1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 *
5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 *
7 * Thanks to Essential Communication for providing us with hardware
8 * and very comprehensive documentation without which I would not have
9 * been able to write this driver. A special thank you to John Gibbon
10 * for sorting out the legal issues, with the NDA, allowing the code to
11 * be released under the GPL.
12 *
13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
14 * stupid bugs in my code.
15 *
16 * Softnet support and various other patches from Val Henson of
17 * ODS/Essential.
18 *
19 * PCI DMA mapping code partly based on work by Francois Romieu.
20 */
21
22
23#define DEBUG 1
24#define RX_DMA_SKBUFF 1
25#define PKT_COPY_THRESHOLD 512
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/errno.h>
30#include <linux/ioport.h>
31#include <linux/pci.h>
32#include <linux/kernel.h>
33#include <linux/netdevice.h>
34#include <linux/hippidevice.h>
35#include <linux/skbuff.h>
36#include <linux/delay.h>
37#include <linux/mm.h>
38#include <linux/slab.h>
39#include <net/sock.h>
40
41#include <asm/cache.h>
42#include <asm/byteorder.h>
43#include <asm/io.h>
44#include <asm/irq.h>
45#include <linux/uaccess.h>
46
47#define rr_if_busy(dev)     netif_queue_stopped(dev)
48#define rr_if_running(dev)  netif_running(dev)
49
50#include "rrunner.h"
51
52#define RUN_AT(x) (jiffies + (x))
53
54
55MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
56MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
57MODULE_LICENSE("GPL");
58
59static const char version[] =
60"rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
61
62
63static const struct net_device_ops rr_netdev_ops = {
64	.ndo_open 		= rr_open,
65	.ndo_stop		= rr_close,
66	.ndo_siocdevprivate	= rr_siocdevprivate,
67	.ndo_start_xmit		= rr_start_xmit,
68	.ndo_set_mac_address	= hippi_mac_addr,
69};
70
71/*
72 * Implementation notes:
73 *
74 * The DMA engine only allows for DMA within physical 64KB chunks of
75 * memory. The current approach of the driver (and stack) is to use
76 * linear blocks of memory for the skbuffs. However, as the data block
77 * is always the first part of the skb and skbs are 2^n aligned so we
78 * are guarantted to get the whole block within one 64KB align 64KB
79 * chunk.
80 *
81 * On the long term, relying on being able to allocate 64KB linear
82 * chunks of memory is not feasible and the skb handling code and the
83 * stack will need to know about I/O vectors or something similar.
84 */
85
86static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
87{
88	struct net_device *dev;
89	static int version_disp;
90	u8 pci_latency;
91	struct rr_private *rrpriv;
92	void *tmpptr;
93	dma_addr_t ring_dma;
94	int ret = -ENOMEM;
95
96	dev = alloc_hippi_dev(sizeof(struct rr_private));
97	if (!dev)
98		goto out3;
99
100	ret = pci_enable_device(pdev);
101	if (ret) {
102		ret = -ENODEV;
103		goto out2;
104	}
105
106	rrpriv = netdev_priv(dev);
107
108	SET_NETDEV_DEV(dev, &pdev->dev);
109
110	ret = pci_request_regions(pdev, "rrunner");
111	if (ret < 0)
112		goto out;
113
114	pci_set_drvdata(pdev, dev);
115
116	rrpriv->pci_dev = pdev;
117
118	spin_lock_init(&rrpriv->lock);
119
120	dev->netdev_ops = &rr_netdev_ops;
121
122	/* display version info if adapter is found */
123	if (!version_disp) {
124		/* set display flag to TRUE so that */
125		/* we only display this string ONCE */
126		version_disp = 1;
127		printk(version);
128	}
129
130	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
131	if (pci_latency <= 0x58){
132		pci_latency = 0x58;
133		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
134	}
135
136	pci_set_master(pdev);
137
138	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
139	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
140	       (unsigned long long)pci_resource_start(pdev, 0),
141	       pdev->irq, pci_latency);
142
143	/*
144	 * Remap the MMIO regs into kernel space.
145	 */
146	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
147	if (!rrpriv->regs) {
148		printk(KERN_ERR "%s:  Unable to map I/O register, "
149			"RoadRunner will be disabled.\n", dev->name);
150		ret = -EIO;
151		goto out;
152	}
153
154	tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
155				    GFP_KERNEL);
156	rrpriv->tx_ring = tmpptr;
157	rrpriv->tx_ring_dma = ring_dma;
158
159	if (!tmpptr) {
160		ret = -ENOMEM;
161		goto out;
162	}
163
164	tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
165				    GFP_KERNEL);
166	rrpriv->rx_ring = tmpptr;
167	rrpriv->rx_ring_dma = ring_dma;
168
169	if (!tmpptr) {
170		ret = -ENOMEM;
171		goto out;
172	}
173
174	tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
175				    GFP_KERNEL);
176	rrpriv->evt_ring = tmpptr;
177	rrpriv->evt_ring_dma = ring_dma;
178
179	if (!tmpptr) {
180		ret = -ENOMEM;
181		goto out;
182	}
183
184	/*
185	 * Don't access any register before this point!
186	 */
187#ifdef __BIG_ENDIAN
188	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189		&rrpriv->regs->HostCtrl);
190#endif
191	/*
192	 * Need to add a case for little-endian 64-bit hosts here.
193	 */
194
195	rr_init(dev);
196
197	ret = register_netdev(dev);
198	if (ret)
199		goto out;
200	return 0;
201
202 out:
203	if (rrpriv->evt_ring)
204		dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
205				  rrpriv->evt_ring_dma);
206	if (rrpriv->rx_ring)
207		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208				  rrpriv->rx_ring_dma);
209	if (rrpriv->tx_ring)
210		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211				  rrpriv->tx_ring_dma);
212	if (rrpriv->regs)
213		pci_iounmap(pdev, rrpriv->regs);
214	if (pdev)
215		pci_release_regions(pdev);
216	pci_disable_device(pdev);
217 out2:
218	free_netdev(dev);
219 out3:
220	return ret;
221}
222
223static void rr_remove_one(struct pci_dev *pdev)
224{
225	struct net_device *dev = pci_get_drvdata(pdev);
226	struct rr_private *rr = netdev_priv(dev);
227
228	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
229		printk(KERN_ERR "%s: trying to unload running NIC\n",
230		       dev->name);
231		writel(HALT_NIC, &rr->regs->HostCtrl);
232	}
233
234	unregister_netdev(dev);
235	dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
236			  rr->evt_ring_dma);
237	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
238			  rr->rx_ring_dma);
239	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
240			  rr->tx_ring_dma);
241	pci_iounmap(pdev, rr->regs);
242	pci_release_regions(pdev);
243	pci_disable_device(pdev);
244	free_netdev(dev);
245}
246
247
248/*
249 * Commands are considered to be slow, thus there is no reason to
250 * inline this.
