1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4#include <linux/etherdevice.h>
5#include <linux/netdevice.h>
6#include <linux/if_ether.h>
7#include <linux/if_vlan.h>
8#include <linux/iopoll.h>
9#include <linux/pci.h>
10
11#include "wx_type.h"
12#include "wx_lib.h"
13#include "wx_hw.h"
14
15static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
16{
17	struct wx *wx = bus->priv;
18	u32 command, val;
19	int ret;
20
21	/* setup and write the address cycle command */
22	command = WX_MSCA_RA(regnum) |
23		  WX_MSCA_PA(phy_addr) |
24		  WX_MSCA_DA(devnum);
25	wr32(wx, WX_MSCA, command);
26
27	command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY;
28	if (wx->mac.type == wx_mac_em)
29		command |= WX_MDIO_CLK(6);
30	wr32(wx, WX_MSCC, command);
31
32	/* wait to complete */
33	ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
34				100000, false, wx, WX_MSCC);
35	if (ret) {
36		wx_err(wx, "Mdio read c22 command did not complete.\n");
37		return ret;
38	}
39
40	return (u16)rd32(wx, WX_MSCC);
41}
42
43static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr,
44				int devnum, int regnum, u16 value)
45{
46	struct wx *wx = bus->priv;
47	u32 command, val;
48	int ret;
49
50	/* setup and write the address cycle command */
51	command = WX_MSCA_RA(regnum) |
52		  WX_MSCA_PA(phy_addr) |
53		  WX_MSCA_DA(devnum);
54	wr32(wx, WX_MSCA, command);
55
56	command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY;
57	if (wx->mac.type == wx_mac_em)
58		command |= WX_MDIO_CLK(6);
59	wr32(wx, WX_MSCC, command);
60
61	/* wait to complete */
62	ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
63				100000, false, wx, WX_MSCC);
64	if (ret)
65		wx_err(wx, "Mdio write c22 command did not complete.\n");
66
67	return ret;
68}
69
70int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum)
71{
72	struct wx *wx = bus->priv;
73
74	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
75	return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum);
76}
77EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22);
78
79int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value)
80{
81	struct wx *wx = bus->priv;
82
83	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
84	return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value);
85}
86EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22);
87
88int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
89{
90	struct wx *wx = bus->priv;
91
92	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
93	return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum);
94}
95EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45);
96
97int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr,
98			     int devnum, int regnum, u16 value)
99{
100	struct wx *wx = bus->priv;
101
102	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
103	return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value);
104}
105EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45);
106
107static void wx_intr_disable(struct wx *wx, u64 qmask)
108{
109	u32 mask;
110
111	mask = (qmask & U32_MAX);
112	if (mask)
113		wr32(wx, WX_PX_IMS(0), mask);
114
115	if (wx->mac.type == wx_mac_sp) {
116		mask = (qmask >> 32);
117		if (mask)
118			wr32(wx, WX_PX_IMS(1), mask);
119	}
120}
121
122void wx_intr_enable(struct wx *wx, u64 qmask)
123{
124	u32 mask;
125
126	mask = (qmask & U32_MAX);
127	if (mask)
128		wr32(wx, WX_PX_IMC(0), mask);
129	if (wx->mac.type == wx_mac_sp) {
130		mask = (qmask >> 32);
131		if (mask)
132			wr32(wx, WX_PX_IMC(1), mask);
133	}
134}
135EXPORT_SYMBOL(wx_intr_enable);
136
137/**
138 * wx_irq_disable - Mask off interrupt generation on the NIC
139 * @wx: board private structure
140 **/
141void wx_irq_disable(struct wx *wx)
142{
143	struct pci_dev *pdev = wx->pdev;
144
145	wr32(wx, WX_PX_MISC_IEN, 0);
146	wx_intr_disable(wx, WX_INTR_ALL);
147
148	if (pdev->msix_enabled) {
149		int vector;
150
151		for (vector = 0; vector < wx->num_q_vectors; vector++)
152			synchronize_irq(wx->msix_q_entries[vector].vector);
153
154		synchronize_irq(wx->msix_entry->vector);
155	} else {
156		synchronize_irq(pdev->irq);
157	}
158}
159EXPORT_SYMBOL(wx_irq_disable);
160
161/* cmd_addr is used for some special command:
162 * 1. to be sector address, when implemented erase sector command
163 * 2. to be flash address when implemented read, write flash address
164 */
165static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
166{
167	u32 cmd_val = 0, val = 0;
168
169	cmd_val = WX_SPI_CMD_CMD(cmd) |
170		  WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
171		  cmd_addr;
172	wr32(wx, WX_SPI_CMD, cmd_val);
173
174	return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
175				 false, wx, WX_SPI_STATUS);
176}
177
178static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
179{
180	int ret = 0;
181
182	ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
183	if (ret < 0)
184		return ret;
185
186	*data = rd32(wx, WX_SPI_DATA);
187
188	return ret;
189}
190
191int wx_check_flash_load(struct wx *hw, u32 check_bit)
192{
193	u32 reg = 0;
194	int err = 0;
195
196	/* if there's flash existing */
197	if (!(rd32(hw, WX_SPI_STATUS) &
198	      WX_SPI_STATUS_FLASH_BYPASS)) {
199		/* wait hw load flash done */
200		err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
201					false, hw, WX_SPI_ILDR_STATUS);
202		if (err < 0)
203			wx_err(hw, "Check flash load timeout.\n");
204	}
205
206	return err;
207}
208EXPORT_SYMBOL(wx_check_flash_load);
209
210void wx_control_hw(struct wx *wx, bool drv)
211{
212	/* True : Let firmware know the driver has taken over
213	 * False : Let firmware take over control of hw
214	 */
215	wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
216	      drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
217}
218EXPORT_SYMBOL(wx_control_hw);
219
220/**
221 * wx_mng_present - returns 0 when management capability is present
222 * @wx: pointer to hardware structure
223 */
224int wx_mng_present(struct wx *wx)
225{
226	u32 fwsm;
227
228	fwsm = rd32(wx, WX_MIS_ST);
229	if (fwsm & WX_MIS_ST_MNG_INIT_DN)
230		return 0;
231	else
232		return -EACCES;
233}
234EXPORT_SYMBOL(wx_mng_present);
235
236/* Software lock to be held while software semaphore is being accessed. */
237static DEFINE_MUTEX(wx_sw_sync_lock);
238
239/**
240 *  wx_release_sw_sync - Release SW semaphore
241 *  @wx: pointer to hardware structure
242 *  @mask: Mask to specify which semaphore to release
243 *
244 *  Releases the SW semaphore for the specified
245 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
246 **/
247static void wx_release_sw_sync(struct wx *wx, u32 mask)
248{
249	mutex_lock(&wx_sw_sync_lock);
250	wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
251	mutex_unlock(&wx_sw_sync_lock);
252}
253
254/**
255 *  wx_acquire_sw_sync - Acquire SW semaphore
256 *  @wx: pointer to hardware structure
257 *  @mask: Mask to specify which semaphore to acquire
258 *
259 *  Acquires the SW semaphore for the specified
260 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
261 **/
262static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
263{
264	u32 sem = 0;
265	int ret = 0;
266
267	mutex_lock(&wx_sw_sync_lock);
268	ret = read_poll_timeout(rd32, sem, !(sem & mask),
269				5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
270	if (!ret) {
271		sem |= mask;
272		wr32(wx, WX_MNG_SWFW_SYNC, sem);
273	} else {
274		wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
275	}
276	mutex_unlock(&wx_sw_sync_lock);
277
278	return ret;
279}
280
281/**
282 *  wx_host_interface_command - Issue command to manageability block
283 *  @wx: pointer to the HW structure
284 *  @buffer: contains the command to write and where the return status will
285 *   be placed
286 *  @length: length of buffer, must be multiple of 4 bytes
287 *  @timeout: time in ms to wait for command completion
288 *  @return_data: read and return data from the buffer (true) or not (false)
289 *   Needed because FW structures are big endian and decoding of
290 *   these fields can be 8 bit or 16 bit based on command. Decoding
291 *   is not easily understood without making a table of commands.
292 *   So we will leave this up to the caller to read back the data
293 *   in these cases.
294 **/
295int wx_host_interface_command(struct wx *wx, u32 *buffer,
296			      u32 length, u32 timeout, bool return_data)
297{
298	u32 hdr_size = sizeof(struct wx_hic_hdr);
299	u32 hicr, i, bi, buf[64] = {};
300	int status = 0;
301	u32 dword_len;
302	u16 buf_len;
303
304	if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
305		wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
306		return -EINVAL;
307	}
308
309	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
310	if (status != 0)
311		return status;
312
313	/* Calculate length in DWORDs. We must be DWORD aligned */
314	if ((length % (sizeof(u32))) != 0) {
315		wx_err(wx, "Buffer length failure, not aligned to dword");
316		status = -EINVAL;
317		goto rel_out;
318	}
319
320	dword_len = length >> 2;
321
322	/* The device driver writes the relevant command block
323	 * into the ram area.
