1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3	Written 1998-2001 by Donald Becker.
4
5	Current Maintainer: Kevin Brace <kevinbrace@bracecomputerlab.com>
6
7	This software may be used and distributed according to the terms of
8	the GNU General Public License (GPL), incorporated herein by reference.
9	Drivers based on or derived from this code fall under the GPL and must
10	retain the authorship, copyright and license notice.  This file is not
11	a complete program and may only be used when the entire operating
12	system is licensed under the GPL.
13
14	This driver is designed for the VIA VT86C100A Rhine-I.
15	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16	and management NIC 6105M).
17
18	The author may be reached as becker@scyld.com, or C/O
19	Scyld Computing Corporation
20	410 Severn Ave., Suite 210
21	Annapolis MD 21403
22
23
24	This driver contains some changes from the original Donald Becker
25	version. He may or may not be interested in bug reports on this
26	code. You can find his versions at:
27	http://www.scyld.com/network/via-rhine.html
28	[link no longer provides useful info -jgarzik]
29
30*/
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#define DRV_NAME	"via-rhine"
35
36#include <linux/types.h>
37
38/* A few user-configurable values.
39   These may be modified when a driver module is loaded. */
40static int debug = 0;
41#define RHINE_MSG_DEFAULT \
42        (0x0000)
43
44/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
45   Setting to > 1518 effectively disables this feature. */
46#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
47	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
48	defined(__sh__) || defined(__mips__)
49static int rx_copybreak = 1518;
50#else
51static int rx_copybreak;
52#endif
53
54/* Work-around for broken BIOSes: they are unable to get the chip back out of
55   power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
56static bool avoid_D3;
57
58/*
59 * In case you are looking for 'options[]' or 'full_duplex[]', they
60 * are gone. Use ethtool(8) instead.
61 */
62
63/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
64   The Rhine has a 64 element 8390-like hash table. */
65static const int multicast_filter_limit = 32;
66
67
68/* Operational parameters that are set at compile time. */
69
70/* Keep the ring sizes a power of two for compile efficiency.
71 * The compiler will convert <unsigned>'%'<2^N> into a bit mask.
72 * Making the Tx ring too large decreases the effectiveness of channel
73 * bonding and packet priority.
74 * With BQL support, we can increase TX ring safely.
75 * There are no ill effects from too-large receive rings.
76 */
77#define TX_RING_SIZE	64
78#define TX_QUEUE_LEN	(TX_RING_SIZE - 6)	/* Limit ring entries actually used. */
79#define RX_RING_SIZE	64
80
81/* Operational parameters that usually are not changed. */
82
83/* Time in jiffies before concluding the transmitter is hung. */
84#define TX_TIMEOUT	(2*HZ)
85
86#define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
87
88#include <linux/module.h>
89#include <linux/moduleparam.h>
90#include <linux/kernel.h>
91#include <linux/string.h>
92#include <linux/timer.h>
93#include <linux/errno.h>
94#include <linux/ioport.h>
95#include <linux/interrupt.h>
96#include <linux/pci.h>
97#include <linux/of.h>
98#include <linux/of_irq.h>
99#include <linux/platform_device.h>
100#include <linux/dma-mapping.h>
101#include <linux/netdevice.h>
102#include <linux/etherdevice.h>
103#include <linux/skbuff.h>
104#include <linux/init.h>
105#include <linux/delay.h>
106#include <linux/mii.h>
107#include <linux/ethtool.h>
108#include <linux/crc32.h>
109#include <linux/if_vlan.h>
110#include <linux/bitops.h>
111#include <linux/workqueue.h>
112#include <asm/processor.h>	/* Processor type for cache alignment. */
113#include <asm/io.h>
114#include <asm/irq.h>
115#include <linux/uaccess.h>
116#include <linux/dmi.h>
117
118MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
119MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
120MODULE_LICENSE("GPL");
121
122module_param(debug, int, 0);
123module_param(rx_copybreak, int, 0);
124module_param(avoid_D3, bool, 0);
125MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
126MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
127MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
128
129#define MCAM_SIZE	32
130#define VCAM_SIZE	32
131
132/*
133		Theory of Operation
134
135I. Board Compatibility
136
137This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
138controller.