251 */
252static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
253{
254	struct rr_regs __iomem *regs;
255	u32 idx;
256
257	regs = rrpriv->regs;
258	/*
259	 * This is temporary - it will go away in the final version.
260	 * We probably also want to make this function inline.
261	 */
262	if (readl(&regs->HostCtrl) & NIC_HALTED){
263		printk("issuing command for halted NIC, code 0x%x, "
264		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
265		if (readl(&regs->Mode) & FATAL_ERR)
266			printk("error codes Fail1 %02x, Fail2 %02x\n",
267			       readl(&regs->Fail1), readl(&regs->Fail2));
268	}
269
270	idx = rrpriv->info->cmd_ctrl.pi;
271
272	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
273	wmb();
274
275	idx = (idx - 1) % CMD_RING_ENTRIES;
276	rrpriv->info->cmd_ctrl.pi = idx;
277	wmb();
278
279	if (readl(&regs->Mode) & FATAL_ERR)
280		printk("error code %02x\n", readl(&regs->Fail1));
281}
282
283
284/*
285 * Reset the board in a sensible manner. The NIC is already halted
286 * when we get here and a spin-lock is held.
287 */
288static int rr_reset(struct net_device *dev)
289{
290	struct rr_private *rrpriv;
291	struct rr_regs __iomem *regs;
292	u32 start_pc;
293	int i;
294
295	rrpriv = netdev_priv(dev);
296	regs = rrpriv->regs;
297
298	rr_load_firmware(dev);
299
300	writel(0x01000000, &regs->TX_state);
301	writel(0xff800000, &regs->RX_state);
302	writel(0, &regs->AssistState);
303	writel(CLEAR_INTA, &regs->LocalCtrl);
304	writel(0x01, &regs->BrkPt);
305	writel(0, &regs->Timer);
306	writel(0, &regs->TimerRef);
307	writel(RESET_DMA, &regs->DmaReadState);
308	writel(RESET_DMA, &regs->DmaWriteState);
309	writel(0, &regs->DmaWriteHostHi);
310	writel(0, &regs->DmaWriteHostLo);
311	writel(0, &regs->DmaReadHostHi);
312	writel(0, &regs->DmaReadHostLo);
313	writel(0, &regs->DmaReadLen);
314	writel(0, &regs->DmaWriteLen);
315	writel(0, &regs->DmaWriteLcl);
316	writel(0, &regs->DmaWriteIPchecksum);
317	writel(0, &regs->DmaReadLcl);
318	writel(0, &regs->DmaReadIPchecksum);
319	writel(0, &regs->PciState);
320#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
321	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
322#elif (BITS_PER_LONG == 64)
323	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
324#else
325	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
326#endif
327
328#if 0
329	/*
330	 * Don't worry, this is just black magic.
331	 */
332	writel(0xdf000, &regs->RxBase);
333	writel(0xdf000, &regs->RxPrd);
334	writel(0xdf000, &regs->RxCon);
335	writel(0xce000, &regs->TxBase);
336	writel(0xce000, &regs->TxPrd);
337	writel(0xce000, &regs->TxCon);
338	writel(0, &regs->RxIndPro);
339	writel(0, &regs->RxIndCon);
340	writel(0, &regs->RxIndRef);
341	writel(0, &regs->TxIndPro);
342	writel(0, &regs->TxIndCon);
343	writel(0, &regs->TxIndRef);
344	writel(0xcc000, &regs->pad10[0]);
345	writel(0, &regs->DrCmndPro);
346	writel(0, &regs->DrCmndCon);
347	writel(0, &regs->DwCmndPro);
348	writel(0, &regs->DwCmndCon);
349	writel(0, &regs->DwCmndRef);
350	writel(0, &regs->DrDataPro);
351	writel(0, &regs->DrDataCon);
352	writel(0, &regs->DrDataRef);
353	writel(0, &regs->DwDataPro);
354	writel(0, &regs->DwDataCon);
355	writel(0, &regs->DwDataRef);
356#endif
357
358	writel(0xffffffff, &regs->MbEvent);
359	writel(0, &regs->Event);
360
361	writel(0, &regs->TxPi);
362	writel(0, &regs->IpRxPi);
363
364	writel(0, &regs->EvtCon);
365	writel(0, &regs->EvtPrd);
366
367	rrpriv->info->evt_ctrl.pi = 0;
368
369	for (i = 0; i < CMD_RING_ENTRIES; i++)
370		writel(0, &regs->CmdRing[i]);
371
372/*
373 * Why 32 ? is this not cache line size dependent?
374 */
375	writel(RBURST_64|WBURST_64, &regs->PciState);
376	wmb();
377
378	start_pc = rr_read_eeprom_word(rrpriv,
379			offsetof(struct eeprom, rncd_info.FwStart));
380
381#if (DEBUG > 1)
382	printk("%s: Executing firmware at address 0x%06x\n",
383	       dev->name, start_pc);
384#endif
385
386	writel(start_pc + 0x800, &regs->Pc);
387	wmb();
388	udelay(5);
389
390	writel(start_pc, &regs->Pc);
391	wmb();
392
393	return 0;
394}
395
396
397/*
398 * Read a string from the EEPROM.
399 */
400static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
401				unsigned long offset,
402				unsigned char *buf,
403				unsigned long length)
404{
405	struct rr_regs __iomem *regs = rrpriv->regs;
406	u32 misc, io, host, i;
407
408	io = readl(&regs->ExtIo);
409	writel(0, &regs->ExtIo);
410	misc = readl(&regs->LocalCtrl);
411	writel(0, &regs->LocalCtrl);
412	host = readl(&regs->HostCtrl);
413	writel(host | HALT_NIC, &regs->HostCtrl);
414	mb();
415
416	for (i = 0; i < length; i++){
417		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
418		mb();
419		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
420		mb();
421	}
422
423	writel(host, &regs->HostCtrl);
424	writel(misc, &regs->LocalCtrl);
425	writel(io, &regs->ExtIo);
426	mb();
427	return i;
428}
429
430
431/*
432 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
433 * it to our CPU byte-order.
