1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * This code is derived from the VIA reference driver (copyright message
4 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
5 * addition to the Linux kernel.
6 *
7 * The code has been merged into one source file, cleaned up to follow
8 * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
9 * for 64bit hardware platforms.
10 *
11 * TODO
12 *	rx_copybreak/alignment
13 *	More testing
14 *
15 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
16 * Additional fixes and clean up: Francois Romieu
17 *
18 * This source has not been verified for use in safety critical systems.
19 *
20 * Please direct queries about the revamped driver to the linux-kernel
21 * list not VIA.
22 *
23 * Original code:
24 *
25 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
26 * All rights reserved.
27 *
28 * Author: Chuang Liang-Shing, AJ Jiang
29 *
30 * Date: Jan 24, 2003
31 *
32 * MODULE_LICENSE("GPL");
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/bitops.h>
40#include <linux/init.h>
41#include <linux/dma-mapping.h>
42#include <linux/mm.h>
43#include <linux/errno.h>
44#include <linux/ioport.h>
45#include <linux/pci.h>
46#include <linux/kernel.h>
47#include <linux/netdevice.h>
48#include <linux/etherdevice.h>
49#include <linux/skbuff.h>
50#include <linux/delay.h>
51#include <linux/timer.h>
52#include <linux/slab.h>
53#include <linux/interrupt.h>
54#include <linux/string.h>
55#include <linux/wait.h>
56#include <linux/io.h>
57#include <linux/if.h>
58#include <linux/uaccess.h>
59#include <linux/proc_fs.h>
60#include <linux/of.h>
61#include <linux/of_address.h>
62#include <linux/of_irq.h>
63#include <linux/inetdevice.h>
64#include <linux/platform_device.h>
65#include <linux/reboot.h>
66#include <linux/ethtool.h>
67#include <linux/mii.h>
68#include <linux/in.h>
69#include <linux/if_arp.h>
70#include <linux/if_vlan.h>
71#include <linux/ip.h>
72#include <linux/tcp.h>
73#include <linux/udp.h>
74#include <linux/crc-ccitt.h>
75#include <linux/crc32.h>
76
77#include "via-velocity.h"
78
79enum velocity_bus_type {
80	BUS_PCI,
81	BUS_PLATFORM,
82};
83
84static int velocity_nics;
85
86static void velocity_set_power_state(struct velocity_info *vptr, char state)
87{
88	void *addr = vptr->mac_regs;
89
90	if (vptr->pdev)
91		pci_set_power_state(vptr->pdev, state);
92	else
93		writeb(state, addr + 0x154);
94}
95
96/**
97 *	mac_get_cam_mask	-	Read a CAM mask
98 *	@regs: register block for this velocity
99 *	@mask: buffer to store mask
100 *
101 *	Fetch the mask bits of the selected CAM and store them into the
102 *	provided mask buffer.
103 */
104static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
105{
106	int i;
107
108	/* Select CAM mask */
109	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
110
111	writeb(0, &regs->CAMADDR);
112
113	/* read mask */
114	for (i = 0; i < 8; i++)
115		*mask++ = readb(&(regs->MARCAM[i]));
116
117	/* disable CAMEN */
118	writeb(0, &regs->CAMADDR);
119
120	/* Select mar */
121	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
122}
123
124/**
125 *	mac_set_cam_mask	-	Set a CAM mask
126 *	@regs: register block for this velocity
127 *	@mask: CAM mask to load
128 *
129 *	Store a new mask into a CAM
130 */
131static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
132{
133	int i;
134	/* Select CAM mask */
135	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
136
137	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
138
139	for (i = 0; i < 8; i++)
140		writeb(*mask++, &(regs->MARCAM[i]));
141
142	/* disable CAMEN */
143	writeb(0, &regs->CAMADDR);
144
145	/* Select mar */
146	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
147}
148
149static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
150{
151	int i;
152	/* Select CAM mask */
153	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
154
155	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
156
157	for (i = 0; i < 8; i++)
158		writeb(*mask++, &(regs->MARCAM[i]));
159
160	/* disable CAMEN */
161	writeb(0, &regs->CAMADDR);
162
163	/* Select mar */
164	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
165}
166
167/**
168 *	mac_set_cam	-	set CAM data
169 *	@regs: register block of this velocity
170 *	@idx: Cam index
171 *	@addr: 2 or 6 bytes of CAM data
172 *
173 *	Load an address or vlan tag into a CAM
174 */
175static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
176{
177	int i;
178
179	/* Select CAM mask */
180	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
181
182	idx &= (64 - 1);
183
184	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
185
186	for (i = 0; i < 6; i++)
187		writeb(*addr++, &(regs->MARCAM[i]));
188
189	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
190
191	udelay(10);
192
193	writeb(0, &regs->CAMADDR);
194
195	/* Select mar */
196	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
197}
198
199static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
200			     const u8 *addr)
201{
202
203	/* Select CAM mask */
204	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
205
206	idx &= (64 - 1);
207
208	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
209	writew(*((u16 *) addr), &regs->MARCAM[0]);
210
211	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
212
213	udelay(10);
214
215	writeb(0, &regs->CAMADDR);
216
217	/* Select mar */
218	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
219}
220
221
222/**
223 *	mac_wol_reset	-	reset WOL after exiting low power
224 *	@regs: register block of this velocity
225 *
226 *	Called after we drop out of wake on lan mode in order to
227 *	reset the Wake on lan features. This function doesn't restore
228 *	the rest of the logic from the result of sleep/wakeup
229 */
230static void mac_wol_reset(struct mac_regs __iomem *regs)
231{
232
233	/* Turn off SWPTAG right after leaving power mode */
234	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
235	/* clear sticky bits */
236	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
237
238	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
239	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
240	/* disable force PME-enable */
241	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
242	/* disable power-event config bit */
243	writew(0xFFFF, &regs->WOLCRClr);
244	/* clear power status */
245	writew(0xFFFF, &regs->WOLSRClr);
246}
247
248static const struct ethtool_ops velocity_ethtool_ops;
249
250/*
251    Define module options
252*/
253
254MODULE_AUTHOR("VIA Networking Technologies, Inc.");
255MODULE_LICENSE("GPL");
256MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
257
258#define VELOCITY_PARAM(N, D) \
259	static int N[MAX_UNITS] = OPTION_DEFAULT;\
260	module_param_array(N, int, NULL, 0); \
261	MODULE_PARM_DESC(N, D);
262
263#define RX_DESC_MIN     64
264#define RX_DESC_MAX     255
265#define RX_DESC_DEF     64
266VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
267
268#define TX_DESC_MIN     16
269#define TX_DESC_MAX     256
270#define TX_DESC_DEF     64
271VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
272
273#define RX_THRESH_MIN   0
274#define RX_THRESH_MAX   3
275#define RX_THRESH_DEF   0
276/* rx_thresh[] is used for controlling the receive fifo threshold.
277   0: indicate the rxfifo threshold is 128 bytes.
278   1: indicate the rxfifo threshold is 512 bytes.
279   2: indicate the rxfifo threshold is 1024 bytes.
280   3: indicate the rxfifo threshold is store & forward.
281*/
282VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
283
284#define DMA_LENGTH_MIN  0
285#define DMA_LENGTH_MAX  7
286#define DMA_LENGTH_DEF  6
287
288/* DMA_length[] is used for controlling the DMA length
289   0: 8 DWORDs
290   1: 16 DWORDs
291   2: 32 DWORDs
292   3: 64 DWORDs
293   4: 128 DWORDs
294   5: 256 DWORDs
295   6: SF(flush till emply)
296   7: SF(flush till emply)
297*/
298VELOCITY_PARAM(DMA_length, "DMA length");
299
300#define IP_ALIG_DEF     0
301/* IP_byte_align[] is used for IP header DWORD byte aligned
302   0: indicate the IP header won't be DWORD byte aligned.(Default) .
303   1: indicate the IP header will be DWORD byte aligned.
304      In some environment, the IP header should be DWORD byte aligned,
305      or the packet will be droped when we receive it. (eg: IPVS)
306*/
307VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
308
309#define FLOW_CNTL_DEF   1
310#define FLOW_CNTL_MIN   1
311#define FLOW_CNTL_MAX   5
312
313/* flow_control[] is used for setting the flow control ability of NIC.
314   1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
315   2: enable TX flow control.
316   3: enable RX flow control.
317   4: enable RX/TX flow control.
318   5: disable
319*/
320VELOCITY_PARAM(flow_control, "Enable flow control ability");
321
322#define MED_LNK_DEF 0
323#define MED_LNK_MIN 0
324#define MED_LNK_MAX 5
325/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
326   0: indicate autonegotiation for both speed and duplex mode
327   1: indicate 100Mbps half duplex mode
328   2: indicate 100Mbps full duplex mode
329   3: indicate 10Mbps half duplex mode
330   4: indicate 10Mbps full duplex mode
331   5: indicate 1000Mbps full duplex mode
332
333   Note:
334   if EEPROM have been set to the force mode, this option is ignored
335   by driver.
336*/
337VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
338
339#define WOL_OPT_DEF     0
340#define WOL_OPT_MIN     0
341#define WOL_OPT_MAX     7
342/* wol_opts[] is used for controlling wake on lan behavior.
343   0: Wake up if recevied a magic packet. (Default)
344   1: Wake up if link status is on/off.
345   2: Wake up if recevied an arp packet.
346   4: Wake up if recevied any unicast packet.
347   Those value can be sumed up to support more than one option.
348*/
349VELOCITY_PARAM(wol_opts, "Wake On Lan options");
350
351static int rx_copybreak = 200;
352module_param(rx_copybreak, int, 0644);
353MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
354
355/*
356 *	Internal board variants. At the moment we have only one
357 */
358static struct velocity_info_tbl chip_info_table[] = {
359	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
360	{ }
361};
362
363/*
364 *	Describe the PCI device identifiers that we support in this
365 *	device driver. Used for hotplug autoloading.
366 */
367
368static const struct pci_device_id velocity_pci_id_table[] = {
369	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
370	{ }
371};
372
373MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
374
375/*
376 *	Describe the OF device identifiers that we support in this
377 *	device driver. Used for devicetree nodes.
378 */
379static const struct of_device_id velocity_of_ids[] = {
380	{ .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
381	{ /* Sentinel */ },
382};
383MODULE_DEVICE_TABLE(of, velocity_of_ids);
384
385/**
386 *	get_chip_name	- 	identifier to name
387 *	@chip_id: chip identifier
388 *
389 *	Given a chip identifier return a suitable description. Returns
390 *	a pointer a static string valid while the driver is loaded.
391 */
392static const char *get_chip_name(enum chip_type chip_id)
393{
394	int i;
395	for (i = 0; chip_info_table[i].name != NULL; i++)
396		if (chip_info_table[i].chip_id == chip_id)
397			break;
398	return chip_info_table[i].name;
399}
400
401/**
402 *	velocity_set_int_opt	-	parser for integer options
403 *	@opt: pointer to option value
404 *	@val: value the user requested (or -1 for default)
405 *	@min: lowest value allowed
406 *	@max: highest value allowed
407 *	@def: default value
408 *	@name: property name
409 *
410 *	Set an integer property in the module options. This function does
411 *	all the verification and checking as well as reporting so that
412 *	we don't duplicate code for each option.
413 */
414static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
415				 char *name)
416{
417	if (val == -1)
418		*opt = def;
419	else if (val < min || val > max) {
420		pr_notice("the value of parameter %s is invalid, the valid range is (%d-%d)\n",
421			  name, min, max);
422		*opt = def;
423	} else {
424		pr_info("set value of parameter %s to %d\n", name, val);
425		*opt = val;
426	}
427}
428
429/**
430 *	velocity_set_bool_opt	-	parser for boolean options
431 *	@opt: pointer to option value
432 *	@val: value the user requested (or -1 for default)
433 *	@def: default value (yes/no)
434 *	@flag: numeric value to set for true.
435 *	@name: property name
436 *
437 *	Set a boolean property in the module options. This function does
438 *	all the verification and checking as well as reporting so that
439 *	we don't duplicate code for each option.