139
140II. Board-specific settings
141
142Boards with this chip are functional only in a bus-master PCI slot.
143
144Many operational settings are loaded from the EEPROM to the Config word at
145offset 0x78. For most of these settings, this driver assumes that they are
146correct.
147If this driver is compiled to use PCI memory space operations the EEPROM
148must be configured to enable memory ops.
149
150III. Driver operation
151
152IIIa. Ring buffers
153
154This driver uses two statically allocated fixed-size descriptor lists
155formed into rings by a branch from the final descriptor to the beginning of
156the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
157
158IIIb/c. Transmit/Receive Structure
159
160This driver attempts to use a zero-copy receive and transmit scheme.
161
162Alas, all data buffers are required to start on a 32 bit boundary, so
163the driver must often copy transmit packets into bounce buffers.
164
165The driver allocates full frame size skbuffs for the Rx ring buffers at
166open() time and passes the skb->data field to the chip as receive data
167buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
168a fresh skbuff is allocated and the frame is copied to the new skbuff.
169When the incoming frame is larger, the skbuff is passed directly up the
170protocol stack. Buffers consumed this way are replaced by newly allocated
171skbuffs in the last phase of rhine_rx().
172
173The RX_COPYBREAK value is chosen to trade-off the memory wasted by
174using a full-sized skbuff for small frames vs. the copying costs of larger
175frames. New boards are typically used in generously configured machines
176and the underfilled buffers have negligible impact compared to the benefit of
177a single allocation size, so the default value of zero results in never
178copying packets. When copying is done, the cost is usually mitigated by using
179a combined copy/checksum routine. Copying also preloads the cache, which is
180most useful with small frames.
181
182Since the VIA chips are only able to transfer data to buffers on 32 bit
183boundaries, the IP header at offset 14 in an ethernet frame isn't
184longword aligned for further processing. Copying these unaligned buffers
185has the beneficial effect of 16-byte aligning the IP header.
186
187IIId. Synchronization
188
189The driver runs as two independent, single-threaded flows of control. One
190is the send-packet routine, which enforces single-threaded use by the
191netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
192which is single threaded by the hardware and interrupt handling software.
193
194The send packet thread has partial control over the Tx ring. It locks the
195netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
196the ring is not available it stops the transmit queue by
197calling netif_stop_queue.
198
199The interrupt handler has exclusive control over the Rx ring and records stats
200from the Tx ring. After reaping the stats, it marks the Tx queue entry as
201empty by incrementing the dirty_tx mark. If at least half of the entries in
202the Rx ring are available the transmit queue is woken up if it was stopped.
203
204IV. Notes
205
206IVb. References
207
208Preliminary VT86C100A manual from http://www.via.com.tw/
209http://www.scyld.com/expert/100mbps.html
210http://www.scyld.com/expert/NWay.html
211ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
212ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
213
214
215IVc. Errata
216
217The VT86C100A manual is not reliable information.
218The 3043 chip does not handle unaligned transmit or receive buffers, resulting
219in significant performance degradation for bounce buffer copies on transmit
220and unaligned IP headers on receive.
221The chip does not pad to minimum transmit length.
222
223*/
224
225
226/* This table drives the PCI probe routines. It's mostly boilerplate in all
227   of the drivers, and will likely be provided by some future kernel.
228   Note the matching code -- the first table entry matchs all 56** cards but
229   second only the 1234 card.