434 */
435static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
436			    size_t offset)
437{
438	__be32 word;
439
440	if ((rr_read_eeprom(rrpriv, offset,
441			    (unsigned char *)&word, 4) == 4))
442		return be32_to_cpu(word);
443	return 0;
444}
445
446
447/*
448 * Write a string to the EEPROM.
449 *
450 * This is only called when the firmware is not running.
451 */
452static unsigned int write_eeprom(struct rr_private *rrpriv,
453				 unsigned long offset,
454				 unsigned char *buf,
455				 unsigned long length)
456{
457	struct rr_regs __iomem *regs = rrpriv->regs;
458	u32 misc, io, data, i, j, ready, error = 0;
459
460	io = readl(&regs->ExtIo);
461	writel(0, &regs->ExtIo);
462	misc = readl(&regs->LocalCtrl);
463	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
464	mb();
465
466	for (i = 0; i < length; i++){
467		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
468		mb();
469		data = buf[i] << 24;
470		/*
471		 * Only try to write the data if it is not the same
472		 * value already.
473		 */
474		if ((readl(&regs->WinData) & 0xff000000) != data){
475			writel(data, &regs->WinData);
476			ready = 0;
477			j = 0;
478			mb();
479			while(!ready){
480				udelay(20);
481				if ((readl(&regs->WinData) & 0xff000000) ==
482				    data)
483					ready = 1;
484				mb();
485				if (j++ > 5000){
486					printk("data mismatch: %08x, "
487					       "WinData %08x\n", data,
488					       readl(&regs->WinData));
489					ready = 1;
490					error = 1;
491				}
492			}
493		}
494	}
495
496	writel(misc, &regs->LocalCtrl);
497	writel(io, &regs->ExtIo);
498	mb();
499
500	return error;
501}
502
503
504static int rr_init(struct net_device *dev)
505{
506	u8 addr[HIPPI_ALEN] __aligned(4);
507	struct rr_private *rrpriv;
508	struct rr_regs __iomem *regs;
509	u32 sram_size, rev;
510
511	rrpriv = netdev_priv(dev);
512	regs = rrpriv->regs;
513
514	rev = readl(&regs->FwRev);
515	rrpriv->fw_rev = rev;
516	if (rev > 0x00020024)
517		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
518		       ((rev >> 8) & 0xff), (rev & 0xff));
519	else if (rev >= 0x00020000) {
520		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
521		       "later is recommended)\n", (rev >> 16),
522		       ((rev >> 8) & 0xff), (rev & 0xff));
523	}else{
524		printk("  Firmware revision too old: %i.%i.%i, please "
525		       "upgrade to 2.0.37 or later.\n",
526		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
527	}
528
529#if (DEBUG > 2)
530	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
531#endif
532
533	/*
534	 * Read the hardware address from the eeprom.  The HW address
535	 * is not really necessary for HIPPI but awfully convenient.
536	 * The pointer arithmetic to put it in dev_addr is ugly, but
537	 * Donald Becker does it this way for the GigE version of this
538	 * card and it's shorter and more portable than any
539	 * other method I've seen.  -VAL
540	 */
541
542	*(__be16 *)(addr) =
543	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
544	*(__be32 *)(addr+2) =
545	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
546	dev_addr_set(dev, addr);
547
548	printk("  MAC: %pM\n", dev->dev_addr);
549
550	sram_size = rr_read_eeprom_word(rrpriv, 8);
551	printk("  SRAM size 0x%06x\n", sram_size);
552
553	return 0;
554}
555
556
557static int rr_init1(struct net_device *dev)
558{
559	struct rr_private *rrpriv;
560	struct rr_regs __iomem *regs;
561	unsigned long myjif, flags;
562	struct cmd cmd;
563	u32 hostctrl;
564	int ecode = 0;
565	short i;
566
567	rrpriv = netdev_priv(dev);
568	regs = rrpriv->regs;
569
570	spin_lock_irqsave(&rrpriv->lock, flags);
571
572	hostctrl = readl(&regs->HostCtrl);
573	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
574	wmb();
575
576	if (hostctrl & PARITY_ERR){
577		printk("%s: Parity error halting NIC - this is serious!\n",
578		       dev->name);
579		spin_unlock_irqrestore(&rrpriv->lock, flags);
580		ecode = -EFAULT;
581		goto error;
582	}
583
584	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
585	set_infoaddr(regs, rrpriv->info_dma);
586
587	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
588	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
589	rrpriv->info->evt_ctrl.mode = 0;
590	rrpriv->info->evt_ctrl.pi = 0;
591	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
592
593	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
594	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
595	rrpriv->info->cmd_ctrl.mode = 0;
596	rrpriv->info->cmd_ctrl.pi = 15;
597
598	for (i = 0; i < CMD_RING_ENTRIES; i++) {
599		writel(0, &regs->CmdRing[i]);
600	}
601
602	for (i = 0; i < TX_RING_ENTRIES; i++) {
603		rrpriv->tx_ring[i].size = 0;
604		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
605		rrpriv->tx_skbuff[i] = NULL;
606	}
607	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
608	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
609	rrpriv->info->tx_ctrl.mode = 0;
610	rrpriv->info->tx_ctrl.pi = 0;
611	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
612
613	/*
614	 * Set dirty_tx before we start receiving interrupts, otherwise
615	 * the interrupt handler might think it is supposed to process
616	 * tx ints before we are up and running, which may cause a null
617	 * pointer access in the int handler.
618	 */
619	rrpriv->tx_full = 0;
620	rrpriv->cur_rx = 0;
621	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
622
623	rr_reset(dev);
624
625	/* Tuning values */
626	writel(0x5000, &regs->ConRetry);
627	writel(0x100, &regs->ConRetryTmr);
628	writel(0x500000, &regs->ConTmout);
629 	writel(0x60, &regs->IntrTmr);
630	writel(0x500000, &regs->TxDataMvTimeout);
631	writel(0x200000, &regs->RxDataMvTimeout);
632 	writel(0x80, &regs->WriteDmaThresh);
633 	writel(0x80, &regs->ReadDmaThresh);
634
635	rrpriv->fw_running = 0;
636	wmb();
637
638	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
639	writel(hostctrl, &regs->HostCtrl);
640	wmb();
641
642	spin_unlock_irqrestore(&rrpriv->lock, flags);
643
644	for (i = 0; i < RX_RING_ENTRIES; i++) {
645		struct sk_buff *skb;
646		dma_addr_t addr;
647
648		rrpriv->rx_ring[i].mode = 0;
649		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
650		if (!skb) {
651			printk(KERN_WARNING "%s: Unable to allocate memory "
652			       "for receive ring - halting NIC\n", dev->name);
653			ecode = -ENOMEM;
654			goto error;
655		}
656		rrpriv->rx_skbuff[i] = skb;
657		addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
658				      dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
659		/*
660		 * Sanity test to see if we conflict with the DMA
661		 * limitations of the Roadrunner.