440 */
441static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
442				  char *name)
443{
444	(*opt) &= (~flag);
445	if (val == -1)
446		*opt |= (def ? flag : 0);
447	else if (val < 0 || val > 1) {
448		pr_notice("the value of parameter %s is invalid, the valid range is (%d-%d)\n",
449			  name, 0, 1);
450		*opt |= (def ? flag : 0);
451	} else {
452		pr_info("set parameter %s to %s\n",
453			name, val ? "TRUE" : "FALSE");
454		*opt |= (val ? flag : 0);
455	}
456}
457
458/**
459 *	velocity_get_options	-	set options on device
460 *	@opts: option structure for the device
461 *	@index: index of option to use in module options array
462 *
463 *	Turn the module and command options into a single structure
464 *	for the current device
465 */
466static void velocity_get_options(struct velocity_opt *opts, int index)
467{
468
469	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index],
470			     RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF,
471			     "rx_thresh");
472	velocity_set_int_opt(&opts->DMA_length, DMA_length[index],
473			     DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF,
474			     "DMA_length");
475	velocity_set_int_opt(&opts->numrx, RxDescriptors[index],
476			     RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF,
477			     "RxDescriptors");
478	velocity_set_int_opt(&opts->numtx, TxDescriptors[index],
479			     TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF,
480			     "TxDescriptors");
481
482	velocity_set_int_opt(&opts->flow_cntl, flow_control[index],
483			     FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF,
484			     "flow_control");
485	velocity_set_bool_opt(&opts->flags, IP_byte_align[index],
486			      IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN,
487			      "IP_byte_align");
488	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index],
489			     MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF,
490			     "Media link mode");
491	velocity_set_int_opt(&opts->wol_opts, wol_opts[index],
492			     WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF,
493			     "Wake On Lan options");
494	opts->numrx = (opts->numrx & ~3);
495}
496
497/**
498 *	velocity_init_cam_filter	-	initialise CAM
499 *	@vptr: velocity to program
500 *
501 *	Initialize the content addressable memory used for filters. Load
502 *	appropriately according to the presence of VLAN
503 */
504static void velocity_init_cam_filter(struct velocity_info *vptr)
505{
506	struct mac_regs __iomem *regs = vptr->mac_regs;
507	unsigned int vid, i = 0;
508
509	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
510	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
511	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
512
513	/* Disable all CAMs */
514	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
515	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
516	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
517	mac_set_cam_mask(regs, vptr->mCAMmask);
518
519	/* Enable VCAMs */
520	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
521		mac_set_vlan_cam(regs, i, (u8 *) &vid);
522		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
523		if (++i >= VCAM_SIZE)
524			break;
525	}
526	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
527}
528
529static int velocity_vlan_rx_add_vid(struct net_device *dev,
530				    __be16 proto, u16 vid)
531{
532	struct velocity_info *vptr = netdev_priv(dev);
533
534	spin_lock_irq(&vptr->lock);
535	set_bit(vid, vptr->active_vlans);
536	velocity_init_cam_filter(vptr);
537	spin_unlock_irq(&vptr->lock);
538	return 0;
539}
540
541static int velocity_vlan_rx_kill_vid(struct net_device *dev,
542				     __be16 proto, u16 vid)
543{
544	struct velocity_info *vptr = netdev_priv(dev);
545
546	spin_lock_irq(&vptr->lock);
547	clear_bit(vid, vptr->active_vlans);
548	velocity_init_cam_filter(vptr);
549	spin_unlock_irq(&vptr->lock);
550	return 0;
551}
552
553static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
554{
555	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
556}
557
558/**
559 *	velocity_rx_reset	-	handle a receive reset
560 *	@vptr: velocity we are resetting
561 *
562 *	Reset the ownership and status for the receive ring side.
563 *	Hand all the receive queue to the NIC.
564 */
565static void velocity_rx_reset(struct velocity_info *vptr)
566{
567
568	struct mac_regs __iomem *regs = vptr->mac_regs;
569	int i;
570
571	velocity_init_rx_ring_indexes(vptr);
572
573	/*
574	 *	Init state, all RD entries belong to the NIC
575	 */
576	for (i = 0; i < vptr->options.numrx; ++i)
577		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
578
579	writew(vptr->options.numrx, &regs->RBRDU);
580	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
581	writew(0, &regs->RDIdx);
582	writew(vptr->options.numrx - 1, &regs->RDCSize);
583}
584
585/**
586 *	velocity_get_opt_media_mode	-	get media selection
587 *	@vptr: velocity adapter
588 *
589 *	Get the media mode stored in EEPROM or module options and load
590 *	mii_status accordingly. The requested link state information
591 *	is also returned.
592 */
593static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
594{
595	u32 status = 0;
596
597	switch (vptr->options.spd_dpx) {
598	case SPD_DPX_AUTO:
599		status = VELOCITY_AUTONEG_ENABLE;
600		break;
601	case SPD_DPX_100_FULL:
602		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
603		break;
604	case SPD_DPX_10_FULL:
605		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
606		break;
607	case SPD_DPX_100_HALF:
608		status = VELOCITY_SPEED_100;
609		break;
610	case SPD_DPX_10_HALF:
611		status = VELOCITY_SPEED_10;
612		break;
613	case SPD_DPX_1000_FULL:
614		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
615		break;
616	}
617	vptr->mii_status = status;
618	return status;
619}
620
621/**
622 *	safe_disable_mii_autopoll	-	autopoll off
623 *	@regs: velocity registers
624 *
625 *	Turn off the autopoll and wait for it to disable on the chip
626 */
627static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
628{
629	u16 ww;
630
631	/*  turn off MAUTO */
632	writeb(0, &regs->MIICR);
633	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
634		udelay(1);
635		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
636			break;
637	}
638}
639
640/**
641 *	enable_mii_autopoll	-	turn on autopolling
642 *	@regs: velocity registers
643 *
644 *	Enable the MII link status autopoll feature on the Velocity
645 *	hardware. Wait for it to enable.
646 */
647static void enable_mii_autopoll(struct mac_regs __iomem *regs)
648{
649	int ii;
650
651	writeb(0, &(regs->MIICR));
652	writeb(MIIADR_SWMPL, &regs->MIIADR);
653
654	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
655		udelay(1);
656		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
657			break;
658	}
659
660	writeb(MIICR_MAUTO, &regs->MIICR);
661
662	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
663		udelay(1);
664		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
665			break;
666	}
667
668}
669
670/**
671 *	velocity_mii_read	-	read MII data
672 *	@regs: velocity registers
673 *	@index: MII register index
674 *	@data: buffer for received data
675 *
676 *	Perform a single read of an MII 16bit register. Returns zero
677 *	on success or -ETIMEDOUT if the PHY did not respond.
678 */
679static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
680{
681	u16 ww;
682
683	/*
684	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
685	 */
686	safe_disable_mii_autopoll(regs);
687
688	writeb(index, &regs->MIIADR);
689
690	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
691
692	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
693		if (!(readb(&regs->MIICR) & MIICR_RCMD))
694			break;
695	}
696
697	*data = readw(&regs->MIIDATA);
698
699	enable_mii_autopoll(regs);
700	if (ww == W_MAX_TIMEOUT)
701		return -ETIMEDOUT;
702	return 0;
703}
704
705/**
706 *	mii_check_media_mode	-	check media state
707 *	@regs: velocity registers
708 *
709 *	Check the current MII status and determine the link status
710 *	accordingly
711 */
712static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
713{
714	u32 status = 0;
715	u16 ANAR;
716
717	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
718		status |= VELOCITY_LINK_FAIL;
719
720	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
721		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
722	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
723		status |= (VELOCITY_SPEED_1000);
724	else {
725		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
726		if (ANAR & ADVERTISE_100FULL)
727			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
728		else if (ANAR & ADVERTISE_100HALF)
729			status |= VELOCITY_SPEED_100;
730		else if (ANAR & ADVERTISE_10FULL)
731			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
732		else
733			status |= (VELOCITY_SPEED_10);
734	}
735
736	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
737		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
738		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
739		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
740			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
741				status |= VELOCITY_AUTONEG_ENABLE;
742		}
743	}
744
745	return status;
746}
747
748/**
749 *	velocity_mii_write	-	write MII data
750 *	@regs: velocity registers
751 *	@mii_addr: MII register index
752 *	@data: 16bit data for the MII register
753 *
754 *	Perform a single write to an MII 16bit register. Returns zero
755 *	on success or -ETIMEDOUT if the PHY did not respond.
756 */
757static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
758{
759	u16 ww;
760
761	/*
762	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
763	 */
764	safe_disable_mii_autopoll(regs);
765
766	/* MII reg offset */
767	writeb(mii_addr, &regs->MIIADR);
768	/* set MII data */
769	writew(data, &regs->MIIDATA);
770
771	/* turn on MIICR_WCMD */
772	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
773
774	/* W_MAX_TIMEOUT is the timeout period */
775	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
776		udelay(5);
777		if (!(readb(&regs->MIICR) & MIICR_WCMD))
778			break;
779	}
780	enable_mii_autopoll(regs);
781
782	if (ww == W_MAX_TIMEOUT)
783		return -ETIMEDOUT;
784	return 0;
785}
786
787/**
788 *	set_mii_flow_control	-	flow control setup
789 *	@vptr: velocity interface
790 *
791 *	Set up the flow control on this interface according to
792 *	the supplied user/eeprom options.
793 */
794static void set_mii_flow_control(struct velocity_info *vptr)
795{
796	/*Enable or Disable PAUSE in ANAR */
797	switch (vptr->options.flow_cntl) {
798	case FLOW_CNTL_TX:
799		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
800		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
801		break;
802
803	case FLOW_CNTL_RX:
804		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
805		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
806		break;
807
808	case FLOW_CNTL_TX_RX:
809		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
810		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
811		break;
812
813	case FLOW_CNTL_DISABLE:
814		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
815		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
816		break;
817	default:
818		break;
819	}
820}
821
822/**
823 *	mii_set_auto_on		-	autonegotiate on
824 *	@vptr: velocity
825 *
826 *	Enable autonegotation on this interface
827 */
828static void mii_set_auto_on(struct velocity_info *vptr)
829{
830	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
831		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
832	else
833		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
834}
835
836static u32 check_connection_type(struct mac_regs __iomem *regs)
837{
838	u32 status = 0;
839	u8 PHYSR0;
840	u16 ANAR;
841	PHYSR0 = readb(&regs->PHYSR0);
842
843	/*
844	   if (!(PHYSR0 & PHYSR0_LINKGD))
845	   status|=VELOCITY_LINK_FAIL;
846	 */
847
848	if (PHYSR0 & PHYSR0_FDPX)
849		status |= VELOCITY_DUPLEX_FULL;
850
851	if (PHYSR0 & PHYSR0_SPDG)
852		status |= VELOCITY_SPEED_1000;
853	else if (PHYSR0 & PHYSR0_SPD10)
854		status |= VELOCITY_SPEED_10;
855	else
856		status |= VELOCITY_SPEED_100;
857
858	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
859		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
860		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
861		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
862			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
863				status |= VELOCITY_AUTONEG_ENABLE;
864		}
865	}
866
867	return status;
868}
869
870/**
871 *	velocity_set_media_mode		-	set media mode
872 *	@vptr: velocity adapter
873 *	@mii_status: old MII link state
874 *
875 *	Check the media link state and configure the flow control
876 *	PHY and also velocity hardware setup accordingly. In particular
877 *	we need to set up CD polling and frame bursting.
878 */
879static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
880{
881	struct mac_regs __iomem *regs = vptr->mac_regs;
882
883	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
884
885	/* Set mii link status */
886	set_mii_flow_control(vptr);
887
888	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
889		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
890
891	/*
892	 *	If connection type is AUTO
893	 */
894	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
895		netdev_info(vptr->netdev, "Velocity is in AUTO mode\n");
896		/* clear force MAC mode bit */
897		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
898		/* set duplex mode of MAC according to duplex mode of MII */
899		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
900		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
901		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
902
903		/* enable AUTO-NEGO mode */
904		mii_set_auto_on(vptr);
905	} else {
906		u16 CTRL1000;
907		u16 ANAR;
908		u8 CHIPGCR;
909
910		/*
911		 * 1. if it's 3119, disable frame bursting in halfduplex mode
912		 *    and enable it in fullduplex mode
913		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
914		 * 3. only enable CD heart beat counter in 10HD mode
915		 */
916
917		/* set force MAC mode bit */
918		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
919
920		CHIPGCR = readb(&regs->CHIPGCR);
921
922		if (mii_status & VELOCITY_SPEED_1000)
923			CHIPGCR |= CHIPGCR_FCGMII;
924		else
925			CHIPGCR &= ~CHIPGCR_FCGMII;
926
927		if (mii_status & VELOCITY_DUPLEX_FULL) {
928			CHIPGCR |= CHIPGCR_FCFDX;
929			writeb(CHIPGCR, &regs->CHIPGCR);
930			netdev_info(vptr->netdev,
931				    "set Velocity to forced full mode\n");
932			if (vptr->rev_id < REV_ID_VT3216_A0)
933				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
934		} else {
935			CHIPGCR &= ~CHIPGCR_FCFDX;
936			netdev_info(vptr->netdev,
937				    "set Velocity to forced half mode\n");
938			writeb(CHIPGCR, &regs->CHIPGCR);
939			if (vptr->rev_id < REV_ID_VT3216_A0)
940				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
941		}
942
943		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
944		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
945		if ((mii_status & VELOCITY_SPEED_1000) &&
946		    (mii_status & VELOCITY_DUPLEX_FULL)) {
947			CTRL1000 |= ADVERTISE_1000FULL;
948		}
949		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
950
951		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
952			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
953		else
954			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
955
956		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
957		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
958		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
959		if (mii_status & VELOCITY_SPEED_100) {
960			if (mii_status & VELOCITY_DUPLEX_FULL)
961				ANAR |= ADVERTISE_100FULL;
962			else
963				ANAR |= ADVERTISE_100HALF;
964		} else if (mii_status & VELOCITY_SPEED_10) {
965			if (mii_status & VELOCITY_DUPLEX_FULL)
966				ANAR |= ADVERTISE_10FULL;
967			else
968				ANAR |= ADVERTISE_10HALF;
969		}
970		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
971		/* enable AUTO-NEGO mode */
972		mii_set_auto_on(vptr);
973		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
974	}
975	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
976	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
977	return VELOCITY_LINK_CHANGE;
978}
979
980/**
981 *	velocity_print_link_status	-	link status reporting
982 *	@vptr: velocity to report on
983 *
984 *	Turn the link status of the velocity card into a kernel log
985 *	description of the new link state, detailing speed and duplex
986 *	status
987 */
988static void velocity_print_link_status(struct velocity_info *vptr)
989{
990	const char *link;
991	const char *speed;
992	const char *duplex;
993
994	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
995		netdev_notice(vptr->netdev, "failed to detect cable link\n");
996		return;
997	}
998
999	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1000		link = "auto-negotiation";
1001
1002		if (vptr->mii_status & VELOCITY_SPEED_1000)
1003			speed = "1000";
1004		else if (vptr->mii_status & VELOCITY_SPEED_100)
1005			speed = "100";
1006		else
1007			speed = "10";
1008
1009		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1010			duplex = "full";
1011		else
1012			duplex = "half";
1013	} else {
1014		link = "forced";
1015
1016		switch (vptr->options.spd_dpx) {
1017		case SPD_DPX_1000_FULL:
1018			speed = "1000";
1019			duplex = "full";
1020			break;
1021		case SPD_DPX_100_HALF:
1022			speed = "100";
1023			duplex = "half";
1024			break;
1025		case SPD_DPX_100_FULL:
1026			speed = "100";
1027			duplex = "full";
1028			break;
1029		case SPD_DPX_10_HALF:
1030			speed = "10";
1031			duplex = "half";
1032			break;
1033		case SPD_DPX_10_FULL:
1034			speed = "10";
1035			duplex = "full";
1036			break;
1037		default:
1038			speed = "unknown";
1039			duplex = "unknown";
1040			break;
1041		}
1042	}
1043	netdev_notice(vptr->netdev, "Link %s speed %sM bps %s duplex\n",
1044		      link, speed, duplex);
1045}
1046
1047/**
1048 *	enable_flow_control_ability	-	flow control
1049 *	@vptr: veloity to configure
1050 *
1051 *	Set up flow control according to the flow control options
1052 *	determined by the eeprom/configuration.