324	 */
325	for (i = 0; i < dword_len; i++) {
326		wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
327		/* write flush */
328		buf[i] = rd32a(wx, WX_MNG_MBOX, i);
329	}
330	/* Setting this bit tells the ARC that a new command is pending. */
331	wr32m(wx, WX_MNG_MBOX_CTL,
332	      WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
333
334	status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
335				   timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
336
337	/* Check command completion */
338	if (status) {
339		wx_dbg(wx, "Command has failed with no status valid.\n");
340
341		buf[0] = rd32(wx, WX_MNG_MBOX);
342		if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
343			status = -EINVAL;
344			goto rel_out;
345		}
346		if ((buf[0] & 0xff0000) >> 16 == 0x80) {
347			wx_dbg(wx, "It's unknown cmd.\n");
348			status = -EINVAL;
349			goto rel_out;
350		}
351
352		wx_dbg(wx, "write value:\n");
353		for (i = 0; i < dword_len; i++)
354			wx_dbg(wx, "%x ", buffer[i]);
355		wx_dbg(wx, "read value:\n");
356		for (i = 0; i < dword_len; i++)
357			wx_dbg(wx, "%x ", buf[i]);
358	}
359
360	if (!return_data)
361		goto rel_out;
362
363	/* Calculate length in DWORDs */
364	dword_len = hdr_size >> 2;
365
366	/* first pull in the header so we know the buffer length */
367	for (bi = 0; bi < dword_len; bi++) {
368		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
369		le32_to_cpus(&buffer[bi]);
370	}
371
372	/* If there is any thing in data position pull it in */
373	buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
374	if (buf_len == 0)
375		goto rel_out;
376
377	if (length < buf_len + hdr_size) {
378		wx_err(wx, "Buffer not large enough for reply message.\n");
379		status = -EFAULT;
380		goto rel_out;
381	}
382
383	/* Calculate length in DWORDs, add 3 for odd lengths */
384	dword_len = (buf_len + 3) >> 2;
385
386	/* Pull in the rest of the buffer (bi is where we left off) */
387	for (; bi <= dword_len; bi++) {
388		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
389		le32_to_cpus(&buffer[bi]);
390	}
391
392rel_out:
393	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
394	return status;
395}
396EXPORT_SYMBOL(wx_host_interface_command);
397
398/**
399 *  wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
400 *  assuming that the semaphore is already obtained.
401 *  @wx: pointer to hardware structure
402 *  @offset: offset of  word in the EEPROM to read
403 *  @data: word read from the EEPROM
404 *
405 *  Reads a 16 bit word from the EEPROM using the hostif.
406 **/
407static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
408{
409	struct wx_hic_read_shadow_ram buffer;
410	int status;
411
412	buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
413	buffer.hdr.req.buf_lenh = 0;
414	buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
415	buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
416
417	/* convert offset from words to bytes */
418	buffer.address = (__force u32)cpu_to_be32(offset * 2);
419	/* one word */
420	buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
421
422	status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
423					   WX_HI_COMMAND_TIMEOUT, false);
424
425	if (status != 0)
426		return status;
427
428	*data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
429
430	return status;
431}
432
433/**
434 *  wx_read_ee_hostif - Read EEPROM word using a host interface cmd
435 *  @wx: pointer to hardware structure
436 *  @offset: offset of  word in the EEPROM to read
437 *  @data: word read from the EEPROM
438 *
439 *  Reads a 16 bit word from the EEPROM using the hostif.
440 **/
441int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
442{
443	int status = 0;
444
445	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
446	if (status == 0) {
447		status = wx_read_ee_hostif_data(wx, offset, data);
448		wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
449	}
450
451	return status;
452}
453EXPORT_SYMBOL(wx_read_ee_hostif);
454
455/**
456 *  wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
457 *  @wx: pointer to hardware structure
458 *  @offset: offset of  word in the EEPROM to read
459 *  @words: number of words
460 *  @data: word(s) read from the EEPROM
461 *
462 *  Reads a 16 bit word(s) from the EEPROM using the hostif.
463 **/
464int wx_read_ee_hostif_buffer(struct wx *wx,
465			     u16 offset, u16 words, u16 *data)
466{
467	struct wx_hic_read_shadow_ram buffer;
468	u32 current_word = 0;
469	u16 words_to_read;
470	u32 value = 0;
471	int status;
472	u32 i;
473
474	/* Take semaphore for the entire operation. */
475	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
476	if (status != 0)
477		return status;
478
479	while (words) {
480		if (words > FW_MAX_READ_BUFFER_SIZE / 2)
481			words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
482		else
483			words_to_read = words;
484
485		buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
486		buffer.hdr.req.buf_lenh = 0;
487		buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
488		buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
489
490		/* convert offset from words to bytes */
491		buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
492		buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
493
494		status = wx_host_interface_command(wx, (u32 *)&buffer,
495						   sizeof(buffer),
496						   WX_HI_COMMAND_TIMEOUT,
497						   false);
498
499		if (status != 0) {
500			wx_err(wx, "Host interface command failed\n");
501			goto out;
502		}
503
504		for (i = 0; i < words_to_read; i++) {
505			u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
506
507			value = rd32(wx, reg);
508			data[current_word] = (u16)(value & 0xffff);
509			current_word++;
510			i++;
511			if (i < words_to_read) {
512				value >>= 16;
513				data[current_word] = (u16)(value & 0xffff);
514				current_word++;
515			}
516		}
517		words -= words_to_read;
518	}
519
520out:
521	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
522	return status;
523}
524EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
525
526/**
527 *  wx_init_eeprom_params - Initialize EEPROM params
528 *  @wx: pointer to hardware structure
529 *
530 *  Initializes the EEPROM parameters wx_eeprom_info within the
531 *  wx_hw struct in order to set up EEPROM access.
532 **/
533void wx_init_eeprom_params(struct wx *wx)
534{
535	struct wx_eeprom_info *eeprom = &wx->eeprom;
536	u16 eeprom_size;
537	u16 data = 0x80;
538
539	if (eeprom->type == wx_eeprom_uninitialized) {
540		eeprom->semaphore_delay = 10;
541		eeprom->type = wx_eeprom_none;
542
543		if (!(rd32(wx, WX_SPI_STATUS) &
544		      WX_SPI_STATUS_FLASH_BYPASS)) {
545			eeprom->type = wx_flash;
546
547			eeprom_size = 4096;
548			eeprom->word_size = eeprom_size >> 1;
549
550			wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
551			       eeprom->type, eeprom->word_size);
552		}
553	}
554
555	if (wx->mac.type == wx_mac_sp) {
556		if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
557			wx_err(wx, "NVM Read Error\n");
558			return;
559		}
560		data = data >> 1;
561	}
562
563	eeprom->sw_region_offset = data;
564}
565EXPORT_SYMBOL(wx_init_eeprom_params);
566
567/**
568 *  wx_get_mac_addr - Generic get MAC address
569 *  @wx: pointer to hardware structure
570 *  @mac_addr: Adapter MAC address
571 *
572 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
573 *  A reset of the adapter must be performed prior to calling this function
574 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
575 **/
576void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
577{
578	u32 rar_high;
579	u32 rar_low;
580	u16 i;
581
582	wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
583	rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
584	rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
585
586	for (i = 0; i < 2; i++)
587		mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
588
589	for (i = 0; i < 4; i++)
590		mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
591}
592EXPORT_SYMBOL(wx_get_mac_addr);
593
594/**
595 *  wx_set_rar - Set Rx address register
596 *  @wx: pointer to hardware structure
597 *  @index: Receive address register to write
598 *  @addr: Address to put into receive address register
599 *  @pools: VMDq "set" or "pool" index
600 *  @enable_addr: set flag that address is active
601 *
602 *  Puts an ethernet address into a receive address register.
603 **/
604static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
605		      u32 enable_addr)
606{
607	u32 rar_entries = wx->mac.num_rar_entries;
608	u32 rar_low, rar_high;
609
610	/* Make sure we are using a valid rar index range */
611	if (index >= rar_entries) {
612		wx_err(wx, "RAR index %d is out of range.\n", index);
613		return -EINVAL;
614	}
615
616	/* select the MAC address */
617	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
618
619	/* setup VMDq pool mapping */
620	wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
621	if (wx->mac.type == wx_mac_sp)
622		wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
623
624	/* HW expects these in little endian so we reverse the byte
625	 * order from network order (big endian) to little endian
626	 *
627	 * Some parts put the VMDq setting in the extra RAH bits,
628	 * so save everything except the lower 16 bits that hold part
629	 * of the address and the address valid bit.
630	 */
631	rar_low = ((u32)addr[5] |
632		  ((u32)addr[4] << 8) |
633		  ((u32)addr[3] << 16) |
634		  ((u32)addr[2] << 24));
635	rar_high = ((u32)addr[1] |
636		   ((u32)addr[0] << 8));
637	if (enable_addr != 0)
638		rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
639
640	wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
641	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
642	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
643	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
644	       WX_PSR_MAC_SWC_AD_H_AV),
645	      rar_high);
646
647	return 0;
648}
649
650/**
651 *  wx_clear_rar - Remove Rx address register
652 *  @wx: pointer to hardware structure
653 *  @index: Receive address register to write
654 *
655 *  Clears an ethernet address from a receive address register.
656 **/
657static int wx_clear_rar(struct wx *wx, u32 index)
658{
659	u32 rar_entries = wx->mac.num_rar_entries;
660
661	/* Make sure we are using a valid rar index range */
662	if (index >= rar_entries) {
663		wx_err(wx, "RAR index %d is out of range.\n", index);
664		return -EINVAL;
665	}
666
667	/* Some parts put the VMDq setting in the extra RAH bits,
668	 * so save everything except the lower 16 bits that hold part
669	 * of the address and the address valid bit.