662		 */
663		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
664			printk("skb alloc error\n");
665
666		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
667		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
668	}
669
670	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
671	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
672	rrpriv->rx_ctrl[4].mode = 8;
673	rrpriv->rx_ctrl[4].pi = 0;
674	wmb();
675	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
676
677	udelay(1000);
678
679	/*
680	 * Now start the FirmWare.
681	 */
682	cmd.code = C_START_FW;
683	cmd.ring = 0;
684	cmd.index = 0;
685
686	rr_issue_cmd(rrpriv, &cmd);
687
688	/*
689	 * Give the FirmWare time to chew on the `get running' command.
690	 */
691	myjif = jiffies + 5 * HZ;
692	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
693		cpu_relax();
694
695	netif_start_queue(dev);
696
697	return ecode;
698
699 error:
700	/*
701	 * We might have gotten here because we are out of memory,
702	 * make sure we release everything we allocated before failing
703	 */
704	for (i = 0; i < RX_RING_ENTRIES; i++) {
705		struct sk_buff *skb = rrpriv->rx_skbuff[i];
706
707		if (skb) {
708			dma_unmap_single(&rrpriv->pci_dev->dev,
709					 rrpriv->rx_ring[i].addr.addrlo,
710					 dev->mtu + HIPPI_HLEN,
711					 DMA_FROM_DEVICE);
712			rrpriv->rx_ring[i].size = 0;
713			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
714			dev_kfree_skb(skb);
715			rrpriv->rx_skbuff[i] = NULL;
716		}
717	}
718	return ecode;
719}
720
721
722/*
723 * All events are considered to be slow (RX/TX ints do not generate
724 * events) and are handled here, outside the main interrupt handler,
725 * to reduce the size of the handler.
726 */
727static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
728{
729	struct rr_private *rrpriv;
730	struct rr_regs __iomem *regs;
731	u32 tmp;
732
733	rrpriv = netdev_priv(dev);
734	regs = rrpriv->regs;
735
736	while (prodidx != eidx){
737		switch (rrpriv->evt_ring[eidx].code){
738		case E_NIC_UP:
739			tmp = readl(&regs->FwRev);
740			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
741			       "up and running\n", dev->name,
742			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
743			rrpriv->fw_running = 1;
744			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
745			wmb();
746			break;
747		case E_LINK_ON:
748			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
749			break;
750		case E_LINK_OFF:
751			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
752			break;
753		case E_RX_IDLE:
754			printk(KERN_WARNING "%s: RX data not moving\n",
755			       dev->name);
756			goto drop;
757		case E_WATCHDOG:
758			printk(KERN_INFO "%s: The watchdog is here to see "
759			       "us\n", dev->name);
760			break;
761		case E_INTERN_ERR:
762			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
763			       dev->name);
764			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
765			       &regs->HostCtrl);
766			wmb();
767			break;
768		case E_HOST_ERR:
769			printk(KERN_ERR "%s: Host software error\n",
770			       dev->name);
771			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
772			       &regs->HostCtrl);
773			wmb();
774			break;
775		/*
776		 * TX events.
777		 */
778		case E_CON_REJ:
779			printk(KERN_WARNING "%s: Connection rejected\n",
780			       dev->name);
781			dev->stats.tx_aborted_errors++;
782			break;
783		case E_CON_TMOUT:
784			printk(KERN_WARNING "%s: Connection timeout\n",
785			       dev->name);
786			break;
787		case E_DISC_ERR:
788			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
789			       dev->name);
790			dev->stats.tx_aborted_errors++;
791			break;
792		case E_INT_PRTY:
793			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
794			       dev->name);
795			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
796			       &regs->HostCtrl);
797			wmb();
798			break;
799		case E_TX_IDLE:
800			printk(KERN_WARNING "%s: Transmitter idle\n",
801			       dev->name);
802			break;
803		case E_TX_LINK_DROP:
804			printk(KERN_WARNING "%s: Link lost during transmit\n",
805			       dev->name);
806			dev->stats.tx_aborted_errors++;
807			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
808			       &regs->HostCtrl);
809			wmb();
810			break;
811		case E_TX_INV_RNG:
812			printk(KERN_ERR "%s: Invalid send ring block\n",
813			       dev->name);
814			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
815			       &regs->HostCtrl);
816			wmb();
817			break;
818		case E_TX_INV_BUF:
819			printk(KERN_ERR "%s: Invalid send buffer address\n",
820			       dev->name);
821			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
822			       &regs->HostCtrl);
823			wmb();
824			break;
825		case E_TX_INV_DSC:
826			printk(KERN_ERR "%s: Invalid descriptor address\n",
827			       dev->name);
828			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
829			       &regs->HostCtrl);
830			wmb();
831			break;
832		/*
833		 * RX events.
834		 */
835		case E_RX_RNG_OUT:
836			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
837			break;
838
839		case E_RX_PAR_ERR:
840			printk(KERN_WARNING "%s: Receive parity error\n",
841			       dev->name);
842			goto drop;
843		case E_RX_LLRC_ERR:
844			printk(KERN_WARNING "%s: Receive LLRC error\n",
845			       dev->name);
846			goto drop;
847		case E_PKT_LN_ERR:
848			printk(KERN_WARNING "%s: Receive packet length "
849			       "error\n", dev->name);
850			goto drop;
851		case E_DTA_CKSM_ERR:
852			printk(KERN_WARNING "%s: Data checksum error\n",
853			       dev->name);
854			goto drop;
855		case E_SHT_BST:
856			printk(KERN_WARNING "%s: Unexpected short burst "
857			       "error\n", dev->name);
858			goto drop;
859		case E_STATE_ERR:
860			printk(KERN_WARNING "%s: Recv. state transition"
861			       " error\n", dev->name);
862			goto drop;
863		case E_UNEXP_DATA:
864			printk(KERN_WARNING "%s: Unexpected data error\n",
865			       dev->name);
866			goto drop;
867		case E_LST_LNK_ERR:
868			printk(KERN_WARNING "%s: Link lost error\n",
869			       dev->name);
870			goto drop;
871		case E_FRM_ERR:
872			printk(KERN_WARNING "%s: Framing Error\n",
873			       dev->name);
874			goto drop;
875		case E_FLG_SYN_ERR:
876			printk(KERN_WARNING "%s: Flag sync. lost during "
877			       "packet\n", dev->name);
878			goto drop;
879		case E_RX_INV_BUF:
880			printk(KERN_ERR "%s: Invalid receive buffer "
881			       "address\n", dev->name);
882			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
883			       &regs->HostCtrl);
884			wmb();
885			break;
886		case E_RX_INV_DSC:
887			printk(KERN_ERR "%s: Invalid receive descriptor "
888			       "address\n", dev->name);
889			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
890			       &regs->HostCtrl);
891			wmb();
892			break;
893		case E_RNG_BLK:
894			printk(KERN_ERR "%s: Invalid ring block\n",
895			       dev->name);
896			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
897			       &regs->HostCtrl);
898			wmb();
899			break;
900		drop:
901			/* Label packet to be dropped.
