600	if (req->flags & PTP_PEROUT_PHASE)
601		return -EOPNOTSUPP;
602
603	if (req->flags & PTP_PEROUT_DUTY_CYCLE)
604		pulse = ktime_to_ns(ktime_set(req->on.sec, req->on.nsec));
605	else
606		pulse = (u64)BCM_MAX_PULSE_8NS << 3;
607
608	/* convert to 8ns units */
609	pulse >>= 3;
610
611	if (!pulse || pulse > period || pulse > BCM_MAX_PULSE_8NS)
612		return -EINVAL;
613
614	bcm_phy_write_exp(phydev, SYNC_OUT_0, period);
615
616	val = ((pulse & 0x3) << 14) | ((period >> 16) & 0x3fff);
617	bcm_phy_write_exp(phydev, SYNC_OUT_1, val);
618
619	val = ((pulse >> 2) & 0x7f) | (pulse << 7);
620	bcm_phy_write_exp(phydev, SYNC_OUT_2, val);
621
622	if (priv->pin_active)
623		cancel_delayed_work_sync(&priv->pin_work);
624
625	priv->pin_active = true;
626	INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_perout_work);
627	schedule_delayed_work(&priv->pin_work, 0);
628
629	return 0;
630}
631
632static void bcm_ptp_extts_work(struct work_struct *pin_work)
633{
634	struct bcm_ptp_private *priv =
635		container_of(pin_work, struct bcm_ptp_private, pin_work.work);
636	struct phy_device *phydev = priv->phydev;
637	struct ptp_clock_event event;
638	struct timespec64 ts;
639	u16 reg;
640
641	mutex_lock(&priv->mutex);
642
643	/* no longer running */
644	if (!priv->pin_active) {
645		mutex_unlock(&priv->mutex);
646		return;
647	}
648
649	reg = bcm_phy_read_exp(phydev, INTR_STATUS);
650	if ((reg & INTC_FSYNC) == 0)
651		goto out;
652
653	bcm_ptp_get_framesync_ts(phydev, &ts);
654
655	event.index = 0;
656	event.type = PTP_CLOCK_EXTTS;
657	event.timestamp = timespec64_to_ns(&ts);
658	ptp_clock_event(priv->ptp_clock, &event);
659
660out:
661	mutex_unlock(&priv->mutex);
662	schedule_delayed_work(&priv->pin_work, HZ / 4);
663}
664
665static int bcm_ptp_extts_locked(struct bcm_ptp_private *priv, int on)
666{
667	struct phy_device *phydev = priv->phydev;
668
669	if (!on)
670		return bcm_ptp_cancel_func(priv);
671
672	if (priv->pin_active)
673		cancel_delayed_work_sync(&priv->pin_work);
674
675	bcm_ptp_framesync_disable(phydev, priv->nse_ctrl);
676
677	priv->nse_ctrl |= NSE_SYNC1_FRAMESYNC | NSE_CAPTURE_EN;
678
679	bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
680
681	priv->pin_active = true;
682	INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_extts_work);
683	schedule_delayed_work(&priv->pin_work, 0);
684
685	return 0;
686}
687
688static int bcm_ptp_enable(struct ptp_clock_info *info,
689			  struct ptp_clock_request *rq, int on)
690{
691	struct bcm_ptp_private *priv = ptp2priv(info);
692	int err = -EBUSY;
693
694	mutex_lock(&priv->mutex);
695
696	switch (rq->type) {
697	case PTP_CLK_REQ_PEROUT:
698		if (priv->pin.func == PTP_PF_PEROUT)
699			err = bcm_ptp_perout_locked(priv, &rq->perout, on);
700		break;
701	case PTP_CLK_REQ_EXTTS:
702		if (priv->pin.func == PTP_PF_EXTTS)
703			err = bcm_ptp_extts_locked(priv, on);
704		break;
705	default:
706		err = -EOPNOTSUPP;
707		break;
708	}
709
710	mutex_unlock(&priv->mutex);
711
712	return err;
713}
714
715static int bcm_ptp_verify(struct ptp_clock_info *info, unsigned int pin,
716			  enum ptp_pin_function func, unsigned int chan)
717{
718	switch (func) {
719	case PTP_PF_NONE:
720	case PTP_PF_EXTTS:
721	case PTP_PF_PEROUT:
722		break;
723	default:
724		return -EOPNOTSUPP;
725	}
726	return 0;
727}
728
729static const struct ptp_clock_info bcm_ptp_clock_info = {
730	.owner		= THIS_MODULE,
731	.name		= KBUILD_MODNAME,
732	.max_adj	= 100000000,
733	.gettimex64	= bcm_ptp_gettimex,
734	.settime64	= bcm_ptp_settime,
735	.adjtime	= bcm_ptp_adjtime,
736	.adjfine	= bcm_ptp_adjfine,
737	.enable		= bcm_ptp_enable,
738	.verify		= bcm_ptp_verify,
739	.do_aux_work	= bcm_ptp_do_aux_work,
740	.n_pins		= 1,
741	.n_per_out	= 1,
742	.n_ext_ts	= 1,
743};
744
745static void bcm_ptp_txtstamp(struct mii_timestamper *mii_ts,
746			     struct sk_buff *skb, int type)
747{
748	struct bcm_ptp_private *priv = mii2priv(mii_ts);
749	struct ptp_header *hdr;
750	bool discard = false;
751	int msgtype;
752
753	hdr = ptp_parse_header(skb, type);
754	if (!hdr)
755		goto out;
756	msgtype = ptp_get_msgtype(hdr, type);
757
758	switch (priv->tx_type) {
759	case HWTSTAMP_TX_ONESTEP_P2P:
760		if (msgtype == PTP_MSGTYPE_PDELAY_RESP)
761			discard = true;
762		fallthrough;
763	case HWTSTAMP_TX_ONESTEP_SYNC:
764		if (msgtype == PTP_MSGTYPE_SYNC)
765			discard = true;
766		fallthrough;
767	case HWTSTAMP_TX_ON:
768		BCM_SKB_CB(skb)->timeout = jiffies + SKB_TS_TIMEOUT;
769		BCM_SKB_CB(skb)->seq_id = be16_to_cpu(hdr->sequence_id);
770		BCM_SKB_CB(skb)->msgtype = msgtype;
771		BCM_SKB_CB(skb)->discard = discard;
772		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
773		skb_queue_tail(&priv->tx_queue, skb);
774		ptp_schedule_worker(priv->ptp_clock, 0);
775		return;
776	default:
777		break;
778	}
779
780out:
781	kfree_skb(skb);
782}
783
784static int bcm_ptp_hwtstamp(struct mii_timestamper *mii_ts,
785			    struct kernel_hwtstamp_config *cfg,
786			    struct netlink_ext_ack *extack)
787{
788	struct bcm_ptp_private *priv = mii2priv(mii_ts);
789	u16 mode, ctrl;
790
791	switch (cfg->rx_filter) {
792	case HWTSTAMP_FILTER_NONE:
793		priv->hwts_rx = false;
794		break;
795	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
796	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
797	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
798	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
799	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
800	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
801	case HWTSTAMP_FILTER_PTP_V2_EVENT:
802	case HWTSTAMP_FILTER_PTP_V2_SYNC:
803	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
804		cfg->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
805		priv->hwts_rx = true;
806		break;
807	default:
808		return -ERANGE;
809	}
810
811	priv->tx_type = cfg->tx_type;
812
813	ctrl  = priv->hwts_rx ? SLICE_RX_EN : 0;
814	ctrl |= priv->tx_type != HWTSTAMP_TX_OFF ? SLICE_TX_EN : 0;
815
816	mode = TX_MODE_SEL(PORT, SYNC, REPLACE_TS) |
817	       TX_MODE_SEL(PORT, DELAY_REQ, REPLACE_TS) |
818	       TX_MODE_SEL(PORT, PDELAY_REQ, REPLACE_TS) |
819	       TX_MODE_SEL(PORT, PDELAY_RESP, REPLACE_TS);
820
821	bcm_phy_write_exp(priv->phydev, TX_EVENT_MODE, mode);
822
823	mode = RX_MODE_SEL(PORT, SYNC, INSERT_TS_64) |
824	       RX_MODE_SEL(PORT, DELAY_REQ, INSERT_TS_64) |
825	       RX_MODE_SEL(PORT, PDELAY_REQ, INSERT_TS_64) |
826	       RX_MODE_SEL(PORT, PDELAY_RESP, INSERT_TS_64);