670	 */
671	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
672
673	wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
674	wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
675
676	wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
677	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
678	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
679	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
680	       WX_PSR_MAC_SWC_AD_H_AV),
681	      0);
682
683	return 0;
684}
685
686/**
687 *  wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
688 *  @wx: pointer to hardware struct
689 *  @rar: receive address register index to disassociate
690 *  @vmdq: VMDq pool index to remove from the rar
691 **/
692static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
693{
694	u32 rar_entries = wx->mac.num_rar_entries;
695	u32 mpsar_lo, mpsar_hi;
696
697	/* Make sure we are using a valid rar index range */
698	if (rar >= rar_entries) {
699		wx_err(wx, "RAR index %d is out of range.\n", rar);
700		return -EINVAL;
701	}
702
703	wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
704	mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
705	mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
706
707	if (!mpsar_lo && !mpsar_hi)
708		return 0;
709
710	/* was that the last pool using this rar? */
711	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
712		wx_clear_rar(wx, rar);
713
714	return 0;
715}
716
717/**
718 *  wx_init_uta_tables - Initialize the Unicast Table Array
719 *  @wx: pointer to hardware structure
720 **/
721static void wx_init_uta_tables(struct wx *wx)
722{
723	int i;
724
725	wx_dbg(wx, " Clearing UTA\n");
726
727	for (i = 0; i < 128; i++)
728		wr32(wx, WX_PSR_UC_TBL(i), 0);
729}
730
731/**
732 *  wx_init_rx_addrs - Initializes receive address filters.
733 *  @wx: pointer to hardware structure
734 *
735 *  Places the MAC address in receive address register 0 and clears the rest
736 *  of the receive address registers. Clears the multicast table. Assumes
737 *  the receiver is in reset when the routine is called.
738 **/
739void wx_init_rx_addrs(struct wx *wx)
740{
741	u32 rar_entries = wx->mac.num_rar_entries;
742	u32 psrctl;
743	int i;
744
745	/* If the current mac address is valid, assume it is a software override
746	 * to the permanent address.
747	 * Otherwise, use the permanent address from the eeprom.
748	 */
749	if (!is_valid_ether_addr(wx->mac.addr)) {
750		/* Get the MAC address from the RAR0 for later reference */
751		wx_get_mac_addr(wx, wx->mac.addr);
752		wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
753	} else {
754		/* Setup the receive address. */
755		wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
756		wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
757
758		wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
759
760		if (wx->mac.type == wx_mac_sp) {
761			/* clear VMDq pool/queue selection for RAR 0 */
762			wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
763		}
764	}
765
766	/* Zero out the other receive addresses. */
767	wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
768	for (i = 1; i < rar_entries; i++) {
769		wr32(wx, WX_PSR_MAC_SWC_IDX, i);
770		wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
771		wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
772	}
773
774	/* Clear the MTA */
775	wx->addr_ctrl.mta_in_use = 0;
776	psrctl = rd32(wx, WX_PSR_CTL);
777	psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
778	psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
779	wr32(wx, WX_PSR_CTL, psrctl);
780	wx_dbg(wx, " Clearing MTA\n");
781	for (i = 0; i < wx->mac.mcft_size; i++)
782		wr32(wx, WX_PSR_MC_TBL(i), 0);
783
784	wx_init_uta_tables(wx);
785}
786EXPORT_SYMBOL(wx_init_rx_addrs);
787
788static void wx_sync_mac_table(struct wx *wx)
789{
790	int i;
791
792	for (i = 0; i < wx->mac.num_rar_entries; i++) {
793		if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
794			if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
795				wx_set_rar(wx, i,
796					   wx->mac_table[i].addr,
797					   wx->mac_table[i].pools,
798					   WX_PSR_MAC_SWC_AD_H_AV);
799			} else {
800				wx_clear_rar(wx, i);
801			}
802			wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
803		}
804	}
805}
806
807/* this function destroys the first RAR entry */
808void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
809{
810	memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
811	wx->mac_table[0].pools = 1ULL;
812	wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
813	wx_set_rar(wx, 0, wx->mac_table[0].addr,
814		   wx->mac_table[0].pools,
815		   WX_PSR_MAC_SWC_AD_H_AV);
816}
817EXPORT_SYMBOL(wx_mac_set_default_filter);
818
819void wx_flush_sw_mac_table(struct wx *wx)
820{
821	u32 i;
822
823	for (i = 0; i < wx->mac.num_rar_entries; i++) {
824		if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
825			continue;
826
827		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
828		wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
829		memset(wx->mac_table[i].addr, 0, ETH_ALEN);
830		wx->mac_table[i].pools = 0;
831	}
832	wx_sync_mac_table(wx);
833}
834EXPORT_SYMBOL(wx_flush_sw_mac_table);
835
836static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
837{
838	u32 i;
839
840	if (is_zero_ether_addr(addr))
841		return -EINVAL;
842
843	for (i = 0; i < wx->mac.num_rar_entries; i++) {
844		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
845			if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
846				if (wx->mac_table[i].pools != (1ULL << pool)) {
847					memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
848					wx->mac_table[i].pools |= (1ULL << pool);
849					wx_sync_mac_table(wx);
850					return i;
851				}
852			}
853		}
854
855		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
856			continue;
857		wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
858					   WX_MAC_STATE_IN_USE);
859		memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
860		wx->mac_table[i].pools |= (1ULL << pool);
861		wx_sync_mac_table(wx);
862		return i;
863	}
864	return -ENOMEM;
865}
866
867static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
868{
869	u32 i;
870
871	if (is_zero_ether_addr(addr))
872		return -EINVAL;
873
874	/* search table for addr, if found, set to 0 and sync */
875	for (i = 0; i < wx->mac.num_rar_entries; i++) {
876		if (!ether_addr_equal(addr, wx->mac_table[i].addr))
877			continue;
878
879		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
880		wx->mac_table[i].pools &= ~(1ULL << pool);
881		if (!wx->mac_table[i].pools) {
882			wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
883			memset(wx->mac_table[i].addr, 0, ETH_ALEN);
884		}
885		wx_sync_mac_table(wx);
886		return 0;
887	}
888	return -ENOMEM;
889}
890
891static int wx_available_rars(struct wx *wx)
892{
893	u32 i, count = 0;
894
895	for (i = 0; i < wx->mac.num_rar_entries; i++) {
896		if (wx->mac_table[i].state == 0)
897			count++;
898	}
899
900	return count;
901}
902
903/**
904 * wx_write_uc_addr_list - write unicast addresses to RAR table
905 * @netdev: network interface device structure
906 * @pool: index for mac table
907 *
908 * Writes unicast address list to the RAR table.
909 * Returns: -ENOMEM on failure/insufficient address space
910 *                0 on no addresses written
911 *                X on writing X addresses to the RAR table
912 **/
913static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
914{
915	struct wx *wx = netdev_priv(netdev);
916	int count = 0;
917
918	/* return ENOMEM indicating insufficient memory for addresses */
919	if (netdev_uc_count(netdev) > wx_available_rars(wx))
920		return -ENOMEM;
921
922	if (!netdev_uc_empty(netdev)) {
923		struct netdev_hw_addr *ha;
924
925		netdev_for_each_uc_addr(ha, netdev) {
926			wx_del_mac_filter(wx, ha->addr, pool);
927			wx_add_mac_filter(wx, ha->addr, pool);
928			count++;
929		}
930	}
931	return count;
932}
933
934/**
935 *  wx_mta_vector - Determines bit-vector in multicast table to set
936 *  @wx: pointer to private structure
937 *  @mc_addr: the multicast address
938 *
939 *  Extracts the 12 bits, from a multicast address, to determine which
940 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
941 *  incoming rx multicast addresses, to determine the bit-vector to check in
942 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
943 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
944 *  to mc_filter_type.
945 **/
946static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
947{
948	u32 vector = 0;
949
950	switch (wx->mac.mc_filter_type) {
951	case 0:   /* use bits [47:36] of the address */
952		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
953		break;
954	case 1:   /* use bits [46:35] of the address */
955		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
956		break;
957	case 2:   /* use bits [45:34] of the address */
958		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
959		break;
960	case 3:   /* use bits [43:32] of the address */
961		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
962		break;
963	default:  /* Invalid mc_filter_type */
964		wx_err(wx, "MC filter type param set incorrectly\n");
965		break;
966	}
967
968	/* vector can only be 12-bits or boundary will be exceeded */
969	vector &= 0xFFF;
970	return vector;
971}
972
973/**
974 *  wx_set_mta - Set bit-vector in multicast table
975 *  @wx: pointer to private structure
976 *  @mc_addr: Multicast address
977 *
978 *  Sets the bit-vector in the multicast table.
979 **/
980static void wx_set_mta(struct wx *wx, u8 *mc_addr)
981{
982	u32 vector, vector_bit, vector_reg;
983
984	wx->addr_ctrl.mta_in_use++;
985
986	vector = wx_mta_vector(wx, mc_addr);
987	wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
988
989	/* The MTA is a register array of 128 32-bit registers. It is treated
990	 * like an array of 4096 bits.  We want to set bit
991	 * BitArray[vector_value]. So we figure out what register the bit is
992	 * in, read it, OR in the new bit, then write back the new value.  The
993	 * register is determined by the upper 7 bits of the vector value and
994	 * the bit within that register are determined by the lower 5 bits of
995	 * the value.