902			 * Actual dropping occurs in rx
903			 * handling.
904			 *
905			 * The index of packet we get to drop is
906			 * the index of the packet following
907			 * the bad packet. -kbf
908			 */
909			{
910				u16 index = rrpriv->evt_ring[eidx].index;
911				index = (index + (RX_RING_ENTRIES - 1)) %
912					RX_RING_ENTRIES;
913				rrpriv->rx_ring[index].mode |=
914					(PACKET_BAD | PACKET_END);
915			}
916			break;
917		default:
918			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
919			       dev->name, rrpriv->evt_ring[eidx].code);
920		}
921		eidx = (eidx + 1) % EVT_RING_ENTRIES;
922	}
923
924	rrpriv->info->evt_ctrl.pi = eidx;
925	wmb();
926	return eidx;
927}
928
929
930static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
931{
932	struct rr_private *rrpriv = netdev_priv(dev);
933	struct rr_regs __iomem *regs = rrpriv->regs;
934
935	do {
936		struct rx_desc *desc;
937		u32 pkt_len;
938
939		desc = &(rrpriv->rx_ring[index]);
940		pkt_len = desc->size;
941#if (DEBUG > 2)
942		printk("index %i, rxlimit %i\n", index, rxlimit);
943		printk("len %x, mode %x\n", pkt_len, desc->mode);
944#endif
945		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
946			dev->stats.rx_dropped++;
947			goto defer;
948		}
949
950		if (pkt_len > 0){
951			struct sk_buff *skb, *rx_skb;
952
953			rx_skb = rrpriv->rx_skbuff[index];
954
955			if (pkt_len < PKT_COPY_THRESHOLD) {
956				skb = alloc_skb(pkt_len, GFP_ATOMIC);
957				if (skb == NULL){
958					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
959					dev->stats.rx_dropped++;
960					goto defer;
961				} else {
962					dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
963								desc->addr.addrlo,
964								pkt_len,
965								DMA_FROM_DEVICE);
966
967					skb_put_data(skb, rx_skb->data,
968						     pkt_len);
969
970					dma_sync_single_for_device(&rrpriv->pci_dev->dev,
971								   desc->addr.addrlo,
972								   pkt_len,
973								   DMA_FROM_DEVICE);
974				}
975			}else{
976				struct sk_buff *newskb;
977
978				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
979					GFP_ATOMIC);
980				if (newskb){
981					dma_addr_t addr;
982
983					dma_unmap_single(&rrpriv->pci_dev->dev,
984							 desc->addr.addrlo,
985							 dev->mtu + HIPPI_HLEN,
986							 DMA_FROM_DEVICE);
987					skb = rx_skb;
988					skb_put(skb, pkt_len);
989					rrpriv->rx_skbuff[index] = newskb;
990					addr = dma_map_single(&rrpriv->pci_dev->dev,
991							      newskb->data,
992							      dev->mtu + HIPPI_HLEN,
993							      DMA_FROM_DEVICE);
994					set_rraddr(&desc->addr, addr);
995				} else {
996					printk("%s: Out of memory, deferring "
997					       "packet\n", dev->name);
998					dev->stats.rx_dropped++;
999					goto defer;
1000				}
1001			}
1002			skb->protocol = hippi_type_trans(skb, dev);
1003
1004			netif_rx(skb);		/* send it up */
1005
1006			dev->stats.rx_packets++;
1007			dev->stats.rx_bytes += pkt_len;
1008		}
1009	defer:
1010		desc->mode = 0;
1011		desc->size = dev->mtu + HIPPI_HLEN;
1012
1013		if ((index & 7) == 7)
1014			writel(index, &regs->IpRxPi);
1015
1016		index = (index + 1) % RX_RING_ENTRIES;
1017	} while(index != rxlimit);
1018
1019	rrpriv->cur_rx = index;
1020	wmb();
1021}
1022
1023
1024static irqreturn_t rr_interrupt(int irq, void *dev_id)
1025{
1026	struct rr_private *rrpriv;
1027	struct rr_regs __iomem *regs;
1028	struct net_device *dev = (struct net_device *)dev_id;
1029	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1030
1031	rrpriv = netdev_priv(dev);
1032	regs = rrpriv->regs;
1033
1034	if (!(readl(&regs->HostCtrl) & RR_INT))
1035		return IRQ_NONE;
1036
1037	spin_lock(&rrpriv->lock);
1038
1039	prodidx = readl(&regs->EvtPrd);
1040	txcsmr = (prodidx >> 8) & 0xff;
1041	rxlimit = (prodidx >> 16) & 0xff;
1042	prodidx &= 0xff;
1043
1044#if (DEBUG > 2)
1045	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1046	       prodidx, rrpriv->info->evt_ctrl.pi);
1047#endif
1048	/*
1049	 * Order here is important.  We must handle events
1050	 * before doing anything else in order to catch
1051	 * such things as LLRC errors, etc -kbf
1052	 */
1053
1054	eidx = rrpriv->info->evt_ctrl.pi;
1055	if (prodidx != eidx)
1056		eidx = rr_handle_event(dev, prodidx, eidx);
1057
1058	rxindex = rrpriv->cur_rx;
1059	if (rxindex != rxlimit)
1060		rx_int(dev, rxlimit, rxindex);
1061
1062	txcon = rrpriv->dirty_tx;
1063	if (txcsmr != txcon) {
1064		do {
1065			/* Due to occational firmware TX producer/consumer out
1066			 * of sync. error need to check entry in ring -kbf
1067			 */
1068			if(rrpriv->tx_skbuff[txcon]){
1069				struct tx_desc *desc;
1070				struct sk_buff *skb;
1071
1072				desc = &(rrpriv->tx_ring[txcon]);
1073				skb = rrpriv->tx_skbuff[txcon];
1074
1075				dev->stats.tx_packets++;
1076				dev->stats.tx_bytes += skb->len;
1077
1078				dma_unmap_single(&rrpriv->pci_dev->dev,
1079						 desc->addr.addrlo, skb->len,
1080						 DMA_TO_DEVICE);
1081				dev_kfree_skb_irq(skb);
1082
1083				rrpriv->tx_skbuff[txcon] = NULL;
1084				desc->size = 0;
1085				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1086				desc->mode = 0;
1087			}
1088			txcon = (txcon + 1) % TX_RING_ENTRIES;
1089		} while (txcsmr != txcon);
1090		wmb();
1091
1092		rrpriv->dirty_tx = txcon;
1093		if (rrpriv->tx_full && rr_if_busy(dev) &&
1094		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1095		     != rrpriv->dirty_tx)){
1096			rrpriv->tx_full = 0;
1097			netif_wake_queue(dev);
1098		}
1099	}
1100
1101	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1102	writel(eidx, &regs->EvtCon);
1103	wmb();
1104
1105	spin_unlock(&rrpriv->lock);
1106	return IRQ_HANDLED;
1107}
1108
1109static inline void rr_raz_tx(struct rr_private *rrpriv,
1110			     struct net_device *dev)
1111{
1112	int i;
1113
1114	for (i = 0; i < TX_RING_ENTRIES; i++) {
1115		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1116
1117		if (skb) {
1118			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1119
1120			dma_unmap_single(&rrpriv->pci_dev->dev,
1121					 desc->addr.addrlo, skb->len,
1122					 DMA_TO_DEVICE);
1123			desc->size = 0;
1124			set_rraddr(&desc->addr, 0);
1125			dev_kfree_skb(skb);
1126			rrpriv->tx_skbuff[i] = NULL;
1127		}
1128	}
1129}
1130
1131