1053 */
1054static void enable_flow_control_ability(struct velocity_info *vptr)
1055{
1056
1057	struct mac_regs __iomem *regs = vptr->mac_regs;
1058
1059	switch (vptr->options.flow_cntl) {
1060
1061	case FLOW_CNTL_DEFAULT:
1062		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1063			writel(CR0_FDXRFCEN, &regs->CR0Set);
1064		else
1065			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1066
1067		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1068			writel(CR0_FDXTFCEN, &regs->CR0Set);
1069		else
1070			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1071		break;
1072
1073	case FLOW_CNTL_TX:
1074		writel(CR0_FDXTFCEN, &regs->CR0Set);
1075		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1076		break;
1077
1078	case FLOW_CNTL_RX:
1079		writel(CR0_FDXRFCEN, &regs->CR0Set);
1080		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1081		break;
1082
1083	case FLOW_CNTL_TX_RX:
1084		writel(CR0_FDXTFCEN, &regs->CR0Set);
1085		writel(CR0_FDXRFCEN, &regs->CR0Set);
1086		break;
1087
1088	case FLOW_CNTL_DISABLE:
1089		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1090		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1091		break;
1092
1093	default:
1094		break;
1095	}
1096
1097}
1098
1099/**
1100 *	velocity_soft_reset	-	soft reset
1101 *	@vptr: velocity to reset
1102 *
1103 *	Kick off a soft reset of the velocity adapter and then poll
1104 *	until the reset sequence has completed before returning.
1105 */
1106static int velocity_soft_reset(struct velocity_info *vptr)
1107{
1108	struct mac_regs __iomem *regs = vptr->mac_regs;
1109	int i = 0;
1110
1111	writel(CR0_SFRST, &regs->CR0Set);
1112
1113	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1114		udelay(5);
1115		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1116			break;
1117	}
1118
1119	if (i == W_MAX_TIMEOUT) {
1120		writel(CR0_FORSRST, &regs->CR0Set);
1121		/* FIXME: PCI POSTING */
1122		/* delay 2ms */
1123		mdelay(2);
1124	}
1125	return 0;
1126}
1127
1128/**
1129 *	velocity_set_multi	-	filter list change callback
1130 *	@dev: network device
1131 *
1132 *	Called by the network layer when the filter lists need to change
1133 *	for a velocity adapter. Reload the CAMs with the new address
1134 *	filter ruleset.
1135 */
1136static void velocity_set_multi(struct net_device *dev)
1137{
1138	struct velocity_info *vptr = netdev_priv(dev);
1139	struct mac_regs __iomem *regs = vptr->mac_regs;
1140	u8 rx_mode;
1141	int i;
1142	struct netdev_hw_addr *ha;
1143
1144	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1145		writel(0xffffffff, &regs->MARCAM[0]);
1146		writel(0xffffffff, &regs->MARCAM[4]);
1147		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1148	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1149		   (dev->flags & IFF_ALLMULTI)) {
1150		writel(0xffffffff, &regs->MARCAM[0]);
1151		writel(0xffffffff, &regs->MARCAM[4]);
1152		rx_mode = (RCR_AM | RCR_AB);
1153	} else {
1154		int offset = MCAM_SIZE - vptr->multicast_limit;
1155		mac_get_cam_mask(regs, vptr->mCAMmask);
1156
1157		i = 0;
1158		netdev_for_each_mc_addr(ha, dev) {
1159			mac_set_cam(regs, i + offset, ha->addr);
1160			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1161			i++;
1162		}
1163
1164		mac_set_cam_mask(regs, vptr->mCAMmask);
1165		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1166	}
1167	if (dev->mtu > 1500)
1168		rx_mode |= RCR_AL;
1169
1170	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1171
1172}
1173
1174/*
1175 * MII access , media link mode setting functions
1176 */
1177
1178/**
1179 *	mii_init	-	set up MII
1180 *	@vptr: velocity adapter
1181 *	@mii_status:  links tatus
1182 *
1183 *	Set up the PHY for the current link state.
1184 */
1185static void mii_init(struct velocity_info *vptr, u32 mii_status)
1186{
1187	u16 BMCR;
1188
1189	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1190	case PHYID_ICPLUS_IP101A:
1191		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1192						MII_ADVERTISE, vptr->mac_regs);
1193		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1194			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1195								vptr->mac_regs);
1196		else
1197			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1198								vptr->mac_regs);
1199		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1200		break;
1201	case PHYID_CICADA_CS8201:
1202		/*
1203		 *	Reset to hardware default
1204		 */
1205		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1206		/*
1207		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1208		 *	off it in NWay-forced half mode for NWay-forced v.s.
1209		 *	legacy-forced issue.
1210		 */
1211		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1212			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1213		else
1214			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1215		/*
1216		 *	Turn on Link/Activity LED enable bit for CIS8201
1217		 */
1218		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1219		break;
1220	case PHYID_VT3216_32BIT:
1221	case PHYID_VT3216_64BIT:
1222		/*
1223		 *	Reset to hardware default
1224		 */
1225		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1226		/*
1227		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1228		 *	off it in NWay-forced half mode for NWay-forced v.s.
1229		 *	legacy-forced issue
1230		 */
1231		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1232			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1233		else
1234			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1235		break;
1236
1237	case PHYID_MARVELL_1000:
1238	case PHYID_MARVELL_1000S:
1239		/*
1240		 *	Assert CRS on Transmit
1241		 */
1242		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1243		/*
1244		 *	Reset to hardware default
1245		 */
1246		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1247		break;
1248	default:
1249		;
1250	}
1251	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1252	if (BMCR & BMCR_ISOLATE) {
1253		BMCR &= ~BMCR_ISOLATE;
1254		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1255	}
1256}
1257
1258/**
1259 * setup_queue_timers	-	Setup interrupt timers
1260 * @vptr: velocity adapter
1261 *
1262 * Setup interrupt frequency during suppression (timeout if the frame
1263 * count isn't filled).
1264 */
1265static void setup_queue_timers(struct velocity_info *vptr)
1266{
1267	/* Only for newer revisions */
1268	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1269		u8 txqueue_timer = 0;
1270		u8 rxqueue_timer = 0;
1271
1272		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1273				VELOCITY_SPEED_100)) {
1274			txqueue_timer = vptr->options.txqueue_timer;
1275			rxqueue_timer = vptr->options.rxqueue_timer;
1276		}
1277
1278		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1279		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1280	}
1281}
1282
1283/**
1284 * setup_adaptive_interrupts  -  Setup interrupt suppression
1285 * @vptr: velocity adapter
1286 *
1287 * The velocity is able to suppress interrupt during high interrupt load.
1288 * This function turns on that feature.
1289 */
1290static void setup_adaptive_interrupts(struct velocity_info *vptr)
1291{
1292	struct mac_regs __iomem *regs = vptr->mac_regs;
1293	u16 tx_intsup = vptr->options.tx_intsup;
1294	u16 rx_intsup = vptr->options.rx_intsup;
1295
1296	/* Setup default interrupt mask (will be changed below) */
1297	vptr->int_mask = INT_MASK_DEF;
1298
1299	/* Set Tx Interrupt Suppression Threshold */
1300	writeb(CAMCR_PS0, &regs->CAMCR);
1301	if (tx_intsup != 0) {
1302		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1303				ISR_PTX2I | ISR_PTX3I);
1304		writew(tx_intsup, &regs->ISRCTL);
1305	} else
1306		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1307
1308	/* Set Rx Interrupt Suppression Threshold */
1309	writeb(CAMCR_PS1, &regs->CAMCR);
1310	if (rx_intsup != 0) {
1311		vptr->int_mask &= ~ISR_PRXI;
1312		writew(rx_intsup, &regs->ISRCTL);
1313	} else
1314		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1315
1316	/* Select page to interrupt hold timer */
1317	writeb(0, &regs->CAMCR);
1318}
1319
1320/**
1321 *	velocity_init_registers	-	initialise MAC registers
1322 *	@vptr: velocity to init
1323 *	@type: type of initialisation (hot or cold)
1324 *
1325 *	Initialise the MAC on a reset or on first set up on the
1326 *	hardware.
1327 */
1328static void velocity_init_registers(struct velocity_info *vptr,
1329				    enum velocity_init_type type)
1330{
1331	struct mac_regs __iomem *regs = vptr->mac_regs;
1332	struct net_device *netdev = vptr->netdev;
1333	int i, mii_status;
1334
1335	mac_wol_reset(regs);
1336
1337	switch (type) {
1338	case VELOCITY_INIT_RESET:
1339	case VELOCITY_INIT_WOL:
1340
1341		netif_stop_queue(netdev);
1342
1343		/*
1344		 *	Reset RX to prevent RX pointer not on the 4X location
1345		 */
1346		velocity_rx_reset(vptr);
1347		mac_rx_queue_run(regs);
1348		mac_rx_queue_wake(regs);
1349
1350		mii_status = velocity_get_opt_media_mode(vptr);
1351		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1352			velocity_print_link_status(vptr);
1353			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1354				netif_wake_queue(netdev);
1355		}
1356
1357		enable_flow_control_ability(vptr);
1358
1359		mac_clear_isr(regs);
1360		writel(CR0_STOP, &regs->CR0Clr);
1361		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1362							&regs->CR0Set);
1363
1364		break;
1365
1366	case VELOCITY_INIT_COLD:
1367	default:
1368		/*
1369		 *	Do reset
1370		 */
1371		velocity_soft_reset(vptr);
1372		mdelay(5);
1373
1374		if (!vptr->no_eeprom) {
1375			mac_eeprom_reload(regs);
1376			for (i = 0; i < 6; i++)
1377				writeb(netdev->dev_addr[i], regs->PAR + i);
1378		}
1379
1380		/*
1381		 *	clear Pre_ACPI bit.
1382		 */
1383		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1384		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1385		mac_set_dma_length(regs, vptr->options.DMA_length);
1386
1387		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1388		/*
1389		 *	Back off algorithm use original IEEE standard
1390		 */
1391		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1392
1393		/*
1394		 *	Init CAM filter
1395		 */
1396		velocity_init_cam_filter(vptr);
1397
1398		/*
1399		 *	Set packet filter: Receive directed and broadcast address
1400		 */
1401		velocity_set_multi(netdev);
1402
1403		/*
1404		 *	Enable MII auto-polling
1405		 */
1406		enable_mii_autopoll(regs);
1407
1408		setup_adaptive_interrupts(vptr);
1409
1410		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1411		writew(vptr->options.numrx - 1, &regs->RDCSize);
1412		mac_rx_queue_run(regs);
1413		mac_rx_queue_wake(regs);
1414
1415		writew(vptr->options.numtx - 1, &regs->TDCSize);
1416
1417		for (i = 0; i < vptr->tx.numq; i++) {
1418			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1419			mac_tx_queue_run(regs, i);
1420		}
1421
1422		init_flow_control_register(vptr);
1423
1424		writel(CR0_STOP, &regs->CR0Clr);
1425		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1426
1427		mii_status = velocity_get_opt_media_mode(vptr);
1428		netif_stop_queue(netdev);
1429
1430		mii_init(vptr, mii_status);
1431
1432		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1433			velocity_print_link_status(vptr);
1434			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1435				netif_wake_queue(netdev);
1436		}
1437
1438		enable_flow_control_ability(vptr);
1439		mac_hw_mibs_init(regs);
1440		mac_write_int_mask(vptr->int_mask, regs);
1441		mac_clear_isr(regs);
1442
1443	}
1444}
1445
1446static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1447{
1448	struct mac_regs __iomem *regs = vptr->mac_regs;
1449	int avail, dirty, unusable;
1450
1451	/*
1452	 * RD number must be equal to 4X per hardware spec
1453	 * (programming guide rev 1.20, p.13)
1454	 */
1455	if (vptr->rx.filled < 4)
1456		return;
1457
1458	wmb();
1459
1460	unusable = vptr->rx.filled & 0x0003;
1461	dirty = vptr->rx.dirty - unusable;
1462	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1463		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1464		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1465	}
1466
1467	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1468	vptr->rx.filled = unusable;
1469}
1470
1471/**
1472 *	velocity_init_dma_rings	-	set up DMA rings
1473 *	@vptr: Velocity to set up
1474 *
1475 *	Allocate PCI mapped DMA rings for the receive and transmit layer
1476 *	to use.
1477 */
1478static int velocity_init_dma_rings(struct velocity_info *vptr)
1479{
1480	struct velocity_opt *opt = &vptr->options;
1481	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1482	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1483	dma_addr_t pool_dma;
1484	void *pool;
1485	unsigned int i;
1486
1487	/*
1488	 * Allocate all RD/TD rings a single pool.