996	 */
997	vector_reg = (vector >> 5) & 0x7F;
998	vector_bit = vector & 0x1F;
999	wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1000}
1001
1002/**
1003 *  wx_update_mc_addr_list - Updates MAC list of multicast addresses
1004 *  @wx: pointer to private structure
1005 *  @netdev: pointer to net device structure
1006 *
1007 *  The given list replaces any existing list. Clears the MC addrs from receive
1008 *  address registers and the multicast table. Uses unused receive address
1009 *  registers for the first multicast addresses, and hashes the rest into the
1010 *  multicast table.
1011 **/
1012static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
1013{
1014	struct netdev_hw_addr *ha;
1015	u32 i, psrctl;
1016
1017	/* Set the new number of MC addresses that we are being requested to
1018	 * use.
1019	 */
1020	wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1021	wx->addr_ctrl.mta_in_use = 0;
1022
1023	/* Clear mta_shadow */
1024	wx_dbg(wx, " Clearing MTA\n");
1025	memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
1026
1027	/* Update mta_shadow */
1028	netdev_for_each_mc_addr(ha, netdev) {
1029		wx_dbg(wx, " Adding the multicast addresses:\n");
1030		wx_set_mta(wx, ha->addr);
1031	}
1032
1033	/* Enable mta */
1034	for (i = 0; i < wx->mac.mcft_size; i++)
1035		wr32a(wx, WX_PSR_MC_TBL(0), i,
1036		      wx->mac.mta_shadow[i]);
1037
1038	if (wx->addr_ctrl.mta_in_use > 0) {
1039		psrctl = rd32(wx, WX_PSR_CTL);
1040		psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
1041		psrctl |= WX_PSR_CTL_MFE |
1042			  (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
1043		wr32(wx, WX_PSR_CTL, psrctl);
1044	}
1045
1046	wx_dbg(wx, "Update mc addr list Complete\n");
1047}
1048
1049/**
1050 * wx_write_mc_addr_list - write multicast addresses to MTA
1051 * @netdev: network interface device structure
1052 *
1053 * Writes multicast address list to the MTA hash table.
1054 * Returns: 0 on no addresses written
1055 *          X on writing X addresses to MTA
1056 **/
1057static int wx_write_mc_addr_list(struct net_device *netdev)
1058{
1059	struct wx *wx = netdev_priv(netdev);
1060
1061	if (!netif_running(netdev))
1062		return 0;
1063
1064	wx_update_mc_addr_list(wx, netdev);
1065
1066	return netdev_mc_count(netdev);
1067}
1068
1069/**
1070 * wx_set_mac - Change the Ethernet Address of the NIC
1071 * @netdev: network interface device structure
1072 * @p: pointer to an address structure
1073 *
1074 * Returns 0 on success, negative on failure
1075 **/
1076int wx_set_mac(struct net_device *netdev, void *p)
1077{
1078	struct wx *wx = netdev_priv(netdev);
1079	struct sockaddr *addr = p;
1080	int retval;
1081
1082	retval = eth_prepare_mac_addr_change(netdev, addr);
1083	if (retval)
1084		return retval;
1085
1086	wx_del_mac_filter(wx, wx->mac.addr, 0);
1087	eth_hw_addr_set(netdev, addr->sa_data);
1088	memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
1089
1090	wx_mac_set_default_filter(wx, wx->mac.addr);
1091
1092	return 0;
1093}
1094EXPORT_SYMBOL(wx_set_mac);
1095
1096void wx_disable_rx(struct wx *wx)
1097{
1098	u32 pfdtxgswc;
1099	u32 rxctrl;
1100
1101	rxctrl = rd32(wx, WX_RDB_PB_CTL);
1102	if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1103		pfdtxgswc = rd32(wx, WX_PSR_CTL);
1104		if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1105			pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1106			wr32(wx, WX_PSR_CTL, pfdtxgswc);
1107			wx->mac.set_lben = true;
1108		} else {
1109			wx->mac.set_lben = false;
1110		}
1111		rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1112		wr32(wx, WX_RDB_PB_CTL, rxctrl);
1113
1114		if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1115		      ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1116			/* disable mac receiver */
1117			wr32m(wx, WX_MAC_RX_CFG,
1118			      WX_MAC_RX_CFG_RE, 0);
1119		}
1120	}
1121}
1122EXPORT_SYMBOL(wx_disable_rx);
1123
1124static void wx_enable_rx(struct wx *wx)
1125{
1126	u32 psrctl;
1127
1128	/* enable mac receiver */
1129	wr32m(wx, WX_MAC_RX_CFG,
1130	      WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1131
1132	wr32m(wx, WX_RDB_PB_CTL,
1133	      WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1134
1135	if (wx->mac.set_lben) {
1136		psrctl = rd32(wx, WX_PSR_CTL);
1137		psrctl |= WX_PSR_CTL_SW_EN;
1138		wr32(wx, WX_PSR_CTL, psrctl);
1139		wx->mac.set_lben = false;
1140	}
1141}
1142
1143/**
1144 * wx_set_rxpba - Initialize Rx packet buffer
1145 * @wx: pointer to private structure
1146 **/
1147static void wx_set_rxpba(struct wx *wx)
1148{
1149	u32 rxpktsize, txpktsize, txpbthresh;
1150
1151	rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT;
1152	wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1153
1154	/* Only support an equally distributed Tx packet buffer strategy. */
1155	txpktsize = wx->mac.tx_pb_size;
1156	txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1157	wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1158	wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1159}
1160
1161#define WX_ETH_FRAMING 20
1162
1163/**
1164 * wx_hpbthresh - calculate high water mark for flow control
1165 *
1166 * @wx: board private structure to calculate for
1167 **/
1168static int wx_hpbthresh(struct wx *wx)
1169{
1170	struct net_device *dev = wx->netdev;
1171	int link, tc, kb, marker;
1172	u32 dv_id, rx_pba;
1173
1174	/* Calculate max LAN frame size */
1175	link = dev->mtu + ETH_HLEN + ETH_FCS_LEN + WX_ETH_FRAMING;
1176	tc = link;
1177
1178	/* Calculate delay value for device */
1179	dv_id = WX_DV(link, tc);
1180
1181	/* Delay value is calculated in bit times convert to KB */
1182	kb = WX_BT2KB(dv_id);
1183	rx_pba = rd32(wx, WX_RDB_PB_SZ(0)) >> WX_RDB_PB_SZ_SHIFT;
1184
1185	marker = rx_pba - kb;
1186
1187	/* It is possible that the packet buffer is not large enough
1188	 * to provide required headroom. In this case throw an error
1189	 * to user and a do the best we can.
1190	 */
1191	if (marker < 0) {
1192		dev_warn(&wx->pdev->dev,
1193			 "Packet Buffer can not provide enough headroom to support flow control. Decrease MTU or number of traffic classes\n");
1194		marker = tc + 1;
1195	}
1196
1197	return marker;
1198}
1199
1200/**
1201 * wx_lpbthresh - calculate low water mark for flow control
1202 *
1203 * @wx: board private structure to calculate for
1204 **/
1205static int wx_lpbthresh(struct wx *wx)
1206{
1207	struct net_device *dev = wx->netdev;
1208	u32 dv_id;
1209	int tc;
1210
1211	/* Calculate max LAN frame size */
1212	tc = dev->mtu + ETH_HLEN + ETH_FCS_LEN;
1213
1214	/* Calculate delay value for device */
1215	dv_id = WX_LOW_DV(tc);
1216
1217	/* Delay value is calculated in bit times convert to KB */
1218	return WX_BT2KB(dv_id);
1219}
1220
1221/**
1222 * wx_pbthresh_setup - calculate and setup high low water marks
1223 *
1224 * @wx: board private structure to calculate for
1225 **/
1226static void wx_pbthresh_setup(struct wx *wx)
1227{
1228	wx->fc.high_water = wx_hpbthresh(wx);
1229	wx->fc.low_water = wx_lpbthresh(wx);
1230
1231	/* Low water marks must not be larger than high water marks */
1232	if (wx->fc.low_water > wx->fc.high_water)
1233		wx->fc.low_water = 0;
1234}
1235
1236static void wx_configure_port(struct wx *wx)
1237{
1238	u32 value, i;
1239
1240	value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1241	wr32m(wx, WX_CFG_PORT_CTL,
1242	      WX_CFG_PORT_CTL_D_VLAN |
1243	      WX_CFG_PORT_CTL_QINQ,
1244	      value);
1245
1246	wr32(wx, WX_CFG_TAG_TPID(0),
1247	     ETH_P_8021Q | ETH_P_8021AD << 16);
1248	wx->tpid[0] = ETH_P_8021Q;
1249	wx->tpid[1] = ETH_P_8021AD;
1250	for (i = 1; i < 4; i++)
1251		wr32(wx, WX_CFG_TAG_TPID(i),
1252		     ETH_P_8021Q | ETH_P_8021Q << 16);
1253	for (i = 2; i < 8; i++)
1254		wx->tpid[i] = ETH_P_8021Q;
1255}
1256
1257/**
1258 *  wx_disable_sec_rx_path - Stops the receive data path
1259 *  @wx: pointer to private structure
1260 *
1261 *  Stops the receive data path and waits for the HW to internally empty
1262 *  the Rx security block
1263 **/
1264static int wx_disable_sec_rx_path(struct wx *wx)
1265{
1266	u32 secrx;
1267
1268	wr32m(wx, WX_RSC_CTL,
1269	      WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1270
1271	return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1272				 1000, 40000, false, wx, WX_RSC_ST);
1273}
1274
1275/**
1276 *  wx_enable_sec_rx_path - Enables the receive data path
1277 *  @wx: pointer to private structure
1278 *
1279 *  Enables the receive data path.