230*/
231
232enum rhine_revs {
233	VT86C100A	= 0x00,
234	VTunknown0	= 0x20,
235	VT6102		= 0x40,
236	VT8231		= 0x50,	/* Integrated MAC */
237	VT8233		= 0x60,	/* Integrated MAC */
238	VT8235		= 0x74,	/* Integrated MAC */
239	VT8237		= 0x78,	/* Integrated MAC */
240	VT8251		= 0x7C,	/* Integrated MAC */
241	VT6105		= 0x80,
242	VT6105_B0	= 0x83,
243	VT6105L		= 0x8A,
244	VT6107		= 0x8C,
245	VTunknown2	= 0x8E,
246	VT6105M		= 0x90,	/* Management adapter */
247};
248
249enum rhine_quirks {
250	rqWOL		= 0x0001,	/* Wake-On-LAN support */
251	rqForceReset	= 0x0002,
252	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
253	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
254	rqRhineI	= 0x0100,	/* See comment below */
255	rqIntPHY	= 0x0200,	/* Integrated PHY */
256	rqMgmt		= 0x0400,	/* Management adapter */
257	rqNeedEnMMIO	= 0x0800,	/* Whether the core needs to be
258					 * switched from PIO mode to MMIO
259					 * (only applies to PCI)
260					 */
261};
262/*
263 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
264 * MMIO as well as for the collision counter and the Tx FIFO underflow
265 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
266 */
267
268/* Beware of PCI posted writes */
269#define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
270
271static const struct pci_device_id rhine_pci_tbl[] = {
272	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
273	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
274	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
275	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
276	{ }	/* terminate list */
277};
278MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
279
280/* OpenFirmware identifiers for platform-bus devices
281 * The .data field is currently only used to store quirks
282 */
283static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns;
284static const struct of_device_id rhine_of_tbl[] = {
285	{ .compatible = "via,vt8500-rhine", .data = &vt8500_quirks },
286	{ }	/* terminate list */
287};
288MODULE_DEVICE_TABLE(of, rhine_of_tbl);
289
290/* Offsets to the device registers. */
291enum register_offsets {
292	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
293	ChipCmd1=0x09, TQWake=0x0A,
294	IntrStatus=0x0C, IntrEnable=0x0E,
295	MulticastFilter0=0x10, MulticastFilter1=0x14,
296	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
297	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
298	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
299	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
300	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
301	StickyHW=0x83, IntrStatus2=0x84,
302	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
303	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
304	WOLcrClr1=0xA6, WOLcgClr=0xA7,
305	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
306};
307
308/* Bits in ConfigD */
309enum backoff_bits {
310	BackOptional=0x01, BackModify=0x02,
311	BackCaptureEffect=0x04, BackRandom=0x08
312};
313
314/* Bits in the TxConfig (TCR) register */
315enum tcr_bits {
316	TCR_PQEN=0x01,
317	TCR_LB0=0x02,		/* loopback[0] */
318	TCR_LB1=0x04,		/* loopback[1] */
319	TCR_OFSET=0x08,
320	TCR_RTGOPT=0x10,
321	TCR_RTFT0=0x20,
322	TCR_RTFT1=0x40,
323	TCR_RTSF=0x80,
324};
325
326/* Bits in the CamCon (CAMC) register */
327enum camcon_bits {
328	CAMC_CAMEN=0x01,
329	CAMC_VCAMSL=0x02,
330	CAMC_CAMWR=0x04,
331	CAMC_CAMRD=0x08,
332};
333
334/* Bits in the PCIBusConfig1 (BCR1) register */
335enum bcr1_bits {
336	BCR1_POT0=0x01,
337	BCR1_POT1=0x02,
338	BCR1_POT2=0x04,
339	BCR1_CTFT0=0x08,
340	BCR1_CTFT1=0x10,
341	BCR1_CTSF=0x20,
342	BCR1_TXQNOBK=0x40,	/* for VT6105 */
343	BCR1_VIDFR=0x80,	/* for VT6105 */
344	BCR1_MED0=0x40,		/* for VT6102 */
345	BCR1_MED1=0x80,		/* for VT6102 */
346};
347
348/* Registers we check that mmio and reg are the same. */
349static const int mmio_verify_registers[] = {
350	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
351	0
352};
353
354/* Bits in the interrupt status/mask registers. */
355enum intr_status_bits {
356	IntrRxDone	= 0x0001,