1489	 *
1490	 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1491	 * alignment
1492	 */
1493	pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq +
1494				    rx_ring_size, &pool_dma, GFP_ATOMIC);
1495	if (!pool) {
1496		dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1497			vptr->netdev->name);
1498		return -ENOMEM;
1499	}
1500
1501	vptr->rx.ring = pool;
1502	vptr->rx.pool_dma = pool_dma;
1503
1504	pool += rx_ring_size;
1505	pool_dma += rx_ring_size;
1506
1507	for (i = 0; i < vptr->tx.numq; i++) {
1508		vptr->tx.rings[i] = pool;
1509		vptr->tx.pool_dma[i] = pool_dma;
1510		pool += tx_ring_size;
1511		pool_dma += tx_ring_size;
1512	}
1513
1514	return 0;
1515}
1516
1517static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1518{
1519	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1520}
1521
1522/**
1523 *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1524 *	@vptr: velocity
1525 *	@idx: ring index
1526 *
1527 *	Allocate a new full sized buffer for the reception of a frame and
1528 *	map it into PCI space for the hardware to use. The hardware
1529 *	requires *64* byte alignment of the buffer which makes life
1530 *	less fun than would be ideal.
1531 */
1532static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1533{
1534	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1535	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1536
1537	rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64);
1538	if (rd_info->skb == NULL)
1539		return -ENOMEM;
1540
1541	/*
1542	 *	Do the gymnastics to get the buffer head for data at
1543	 *	64byte alignment.
1544	 */
1545	skb_reserve(rd_info->skb,
1546			64 - ((unsigned long) rd_info->skb->data & 63));
1547	rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1548					vptr->rx.buf_sz, DMA_FROM_DEVICE);
1549
1550	/*
1551	 *	Fill in the descriptor to match
1552	 */
1553
1554	*((u32 *) & (rd->rdesc0)) = 0;
1555	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1556	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1557	rd->pa_high = 0;
1558	return 0;
1559}
1560
1561
1562static int velocity_rx_refill(struct velocity_info *vptr)
1563{
1564	int dirty = vptr->rx.dirty, done = 0;
1565
1566	do {
1567		struct rx_desc *rd = vptr->rx.ring + dirty;
1568
1569		/* Fine for an all zero Rx desc at init time as well */
1570		if (rd->rdesc0.len & OWNED_BY_NIC)
1571			break;
1572
1573		if (!vptr->rx.info[dirty].skb) {
1574			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1575				break;
1576		}
1577		done++;
1578		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1579	} while (dirty != vptr->rx.curr);
1580
1581	if (done) {
1582		vptr->rx.dirty = dirty;
1583		vptr->rx.filled += done;
1584	}
1585
1586	return done;
1587}
1588
1589/**
1590 *	velocity_free_rd_ring	-	free receive ring
1591 *	@vptr: velocity to clean up
1592 *
1593 *	Free the receive buffers for each ring slot and any
1594 *	attached socket buffers that need to go away.
1595 */
1596static void velocity_free_rd_ring(struct velocity_info *vptr)
1597{
1598	int i;
1599
1600	if (vptr->rx.info == NULL)
1601		return;
1602
1603	for (i = 0; i < vptr->options.numrx; i++) {
1604		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1605		struct rx_desc *rd = vptr->rx.ring + i;
1606
1607		memset(rd, 0, sizeof(*rd));
1608
1609		if (!rd_info->skb)
1610			continue;
1611		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1612				 DMA_FROM_DEVICE);
1613		rd_info->skb_dma = 0;
1614
1615		dev_kfree_skb(rd_info->skb);
1616		rd_info->skb = NULL;
1617	}
1618
1619	kfree(vptr->rx.info);
1620	vptr->rx.info = NULL;
1621}
1622
1623/**
1624 *	velocity_init_rd_ring	-	set up receive ring
1625 *	@vptr: velocity to configure
1626 *
1627 *	Allocate and set up the receive buffers for each ring slot and
1628 *	assign them to the network adapter.
1629 */
1630static int velocity_init_rd_ring(struct velocity_info *vptr)
1631{
1632	int ret = -ENOMEM;
1633
1634	vptr->rx.info = kcalloc(vptr->options.numrx,
1635				sizeof(struct velocity_rd_info), GFP_KERNEL);
1636	if (!vptr->rx.info)
1637		goto out;
1638
1639	velocity_init_rx_ring_indexes(vptr);
1640
1641	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1642		netdev_err(vptr->netdev, "failed to allocate RX buffer\n");
1643		velocity_free_rd_ring(vptr);
1644		goto out;
1645	}
1646
1647	ret = 0;
1648out:
1649	return ret;
1650}
1651
1652/**
1653 *	velocity_init_td_ring	-	set up transmit ring
1654 *	@vptr:	velocity
1655 *
1656 *	Set up the transmit ring and chain the ring pointers together.
1657 *	Returns zero on success or a negative posix errno code for
1658 *	failure.
1659 */
1660static int velocity_init_td_ring(struct velocity_info *vptr)
1661{
1662	int j;
1663
1664	/* Init the TD ring entries */
1665	for (j = 0; j < vptr->tx.numq; j++) {
1666
1667		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1668					    sizeof(struct velocity_td_info),
1669					    GFP_KERNEL);
1670		if (!vptr->tx.infos[j])	{
1671			while (--j >= 0)
1672				kfree(vptr->tx.infos[j]);
1673			return -ENOMEM;
1674		}
1675
1676		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1677	}
1678	return 0;
1679}
1680
1681/**
1682 *	velocity_free_dma_rings	-	free PCI ring pointers
1683 *	@vptr: Velocity to free from
1684 *
1685 *	Clean up the PCI ring buffers allocated to this velocity.
1686 */
1687static void velocity_free_dma_rings(struct velocity_info *vptr)
1688{
1689	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1690		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1691
1692	dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma);
1693}
1694
1695static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1696{
1697	int ret;
1698
1699	velocity_set_rxbufsize(vptr, mtu);
1700
1701	ret = velocity_init_dma_rings(vptr);
1702	if (ret < 0)
1703		goto out;
1704
1705	ret = velocity_init_rd_ring(vptr);
1706	if (ret < 0)
1707		goto err_free_dma_rings_0;
1708
1709	ret = velocity_init_td_ring(vptr);
1710	if (ret < 0)
1711		goto err_free_rd_ring_1;
1712out:
1713	return ret;
1714
1715err_free_rd_ring_1:
1716	velocity_free_rd_ring(vptr);
1717err_free_dma_rings_0:
1718	velocity_free_dma_rings(vptr);
1719	goto out;
1720}
1721
1722/**
1723 *	velocity_free_tx_buf	-	free transmit buffer
1724 *	@vptr: velocity
1725 *	@tdinfo: buffer
1726 *	@td: transmit descriptor to free
1727 *
1728 *	Release an transmit buffer. If the buffer was preallocated then
1729 *	recycle it, if not then unmap the buffer.
1730 */
1731static void velocity_free_tx_buf(struct velocity_info *vptr,
1732		struct velocity_td_info *tdinfo, struct tx_desc *td)
1733{
1734	struct sk_buff *skb = tdinfo->skb;
1735	int i;
1736
1737	/*
1738	 *	Don't unmap the pre-allocated tx_bufs
1739	 */
1740	for (i = 0; i < tdinfo->nskb_dma; i++) {
1741		size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1742
1743		/* For scatter-gather */
1744		if (skb_shinfo(skb)->nr_frags > 0)
1745			pktlen = max_t(size_t, pktlen,
1746				       td->td_buf[i].size & ~TD_QUEUE);
1747
1748		dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1749				 le16_to_cpu(pktlen), DMA_TO_DEVICE);
1750	}
1751	dev_consume_skb_irq(skb);
1752	tdinfo->skb = NULL;
1753}
1754
1755/*
1756 *	FIXME: could we merge this with velocity_free_tx_buf ?
1757 */
1758static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1759							 int q, int n)
1760{
1761	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1762	int i;
1763
1764	if (td_info == NULL)
1765		return;
1766
1767	if (td_info->skb) {
1768		for (i = 0; i < td_info->nskb_dma; i++) {
1769			if (td_info->skb_dma[i]) {
1770				dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1771					td_info->skb->len, DMA_TO_DEVICE);
1772				td_info->skb_dma[i] = 0;
1773			}
1774		}
1775		dev_kfree_skb(td_info->skb);
1776		td_info->skb = NULL;
1777	}
1778}
1779
1780/**
1781 *	velocity_free_td_ring	-	free td ring
1782 *	@vptr: velocity
1783 *
1784 *	Free up the transmit ring for this particular velocity adapter.
1785 *	We free the ring contents but not the ring itself.
1786 */
1787static void velocity_free_td_ring(struct velocity_info *vptr)
1788{
1789	int i, j;
1790
1791	for (j = 0; j < vptr->tx.numq; j++) {
1792		if (vptr->tx.infos[j] == NULL)
1793			continue;
1794		for (i = 0; i < vptr->options.numtx; i++)
1795			velocity_free_td_ring_entry(vptr, j, i);
1796
1797		kfree(vptr->tx.infos[j]);
1798		vptr->tx.infos[j] = NULL;
1799	}
1800}
1801
1802static void velocity_free_rings(struct velocity_info *vptr)
1803{
1804	velocity_free_td_ring(vptr);
1805	velocity_free_rd_ring(vptr);
1806	velocity_free_dma_rings(vptr);
1807}
1808
1809/**
1810 *	velocity_error	-	handle error from controller
1811 *	@vptr: velocity
1812 *	@status: card status
1813 *
1814 *	Process an error report from the hardware and attempt to recover
1815 *	the card itself. At the moment we cannot recover from some
1816 *	theoretically impossible errors but this could be fixed using
1817 *	the pci_device_failed logic to bounce the hardware
1818 *
1819 */
1820static void velocity_error(struct velocity_info *vptr, int status)
1821{
1822
1823	if (status & ISR_TXSTLI) {
1824		struct mac_regs __iomem *regs = vptr->mac_regs;
1825
1826		netdev_err(vptr->netdev, "TD structure error TDindex=%hx\n",
1827			   readw(&regs->TDIdx[0]));
1828		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1829		writew(TRDCSR_RUN, &regs->TDCSRClr);
1830		netif_stop_queue(vptr->netdev);
1831
1832		/* FIXME: port over the pci_device_failed code and use it
1833		   here */
1834	}
1835
1836	if (status & ISR_SRCI) {
1837		struct mac_regs __iomem *regs = vptr->mac_regs;
1838		int linked;
1839
1840		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1841			vptr->mii_status = check_connection_type(regs);
1842
1843			/*
1844			 *	If it is a 3119, disable frame bursting in
1845			 *	halfduplex mode and enable it in fullduplex
1846			 *	 mode
1847			 */
1848			if (vptr->rev_id < REV_ID_VT3216_A0) {
1849				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1850					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1851				else
1852					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1853			}
1854			/*
1855			 *	Only enable CD heart beat counter in 10HD mode
1856			 */
1857			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1858				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1859			else
1860				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1861
1862			setup_queue_timers(vptr);
1863		}
1864		/*
1865		 *	Get link status from PHYSR0
1866		 */
1867		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1868
1869		if (linked) {
1870			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1871			netif_carrier_on(vptr->netdev);
1872		} else {
1873			vptr->mii_status |= VELOCITY_LINK_FAIL;
1874			netif_carrier_off(vptr->netdev);
1875		}
1876
1877		velocity_print_link_status(vptr);
1878		enable_flow_control_ability(vptr);
1879
1880		/*
1881		 *	Re-enable auto-polling because SRCI will disable
1882		 *	auto-polling
1883		 */
1884
1885		enable_mii_autopoll(regs);
1886
1887		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1888			netif_stop_queue(vptr->netdev);
1889		else
1890			netif_wake_queue(vptr->netdev);
1891
1892	}
1893	if (status & ISR_MIBFI)
1894		velocity_update_hw_mibs(vptr);
1895	if (status & ISR_LSTEI)
1896		mac_rx_queue_wake(vptr->mac_regs);
1897}
1898
1899/**
1900 *	velocity_tx_srv		-	transmit interrupt service
1901 *	@vptr: Velocity
1902 *
1903 *	Scan the queues looking for transmitted packets that
1904 *	we can complete and clean up. Update any statistics as
1905 *	necessary/
1906 */
1907static int velocity_tx_srv(struct velocity_info *vptr)
1908{
1909	struct tx_desc *td;
1910	int qnum;
1911	int full = 0;
1912	int idx;
1913	int works = 0;
1914	struct velocity_td_info *tdinfo;
1915	struct net_device_stats *stats = &vptr->netdev->stats;
1916
1917	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1918		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1919			idx = (idx + 1) % vptr->options.numtx) {
1920
1921			/*
1922			 *	Get Tx Descriptor
1923			 */
1924			td = &(vptr->tx.rings[qnum][idx]);
1925			tdinfo = &(vptr->tx.infos[qnum][idx]);
1926
1927			if (td->tdesc0.len & OWNED_BY_NIC)
1928				break;
1929
1930			if ((works++ > 15))
1931				break;
1932
1933			if (td->tdesc0.TSR & TSR0_TERR) {
1934				stats->tx_errors++;
1935				stats->tx_dropped++;
1936				if (td->tdesc0.TSR & TSR0_CDH)
1937					stats->tx_heartbeat_errors++;
1938				if (td->tdesc0.TSR & TSR0_CRS)
1939					stats->tx_carrier_errors++;
1940				if (td->tdesc0.TSR & TSR0_ABT)
1941					stats->tx_aborted_errors++;
1942				if (td->tdesc0.TSR & TSR0_OWC)
1943					stats->tx_window_errors++;
1944			} else {
1945				stats->tx_packets++;
1946				stats->tx_bytes += tdinfo->skb->len;
1947			}
1948			velocity_free_tx_buf(vptr, tdinfo, td);
1949			vptr->tx.used[qnum]--;
1950		}
1951		vptr->tx.tail[qnum] = idx;
1952
1953		if (AVAIL_TD(vptr, qnum) < 1)
1954			full = 1;
1955	}
1956	/*
1957	 *	Look to see if we should kick the transmit network
1958	 *	layer for more work.