1280 **/
1281static void wx_enable_sec_rx_path(struct wx *wx)
1282{
1283	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1284	WX_WRITE_FLUSH(wx);
1285}
1286
1287static void wx_vlan_strip_control(struct wx *wx, bool enable)
1288{
1289	int i, j;
1290
1291	for (i = 0; i < wx->num_rx_queues; i++) {
1292		struct wx_ring *ring = wx->rx_ring[i];
1293
1294		j = ring->reg_idx;
1295		wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1296		      enable ? WX_PX_RR_CFG_VLAN : 0);
1297	}
1298}
1299
1300void wx_set_rx_mode(struct net_device *netdev)
1301{
1302	struct wx *wx = netdev_priv(netdev);
1303	netdev_features_t features;
1304	u32 fctrl, vmolr, vlnctrl;
1305	int count;
1306
1307	features = netdev->features;
1308
1309	/* Check for Promiscuous and All Multicast modes */
1310	fctrl = rd32(wx, WX_PSR_CTL);
1311	fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1312	vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
1313	vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1314		   WX_PSR_VM_L2CTL_MPE |
1315		   WX_PSR_VM_L2CTL_ROPE |
1316		   WX_PSR_VM_L2CTL_ROMPE);
1317	vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1318	vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1319
1320	/* set all bits that we expect to always be set */
1321	fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1322	vmolr |= WX_PSR_VM_L2CTL_BAM |
1323		 WX_PSR_VM_L2CTL_AUPE |
1324		 WX_PSR_VM_L2CTL_VACC;
1325	vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1326
1327	wx->addr_ctrl.user_set_promisc = false;
1328	if (netdev->flags & IFF_PROMISC) {
1329		wx->addr_ctrl.user_set_promisc = true;
1330		fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1331		/* pf don't want packets routing to vf, so clear UPE */
1332		vmolr |= WX_PSR_VM_L2CTL_MPE;
1333		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1334	}
1335
1336	if (netdev->flags & IFF_ALLMULTI) {
1337		fctrl |= WX_PSR_CTL_MPE;
1338		vmolr |= WX_PSR_VM_L2CTL_MPE;
1339	}
1340
1341	if (netdev->features & NETIF_F_RXALL) {
1342		vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1343		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1344		/* receive bad packets */
1345		wr32m(wx, WX_RSC_CTL,
1346		      WX_RSC_CTL_SAVE_MAC_ERR,
1347		      WX_RSC_CTL_SAVE_MAC_ERR);
1348	} else {
1349		vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1350	}
1351
1352	/* Write addresses to available RAR registers, if there is not
1353	 * sufficient space to store all the addresses then enable
1354	 * unicast promiscuous mode
1355	 */
1356	count = wx_write_uc_addr_list(netdev, 0);
1357	if (count < 0) {
1358		vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1359		vmolr |= WX_PSR_VM_L2CTL_UPE;
1360	}
1361
1362	/* Write addresses to the MTA, if the attempt fails
1363	 * then we should just turn on promiscuous mode so
1364	 * that we can at least receive multicast traffic
1365	 */
1366	count = wx_write_mc_addr_list(netdev);
1367	if (count < 0) {
1368		vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1369		vmolr |= WX_PSR_VM_L2CTL_MPE;
1370	}
1371
1372	wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1373	wr32(wx, WX_PSR_CTL, fctrl);
1374	wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
1375
1376	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1377	    (features & NETIF_F_HW_VLAN_STAG_RX))
1378		wx_vlan_strip_control(wx, true);
1379	else
1380		wx_vlan_strip_control(wx, false);
1381
1382}
1383EXPORT_SYMBOL(wx_set_rx_mode);
1384
1385static void wx_set_rx_buffer_len(struct wx *wx)
1386{
1387	struct net_device *netdev = wx->netdev;
1388	u32 mhadd, max_frame;
1389
1390	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1391	/* adjust max frame to be at least the size of a standard frame */
1392	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1393		max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1394
1395	mhadd = rd32(wx, WX_PSR_MAX_SZ);
1396	if (max_frame != mhadd)
1397		wr32(wx, WX_PSR_MAX_SZ, max_frame);
1398}
1399
1400/**
1401 * wx_change_mtu - Change the Maximum Transfer Unit
1402 * @netdev: network interface device structure
1403 * @new_mtu: new value for maximum frame size
1404 *
1405 * Returns 0 on success, negative on failure
1406 **/
1407int wx_change_mtu(struct net_device *netdev, int new_mtu)
1408{
1409	struct wx *wx = netdev_priv(netdev);
1410
1411	netdev->mtu = new_mtu;
1412	wx_set_rx_buffer_len(wx);
1413
1414	return 0;
1415}
1416EXPORT_SYMBOL(wx_change_mtu);
1417
1418/* Disable the specified rx queue */
1419void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1420{
1421	u8 reg_idx = ring->reg_idx;
1422	u32 rxdctl;
1423	int ret;
1424
1425	/* write value back with RRCFG.EN bit cleared */
1426	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1427	      WX_PX_RR_CFG_RR_EN, 0);
1428
1429	/* the hardware may take up to 100us to really disable the rx queue */
1430	ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1431				10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1432
1433	if (ret == -ETIMEDOUT) {
1434		/* Just for information */
1435		wx_err(wx,
1436		       "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1437		       reg_idx);
1438	}
1439}
1440EXPORT_SYMBOL(wx_disable_rx_queue);
1441
1442static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1443{
1444	u8 reg_idx = ring->reg_idx;
1445	u32 rxdctl;
1446	int ret;
1447
1448	ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1449				1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1450
1451	if (ret == -ETIMEDOUT) {
1452		/* Just for information */
1453		wx_err(wx,
1454		       "RRCFG.EN on Rx queue %d not set within the polling period\n",
1455		       reg_idx);
1456	}
1457}
1458
1459static void wx_configure_srrctl(struct wx *wx,
1460				struct wx_ring *rx_ring)
1461{
1462	u16 reg_idx = rx_ring->reg_idx;
1463	u32 srrctl;
1464
1465	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1466	srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1467		    WX_PX_RR_CFG_RR_BUF_SZ |
1468		    WX_PX_RR_CFG_SPLIT_MODE);
1469	/* configure header buffer length, needed for RSC */
1470	srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1471
1472	/* configure the packet buffer length */
1473	srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1474
1475	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1476}
1477
1478static void wx_configure_tx_ring(struct wx *wx,
1479				 struct wx_ring *ring)
1480{
1481	u32 txdctl = WX_PX_TR_CFG_ENABLE;
1482	u8 reg_idx = ring->reg_idx;
1483	u64 tdba = ring->dma;
1484	int ret;
1485
1486	/* disable queue to avoid issues while updating state */
1487	wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1488	WX_WRITE_FLUSH(wx);
1489
1490	wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1491	wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1492
1493	/* reset head and tail pointers */
1494	wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1495	wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1496	ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1497
1498	if (ring->count < WX_MAX_TXD)
1499		txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1500	txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1501
1502	/* reinitialize tx_buffer_info */
1503	memset(ring->tx_buffer_info, 0,
1504	       sizeof(struct wx_tx_buffer) * ring->count);
1505
1506	/* enable queue */
1507	wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1508
1509	/* poll to verify queue is enabled */
1510	ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1511				1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1512	if (ret == -ETIMEDOUT)
1513		wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1514}
1515
1516static void wx_configure_rx_ring(struct wx *wx,
1517				 struct wx_ring *ring)
1518{
1519	u16 reg_idx = ring->reg_idx;
1520	union wx_rx_desc *rx_desc;
1521	u64 rdba = ring->dma;
1522	u32 rxdctl;
1523
1524	/* disable queue to avoid issues while updating state */
1525	rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1526	wx_disable_rx_queue(wx, ring);
1527
1528	wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1529	wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1530
1531	if (ring->count == WX_MAX_RXD)
1532		rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1533	else
1534		rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1535
1536	rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1537	wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1538
1539	/* reset head and tail pointers */
1540	wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1541	wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1542	ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1543
1544	wx_configure_srrctl(wx, ring);
1545
1546	/* initialize rx_buffer_info */
1547	memset(ring->rx_buffer_info, 0,
1548	       sizeof(struct wx_rx_buffer) * ring->count);
1549
1550	/* initialize Rx descriptor 0 */
1551	rx_desc = WX_RX_DESC(ring, 0);
1552	rx_desc->wb.upper.length = 0;
1553
1554	/* enable receive descriptor ring */
1555	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1556	      WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1557
1558	wx_enable_rx_queue(wx, ring);
1559	wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1560}
1561
1562/**
1563 * wx_configure_tx - Configure Transmit Unit after Reset
1564 * @wx: pointer to private structure
1565 *
1566 * Configure the Tx unit of the MAC after a reset.