1132static inline void rr_raz_rx(struct rr_private *rrpriv,
1133			     struct net_device *dev)
1134{
1135	int i;
1136
1137	for (i = 0; i < RX_RING_ENTRIES; i++) {
1138		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1139
1140		if (skb) {
1141			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1142
1143			dma_unmap_single(&rrpriv->pci_dev->dev,
1144					 desc->addr.addrlo,
1145					 dev->mtu + HIPPI_HLEN,
1146					 DMA_FROM_DEVICE);
1147			desc->size = 0;
1148			set_rraddr(&desc->addr, 0);
1149			dev_kfree_skb(skb);
1150			rrpriv->rx_skbuff[i] = NULL;
1151		}
1152	}
1153}
1154
1155static void rr_timer(struct timer_list *t)
1156{
1157	struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1158	struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1159	struct rr_regs __iomem *regs = rrpriv->regs;
1160	unsigned long flags;
1161
1162	if (readl(&regs->HostCtrl) & NIC_HALTED){
1163		printk("%s: Restarting nic\n", dev->name);
1164		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1165		memset(rrpriv->info, 0, sizeof(struct rr_info));
1166		wmb();
1167
1168		rr_raz_tx(rrpriv, dev);
1169		rr_raz_rx(rrpriv, dev);
1170
1171		if (rr_init1(dev)) {
1172			spin_lock_irqsave(&rrpriv->lock, flags);
1173			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1174			       &regs->HostCtrl);
1175			spin_unlock_irqrestore(&rrpriv->lock, flags);
1176		}
1177	}
1178	rrpriv->timer.expires = RUN_AT(5*HZ);
1179	add_timer(&rrpriv->timer);
1180}
1181
1182
1183static int rr_open(struct net_device *dev)
1184{
1185	struct rr_private *rrpriv = netdev_priv(dev);
1186	struct pci_dev *pdev = rrpriv->pci_dev;
1187	struct rr_regs __iomem *regs;
1188	int ecode = 0;
1189	unsigned long flags;
1190	dma_addr_t dma_addr;
1191
1192	regs = rrpriv->regs;
1193
1194	if (rrpriv->fw_rev < 0x00020000) {
1195		printk(KERN_WARNING "%s: trying to configure device with "
1196		       "obsolete firmware\n", dev->name);
1197		ecode = -EBUSY;
1198		goto error;
1199	}
1200
1201	rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1202					     256 * sizeof(struct ring_ctrl),
1203					     &dma_addr, GFP_KERNEL);
1204	if (!rrpriv->rx_ctrl) {
1205		ecode = -ENOMEM;
1206		goto error;
1207	}
1208	rrpriv->rx_ctrl_dma = dma_addr;
1209
1210	rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1211					  &dma_addr, GFP_KERNEL);
1212	if (!rrpriv->info) {
1213		ecode = -ENOMEM;
1214		goto error;
1215	}
1216	rrpriv->info_dma = dma_addr;
1217	wmb();
1218
1219	spin_lock_irqsave(&rrpriv->lock, flags);
1220	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1221	readl(&regs->HostCtrl);
1222	spin_unlock_irqrestore(&rrpriv->lock, flags);
1223
1224	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1225		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1226		       dev->name, pdev->irq);
1227		ecode = -EAGAIN;
1228		goto error;
1229	}
1230
1231	if ((ecode = rr_init1(dev)))
1232		goto error;
1233
1234	/* Set the timer to switch to check for link beat and perhaps switch
1235	   to an alternate media type. */
1236	timer_setup(&rrpriv->timer, rr_timer, 0);
1237	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1238	add_timer(&rrpriv->timer);
1239
1240	netif_start_queue(dev);
1241
1242	return ecode;
1243
1244 error:
1245	spin_lock_irqsave(&rrpriv->lock, flags);
1246	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1247	spin_unlock_irqrestore(&rrpriv->lock, flags);
1248
1249	if (rrpriv->info) {
1250		dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1251				  rrpriv->info, rrpriv->info_dma);
1252		rrpriv->info = NULL;
1253	}
1254	if (rrpriv->rx_ctrl) {
1255		dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1256				  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1257		rrpriv->rx_ctrl = NULL;
1258	}
1259
1260	netif_stop_queue(dev);
1261
1262	return ecode;
1263}
1264
1265
1266static void rr_dump(struct net_device *dev)
1267{
1268	struct rr_private *rrpriv;
1269	struct rr_regs __iomem *regs;
1270	u32 index, cons;
1271	short i;
1272	int len;
1273
1274	rrpriv = netdev_priv(dev);
1275	regs = rrpriv->regs;
1276
1277	printk("%s: dumping NIC TX rings\n", dev->name);
1278
1279	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1280	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1281	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1282	       rrpriv->info->tx_ctrl.pi);
1283
1284	printk("Error code 0x%x\n", readl(&regs->Fail1));
1285
1286	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1287	cons = rrpriv->dirty_tx;
1288	printk("TX ring index %i, TX consumer %i\n",
1289	       index, cons);
1290
1291	if (rrpriv->tx_skbuff[index]){
1292		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1293		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1294		for (i = 0; i < len; i++){
1295			if (!(i & 7))
1296				printk("\n");
1297			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1298		}
1299		printk("\n");
1300	}
1301
1302	if (rrpriv->tx_skbuff[cons]){
1303		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1304		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1305		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1306		       rrpriv->tx_ring[cons].mode,
1307		       rrpriv->tx_ring[cons].size,
1308		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1309		       rrpriv->tx_skbuff[cons]->data,
1310		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1311		for (i = 0; i < len; i++){
1312			if (!(i & 7))
1313				printk("\n");
1314			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1315		}
1316		printk("\n");
1317	}
1318
1319	printk("dumping TX ring info:\n");
1320	for (i = 0; i < TX_RING_ENTRIES; i++)
1321		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1322		       rrpriv->tx_ring[i].mode,
1323		       rrpriv->tx_ring[i].size,
1324		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1325
1326}
1327
1328
1329static int rr_close(struct net_device *dev)
1330{
1331	struct rr_private *rrpriv = netdev_priv(dev);
1332	struct rr_regs __iomem *regs = rrpriv->regs;
1333	struct pci_dev *pdev = rrpriv->pci_dev;
1334	unsigned long flags;
1335	u32 tmp;
1336	short i;
1337
1338	netif_stop_queue(dev);
1339
1340
1341	/*
1342	 * Lock to make sure we are not cleaning up while another CPU
1343	 * is handling interrupts.