1959	 */
1960	if (netif_queue_stopped(vptr->netdev) && (full == 0) &&
1961	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1962		netif_wake_queue(vptr->netdev);
1963	}
1964	return works;
1965}
1966
1967/**
1968 *	velocity_rx_csum	-	checksum process
1969 *	@rd: receive packet descriptor
1970 *	@skb: network layer packet buffer
1971 *
1972 *	Process the status bits for the received packet and determine
1973 *	if the checksum was computed and verified by the hardware
1974 */
1975static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1976{
1977	skb_checksum_none_assert(skb);
1978
1979	if (rd->rdesc1.CSM & CSM_IPKT) {
1980		if (rd->rdesc1.CSM & CSM_IPOK) {
1981			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1982					(rd->rdesc1.CSM & CSM_UDPKT)) {
1983				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1984					return;
1985			}
1986			skb->ip_summed = CHECKSUM_UNNECESSARY;
1987		}
1988	}
1989}
1990
1991/**
1992 *	velocity_rx_copy	-	in place Rx copy for small packets
1993 *	@rx_skb: network layer packet buffer candidate
1994 *	@pkt_size: received data size
1995 *	@vptr: velocity adapter
1996 *
1997 *	Replace the current skb that is scheduled for Rx processing by a
1998 *	shorter, immediately allocated skb, if the received packet is small
1999 *	enough. This function returns a negative value if the received
2000 *	packet is too big or if memory is exhausted.
2001 */
2002static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
2003			    struct velocity_info *vptr)
2004{
2005	int ret = -1;
2006	if (pkt_size < rx_copybreak) {
2007		struct sk_buff *new_skb;
2008
2009		new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size);
2010		if (new_skb) {
2011			new_skb->ip_summed = rx_skb[0]->ip_summed;
2012			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2013			*rx_skb = new_skb;
2014			ret = 0;
2015		}
2016
2017	}
2018	return ret;
2019}
2020
2021/**
2022 *	velocity_iph_realign	-	IP header alignment
2023 *	@vptr: velocity we are handling
2024 *	@skb: network layer packet buffer
2025 *	@pkt_size: received data size
2026 *
2027 *	Align IP header on a 2 bytes boundary. This behavior can be
2028 *	configured by the user.
2029 */
2030static inline void velocity_iph_realign(struct velocity_info *vptr,
2031					struct sk_buff *skb, int pkt_size)
2032{
2033	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2034		memmove(skb->data + 2, skb->data, pkt_size);
2035		skb_reserve(skb, 2);
2036	}
2037}
2038
2039/**
2040 *	velocity_receive_frame	-	received packet processor
2041 *	@vptr: velocity we are handling
2042 *	@idx: ring index
2043 *
2044 *	A packet has arrived. We process the packet and if appropriate
2045 *	pass the frame up the network stack
2046 */
2047static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2048{
2049	struct net_device_stats *stats = &vptr->netdev->stats;
2050	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2051	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2052	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2053	struct sk_buff *skb;
2054
2055	if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) {
2056		if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP))
2057			netdev_err(vptr->netdev, "received frame spans multiple RDs\n");
2058		stats->rx_length_errors++;
2059		return -EINVAL;
2060	}
2061
2062	if (rd->rdesc0.RSR & RSR_MAR)
2063		stats->multicast++;
2064
2065	skb = rd_info->skb;
2066
2067	dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma,
2068				    vptr->rx.buf_sz, DMA_FROM_DEVICE);
2069
2070	velocity_rx_csum(rd, skb);
2071
2072	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2073		velocity_iph_realign(vptr, skb, pkt_len);
2074		rd_info->skb = NULL;
2075		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2076				 DMA_FROM_DEVICE);
2077	} else {
2078		dma_sync_single_for_device(vptr->dev, rd_info->skb_dma,
2079					   vptr->rx.buf_sz, DMA_FROM_DEVICE);
2080	}
2081
2082	skb_put(skb, pkt_len - 4);
2083	skb->protocol = eth_type_trans(skb, vptr->netdev);
2084
2085	if (rd->rdesc0.RSR & RSR_DETAG) {
2086		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2087
2088		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2089	}
2090	netif_receive_skb(skb);
2091
2092	stats->rx_bytes += pkt_len;
2093	stats->rx_packets++;
2094
2095	return 0;
2096}
2097
2098/**
2099 *	velocity_rx_srv		-	service RX interrupt
2100 *	@vptr: velocity
2101 *	@budget_left: remaining budget
2102 *
2103 *	Walk the receive ring of the velocity adapter and remove
2104 *	any received packets from the receive queue. Hand the ring
2105 *	slots back to the adapter for reuse.
2106 */
2107static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2108{
2109	struct net_device_stats *stats = &vptr->netdev->stats;
2110	int rd_curr = vptr->rx.curr;
2111	int works = 0;
2112
2113	while (works < budget_left) {
2114		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2115
2116		if (!vptr->rx.info[rd_curr].skb)
2117			break;
2118
2119		if (rd->rdesc0.len & OWNED_BY_NIC)
2120			break;
2121
2122		rmb();
2123
2124		/*
2125		 *	Don't drop CE or RL error frame although RXOK is off
2126		 */
2127		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2128			if (velocity_receive_frame(vptr, rd_curr) < 0)
2129				stats->rx_dropped++;
2130		} else {
2131			if (rd->rdesc0.RSR & RSR_CRC)
2132				stats->rx_crc_errors++;
2133			if (rd->rdesc0.RSR & RSR_FAE)
2134				stats->rx_frame_errors++;
2135
2136			stats->rx_dropped++;
2137		}
2138
2139		rd->size |= RX_INTEN;
2140
2141		rd_curr++;
2142		if (rd_curr >= vptr->options.numrx)
2143			rd_curr = 0;
2144		works++;
2145	}
2146
2147	vptr->rx.curr = rd_curr;
2148
2149	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2150		velocity_give_many_rx_descs(vptr);
2151
2152	VAR_USED(stats);
2153	return works;
2154}
2155
2156static int velocity_poll(struct napi_struct *napi, int budget)
2157{
2158	struct velocity_info *vptr = container_of(napi,
2159			struct velocity_info, napi);
2160	unsigned int rx_done;
2161	unsigned long flags;
2162
2163	/*
2164	 * Do rx and tx twice for performance (taken from the VIA
2165	 * out-of-tree driver).
2166	 */
2167	rx_done = velocity_rx_srv(vptr, budget);
2168	spin_lock_irqsave(&vptr->lock, flags);
2169	velocity_tx_srv(vptr);
2170	/* If budget not fully consumed, exit the polling mode */
2171	if (rx_done < budget) {
2172		napi_complete_done(napi, rx_done);
2173		mac_enable_int(vptr->mac_regs);
2174	}
2175	spin_unlock_irqrestore(&vptr->lock, flags);
2176
2177	return rx_done;
2178}
2179
2180/**
2181 *	velocity_intr		-	interrupt callback
2182 *	@irq: interrupt number
2183 *	@dev_instance: interrupting device
2184 *
2185 *	Called whenever an interrupt is generated by the velocity
2186 *	adapter IRQ line. We may not be the source of the interrupt
2187 *	and need to identify initially if we are, and if not exit as
2188 *	efficiently as possible.
2189 */
2190static irqreturn_t velocity_intr(int irq, void *dev_instance)
2191{
2192	struct net_device *dev = dev_instance;
2193	struct velocity_info *vptr = netdev_priv(dev);
2194	u32 isr_status;
2195
2196	spin_lock(&vptr->lock);
2197	isr_status = mac_read_isr(vptr->mac_regs);
2198
2199	/* Not us ? */
2200	if (isr_status == 0) {
2201		spin_unlock(&vptr->lock);
2202		return IRQ_NONE;
2203	}
2204
2205	/* Ack the interrupt */
2206	mac_write_isr(vptr->mac_regs, isr_status);
2207
2208	if (likely(napi_schedule_prep(&vptr->napi))) {
2209		mac_disable_int(vptr->mac_regs);
2210		__napi_schedule(&vptr->napi);
2211	}
2212
2213	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2214		velocity_error(vptr, isr_status);
2215
2216	spin_unlock(&vptr->lock);
2217
2218	return IRQ_HANDLED;
2219}
2220
2221/**
2222 *	velocity_open		-	interface activation callback
2223 *	@dev: network layer device to open
2224 *
2225 *	Called when the network layer brings the interface up. Returns
2226 *	a negative posix error code on failure, or zero on success.
2227 *
2228 *	All the ring allocation and set up is done on open for this
2229 *	adapter to minimise memory usage when inactive
2230 */
2231static int velocity_open(struct net_device *dev)
2232{
2233	struct velocity_info *vptr = netdev_priv(dev);
2234	int ret;
2235
2236	ret = velocity_init_rings(vptr, dev->mtu);
2237	if (ret < 0)
2238		goto out;
2239
2240	/* Ensure chip is running */
2241	velocity_set_power_state(vptr, PCI_D0);
2242
2243	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2244
2245	ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED,
2246			  dev->name, dev);
2247	if (ret < 0) {
2248		/* Power down the chip */
2249		velocity_set_power_state(vptr, PCI_D3hot);
2250		velocity_free_rings(vptr);
2251		goto out;
2252	}
2253
2254	velocity_give_many_rx_descs(vptr);
2255
2256	mac_enable_int(vptr->mac_regs);
2257	netif_start_queue(dev);
2258	napi_enable(&vptr->napi);
2259	vptr->flags |= VELOCITY_FLAGS_OPENED;
2260out:
2261	return ret;
2262}
2263
2264/**
2265 *	velocity_shutdown	-	shut down the chip
2266 *	@vptr: velocity to deactivate
2267 *
2268 *	Shuts down the internal operations of the velocity and
2269 *	disables interrupts, autopolling, transmit and receive
2270 */
2271static void velocity_shutdown(struct velocity_info *vptr)
2272{
2273	struct mac_regs __iomem *regs = vptr->mac_regs;
2274	mac_disable_int(regs);
2275	writel(CR0_STOP, &regs->CR0Set);
2276	writew(0xFFFF, &regs->TDCSRClr);
2277	writeb(0xFF, &regs->RDCSRClr);
2278	safe_disable_mii_autopoll(regs);
2279	mac_clear_isr(regs);
2280}
2281
2282/**
2283 *	velocity_change_mtu	-	MTU change callback
2284 *	@dev: network device
2285 *	@new_mtu: desired MTU
2286 *
2287 *	Handle requests from the networking layer for MTU change on
2288 *	this interface. It gets called on a change by the network layer.
2289 *	Return zero for success or negative posix error code.
2290 */
2291static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2292{
2293	struct velocity_info *vptr = netdev_priv(dev);
2294	int ret = 0;
2295
2296	if (!netif_running(dev)) {
2297		dev->mtu = new_mtu;
2298		goto out_0;
2299	}
2300
2301	if (dev->mtu != new_mtu) {
2302		struct velocity_info *tmp_vptr;
2303		unsigned long flags;
2304		struct rx_info rx;
2305		struct tx_info tx;
2306
2307		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2308		if (!tmp_vptr) {
2309			ret = -ENOMEM;
2310			goto out_0;
2311		}
2312
2313		tmp_vptr->netdev = dev;
2314		tmp_vptr->pdev = vptr->pdev;
2315		tmp_vptr->dev = vptr->dev;
2316		tmp_vptr->options = vptr->options;
2317		tmp_vptr->tx.numq = vptr->tx.numq;
2318
2319		ret = velocity_init_rings(tmp_vptr, new_mtu);
2320		if (ret < 0)
2321			goto out_free_tmp_vptr_1;
2322
2323		napi_disable(&vptr->napi);
2324
2325		spin_lock_irqsave(&vptr->lock, flags);
2326
2327		netif_stop_queue(dev);
2328		velocity_shutdown(vptr);
2329
2330		rx = vptr->rx;
2331		tx = vptr->tx;
2332
2333		vptr->rx = tmp_vptr->rx;
2334		vptr->tx = tmp_vptr->tx;
2335
2336		tmp_vptr->rx = rx;
2337		tmp_vptr->tx = tx;
2338
2339		dev->mtu = new_mtu;
2340
2341		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2342
2343		velocity_give_many_rx_descs(vptr);
2344
2345		napi_enable(&vptr->napi);
2346
2347		mac_enable_int(vptr->mac_regs);
2348		netif_start_queue(dev);
2349
2350		spin_unlock_irqrestore(&vptr->lock, flags);
2351
2352		velocity_free_rings(tmp_vptr);
2353
2354out_free_tmp_vptr_1:
2355		kfree(tmp_vptr);
2356	}
2357out_0:
2358	return ret;
2359}
2360
2361#ifdef CONFIG_NET_POLL_CONTROLLER
2362/**
2363 *  velocity_poll_controller		-	Velocity Poll controller function
2364 *  @dev: network device
2365 *
2366 *
2367 *  Used by NETCONSOLE and other diagnostic tools to allow network I/P
2368 *  with interrupts disabled.