1567 **/
1568static void wx_configure_tx(struct wx *wx)
1569{
1570	u32 i;
1571
1572	/* TDM_CTL.TE must be before Tx queues are enabled */
1573	wr32m(wx, WX_TDM_CTL,
1574	      WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1575
1576	/* Setup the HW Tx Head and Tail descriptor pointers */
1577	for (i = 0; i < wx->num_tx_queues; i++)
1578		wx_configure_tx_ring(wx, wx->tx_ring[i]);
1579
1580	wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1581
1582	if (wx->mac.type == wx_mac_em)
1583		wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1584
1585	/* enable mac transmitter */
1586	wr32m(wx, WX_MAC_TX_CFG,
1587	      WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1588}
1589
1590static void wx_restore_vlan(struct wx *wx)
1591{
1592	u16 vid = 1;
1593
1594	wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1595
1596	for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1597		wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1598}
1599
1600static void wx_store_reta(struct wx *wx)
1601{
1602	u8 *indir_tbl = wx->rss_indir_tbl;
1603	u32 reta = 0;
1604	u32 i;
1605
1606	/* Fill out the redirection table as follows:
1607	 *  - 8 bit wide entries containing 4 bit RSS index
1608	 */
1609	for (i = 0; i < WX_MAX_RETA_ENTRIES; i++) {
1610		reta |= indir_tbl[i] << (i & 0x3) * 8;
1611		if ((i & 3) == 3) {
1612			wr32(wx, WX_RDB_RSSTBL(i >> 2), reta);
1613			reta = 0;
1614		}
1615	}
1616}
1617
1618static void wx_setup_reta(struct wx *wx)
1619{
1620	u16 rss_i = wx->ring_feature[RING_F_RSS].indices;
1621	u32 random_key_size = WX_RSS_KEY_SIZE / 4;
1622	u32 i, j;
1623
1624	/* Fill out hash function seeds */
1625	for (i = 0; i < random_key_size; i++)
1626		wr32(wx, WX_RDB_RSSRK(i), wx->rss_key[i]);
1627
1628	/* Fill out redirection table */
1629	memset(wx->rss_indir_tbl, 0, sizeof(wx->rss_indir_tbl));
1630
1631	for (i = 0, j = 0; i < WX_MAX_RETA_ENTRIES; i++, j++) {
1632		if (j == rss_i)
1633			j = 0;
1634
1635		wx->rss_indir_tbl[i] = j;
1636	}
1637
1638	wx_store_reta(wx);
1639}
1640
1641static void wx_setup_mrqc(struct wx *wx)
1642{
1643	u32 rss_field = 0;
1644
1645	/* Disable indicating checksum in descriptor, enables RSS hash */
1646	wr32m(wx, WX_PSR_CTL, WX_PSR_CTL_PCSD, WX_PSR_CTL_PCSD);
1647
1648	/* Perform hash on these packet types */
1649	rss_field = WX_RDB_RA_CTL_RSS_IPV4 |
1650		    WX_RDB_RA_CTL_RSS_IPV4_TCP |
1651		    WX_RDB_RA_CTL_RSS_IPV4_UDP |
1652		    WX_RDB_RA_CTL_RSS_IPV6 |
1653		    WX_RDB_RA_CTL_RSS_IPV6_TCP |
1654		    WX_RDB_RA_CTL_RSS_IPV6_UDP;
1655
1656	netdev_rss_key_fill(wx->rss_key, sizeof(wx->rss_key));
1657
1658	wx_setup_reta(wx);
1659
1660	if (wx->rss_enabled)
1661		rss_field |= WX_RDB_RA_CTL_RSS_EN;
1662
1663	wr32(wx, WX_RDB_RA_CTL, rss_field);
1664}
1665
1666/**
1667 * wx_configure_rx - Configure Receive Unit after Reset
1668 * @wx: pointer to private structure
1669 *
1670 * Configure the Rx unit of the MAC after a reset.
1671 **/
1672void wx_configure_rx(struct wx *wx)
1673{
1674	u32 psrtype, i;
1675	int ret;
1676
1677	wx_disable_rx(wx);
1678
1679	psrtype = WX_RDB_PL_CFG_L4HDR |
1680		  WX_RDB_PL_CFG_L3HDR |
1681		  WX_RDB_PL_CFG_L2HDR |
1682		  WX_RDB_PL_CFG_TUN_TUNHDR;
1683	wr32(wx, WX_RDB_PL_CFG(0), psrtype);
1684
1685	/* enable hw crc stripping */
1686	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
1687
1688	if (wx->mac.type == wx_mac_sp) {
1689		u32 psrctl;
1690
1691		/* RSC Setup */
1692		psrctl = rd32(wx, WX_PSR_CTL);
1693		psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
1694		psrctl |= WX_PSR_CTL_RSC_DIS;
1695		wr32(wx, WX_PSR_CTL, psrctl);
1696	}
1697
1698	wx_setup_mrqc(wx);
1699
1700	/* set_rx_buffer_len must be called before ring initialization */
1701	wx_set_rx_buffer_len(wx);
1702
1703	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1704	 * the Base and Length of the Rx Descriptor Ring
1705	 */
1706	for (i = 0; i < wx->num_rx_queues; i++)
1707		wx_configure_rx_ring(wx, wx->rx_ring[i]);
1708
1709	/* Enable all receives, disable security engine prior to block traffic */
1710	ret = wx_disable_sec_rx_path(wx);
1711	if (ret < 0)
1712		wx_err(wx, "The register status is abnormal, please check device.");
1713
1714	wx_enable_rx(wx);
1715	wx_enable_sec_rx_path(wx);
1716}
1717EXPORT_SYMBOL(wx_configure_rx);
1718
1719static void wx_configure_isb(struct wx *wx)
1720{
1721	/* set ISB Address */
1722	wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
1723	if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
1724		wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
1725}
1726
1727void wx_configure(struct wx *wx)
1728{
1729	wx_set_rxpba(wx);
1730	wx_pbthresh_setup(wx);
1731	wx_configure_port(wx);
1732
1733	wx_set_rx_mode(wx->netdev);
1734	wx_restore_vlan(wx);
1735	wx_enable_sec_rx_path(wx);
1736
1737	wx_configure_tx(wx);
1738	wx_configure_rx(wx);
1739	wx_configure_isb(wx);
1740}
1741EXPORT_SYMBOL(wx_configure);
1742
1743/**
1744 *  wx_disable_pcie_master - Disable PCI-express master access
1745 *  @wx: pointer to hardware structure
1746 *
1747 *  Disables PCI-Express master access and verifies there are no pending
1748 *  requests.
1749 **/
1750int wx_disable_pcie_master(struct wx *wx)
1751{
1752	int status = 0;
1753	u32 val;
1754
1755	/* Always set this bit to ensure any future transactions are blocked */
1756	pci_clear_master(wx->pdev);
1757
1758	/* Exit if master requests are blocked */
1759	if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
1760		return 0;
1761
1762	/* Poll for master request bit to clear */
1763	status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
1764				   false, wx, WX_PX_TRANSACTION_PENDING);
1765	if (status < 0)
1766		wx_err(wx, "PCIe transaction pending bit did not clear.\n");
1767
1768	return status;
1769}
1770EXPORT_SYMBOL(wx_disable_pcie_master);
1771
1772/**
1773 *  wx_stop_adapter - Generic stop Tx/Rx units
1774 *  @wx: pointer to hardware structure
1775 *
1776 *  Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
1777 *  disables transmit and receive units. The adapter_stopped flag is used by
1778 *  the shared code and drivers to determine if the adapter is in a stopped
1779 *  state and should not touch the hardware.
1780 **/
1781int wx_stop_adapter(struct wx *wx)
1782{
1783	u16 i;
1784
1785	/* Set the adapter_stopped flag so other driver functions stop touching
1786	 * the hardware
1787	 */
1788	wx->adapter_stopped = true;
1789
1790	/* Disable the receive unit */
1791	wx_disable_rx(wx);
1792
1793	/* Set interrupt mask to stop interrupts from being generated */
1794	wx_intr_disable(wx, WX_INTR_ALL);
1795
1796	/* Clear any pending interrupts, flush previous writes */
1797	wr32(wx, WX_PX_MISC_IC, 0xffffffff);
1798	wr32(wx, WX_BME_CTL, 0x3);
1799
1800	/* Disable the transmit unit.  Each queue must be disabled. */
1801	for (i = 0; i < wx->mac.max_tx_queues; i++) {
1802		wr32m(wx, WX_PX_TR_CFG(i),
1803		      WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
1804		      WX_PX_TR_CFG_SWFLSH);
1805	}
1806
1807	/* Disable the receive unit by stopping each queue */
1808	for (i = 0; i < wx->mac.max_rx_queues; i++) {
1809		wr32m(wx, WX_PX_RR_CFG(i),
1810		      WX_PX_RR_CFG_RR_EN, 0);
1811	}
1812
1813	/* flush all queues disables */
1814	WX_WRITE_FLUSH(wx);
1815
1816	/* Prevent the PCI-E bus from hanging by disabling PCI-E master
1817	 * access and verify no pending requests
1818	 */
1819	return wx_disable_pcie_master(wx);
1820}
1821EXPORT_SYMBOL(wx_stop_adapter);
1822
1823void wx_reset_misc(struct wx *wx)
1824{
1825	int i;
1826
1827	/* receive packets that size > 2048 */
1828	wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
1829
1830	/* clear counters on read */
1831	wr32m(wx, WX_MMC_CONTROL,
1832	      WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
1833
1834	wr32m(wx, WX_MAC_RX_FLOW_CTRL,
1835	      WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
1836
1837	wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
1838
1839	wr32m(wx, WX_MIS_RST_ST,
1840	      WX_MIS_RST_ST_RST_INIT, 0x1E00);
1841
1842	/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
1843	wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
1844	for (i = 0; i < 16; i++) {
1845		wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
1846		wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
1847		wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
1848	}
1849	wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
1850	for (i = 0; i < 16; i++) {
1851		wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
1852		wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
1853		wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
1854	}
1855
1856	/* set pause frame dst mac addr */
1857	wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
1858	wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
1859}
1860EXPORT_SYMBOL(wx_reset_misc);
1861
1862/**
1863 *  wx_get_pcie_msix_counts - Gets MSI-X vector count
1864 *  @wx: pointer to hardware structure
1865 *  @msix_count: number of MSI interrupts that can be obtained
1866 *  @max_msix_count: number of MSI interrupts that mac need
1867 *
1868 *  Read PCIe configuration space, and get the MSI-X vector count from
1869 *  the capabilities table.