1344	 */
1345	spin_lock_irqsave(&rrpriv->lock, flags);
1346
1347	tmp = readl(&regs->HostCtrl);
1348	if (tmp & NIC_HALTED){
1349		printk("%s: NIC already halted\n", dev->name);
1350		rr_dump(dev);
1351	}else{
1352		tmp |= HALT_NIC | RR_CLEAR_INT;
1353		writel(tmp, &regs->HostCtrl);
1354		readl(&regs->HostCtrl);
1355	}
1356
1357	rrpriv->fw_running = 0;
1358
1359	spin_unlock_irqrestore(&rrpriv->lock, flags);
1360	del_timer_sync(&rrpriv->timer);
1361	spin_lock_irqsave(&rrpriv->lock, flags);
1362
1363	writel(0, &regs->TxPi);
1364	writel(0, &regs->IpRxPi);
1365
1366	writel(0, &regs->EvtCon);
1367	writel(0, &regs->EvtPrd);
1368
1369	for (i = 0; i < CMD_RING_ENTRIES; i++)
1370		writel(0, &regs->CmdRing[i]);
1371
1372	rrpriv->info->tx_ctrl.entries = 0;
1373	rrpriv->info->cmd_ctrl.pi = 0;
1374	rrpriv->info->evt_ctrl.pi = 0;
1375	rrpriv->rx_ctrl[4].entries = 0;
1376
1377	rr_raz_tx(rrpriv, dev);
1378	rr_raz_rx(rrpriv, dev);
1379
1380	dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1381			  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1382	rrpriv->rx_ctrl = NULL;
1383
1384	dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1385			  rrpriv->info_dma);
1386	rrpriv->info = NULL;
1387
1388	spin_unlock_irqrestore(&rrpriv->lock, flags);
1389	free_irq(pdev->irq, dev);
1390
1391	return 0;
1392}
1393
1394
1395static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1396				 struct net_device *dev)
1397{
1398	struct rr_private *rrpriv = netdev_priv(dev);
1399	struct rr_regs __iomem *regs = rrpriv->regs;
1400	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1401	struct ring_ctrl *txctrl;
1402	unsigned long flags;
1403	u32 index, len = skb->len;
1404	u32 *ifield;
1405	struct sk_buff *new_skb;
1406
1407	if (readl(&regs->Mode) & FATAL_ERR)
1408		printk("error codes Fail1 %02x, Fail2 %02x\n",
1409		       readl(&regs->Fail1), readl(&regs->Fail2));
1410
1411	/*
1412	 * We probably need to deal with tbusy here to prevent overruns.
1413	 */
1414
1415	if (skb_headroom(skb) < 8){
1416		printk("incoming skb too small - reallocating\n");
1417		if (!(new_skb = dev_alloc_skb(len + 8))) {
1418			dev_kfree_skb(skb);
1419			netif_wake_queue(dev);
1420			return NETDEV_TX_OK;
1421		}
1422		skb_reserve(new_skb, 8);
1423		skb_put(new_skb, len);
1424		skb_copy_from_linear_data(skb, new_skb->data, len);
1425		dev_kfree_skb(skb);
1426		skb = new_skb;
1427	}
1428
1429	ifield = skb_push(skb, 8);
1430
1431	ifield[0] = 0;
1432	ifield[1] = hcb->ifield;
1433
1434	/*
1435	 * We don't need the lock before we are actually going to start
1436	 * fiddling with the control blocks.
1437	 */
1438	spin_lock_irqsave(&rrpriv->lock, flags);
1439
1440	txctrl = &rrpriv->info->tx_ctrl;
1441
1442	index = txctrl->pi;
1443
1444	rrpriv->tx_skbuff[index] = skb;
1445	set_rraddr(&rrpriv->tx_ring[index].addr,
1446		   dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1447	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1448	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1449	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1450	wmb();
1451	writel(txctrl->pi, &regs->TxPi);
1452
1453	if (txctrl->pi == rrpriv->dirty_tx){
1454		rrpriv->tx_full = 1;
1455		netif_stop_queue(dev);
1456	}
1457
1458	spin_unlock_irqrestore(&rrpriv->lock, flags);
1459
1460	return NETDEV_TX_OK;
1461}
1462
1463
1464/*
1465 * Read the firmware out of the EEPROM and put it into the SRAM
1466 * (or from user space - later)
1467 *
1468 * This operation requires the NIC to be halted and is performed with
1469 * interrupts disabled and with the spinlock hold.