357	IntrTxDone	= 0x0002,
358	IntrRxErr	= 0x0004,
359	IntrTxError	= 0x0008,
360	IntrRxEmpty	= 0x0020,
361	IntrPCIErr	= 0x0040,
362	IntrStatsMax	= 0x0080,
363	IntrRxEarly	= 0x0100,
364	IntrTxUnderrun	= 0x0210,
365	IntrRxOverflow	= 0x0400,
366	IntrRxDropped	= 0x0800,
367	IntrRxNoBuf	= 0x1000,
368	IntrTxAborted	= 0x2000,
369	IntrLinkChange	= 0x4000,
370	IntrRxWakeUp	= 0x8000,
371	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
372	IntrNormalSummary	= IntrRxDone | IntrTxDone,
373	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
374				  IntrTxUnderrun,
375};
376
377/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
378enum wol_bits {
379	WOLucast	= 0x10,
380	WOLmagic	= 0x20,
381	WOLbmcast	= 0x30,
382	WOLlnkon	= 0x40,
383	WOLlnkoff	= 0x80,
384};
385
386/* The Rx and Tx buffer descriptors. */
387struct rx_desc {
388	__le32 rx_status;
389	__le32 desc_length; /* Chain flag, Buffer/frame length */
390	__le32 addr;
391	__le32 next_desc;
392};
393struct tx_desc {
394	__le32 tx_status;
395	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
396	__le32 addr;
397	__le32 next_desc;
398};
399
400/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
401#define TXDESC		0x00e08000
402
403enum rx_status_bits {
404	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
405};
406
407/* Bits in *_desc.*_status */
408enum desc_status_bits {
409	DescOwn=0x80000000
410};
411
412/* Bits in *_desc.*_length */
413enum desc_length_bits {
414	DescTag=0x00010000
415};
416
417/* Bits in ChipCmd. */
418enum chip_cmd_bits {
419	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
420	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
421	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
422	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
423};
424
425struct rhine_stats {
426	u64		packets;
427	u64		bytes;
428	struct u64_stats_sync syncp;
429};
430
431struct rhine_private {
432	/* Bit mask for configured VLAN ids */
433	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
434
435	/* Descriptor rings */
436	struct rx_desc *rx_ring;
437	struct tx_desc *tx_ring;
438	dma_addr_t rx_ring_dma;
439	dma_addr_t tx_ring_dma;
440
441	/* The addresses of receive-in-place skbuffs. */
442	struct sk_buff *rx_skbuff[RX_RING_SIZE];
443	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
444
445	/* The saved address of a sent-in-place packet/buffer, for later free(). */
446	struct sk_buff *tx_skbuff[TX_RING_SIZE];
447	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
448
449	/* Tx bounce buffers (Rhine-I only) */
450	unsigned char *tx_buf[TX_RING_SIZE];
451	unsigned char *tx_bufs;
452	dma_addr_t tx_bufs_dma;
453
454	int irq;
455	long pioaddr;
456	struct net_device *dev;
457	struct napi_struct napi;
458	spinlock_t lock;
459	struct mutex task_lock;
460	bool task_enable;
461	struct work_struct slow_event_task;
462	struct work_struct reset_task;
463
464	u32 msg_enable;
465
466	/* Frequently used values: keep some adjacent for cache effect. */
467	u32 quirks;
468	unsigned int cur_rx;
469	unsigned int cur_tx, dirty_tx;
470	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
471	struct rhine_stats rx_stats;
472	struct rhine_stats tx_stats;
473	u8 wolopts;
474
475	u8 tx_thresh, rx_thresh;
476
477	struct mii_if_info mii_if;
478	void __iomem *base;
479};
480
481#define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
482#define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
483#define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
484
485#define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
486#define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
487#define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))
488
489#define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
490#define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
491#define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
492
493#define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
494#define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