1870 **/
1871int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
1872{
1873	struct pci_dev *pdev = wx->pdev;
1874	struct device *dev = &pdev->dev;
1875	int pos;
1876
1877	*msix_count = 1;
1878	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1879	if (!pos) {
1880		dev_err(dev, "Unable to find MSI-X Capabilities\n");
1881		return -EINVAL;
1882	}
1883	pci_read_config_word(pdev,
1884			     pos + PCI_MSIX_FLAGS,
1885			     msix_count);
1886	*msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
1887	/* MSI-X count is zero-based in HW */
1888	*msix_count += 1;
1889
1890	if (*msix_count > max_msix_count)
1891		*msix_count = max_msix_count;
1892
1893	return 0;
1894}
1895EXPORT_SYMBOL(wx_get_pcie_msix_counts);
1896
1897/**
1898 * wx_init_rss_key - Initialize wx RSS key
1899 * @wx: device handle
1900 *
1901 * Allocates and initializes the RSS key if it is not allocated.
1902 **/
1903static int wx_init_rss_key(struct wx *wx)
1904{
1905	u32 *rss_key;
1906
1907	if (!wx->rss_key) {
1908		rss_key = kzalloc(WX_RSS_KEY_SIZE, GFP_KERNEL);
1909		if (unlikely(!rss_key))
1910			return -ENOMEM;
1911
1912		netdev_rss_key_fill(rss_key, WX_RSS_KEY_SIZE);
1913		wx->rss_key = rss_key;
1914	}
1915
1916	return 0;
1917}
1918
1919int wx_sw_init(struct wx *wx)
1920{
1921	struct pci_dev *pdev = wx->pdev;
1922	u32 ssid = 0;
1923	int err = 0;
1924
1925	wx->vendor_id = pdev->vendor;
1926	wx->device_id = pdev->device;
1927	wx->revision_id = pdev->revision;
1928	wx->oem_svid = pdev->subsystem_vendor;
1929	wx->oem_ssid = pdev->subsystem_device;
1930	wx->bus.device = PCI_SLOT(pdev->devfn);
1931	wx->bus.func = PCI_FUNC(pdev->devfn);
1932
1933	if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
1934		wx->subsystem_vendor_id = pdev->subsystem_vendor;
1935		wx->subsystem_device_id = pdev->subsystem_device;
1936	} else {
1937		err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
1938		if (err < 0) {
1939			wx_err(wx, "read of internal subsystem device id failed\n");
1940			return err;
1941		}
1942
1943		wx->subsystem_device_id = swab16((u16)ssid);
1944	}
1945
1946	err = wx_init_rss_key(wx);
1947	if (err < 0) {
1948		wx_err(wx, "rss key allocation failed\n");
1949		return err;
1950	}
1951
1952	wx->mac_table = kcalloc(wx->mac.num_rar_entries,
1953				sizeof(struct wx_mac_addr),
1954				GFP_KERNEL);
1955	if (!wx->mac_table) {
1956		wx_err(wx, "mac_table allocation failed\n");
1957		kfree(wx->rss_key);
1958		return -ENOMEM;
1959	}
1960
1961	return 0;
1962}
1963EXPORT_SYMBOL(wx_sw_init);
1964
1965/**
1966 *  wx_find_vlvf_slot - find the vlanid or the first empty slot
1967 *  @wx: pointer to hardware structure
1968 *  @vlan: VLAN id to write to VLAN filter
1969 *
1970 *  return the VLVF index where this VLAN id should be placed
1971 *
1972 **/
1973static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
1974{
1975	u32 bits = 0, first_empty_slot = 0;
1976	int regindex;
1977
1978	/* short cut the special case */
1979	if (vlan == 0)
1980		return 0;
1981
1982	/* Search for the vlan id in the VLVF entries. Save off the first empty
1983	 * slot found along the way
1984	 */
1985	for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
1986		wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
1987		bits = rd32(wx, WX_PSR_VLAN_SWC);
1988		if (!bits && !(first_empty_slot))
1989			first_empty_slot = regindex;
1990		else if ((bits & 0x0FFF) == vlan)
1991			break;
1992	}
1993
1994	if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
1995		if (first_empty_slot)
1996			regindex = first_empty_slot;
1997		else
1998			regindex = -ENOMEM;
1999	}
2000
2001	return regindex;
2002}
2003
2004/**
2005 *  wx_set_vlvf - Set VLAN Pool Filter
2006 *  @wx: pointer to hardware structure
2007 *  @vlan: VLAN id to write to VLAN filter
2008 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2009 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2010 *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
2011 *                 should be changed
2012 *
2013 *  Turn on/off specified bit in VLVF table.
2014 **/
2015static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
2016		       bool *vfta_changed)
2017{
2018	int vlvf_index;
2019	u32 vt, bits;
2020
2021	/* If VT Mode is set
2022	 *   Either vlan_on
2023	 *     make sure the vlan is in VLVF
2024	 *     set the vind bit in the matching VLVFB
2025	 *   Or !vlan_on
2026	 *     clear the pool bit and possibly the vind
2027	 */
2028	vt = rd32(wx, WX_CFG_PORT_CTL);
2029	if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
2030		return 0;
2031
2032	vlvf_index = wx_find_vlvf_slot(wx, vlan);
2033	if (vlvf_index < 0)
2034		return vlvf_index;
2035
2036	wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
2037	if (vlan_on) {
2038		/* set the pool bit */
2039		if (vind < 32) {
2040			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2041			bits |= (1 << vind);
2042			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2043		} else {
2044			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2045			bits |= (1 << (vind - 32));
2046			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2047		}
2048	} else {
2049		/* clear the pool bit */
2050		if (vind < 32) {
2051			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2052			bits &= ~(1 << vind);
2053			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2054			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2055		} else {
2056			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2057			bits &= ~(1 << (vind - 32));
2058			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2059			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2060		}
2061	}
2062
2063	if (bits) {
2064		wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
2065		if (!vlan_on && vfta_changed)
2066			*vfta_changed = false;
2067	} else {
2068		wr32(wx, WX_PSR_VLAN_SWC, 0);
2069	}
2070
2071	return 0;
2072}
2073
2074/**
2075 *  wx_set_vfta - Set VLAN filter table
2076 *  @wx: pointer to hardware structure
2077 *  @vlan: VLAN id to write to VLAN filter
2078 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2079 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2080 *
2081 *  Turn on/off specified VLAN in the VLAN filter table.
2082 **/
2083static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
2084{
2085	u32 bitindex, vfta, targetbit;
2086	bool vfta_changed = false;
2087	int regindex, ret;
2088
2089	/* this is a 2 part operation - first the VFTA, then the
2090	 * VLVF and VLVFB if VT Mode is set
2091	 * We don't write the VFTA until we know the VLVF part succeeded.