2369 */
2370static void velocity_poll_controller(struct net_device *dev)
2371{
2372	disable_irq(dev->irq);
2373	velocity_intr(dev->irq, dev);
2374	enable_irq(dev->irq);
2375}
2376#endif
2377
2378/**
2379 *	velocity_mii_ioctl		-	MII ioctl handler
2380 *	@dev: network device
2381 *	@ifr: the ifreq block for the ioctl
2382 *	@cmd: the command
2383 *
2384 *	Process MII requests made via ioctl from the network layer. These
2385 *	are used by tools like kudzu to interrogate the link state of the
2386 *	hardware
2387 */
2388static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2389{
2390	struct velocity_info *vptr = netdev_priv(dev);
2391	struct mac_regs __iomem *regs = vptr->mac_regs;
2392	unsigned long flags;
2393	struct mii_ioctl_data *miidata = if_mii(ifr);
2394	int err;
2395
2396	switch (cmd) {
2397	case SIOCGMIIPHY:
2398		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2399		break;
2400	case SIOCGMIIREG:
2401		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2402			return -ETIMEDOUT;
2403		break;
2404	case SIOCSMIIREG:
2405		spin_lock_irqsave(&vptr->lock, flags);
2406		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2407		spin_unlock_irqrestore(&vptr->lock, flags);
2408		check_connection_type(vptr->mac_regs);
2409		if (err)
2410			return err;
2411		break;
2412	default:
2413		return -EOPNOTSUPP;
2414	}
2415	return 0;
2416}
2417
2418/**
2419 *	velocity_ioctl		-	ioctl entry point
2420 *	@dev: network device
2421 *	@rq: interface request ioctl
2422 *	@cmd: command code
2423 *
2424 *	Called when the user issues an ioctl request to the network
2425 *	device in question. The velocity interface supports MII.
2426 */
2427static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2428{
2429	struct velocity_info *vptr = netdev_priv(dev);
2430	int ret;
2431
2432	/* If we are asked for information and the device is power
2433	   saving then we need to bring the device back up to talk to it */
2434
2435	if (!netif_running(dev))
2436		velocity_set_power_state(vptr, PCI_D0);
2437
2438	switch (cmd) {
2439	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2440	case SIOCGMIIREG:	/* Read MII PHY register. */
2441	case SIOCSMIIREG:	/* Write to MII PHY register. */
2442		ret = velocity_mii_ioctl(dev, rq, cmd);
2443		break;
2444
2445	default:
2446		ret = -EOPNOTSUPP;
2447	}
2448	if (!netif_running(dev))
2449		velocity_set_power_state(vptr, PCI_D3hot);
2450
2451
2452	return ret;
2453}
2454
2455/**
2456 *	velocity_get_stats	-	statistics callback
2457 *	@dev: network device
2458 *
2459 *	Callback from the network layer to allow driver statistics
2460 *	to be resynchronized with hardware collected state. In the
2461 *	case of the velocity we need to pull the MIB counters from
2462 *	the hardware into the counters before letting the network
2463 *	layer display them.
2464 */
2465static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2466{
2467	struct velocity_info *vptr = netdev_priv(dev);
2468
2469	/* If the hardware is down, don't touch MII */
2470	if (!netif_running(dev))
2471		return &dev->stats;
2472
2473	spin_lock_irq(&vptr->lock);
2474	velocity_update_hw_mibs(vptr);
2475	spin_unlock_irq(&vptr->lock);
2476
2477	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2478	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2479	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2480
2481//  unsigned long   rx_dropped;     /* no space in linux buffers    */
2482	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2483	/* detailed rx_errors: */
2484//  unsigned long   rx_length_errors;
2485//  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2486	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2487//  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2488//  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2489//  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2490
2491	/* detailed tx_errors */
2492//  unsigned long   tx_fifo_errors;
2493
2494	return &dev->stats;
2495}
2496
2497/**
2498 *	velocity_close		-	close adapter callback
2499 *	@dev: network device
2500 *
2501 *	Callback from the network layer when the velocity is being
2502 *	deactivated by the network layer
2503 */
2504static int velocity_close(struct net_device *dev)
2505{
2506	struct velocity_info *vptr = netdev_priv(dev);
2507
2508	napi_disable(&vptr->napi);
2509	netif_stop_queue(dev);
2510	velocity_shutdown(vptr);
2511
2512	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2513		velocity_get_ip(vptr);
2514
2515	free_irq(dev->irq, dev);
2516
2517	velocity_free_rings(vptr);
2518
2519	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2520	return 0;
2521}
2522
2523/**
2524 *	velocity_xmit		-	transmit packet callback
2525 *	@skb: buffer to transmit
2526 *	@dev: network device
2527 *
2528 *	Called by the network layer to request a packet is queued to
2529 *	the velocity. Returns zero on success.
2530 */
2531static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2532				 struct net_device *dev)
2533{
2534	struct velocity_info *vptr = netdev_priv(dev);
2535	int qnum = 0;
2536	struct tx_desc *td_ptr;
2537	struct velocity_td_info *tdinfo;
2538	unsigned long flags;
2539	int pktlen;
2540	int index, prev;
2541	int i = 0;
2542
2543	if (skb_padto(skb, ETH_ZLEN))
2544		goto out;
2545
2546	/* The hardware can handle at most 7 memory segments, so merge
2547	 * the skb if there are more */
2548	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2549		dev_kfree_skb_any(skb);
2550		return NETDEV_TX_OK;
2551	}
2552
2553	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2554			max_t(unsigned int, skb->len, ETH_ZLEN) :
2555				skb_headlen(skb);
2556
2557	spin_lock_irqsave(&vptr->lock, flags);
2558
2559	index = vptr->tx.curr[qnum];
2560	td_ptr = &(vptr->tx.rings[qnum][index]);
2561	tdinfo = &(vptr->tx.infos[qnum][index]);
2562
2563	td_ptr->tdesc1.TCR = TCR0_TIC;
2564	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2565
2566	/*
2567	 *	Map the linear network buffer into PCI space and
2568	 *	add it to the transmit ring.
2569	 */
2570	tdinfo->skb = skb;
2571	tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2572								DMA_TO_DEVICE);
2573	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2574	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2575	td_ptr->td_buf[0].pa_high = 0;
2576	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2577
2578	/* Handle fragments */
2579	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2580		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2581
2582		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev,
2583							  frag, 0,
2584							  skb_frag_size(frag),
2585							  DMA_TO_DEVICE);
2586
2587		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2588		td_ptr->td_buf[i + 1].pa_high = 0;
2589		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2590	}
2591	tdinfo->nskb_dma = i + 1;
2592
2593	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2594
2595	if (skb_vlan_tag_present(skb)) {
2596		td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
2597		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2598	}
2599
2600	/*
2601	 *	Handle hardware checksum
2602	 */
2603	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2604		const struct iphdr *ip = ip_hdr(skb);
2605		if (ip->protocol == IPPROTO_TCP)
2606			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2607		else if (ip->protocol == IPPROTO_UDP)
2608			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2609		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2610	}
2611
2612	prev = index - 1;
2613	if (prev < 0)
2614		prev = vptr->options.numtx - 1;
2615	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2616	vptr->tx.used[qnum]++;
2617	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2618
2619	if (AVAIL_TD(vptr, qnum) < 1)
2620		netif_stop_queue(dev);
2621
2622	td_ptr = &(vptr->tx.rings[qnum][prev]);
2623	td_ptr->td_buf[0].size |= TD_QUEUE;
2624	mac_tx_queue_wake(vptr->mac_regs, qnum);
2625
2626	spin_unlock_irqrestore(&vptr->lock, flags);
2627out:
2628	return NETDEV_TX_OK;
2629}
2630
2631static const struct net_device_ops velocity_netdev_ops = {
2632	.ndo_open		= velocity_open,
2633	.ndo_stop		= velocity_close,
2634	.ndo_start_xmit		= velocity_xmit,
2635	.ndo_get_stats		= velocity_get_stats,
2636	.ndo_validate_addr	= eth_validate_addr,
2637	.ndo_set_mac_address	= eth_mac_addr,
2638	.ndo_set_rx_mode	= velocity_set_multi,
2639	.ndo_change_mtu		= velocity_change_mtu,
2640	.ndo_eth_ioctl		= velocity_ioctl,
2641	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2642	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2643#ifdef CONFIG_NET_POLL_CONTROLLER
2644	.ndo_poll_controller = velocity_poll_controller,
2645#endif
2646};
2647
2648/**
2649 *	velocity_init_info	-	init private data
2650 *	@vptr: Velocity info
2651 *	@info: Board type
2652 *
2653 *	Set up the initial velocity_info struct for the device that has been
2654 *	discovered.
2655 */
2656static void velocity_init_info(struct velocity_info *vptr,
2657				const struct velocity_info_tbl *info)
2658{
2659	vptr->chip_id = info->chip_id;
2660	vptr->tx.numq = info->txqueue;
2661	vptr->multicast_limit = MCAM_SIZE;
2662	spin_lock_init(&vptr->lock);
2663}
2664
2665/**
2666 *	velocity_get_pci_info	-	retrieve PCI info for device
2667 *	@vptr: velocity device
2668 *
2669 *	Retrieve the PCI configuration space data that interests us from
2670 *	the kernel PCI layer
2671 */
2672static int velocity_get_pci_info(struct velocity_info *vptr)
2673{
2674	struct pci_dev *pdev = vptr->pdev;
2675
2676	pci_set_master(pdev);
2677
2678	vptr->ioaddr = pci_resource_start(pdev, 0);
2679	vptr->memaddr = pci_resource_start(pdev, 1);
2680
2681	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2682		dev_err(&pdev->dev,
2683			   "region #0 is not an I/O resource, aborting.\n");
2684		return -EINVAL;
2685	}
2686
2687	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2688		dev_err(&pdev->dev,
2689			   "region #1 is an I/O resource, aborting.\n");
2690		return -EINVAL;
2691	}
2692
2693	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2694		dev_err(&pdev->dev, "region #1 is too small.\n");
2695		return -EINVAL;
2696	}
2697
2698	return 0;
2699}
2700
2701/**
2702 *	velocity_get_platform_info - retrieve platform info for device
2703 *	@vptr: velocity device
2704 *
2705 *	Retrieve the Platform configuration data that interests us
2706 */
2707static int velocity_get_platform_info(struct velocity_info *vptr)
2708{
2709	struct resource res;
2710	int ret;
2711
2712	vptr->no_eeprom = of_property_read_bool(vptr->dev->of_node, "no-eeprom");
2713
2714	ret = of_address_to_resource(vptr->dev->of_node, 0, &res);
2715	if (ret) {
2716		dev_err(vptr->dev, "unable to find memory address\n");
2717		return ret;
2718	}
2719
2720	vptr->memaddr = res.start;
2721
2722	if (resource_size(&res) < VELOCITY_IO_SIZE) {
2723		dev_err(vptr->dev, "memory region is too small.\n");
2724		return -EINVAL;
2725	}
2726
2727	return 0;
2728}
2729
2730/**
2731 *	velocity_print_info	-	per driver data
2732 *	@vptr: velocity
2733 *
2734 *	Print per driver data as the kernel driver finds Velocity
2735 *	hardware
2736 */
2737static void velocity_print_info(struct velocity_info *vptr)
2738{
2739	netdev_info(vptr->netdev, "%s - Ethernet Address: %pM\n",
2740		    get_chip_name(vptr->chip_id), vptr->netdev->dev_addr);
2741}
2742
2743static u32 velocity_get_link(struct net_device *dev)
2744{
2745	struct velocity_info *vptr = netdev_priv(dev);
2746	struct mac_regs __iomem *regs = vptr->mac_regs;
2747	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2748}
2749
2750/**
2751 *	velocity_probe - set up discovered velocity device
2752 *	@dev: PCI device
2753 *	@info: table of match
2754 *	@irq: interrupt info
2755 *	@bustype: bus that device is connected to
2756 *
2757 *	Configure a discovered adapter from scratch. Return a negative
2758 *	errno error code on failure paths.
2759 */
2760static int velocity_probe(struct device *dev, int irq,
2761			   const struct velocity_info_tbl *info,
2762			   enum velocity_bus_type bustype)
2763{
2764	struct net_device *netdev;
2765	int i;
2766	struct velocity_info *vptr;
2767	struct mac_regs __iomem *regs;
2768	int ret = -ENOMEM;
2769	u8 addr[ETH_ALEN];
2770
2771	/* FIXME: this driver, like almost all other ethernet drivers,
2772	 * can support more than MAX_UNITS.