1470 */
1471static int rr_load_firmware(struct net_device *dev)
1472{
1473	struct rr_private *rrpriv;
1474	struct rr_regs __iomem *regs;
1475	size_t eptr, segptr;
1476	int i, j;
1477	u32 localctrl, sptr, len, tmp;
1478	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1479
1480	rrpriv = netdev_priv(dev);
1481	regs = rrpriv->regs;
1482
1483	if (dev->flags & IFF_UP)
1484		return -EBUSY;
1485
1486	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1487		printk("%s: Trying to load firmware to a running NIC.\n",
1488		       dev->name);
1489		return -EBUSY;
1490	}
1491
1492	localctrl = readl(&regs->LocalCtrl);
1493	writel(0, &regs->LocalCtrl);
1494
1495	writel(0, &regs->EvtPrd);
1496	writel(0, &regs->RxPrd);
1497	writel(0, &regs->TxPrd);
1498
1499	/*
1500	 * First wipe the entire SRAM, otherwise we might run into all
1501	 * kinds of trouble ... sigh, this took almost all afternoon
1502	 * to track down ;-(
1503	 */
1504	io = readl(&regs->ExtIo);
1505	writel(0, &regs->ExtIo);
1506	sram_size = rr_read_eeprom_word(rrpriv, 8);
1507
1508	for (i = 200; i < sram_size / 4; i++){
1509		writel(i * 4, &regs->WinBase);
1510		mb();
1511		writel(0, &regs->WinData);
1512		mb();
1513	}
1514	writel(io, &regs->ExtIo);
1515	mb();
1516
1517	eptr = rr_read_eeprom_word(rrpriv,
1518		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1519	eptr = ((eptr & 0x1fffff) >> 3);
1520
1521	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1522	p2len = (p2len << 2);
1523	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1524	p2size = ((p2size & 0x1fffff) >> 3);
1525
1526	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1527		printk("%s: eptr is invalid\n", dev->name);
1528		goto out;
1529	}
1530
1531	revision = rr_read_eeprom_word(rrpriv,
1532			offsetof(struct eeprom, manf.HeaderFmt));
1533
1534	if (revision != 1){
1535		printk("%s: invalid firmware format (%i)\n",
1536		       dev->name, revision);
1537		goto out;
1538	}
1539
1540	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1541	eptr +=4;
1542#if (DEBUG > 1)
1543	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1544#endif
1545
1546	for (i = 0; i < nr_seg; i++){
1547		sptr = rr_read_eeprom_word(rrpriv, eptr);
1548		eptr += 4;
1549		len = rr_read_eeprom_word(rrpriv, eptr);
1550		eptr += 4;
1551		segptr = rr_read_eeprom_word(rrpriv, eptr);
1552		segptr = ((segptr & 0x1fffff) >> 3);
1553		eptr += 4;
1554#if (DEBUG > 1)
1555		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1556		       dev->name, i, sptr, len, segptr);
1557#endif
1558		for (j = 0; j < len; j++){
1559			tmp = rr_read_eeprom_word(rrpriv, segptr);
1560			writel(sptr, &regs->WinBase);
1561			mb();
1562			writel(tmp, &regs->WinData);
1563			mb();
1564			segptr += 4;
1565			sptr += 4;
1566		}
1567	}
1568
1569out:
1570	writel(localctrl, &regs->LocalCtrl);
1571	mb();
1572	return 0;
1573}
1574
1575
1576static int rr_siocdevprivate(struct net_device *dev, struct ifreq *rq,
1577			     void __user *data, int cmd)
1578{
1579	struct rr_private *rrpriv;
1580	unsigned char *image, *oldimage;
1581	unsigned long flags;
1582	unsigned int i;
1583	int error = -EOPNOTSUPP;
1584
1585	rrpriv = netdev_priv(dev);
1586
1587	switch(cmd){
1588	case SIOCRRGFW:
1589		if (!capable(CAP_SYS_RAWIO)){
1590			return -EPERM;
1591		}
1592
1593		image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1594		if (!image)
1595			return -ENOMEM;
1596
1597		if (rrpriv->fw_running){
1598			printk("%s: Firmware already running\n", dev->name);
1599			error = -EPERM;
1600			goto gf_out;
1601		}
1602
1603		spin_lock_irqsave(&rrpriv->lock, flags);
1604		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1605		spin_unlock_irqrestore(&rrpriv->lock, flags);
1606		if (i != EEPROM_BYTES){
1607			printk(KERN_ERR "%s: Error reading EEPROM\n",
1608			       dev->name);
1609			error = -EFAULT;
1610			goto gf_out;
1611		}
1612		error = copy_to_user(data, image, EEPROM_BYTES);
1613		if (error)
1614			error = -EFAULT;
1615	gf_out:
1616		kfree(image);
1617		return error;
1618
1619	case SIOCRRPFW:
1620		if (!capable(CAP_SYS_RAWIO)){
1621			return -EPERM;
1622		}
1623
1624		image = memdup_user(data, EEPROM_BYTES);
1625		if (IS_ERR(image))
1626			return PTR_ERR(image);
1627
1628		oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1629		if (!oldimage) {
1630			kfree(image);
1631			return -ENOMEM;
1632		}
1633
1634		if (rrpriv->fw_running){
1635			printk("%s: Firmware already running\n", dev->name);
1636			error = -EPERM;
1637			goto wf_out;
1638		}
1639
1640		printk("%s: Updating EEPROM firmware\n", dev->name);
1641
1642		spin_lock_irqsave(&rrpriv->lock, flags);
1643		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1644		if (error)
1645			printk(KERN_ERR "%s: Error writing EEPROM\n",
1646			       dev->name);
1647
1648		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1649		spin_unlock_irqrestore(&rrpriv->lock, flags);
1650
1651		if (i != EEPROM_BYTES)
1652			printk(KERN_ERR "%s: Error reading back EEPROM "
1653			       "image\n", dev->name);
1654
1655		error = memcmp(image, oldimage, EEPROM_BYTES);
1656		if (error){
1657			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1658			       dev->name);
1659			error = -EFAULT;
1660		}
1661	wf_out:
1662		kfree(oldimage);
1663		kfree(image);
1664		return error;
1665
1666	case SIOCRRID:
1667		return put_user(0x52523032, (int __user *)data);
1668	default:
1669		return error;
1670	}
1671}
1672
1673static const struct pci_device_id rr_pci_tbl[] = {
1674	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1675		PCI_ANY_ID, PCI_ANY_ID, },
1676	{ 0,}
1677};
1678MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1679
1680static struct pci_driver rr_driver = {
1681	.name		= "rrunner",
1682	.id_table	= rr_pci_tbl,
1683	.probe		= rr_init_one,
1684	.remove		= rr_remove_one,
1685};
1686
1687module_pci_driver(rr_driver);
1688