827
828	bcm_phy_write_exp(priv->phydev, RX_EVENT_MODE, mode);
829
830	bcm_phy_write_exp(priv->phydev, SLICE_CTRL, ctrl);
831
832	if (ctrl & SLICE_TX_EN)
833		bcm_phy_write_exp(priv->phydev, TX_TS_CAPTURE, TX_TS_CAP_EN);
834	else
835		ptp_cancel_worker_sync(priv->ptp_clock);
836
837	/* purge existing data */
838	skb_queue_purge(&priv->tx_queue);
839
840	return 0;
841}
842
843static int bcm_ptp_ts_info(struct mii_timestamper *mii_ts,
844			   struct ethtool_ts_info *ts_info)
845{
846	struct bcm_ptp_private *priv = mii2priv(mii_ts);
847
848	ts_info->phc_index = ptp_clock_index(priv->ptp_clock);
849	ts_info->so_timestamping =
850		SOF_TIMESTAMPING_TX_HARDWARE |
851		SOF_TIMESTAMPING_RX_HARDWARE |
852		SOF_TIMESTAMPING_RAW_HARDWARE;
853	ts_info->tx_types =
854		BIT(HWTSTAMP_TX_ON) |
855		BIT(HWTSTAMP_TX_OFF) |
856		BIT(HWTSTAMP_TX_ONESTEP_SYNC) |
857		BIT(HWTSTAMP_TX_ONESTEP_P2P);
858	ts_info->rx_filters =
859		BIT(HWTSTAMP_FILTER_NONE) |
860		BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
861
862	return 0;
863}
864
865void bcm_ptp_stop(struct bcm_ptp_private *priv)
866{
867	ptp_cancel_worker_sync(priv->ptp_clock);
868	bcm_ptp_cancel_func(priv);
869}
870EXPORT_SYMBOL_GPL(bcm_ptp_stop);
871
872void bcm_ptp_config_init(struct phy_device *phydev)
873{
874	/* init network sync engine */
875	bcm_phy_write_exp(phydev, NSE_CTRL, NSE_GMODE_EN | NSE_INIT);
876
877	/* enable time sync (TX/RX SOP capture) */
878	bcm_phy_write_exp(phydev, TIME_SYNC, TIME_SYNC_EN);
879
880	/* use sec.nsec heartbeat capture */
881	bcm_phy_write_exp(phydev, DPLL_SELECT, DPLL_HB_MODE2);
882
883	/* use 64 bit timecode for TX */
884	bcm_phy_write_exp(phydev, TIMECODE_CTRL, TX_TIMECODE_SEL);
885
886	/* always allow FREQ_LOAD on framesync */
887	bcm_phy_write_exp(phydev, SHADOW_CTRL, FREQ_LOAD);
888
889	bcm_phy_write_exp(phydev, SYNC_IN_DIVIDER, 1);
890}
891EXPORT_SYMBOL_GPL(bcm_ptp_config_init);
892
893static void bcm_ptp_init(struct bcm_ptp_private *priv)
894{
895	priv->nse_ctrl = NSE_GMODE_EN;
896
897	mutex_init(&priv->mutex);
898	skb_queue_head_init(&priv->tx_queue);
899
900	priv->mii_ts.rxtstamp = bcm_ptp_rxtstamp;
901	priv->mii_ts.txtstamp = bcm_ptp_txtstamp;
902	priv->mii_ts.hwtstamp = bcm_ptp_hwtstamp;
903	priv->mii_ts.ts_info = bcm_ptp_ts_info;
904
905	priv->phydev->mii_ts = &priv->mii_ts;
906}
907
908struct bcm_ptp_private *bcm_ptp_probe(struct phy_device *phydev)
909{
910	struct bcm_ptp_private *priv;
911	struct ptp_clock *clock;
912
913	switch (BRCM_PHY_MODEL(phydev)) {
914	case PHY_ID_BCM54210E:
915		break;
916	default:
917		return NULL;
918	}
919
920	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
921	if (!priv)
922		return ERR_PTR(-ENOMEM);
923
924	priv->ptp_info = bcm_ptp_clock_info;
925
926	snprintf(priv->pin.name, sizeof(priv->pin.name), "SYNC_OUT");
927	priv->ptp_info.pin_config = &priv->pin;
928
929	clock = ptp_clock_register(&priv->ptp_info, &phydev->mdio.dev);
930	if (IS_ERR(clock))
931		return ERR_CAST(clock);
932	priv->ptp_clock = clock;
933
934	priv->phydev = phydev;
935	bcm_ptp_init(priv);
936
937	return priv;
938}
939EXPORT_SYMBOL_GPL(bcm_ptp_probe);
940
941MODULE_LICENSE("GPL");
942MODULE_DESCRIPTION("Broadcom PHY PTP driver");
943