2773	 */
2774	if (velocity_nics >= MAX_UNITS) {
2775		dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2776		return -ENODEV;
2777	}
2778
2779	netdev = alloc_etherdev(sizeof(struct velocity_info));
2780	if (!netdev)
2781		goto out;
2782
2783	/* Chain it all together */
2784
2785	SET_NETDEV_DEV(netdev, dev);
2786	vptr = netdev_priv(netdev);
2787
2788	pr_info_once("%s Ver. %s\n", VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2789	pr_info_once("Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2790	pr_info_once("Copyright (c) 2004 Red Hat Inc.\n");
2791
2792	netdev->irq = irq;
2793	vptr->netdev = netdev;
2794	vptr->dev = dev;
2795
2796	velocity_init_info(vptr, info);
2797
2798	if (bustype == BUS_PCI) {
2799		vptr->pdev = to_pci_dev(dev);
2800
2801		ret = velocity_get_pci_info(vptr);
2802		if (ret < 0)
2803			goto err_free_dev;
2804	} else {
2805		vptr->pdev = NULL;
2806		ret = velocity_get_platform_info(vptr);
2807		if (ret < 0)
2808			goto err_free_dev;
2809	}
2810
2811	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2812	if (regs == NULL) {
2813		ret = -EIO;
2814		goto err_free_dev;
2815	}
2816
2817	vptr->mac_regs = regs;
2818	vptr->rev_id = readb(&regs->rev_id);
2819
2820	mac_wol_reset(regs);
2821
2822	for (i = 0; i < 6; i++)
2823		addr[i] = readb(&regs->PAR[i]);
2824	eth_hw_addr_set(netdev, addr);
2825
2826
2827	velocity_get_options(&vptr->options, velocity_nics);
2828
2829	/*
2830	 *	Mask out the options cannot be set to the chip
2831	 */
2832
2833	vptr->options.flags &= info->flags;
2834
2835	/*
2836	 *	Enable the chip specified capbilities
2837	 */
2838
2839	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2840
2841	vptr->wol_opts = vptr->options.wol_opts;
2842	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2843
2844	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2845
2846	netdev->netdev_ops = &velocity_netdev_ops;
2847	netdev->ethtool_ops = &velocity_ethtool_ops;
2848	netif_napi_add(netdev, &vptr->napi, velocity_poll);
2849
2850	netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2851			   NETIF_F_HW_VLAN_CTAG_TX;
2852	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2853			NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2854			NETIF_F_IP_CSUM;
2855
2856	/* MTU range: 64 - 9000 */
2857	netdev->min_mtu = VELOCITY_MIN_MTU;
2858	netdev->max_mtu = VELOCITY_MAX_MTU;
2859
2860	ret = register_netdev(netdev);
2861	if (ret < 0)
2862		goto err_iounmap;
2863
2864	if (!velocity_get_link(netdev)) {
2865		netif_carrier_off(netdev);
2866		vptr->mii_status |= VELOCITY_LINK_FAIL;
2867	}
2868
2869	velocity_print_info(vptr);
2870	dev_set_drvdata(vptr->dev, netdev);
2871
2872	/* and leave the chip powered down */
2873
2874	velocity_set_power_state(vptr, PCI_D3hot);
2875	velocity_nics++;
2876out:
2877	return ret;
2878
2879err_iounmap:
2880	netif_napi_del(&vptr->napi);
2881	iounmap(regs);
2882err_free_dev:
2883	free_netdev(netdev);
2884	goto out;
2885}
2886
2887/**
2888 *	velocity_remove	- device unplug
2889 *	@dev: device being removed
2890 *
2891 *	Device unload callback. Called on an unplug or on module
2892 *	unload for each active device that is present. Disconnects
2893 *	the device from the network layer and frees all the resources
2894 */
2895static int velocity_remove(struct device *dev)
2896{
2897	struct net_device *netdev = dev_get_drvdata(dev);
2898	struct velocity_info *vptr = netdev_priv(netdev);
2899
2900	unregister_netdev(netdev);
2901	netif_napi_del(&vptr->napi);
2902	iounmap(vptr->mac_regs);
2903	free_netdev(netdev);
2904	velocity_nics--;
2905
2906	return 0;
2907}
2908
2909static int velocity_pci_probe(struct pci_dev *pdev,
2910			       const struct pci_device_id *ent)
2911{
2912	const struct velocity_info_tbl *info =
2913					&chip_info_table[ent->driver_data];
2914	int ret;
2915
2916	ret = pci_enable_device(pdev);
2917	if (ret < 0)
2918		return ret;
2919
2920	ret = pci_request_regions(pdev, VELOCITY_NAME);
2921	if (ret < 0) {
2922		dev_err(&pdev->dev, "No PCI resources.\n");
2923		goto fail1;
2924	}
2925
2926	ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI);
2927	if (ret == 0)
2928		return 0;
2929
2930	pci_release_regions(pdev);
2931fail1:
2932	pci_disable_device(pdev);
2933	return ret;
2934}
2935
2936static void velocity_pci_remove(struct pci_dev *pdev)
2937{
2938	velocity_remove(&pdev->dev);
2939
2940	pci_release_regions(pdev);
2941	pci_disable_device(pdev);
2942}
2943
2944static int velocity_platform_probe(struct platform_device *pdev)
2945{
2946	const struct velocity_info_tbl *info;
2947	int irq;
2948
2949	info = of_device_get_match_data(&pdev->dev);
2950	if (!info)
2951		return -EINVAL;
2952
2953	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2954	if (!irq)
2955		return -EINVAL;
2956
2957	return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM);
2958}
2959
2960static void velocity_platform_remove(struct platform_device *pdev)
2961{
2962	velocity_remove(&pdev->dev);
2963}
2964
2965#ifdef CONFIG_PM_SLEEP
2966/**
2967 *	wol_calc_crc		-	WOL CRC
2968 *	@size: size of the wake mask
2969 *	@pattern: data pattern
2970 *	@mask_pattern: mask
2971 *
2972 *	Compute the wake on lan crc hashes for the packet header
2973 *	we are interested in.
2974 */
2975static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2976{
2977	u16 crc = 0xFFFF;
2978	u8 mask;
2979	int i, j;
2980
2981	for (i = 0; i < size; i++) {
2982		mask = mask_pattern[i];
2983
2984		/* Skip this loop if the mask equals to zero */
2985		if (mask == 0x00)
2986			continue;
2987
2988		for (j = 0; j < 8; j++) {
2989			if ((mask & 0x01) == 0) {
2990				mask >>= 1;
2991				continue;
2992			}
2993			mask >>= 1;
2994			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2995		}
2996	}
2997	/*	Finally, invert the result once to get the correct data */
2998	crc = ~crc;
2999	return bitrev32(crc) >> 16;
3000}
3001
3002/**
3003 *	velocity_set_wol	-	set up for wake on lan
3004 *	@vptr: velocity to set WOL status on
3005 *
3006 *	Set a card up for wake on lan either by unicast or by
3007 *	ARP packet.
3008 *
3009 *	FIXME: check static buffer is safe here
3010 */
3011static int velocity_set_wol(struct velocity_info *vptr)
3012{
3013	struct mac_regs __iomem *regs = vptr->mac_regs;
3014	enum speed_opt spd_dpx = vptr->options.spd_dpx;
3015	static u8 buf[256];
3016	int i;
3017
3018	static u32 mask_pattern[2][4] = {
3019		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3020		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
3021	};
3022
3023	writew(0xFFFF, &regs->WOLCRClr);
3024	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3025	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3026
3027	/*
3028	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3029	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3030	 */
3031
3032	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3033		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3034
3035	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3036		struct arp_packet *arp = (struct arp_packet *) buf;
3037		u16 crc;
3038		memset(buf, 0, sizeof(struct arp_packet) + 7);
3039
3040		for (i = 0; i < 4; i++)
3041			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3042
3043		arp->type = htons(ETH_P_ARP);
3044		arp->ar_op = htons(1);
3045
3046		memcpy(arp->ar_tip, vptr->ip_addr, 4);
3047
3048		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3049				(u8 *) & mask_pattern[0][0]);
3050
3051		writew(crc, &regs->PatternCRC[0]);
3052		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3053	}
3054
3055	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3056	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3057
3058	writew(0x0FFF, &regs->WOLSRClr);
3059
3060	if (spd_dpx == SPD_DPX_1000_FULL)
3061		goto mac_done;
3062
3063	if (spd_dpx != SPD_DPX_AUTO)
3064		goto advertise_done;
3065
3066	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3067		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3068			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3069
3070		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3071	}
3072
3073	if (vptr->mii_status & VELOCITY_SPEED_1000)
3074		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3075
3076advertise_done:
3077	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3078
3079	{
3080		u8 GCR;
3081		GCR = readb(&regs->CHIPGCR);
3082		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3083		writeb(GCR, &regs->CHIPGCR);
3084	}
3085
3086mac_done:
3087	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3088	/* Turn on SWPTAG just before entering power mode */
3089	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3090	/* Go to bed ..... */
3091	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3092
3093	return 0;
3094}
3095
3096/**
3097 *	velocity_save_context	-	save registers
3098 *	@vptr: velocity
3099 *	@context: buffer for stored context
3100 *
3101 *	Retrieve the current configuration from the velocity hardware
3102 *	and stash it in the context structure, for use by the context
3103 *	restore functions. This allows us to save things we need across
3104 *	power down states
3105 */
3106static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3107{
3108	struct mac_regs __iomem *regs = vptr->mac_regs;
3109	u16 i;
3110	u8 __iomem *ptr = (u8 __iomem *)regs;
3111
3112	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3113		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3114
3115	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3116		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3117
3118	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3119		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3120
3121}
3122
3123static int velocity_suspend(struct device *dev)
3124{
3125	struct net_device *netdev = dev_get_drvdata(dev);
3126	struct velocity_info *vptr = netdev_priv(netdev);
3127	unsigned long flags;
3128
3129	if (!netif_running(vptr->netdev))
3130		return 0;
3131
3132	netif_device_detach(vptr->netdev);
3133
3134	spin_lock_irqsave(&vptr->lock, flags);
3135	if (vptr->pdev)
3136		pci_save_state(vptr->pdev);
3137
3138	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3139		velocity_get_ip(vptr);
3140		velocity_save_context(vptr, &vptr->context);
3141		velocity_shutdown(vptr);
3142		velocity_set_wol(vptr);
3143		if (vptr->pdev)
3144			pci_enable_wake(vptr->pdev, PCI_D3hot, 1);
3145		velocity_set_power_state(vptr, PCI_D3hot);
3146	} else {
3147		velocity_save_context(vptr, &vptr->context);
3148		velocity_shutdown(vptr);
3149		if (vptr->pdev)
3150			pci_disable_device(vptr->pdev);
3151		velocity_set_power_state(vptr, PCI_D3hot);
3152	}
3153
3154	spin_unlock_irqrestore(&vptr->lock, flags);
3155	return 0;
3156}
3157
3158/**
3159 *	velocity_restore_context	-	restore registers
3160 *	@vptr: velocity
3161 *	@context: buffer for stored context
3162 *
3163 *	Reload the register configuration from the velocity context
3164 *	created by velocity_save_context.
3165 */
3166static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3167{
3168	struct mac_regs __iomem *regs = vptr->mac_regs;
3169	int i;
3170	u8 __iomem *ptr = (u8 __iomem *)regs;
3171
3172	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3173		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3174
3175	/* Just skip cr0 */
3176	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3177		/* Clear */
3178		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3179		/* Set */
3180		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3181	}
3182
3183	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3184		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3185
3186	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3187		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3188
3189	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3190		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3191}
3192
3193static int velocity_resume(struct device *dev)
3194{
3195	struct net_device *netdev = dev_get_drvdata(dev);
3196	struct velocity_info *vptr = netdev_priv(netdev);
3197	unsigned long flags;
3198	int i;
3199
3200	if (!netif_running(vptr->netdev))
3201		return 0;
3202
3203	velocity_set_power_state(vptr, PCI_D0);
3204
3205	if (vptr->pdev) {
3206		pci_enable_wake(vptr->pdev, PCI_D0, 0);
3207		pci_restore_state(vptr->pdev);
3208	}
3209
3210	mac_wol_reset(vptr->mac_regs);
3211
3212	spin_lock_irqsave(&vptr->lock, flags);
3213	velocity_restore_context(vptr, &vptr->context);
3214	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3215	mac_disable_int(vptr->mac_regs);
3216
3217	velocity_tx_srv(vptr);
3218
3219	for (i = 0; i < vptr->tx.numq; i++) {
3220		if (vptr->tx.used[i])
3221			mac_tx_queue_wake(vptr->mac_regs, i);
3222	}
3223
3224	mac_enable_int(vptr->mac_regs);
3225	spin_unlock_irqrestore(&vptr->lock, flags);
3226	netif_device_attach(vptr->netdev);
3227
3228	return 0;
3229}
3230#endif	/* CONFIG_PM_SLEEP */
3231
3232static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3233
3234/*
3235 *	Definition for our device driver. The PCI layer interface
3236 *	uses this to handle all our card discover and plugging
3237 */
3238static struct pci_driver velocity_pci_driver = {
3239	.name		= VELOCITY_NAME,
3240	.id_table	= velocity_pci_id_table,
3241	.probe		= velocity_pci_probe,
3242	.remove		= velocity_pci_remove,
3243	.driver = {
3244		.pm = &velocity_pm_ops,
3245	},
3246};
3247
3248static struct platform_driver velocity_platform_driver = {
3249	.probe		= velocity_platform_probe,
3250	.remove_new	= velocity_platform_remove,
3251	.driver = {
3252		.name = "via-velocity",
3253		.of_match_table = velocity_of_ids,
3254		.pm = &velocity_pm_ops,
3255	},
3256};
3257
3258/**
3259 *	velocity_ethtool_up	-	pre hook for ethtool
3260 *	@dev: network device
3261 *
3262 *	Called before an ethtool operation. We need to make sure the
3263 *	chip is out of D3 state before we poke at it. In case of ethtool
3264 *	ops nesting, only wake the device up in the outermost block.
3265 */
3266static int velocity_ethtool_up(struct net_device *dev)
3267{
3268	struct velocity_info *vptr = netdev_priv(dev);
3269
3270	if (vptr->ethtool_ops_nesting == U32_MAX)
3271		return -EBUSY;
3272	if (!vptr->ethtool_ops_nesting++ && !netif_running(dev))
3273		velocity_set_power_state(vptr, PCI_D0);
3274	return 0;
3275}
3276
3277/**
3278 *	velocity_ethtool_down	-	post hook for ethtool
3279 *	@dev: network device
3280 *
3281 *	Called after an ethtool operation. Restore the chip back to D3
3282 *	state if it isn't running. In case of ethtool ops nesting, only
3283 *	put the device to sleep in the outermost block.