2092	 */
2093
2094	/* Part 1
2095	 * The VFTA is a bitstring made up of 128 32-bit registers
2096	 * that enable the particular VLAN id, much like the MTA:
2097	 *    bits[11-5]: which register
2098	 *    bits[4-0]:  which bit in the register
2099	 */
2100	regindex = (vlan >> 5) & 0x7F;
2101	bitindex = vlan & 0x1F;
2102	targetbit = (1 << bitindex);
2103	/* errata 5 */
2104	vfta = wx->mac.vft_shadow[regindex];
2105	if (vlan_on) {
2106		if (!(vfta & targetbit)) {
2107			vfta |= targetbit;
2108			vfta_changed = true;
2109		}
2110	} else {
2111		if ((vfta & targetbit)) {
2112			vfta &= ~targetbit;
2113			vfta_changed = true;
2114		}
2115	}
2116	/* Part 2
2117	 * Call wx_set_vlvf to set VLVFB and VLVF
2118	 */
2119	ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
2120	if (ret != 0)
2121		return ret;
2122
2123	if (vfta_changed)
2124		wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
2125	wx->mac.vft_shadow[regindex] = vfta;
2126
2127	return 0;
2128}
2129
2130/**
2131 *  wx_clear_vfta - Clear VLAN filter table
2132 *  @wx: pointer to hardware structure
2133 *
2134 *  Clears the VLAN filer table, and the VMDq index associated with the filter
2135 **/
2136static void wx_clear_vfta(struct wx *wx)
2137{
2138	u32 offset;
2139
2140	for (offset = 0; offset < wx->mac.vft_size; offset++) {
2141		wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
2142		wx->mac.vft_shadow[offset] = 0;
2143	}
2144
2145	for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
2146		wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
2147		wr32(wx, WX_PSR_VLAN_SWC, 0);
2148		wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
2149		wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
2150	}
2151}
2152
2153int wx_vlan_rx_add_vid(struct net_device *netdev,
2154		       __be16 proto, u16 vid)
2155{
2156	struct wx *wx = netdev_priv(netdev);
2157
2158	/* add VID to filter table */
2159	wx_set_vfta(wx, vid, VMDQ_P(0), true);
2160	set_bit(vid, wx->active_vlans);
2161
2162	return 0;
2163}
2164EXPORT_SYMBOL(wx_vlan_rx_add_vid);
2165
2166int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
2167{
2168	struct wx *wx = netdev_priv(netdev);
2169
2170	/* remove VID from filter table */
2171	if (vid)
2172		wx_set_vfta(wx, vid, VMDQ_P(0), false);
2173	clear_bit(vid, wx->active_vlans);
2174
2175	return 0;
2176}
2177EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
2178
2179static void wx_enable_rx_drop(struct wx *wx, struct wx_ring *ring)
2180{
2181	u16 reg_idx = ring->reg_idx;
2182	u32 srrctl;
2183
2184	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2185	srrctl |= WX_PX_RR_CFG_DROP_EN;
2186
2187	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2188}
2189
2190static void wx_disable_rx_drop(struct wx *wx, struct wx_ring *ring)
2191{
2192	u16 reg_idx = ring->reg_idx;
2193	u32 srrctl;
2194
2195	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2196	srrctl &= ~WX_PX_RR_CFG_DROP_EN;
2197
2198	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2199}
2200
2201int wx_fc_enable(struct wx *wx, bool tx_pause, bool rx_pause)
2202{
2203	u16 pause_time = WX_DEFAULT_FCPAUSE;
2204	u32 mflcn_reg, fccfg_reg, reg;
2205	u32 fcrtl, fcrth;
2206	int i;
2207
2208	/* Low water mark of zero causes XOFF floods */
2209	if (tx_pause && wx->fc.high_water) {
2210		if (!wx->fc.low_water || wx->fc.low_water >= wx->fc.high_water) {
2211			wx_err(wx, "Invalid water mark configuration\n");
2212			return -EINVAL;
2213		}
2214	}
2215
2216	/* Disable any previous flow control settings */
2217	mflcn_reg = rd32(wx, WX_MAC_RX_FLOW_CTRL);
2218	mflcn_reg &= ~WX_MAC_RX_FLOW_CTRL_RFE;
2219
2220	fccfg_reg = rd32(wx, WX_RDB_RFCC);
2221	fccfg_reg &= ~WX_RDB_RFCC_RFCE_802_3X;
2222
2223	if (rx_pause)
2224		mflcn_reg |= WX_MAC_RX_FLOW_CTRL_RFE;
2225	if (tx_pause)
2226		fccfg_reg |= WX_RDB_RFCC_RFCE_802_3X;
2227
2228	/* Set 802.3x based flow control settings. */
2229	wr32(wx, WX_MAC_RX_FLOW_CTRL, mflcn_reg);
2230	wr32(wx, WX_RDB_RFCC, fccfg_reg);
2231
2232	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2233	if (tx_pause && wx->fc.high_water) {
2234		fcrtl = (wx->fc.low_water << 10) | WX_RDB_RFCL_XONE;
2235		wr32(wx, WX_RDB_RFCL, fcrtl);
2236		fcrth = (wx->fc.high_water << 10) | WX_RDB_RFCH_XOFFE;
2237	} else {
2238		wr32(wx, WX_RDB_RFCL, 0);
2239		/* In order to prevent Tx hangs when the internal Tx
2240		 * switch is enabled we must set the high water mark
2241		 * to the Rx packet buffer size - 24KB.  This allows
2242		 * the Tx switch to function even under heavy Rx
2243		 * workloads.
2244		 */
2245		fcrth = rd32(wx, WX_RDB_PB_SZ(0)) - 24576;
2246	}
2247
2248	wr32(wx, WX_RDB_RFCH, fcrth);
2249
2250	/* Configure pause time */
2251	reg = pause_time * 0x00010001;
2252	wr32(wx, WX_RDB_RFCV, reg);
2253
2254	/* Configure flow control refresh threshold value */
2255	wr32(wx, WX_RDB_RFCRT, pause_time / 2);
2256
2257	/*  We should set the drop enable bit if:
2258	 *  Number of Rx queues > 1 and flow control is disabled
2259	 *
2260	 *  This allows us to avoid head of line blocking for security
2261	 *  and performance reasons.
2262	 */
2263	if (wx->num_rx_queues > 1 && !tx_pause) {
2264		for (i = 0; i < wx->num_rx_queues; i++)
2265			wx_enable_rx_drop(wx, wx->rx_ring[i]);
2266	} else {
2267		for (i = 0; i < wx->num_rx_queues; i++)
2268			wx_disable_rx_drop(wx, wx->rx_ring[i]);
2269	}
2270
2271	return 0;
2272}
2273EXPORT_SYMBOL(wx_fc_enable);
2274
2275/**
2276 * wx_update_stats - Update the board statistics counters.
2277 * @wx: board private structure
2278 **/
2279void wx_update_stats(struct wx *wx)
2280{
2281	struct wx_hw_stats *hwstats = &wx->stats;
2282
2283	u64 non_eop_descs = 0, alloc_rx_buff_failed = 0;
2284	u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0;
2285	u64 restart_queue = 0, tx_busy = 0;
2286	u32 i;
2287
2288	/* gather some stats to the wx struct that are per queue */
2289	for (i = 0; i < wx->num_rx_queues; i++) {
2290		struct wx_ring *rx_ring = wx->rx_ring[i];
2291
2292		non_eop_descs += rx_ring->rx_stats.non_eop_descs;
2293		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
2294		hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt;
2295		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
2296	}
2297	wx->non_eop_descs = non_eop_descs;
2298	wx->alloc_rx_buff_failed = alloc_rx_buff_failed;
2299	wx->hw_csum_rx_error = hw_csum_rx_error;
2300	wx->hw_csum_rx_good = hw_csum_rx_good;
2301
2302	for (i = 0; i < wx->num_tx_queues; i++) {
2303		struct wx_ring *tx_ring = wx->tx_ring[i];
2304
2305		restart_queue += tx_ring->tx_stats.restart_queue;
2306		tx_busy += tx_ring->tx_stats.tx_busy;
2307	}
2308	wx->restart_queue = restart_queue;
2309	wx->tx_busy = tx_busy;
2310
2311	hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT);
2312	hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT);
2313	hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB);
2314	hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB);
2315	hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2316	hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2317	hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2318	hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2319	hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2320	hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2321	hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2322	hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2323	hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2324	hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2325	hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC);
2326	hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC);
2327	hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC);
2328	hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT);
2329	hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT);
2330	hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT);
2331	hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT);
2332	hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT);
2333
2334	for (i = 0; i < wx->mac.max_rx_queues; i++)
2335		hwstats->qmprc += rd32(wx, WX_PX_MPRC(i));
2336}
2337EXPORT_SYMBOL(wx_update_stats);
2338
2339/**
2340 *  wx_clear_hw_cntrs - Generic clear hardware counters
2341 *  @wx: board private structure
2342 *
2343 *  Clears all hardware statistics counters by reading them from the hardware
2344 *  Statistics counters are clear on read.
2345 **/
2346void wx_clear_hw_cntrs(struct wx *wx)
2347{
2348	u16 i = 0;
2349
2350	for (i = 0; i < wx->mac.max_rx_queues; i++)
2351		wr32(wx, WX_PX_MPRC(i), 0);
2352
2353	rd32(wx, WX_RDM_PKT_CNT);
2354	rd32(wx, WX_TDM_PKT_CNT);
2355	rd64(wx, WX_RDM_BYTE_CNT_LSB);
2356	rd32(wx, WX_TDM_BYTE_CNT_LSB);
2357	rd32(wx, WX_RDM_DRP_PKT);
2358	rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2359	rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2360	rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2361	rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2362	rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2363	rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2364	rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2365	rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2366	rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2367	rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2368	rd32(wx, WX_RDB_LXONTXC);
2369	rd32(wx, WX_RDB_LXOFFTXC);
2370	rd32(wx, WX_MAC_LXONOFFRXC);
2371}
2372EXPORT_SYMBOL(wx_clear_hw_cntrs);
2373
2374/**
2375 *  wx_start_hw - Prepare hardware for Tx/Rx
2376 *  @wx: pointer to hardware structure
2377 *
2378 *  Starts the hardware using the generic start_hw function
2379 *  and the generation start_hw function.
2380 *  Then performs revision-specific operations, if any.
2381 **/
2382void wx_start_hw(struct wx *wx)
2383{
2384	int i;
2385
2386	/* Clear the VLAN filter table */
2387	wx_clear_vfta(wx);
2388	WX_WRITE_FLUSH(wx);
2389	/* Clear the rate limiters */
2390	for (i = 0; i < wx->mac.max_tx_queues; i++) {
2391		wr32(wx, WX_TDM_RP_IDX, i);
2392		wr32(wx, WX_TDM_RP_RATE, 0);
2393	}
2394}
2395EXPORT_SYMBOL(wx_start_hw);
2396
2397MODULE_LICENSE("GPL");
2398