3284 */
3285static void velocity_ethtool_down(struct net_device *dev)
3286{
3287	struct velocity_info *vptr = netdev_priv(dev);
3288
3289	if (!--vptr->ethtool_ops_nesting && !netif_running(dev))
3290		velocity_set_power_state(vptr, PCI_D3hot);
3291}
3292
3293static int velocity_get_link_ksettings(struct net_device *dev,
3294				       struct ethtool_link_ksettings *cmd)
3295{
3296	struct velocity_info *vptr = netdev_priv(dev);
3297	struct mac_regs __iomem *regs = vptr->mac_regs;
3298	u32 status;
3299	u32 supported, advertising;
3300
3301	status = check_connection_type(vptr->mac_regs);
3302
3303	supported = SUPPORTED_TP |
3304			SUPPORTED_Autoneg |
3305			SUPPORTED_10baseT_Half |
3306			SUPPORTED_10baseT_Full |
3307			SUPPORTED_100baseT_Half |
3308			SUPPORTED_100baseT_Full |
3309			SUPPORTED_1000baseT_Half |
3310			SUPPORTED_1000baseT_Full;
3311
3312	advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3313	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3314		advertising |=
3315			ADVERTISED_10baseT_Half |
3316			ADVERTISED_10baseT_Full |
3317			ADVERTISED_100baseT_Half |
3318			ADVERTISED_100baseT_Full |
3319			ADVERTISED_1000baseT_Half |
3320			ADVERTISED_1000baseT_Full;
3321	} else {
3322		switch (vptr->options.spd_dpx) {
3323		case SPD_DPX_1000_FULL:
3324			advertising |= ADVERTISED_1000baseT_Full;
3325			break;
3326		case SPD_DPX_100_HALF:
3327			advertising |= ADVERTISED_100baseT_Half;
3328			break;
3329		case SPD_DPX_100_FULL:
3330			advertising |= ADVERTISED_100baseT_Full;
3331			break;
3332		case SPD_DPX_10_HALF:
3333			advertising |= ADVERTISED_10baseT_Half;
3334			break;
3335		case SPD_DPX_10_FULL:
3336			advertising |= ADVERTISED_10baseT_Full;
3337			break;
3338		default:
3339			break;
3340		}
3341	}
3342
3343	if (status & VELOCITY_SPEED_1000)
3344		cmd->base.speed = SPEED_1000;
3345	else if (status & VELOCITY_SPEED_100)
3346		cmd->base.speed = SPEED_100;
3347	else
3348		cmd->base.speed = SPEED_10;
3349
3350	cmd->base.autoneg = (status & VELOCITY_AUTONEG_ENABLE) ?
3351		AUTONEG_ENABLE : AUTONEG_DISABLE;
3352	cmd->base.port = PORT_TP;
3353	cmd->base.phy_address = readb(&regs->MIIADR) & 0x1F;
3354
3355	if (status & VELOCITY_DUPLEX_FULL)
3356		cmd->base.duplex = DUPLEX_FULL;
3357	else
3358		cmd->base.duplex = DUPLEX_HALF;
3359
3360	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3361						supported);
3362	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3363						advertising);
3364
3365	return 0;
3366}
3367
3368static int velocity_set_link_ksettings(struct net_device *dev,
3369				       const struct ethtool_link_ksettings *cmd)
3370{
3371	struct velocity_info *vptr = netdev_priv(dev);
3372	u32 speed = cmd->base.speed;
3373	u32 curr_status;
3374	u32 new_status = 0;
3375	int ret = 0;
3376
3377	curr_status = check_connection_type(vptr->mac_regs);
3378	curr_status &= (~VELOCITY_LINK_FAIL);
3379
3380	new_status |= ((cmd->base.autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3381	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3382	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3383	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3384	new_status |= ((cmd->base.duplex == DUPLEX_FULL) ?
3385		       VELOCITY_DUPLEX_FULL : 0);
3386
3387	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3388	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3389		ret = -EINVAL;
3390	} else {
3391		enum speed_opt spd_dpx;
3392
3393		if (new_status & VELOCITY_AUTONEG_ENABLE)
3394			spd_dpx = SPD_DPX_AUTO;
3395		else if ((new_status & VELOCITY_SPEED_1000) &&
3396			 (new_status & VELOCITY_DUPLEX_FULL)) {
3397			spd_dpx = SPD_DPX_1000_FULL;
3398		} else if (new_status & VELOCITY_SPEED_100)
3399			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3400				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3401		else if (new_status & VELOCITY_SPEED_10)
3402			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3403				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3404		else
3405			return -EOPNOTSUPP;
3406
3407		vptr->options.spd_dpx = spd_dpx;
3408
3409		velocity_set_media_mode(vptr, new_status);
3410	}
3411
3412	return ret;
3413}
3414
3415static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3416{
3417	struct velocity_info *vptr = netdev_priv(dev);
3418
3419	strscpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3420	strscpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3421	if (vptr->pdev)
3422		strscpy(info->bus_info, pci_name(vptr->pdev),
3423						sizeof(info->bus_info));
3424	else
3425		strscpy(info->bus_info, "platform", sizeof(info->bus_info));
3426}
3427
3428static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3429{
3430	struct velocity_info *vptr = netdev_priv(dev);
3431	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3432	wol->wolopts |= WAKE_MAGIC;
3433	/*
3434	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3435		   wol.wolopts|=WAKE_PHY;
3436			 */
3437	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3438		wol->wolopts |= WAKE_UCAST;
3439	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3440		wol->wolopts |= WAKE_ARP;
3441	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3442}
3443
3444static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3445{
3446	struct velocity_info *vptr = netdev_priv(dev);
3447
3448	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3449		return -EFAULT;
3450	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3451
3452	/*
3453	   if (wol.wolopts & WAKE_PHY) {
3454	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3455	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3456	   }
3457	 */
3458
3459	if (wol->wolopts & WAKE_MAGIC) {
3460		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3461		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3462	}
3463	if (wol->wolopts & WAKE_UCAST) {
3464		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3465		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3466	}
3467	if (wol->wolopts & WAKE_ARP) {
3468		vptr->wol_opts |= VELOCITY_WOL_ARP;
3469		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3470	}
3471	memcpy(vptr->wol_passwd, wol->sopass, 6);
3472	return 0;
3473}
3474
3475static int get_pending_timer_val(int val)
3476{
3477	int mult_bits = val >> 6;
3478	int mult = 1;
3479
3480	switch (mult_bits)
3481	{
3482	case 1:
3483		mult = 4; break;
3484	case 2:
3485		mult = 16; break;
3486	case 3:
3487		mult = 64; break;
3488	case 0:
3489	default:
3490		break;
3491	}
3492
3493	return (val & 0x3f) * mult;
3494}
3495
3496static void set_pending_timer_val(int *val, u32 us)
3497{
3498	u8 mult = 0;
3499	u8 shift = 0;
3500
3501	if (us >= 0x3f) {
3502		mult = 1; /* mult with 4 */
3503		shift = 2;
3504	}
3505	if (us >= 0x3f * 4) {
3506		mult = 2; /* mult with 16 */
3507		shift = 4;
3508	}
3509	if (us >= 0x3f * 16) {
3510		mult = 3; /* mult with 64 */
3511		shift = 6;
3512	}
3513
3514	*val = (mult << 6) | ((us >> shift) & 0x3f);
3515}
3516
3517
3518static int velocity_get_coalesce(struct net_device *dev,
3519				 struct ethtool_coalesce *ecmd,
3520				 struct kernel_ethtool_coalesce *kernel_coal,
3521				 struct netlink_ext_ack *extack)
3522{
3523	struct velocity_info *vptr = netdev_priv(dev);
3524
3525	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3526	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3527
3528	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3529	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3530
3531	return 0;
3532}
3533
3534static int velocity_set_coalesce(struct net_device *dev,
3535				 struct ethtool_coalesce *ecmd,
3536				 struct kernel_ethtool_coalesce *kernel_coal,
3537				 struct netlink_ext_ack *extack)
3538{
3539	struct velocity_info *vptr = netdev_priv(dev);
3540	int max_us = 0x3f * 64;
3541	unsigned long flags;
3542
3543	/* 6 bits of  */
3544	if (ecmd->tx_coalesce_usecs > max_us)
3545		return -EINVAL;
3546	if (ecmd->rx_coalesce_usecs > max_us)
3547		return -EINVAL;
3548
3549	if (ecmd->tx_max_coalesced_frames > 0xff)
3550		return -EINVAL;
3551	if (ecmd->rx_max_coalesced_frames > 0xff)
3552		return -EINVAL;
3553
3554	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3555	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3556
3557	set_pending_timer_val(&vptr->options.rxqueue_timer,
3558			ecmd->rx_coalesce_usecs);
3559	set_pending_timer_val(&vptr->options.txqueue_timer,
3560			ecmd->tx_coalesce_usecs);
3561
3562	/* Setup the interrupt suppression and queue timers */
3563	spin_lock_irqsave(&vptr->lock, flags);
3564	mac_disable_int(vptr->mac_regs);
3565	setup_adaptive_interrupts(vptr);
3566	setup_queue_timers(vptr);
3567
3568	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3569	mac_clear_isr(vptr->mac_regs);
3570	mac_enable_int(vptr->mac_regs);
3571	spin_unlock_irqrestore(&vptr->lock, flags);
3572
3573	return 0;
3574}
3575
3576static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3577	"rx_all",
3578	"rx_ok",
3579	"tx_ok",
3580	"rx_error",
3581	"rx_runt_ok",
3582	"rx_runt_err",
3583	"rx_64",
3584	"tx_64",
3585	"rx_65_to_127",
3586	"tx_65_to_127",
3587	"rx_128_to_255",
3588	"tx_128_to_255",
3589	"rx_256_to_511",
3590	"tx_256_to_511",
3591	"rx_512_to_1023",
3592	"tx_512_to_1023",
3593	"rx_1024_to_1518",
3594	"tx_1024_to_1518",
3595	"tx_ether_collisions",
3596	"rx_crc_errors",
3597	"rx_jumbo",
3598	"tx_jumbo",
3599	"rx_mac_control_frames",
3600	"tx_mac_control_frames",
3601	"rx_frame_alignment_errors",
3602	"rx_long_ok",
3603	"rx_long_err",
3604	"tx_sqe_errors",
3605	"rx_no_buf",
3606	"rx_symbol_errors",
3607	"in_range_length_errors",
3608	"late_collisions"
3609};
3610
3611static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3612{
3613	switch (sset) {
3614	case ETH_SS_STATS:
3615		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3616		break;
3617	}
3618}
3619
3620static int velocity_get_sset_count(struct net_device *dev, int sset)
3621{
3622	switch (sset) {
3623	case ETH_SS_STATS:
3624		return ARRAY_SIZE(velocity_gstrings);
3625	default:
3626		return -EOPNOTSUPP;
3627	}
3628}
3629
3630static void velocity_get_ethtool_stats(struct net_device *dev,
3631				       struct ethtool_stats *stats, u64 *data)
3632{
3633	if (netif_running(dev)) {
3634		struct velocity_info *vptr = netdev_priv(dev);
3635		u32 *p = vptr->mib_counter;
3636		int i;
3637
3638		spin_lock_irq(&vptr->lock);
3639		velocity_update_hw_mibs(vptr);
3640		spin_unlock_irq(&vptr->lock);
3641
3642		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3643			*data++ = *p++;
3644	}
3645}
3646
3647static const struct ethtool_ops velocity_ethtool_ops = {
3648	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3649				     ETHTOOL_COALESCE_MAX_FRAMES,
3650	.get_drvinfo		= velocity_get_drvinfo,
3651	.get_wol		= velocity_ethtool_get_wol,
3652	.set_wol		= velocity_ethtool_set_wol,
3653	.get_link		= velocity_get_link,
3654	.get_strings		= velocity_get_strings,
3655	.get_sset_count		= velocity_get_sset_count,
3656	.get_ethtool_stats	= velocity_get_ethtool_stats,
3657	.get_coalesce		= velocity_get_coalesce,
3658	.set_coalesce		= velocity_set_coalesce,
3659	.begin			= velocity_ethtool_up,
3660	.complete		= velocity_ethtool_down,
3661	.get_link_ksettings	= velocity_get_link_ksettings,
3662	.set_link_ksettings	= velocity_set_link_ksettings,
3663};
3664
3665#if defined(CONFIG_PM) && defined(CONFIG_INET)
3666static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3667{
3668	struct in_ifaddr *ifa = ptr;
3669	struct net_device *dev = ifa->ifa_dev->dev;
3670
3671	if (dev_net(dev) == &init_net &&
3672	    dev->netdev_ops == &velocity_netdev_ops)
3673		velocity_get_ip(netdev_priv(dev));
3674
3675	return NOTIFY_DONE;
3676}
3677
3678static struct notifier_block velocity_inetaddr_notifier = {
3679	.notifier_call	= velocity_netdev_event,
3680};
3681
3682static void velocity_register_notifier(void)
3683{
3684	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3685}
3686
3687static void velocity_unregister_notifier(void)
3688{
3689	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3690}
3691
3692#else
3693
3694#define velocity_register_notifier()	do {} while (0)
3695#define velocity_unregister_notifier()	do {} while (0)
3696
3697#endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3698
3699/**
3700 *	velocity_init_module	-	load time function
3701 *
3702 *	Called when the velocity module is loaded. The PCI driver
3703 *	is registered with the PCI layer, and in turn will call
3704 *	the probe functions for each velocity adapter installed
3705 *	in the system.
3706 */
3707static int __init velocity_init_module(void)
3708{
3709	int ret_pci, ret_platform;
3710
3711	velocity_register_notifier();
3712
3713	ret_pci = pci_register_driver(&velocity_pci_driver);
3714	ret_platform = platform_driver_register(&velocity_platform_driver);
3715
3716	/* if both_registers failed, remove the notifier */
3717	if ((ret_pci < 0) && (ret_platform < 0)) {
3718		velocity_unregister_notifier();
3719		return ret_pci;
3720	}
3721
3722	return 0;
3723}
3724
3725/**
3726 *	velocity_cleanup_module		-	module unload
3727 *
3728 *	When the velocity hardware is unloaded this function is called.
3729 *	It will clean up the notifiers and the unregister the PCI
3730 *	driver interface for this hardware. This in turn cleans up
3731 *	all discovered interfaces before returning from the function
3732 */
3733static void __exit velocity_cleanup_module(void)
3734{
3735	velocity_unregister_notifier();
3736
3737	pci_unregister_driver(&velocity_pci_driver);
3738	platform_driver_unregister(&velocity_platform_driver);
3739}
3740
3741module_init(velocity_init_module);
3742module_exit(velocity_cleanup_module);
3743