495#define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
496
497
498static int  mdio_read(struct net_device *dev, int phy_id, int location);
499static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
500static int  rhine_open(struct net_device *dev);
501static void rhine_reset_task(struct work_struct *work);
502static void rhine_slow_event_task(struct work_struct *work);
503static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue);
504static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
505				  struct net_device *dev);
506static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
507static void rhine_tx(struct net_device *dev);
508static int rhine_rx(struct net_device *dev, int limit);
509static void rhine_set_rx_mode(struct net_device *dev);
510static void rhine_get_stats64(struct net_device *dev,
511			      struct rtnl_link_stats64 *stats);
512static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
513static const struct ethtool_ops netdev_ethtool_ops;
514static int  rhine_close(struct net_device *dev);
515static int rhine_vlan_rx_add_vid(struct net_device *dev,
516				 __be16 proto, u16 vid);
517static int rhine_vlan_rx_kill_vid(struct net_device *dev,
518				  __be16 proto, u16 vid);
519static void rhine_restart_tx(struct net_device *dev);
520
521static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
522{
523	void __iomem *ioaddr = rp->base;
524	int i;
525
526	for (i = 0; i < 1024; i++) {
527		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
528
529		if (low ^ has_mask_bits)
530			break;
531		udelay(10);
532	}
533	if (i > 64) {
534		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
535			  "count: %04d\n", low ? "low" : "high", reg, mask, i);
536	}
537}
538
539static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
540{
541	rhine_wait_bit(rp, reg, mask, false);
542}
543
544static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
545{
546	rhine_wait_bit(rp, reg, mask, true);
547}
548
549static u32 rhine_get_events(struct rhine_private *rp)
550{
551	void __iomem *ioaddr = rp->base;
552	u32 intr_status;
553
554	intr_status = ioread16(ioaddr + IntrStatus);
555	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
556	if (rp->quirks & rqStatusWBRace)
557		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
558	return intr_status;
559}
560
561static void rhine_ack_events(struct rhine_private *rp, u32 mask)
562{
563	void __iomem *ioaddr = rp->base;
564
565	if (rp->quirks & rqStatusWBRace)
566		iowrite8(mask >> 16, ioaddr + IntrStatus2);
567	iowrite16(mask, ioaddr + IntrStatus);
568}
569
570/*
571 * Get power related registers into sane state.
572 * Notify user about past WOL event.
573 */
574static void rhine_power_init(struct net_device *dev)
575{
576	struct rhine_private *rp = netdev_priv(dev);
577	void __iomem *ioaddr = rp->base;
578	u16 wolstat;
579
580	if (rp->quirks & rqWOL) {
581		/* Make sure chip is in power state D0 */
582		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
583
584		/* Disable "force PME-enable" */
585		iowrite8(0x80, ioaddr + WOLcgClr);
586
587		/* Clear power-event config bits (WOL) */
588		iowrite8(0xFF, ioaddr + WOLcrClr);
589		/* More recent cards can manage two additional patterns */
590		if (rp->quirks & rq6patterns)
591			iowrite8(0x03, ioaddr + WOLcrClr1);
592
593		/* Save power-event status bits */
594		wolstat = ioread8(ioaddr + PwrcsrSet);
595		if (rp->quirks & rq6patterns)
596			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
597
598		/* Clear power-event status bits */
599		iowrite8(0xFF, ioaddr + PwrcsrClr);
600		if (rp->quirks & rq6patterns)
601			iowrite8(0x03, ioaddr + PwrcsrClr1);
602
603		if (wolstat) {
604			char *reason;
605			switch (wolstat) {
606			case WOLmagic:
607				reason = "Magic packet";
608				break;
609			case WOLlnkon:
610				reason = "Link went up";
611				break;
612			case WOLlnkoff:
613				reason = "Link went down";
614				break;
615			case WOLucast:
616				reason = "Unicast packet";
617				break;
618			case WOLbmcast:
619				reason = "Multicast/broadcast packet";
620				break;
621			default:
622				reason = "Unknown";
623			}
624			netdev_info(dev, "Woke system up. Reason: %s\n",
625				    reason);
626		}
627	}
628}
629
630static void rhine_chip_reset(struct net_device *dev)
631{
632	struct rhine_private *rp = netdev_priv(dev);
633	void __iomem *ioaddr = rp->base;
634	u8 cmd1;
635
636	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
637	IOSYNC;
638
639	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
640		netdev_info(dev, "Reset not complete yet. Trying harder.\n");
641
642		/* Force reset */
643		if (rp->quirks & rqForceReset)
644			iowrite8(0x40, ioaddr + MiscCmd);
645
646		/* Reset can take somewhat longer (rare) */
647		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
648	}
649
650	cmd1 = ioread8(ioaddr + ChipCmd1);
651	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
652		   "failed" : "succeeded");
653}
654
655static void enable_mmio(long pioaddr, u32 quirks)
656{
657	int n;
658
659	if (quirks & rqNeedEnMMIO) {
660		if (quirks & rqRhineI) {
661			/* More recent docs say that this bit is reserved */
662			n = inb(pioaddr + ConfigA) | 0x20;
663			outb(n, pioaddr + ConfigA);
664		} else {
665			n = inb(pioaddr + ConfigD) | 0x80;
666			outb(n, pioaddr + ConfigD);
667		}
668	}
669}
670
671static inline int verify_mmio(struct device *hwdev,
672			      long pioaddr,
673			      void __iomem *ioaddr,
674			      u32 quirks)
675{
676	if (quirks & rqNeedEnMMIO) {
677		int i = 0;
678
679		/* Check that selected MMIO registers match the PIO ones */
680		while (mmio_verify_registers[i]) {
681			int reg = mmio_verify_registers[i++];
682			unsigned char a = inb(pioaddr+reg);
683			unsigned char b = readb(ioaddr+reg);
684
685			if (a != b) {
686				dev_err(hwdev,
687					"MMIO do not match PIO [%02x] (%02x != %02x)\n",
688					reg, a, b);
689				return -EIO;
690			}
691		}
692	}
693	return 0;
694}
695
696/*
697 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
698 * (plus 0x6C for Rhine-I/II)
699 */
700static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
701{
702	struct rhine_private *rp = netdev_priv(dev);
703	void __iomem *ioaddr = rp->base;
704	int i;
705
706	outb(0x20, pioaddr + MACRegEEcsr);
707	for (i = 0; i < 1024; i++) {
708		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
709			break;
710	}
711	if (i > 512)
712		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
713
714	/*
715	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
716	 * MMIO. If reloading EEPROM was done first this could be avoided, but
717	 * it is not known if that still works with the "win98-reboot" problem.
718	 */
719	enable_mmio(pioaddr, rp->quirks);
720
721	/* Turn off EEPROM-controlled wake-up (magic packet) */
722	if (rp->quirks & rqWOL)
723		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
724
725}
726
727#ifdef CONFIG_NET_POLL_CONTROLLER
728static void rhine_poll(struct net_device *dev)
729{
730	struct rhine_private *rp = netdev_priv(dev);
731	const int irq = rp->irq;
732
733	disable_irq(irq);
734	rhine_interrupt(irq, dev);
735	enable_irq(irq);
736}
737#endif
738
739static void rhine_kick_tx_threshold(struct rhine_private *rp)
740{
741	if (rp->tx_thresh < 0xe0) {
742		void __iomem *ioaddr = rp->base;
743
744		rp->tx_thresh += 0x20;
745		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
746	}
747}
748
749static void rhine_tx_err(struct rhine_private *rp, u32 status)
750{
751	struct net_device *dev = rp->dev;
752
753	if (status & IntrTxAborted) {
754		netif_info(rp, tx_err, dev,
755			   "Abort %08x, frame dropped\n", status);
756	}
757
758	if (status & IntrTxUnderrun) {
759		rhine_kick_tx_threshold(rp);
760		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
761			   "Tx threshold now %02x\n", rp->tx_thresh);
762	}
763
764	if (status & IntrTxDescRace)
765		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
766
767	if ((status & IntrTxError) &&
768	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
769		rhine_kick_tx_threshold(rp);
770		netif_info(rp, tx_err, dev, "Unspecified error. "
771			   "Tx threshold now %02x\n", rp->tx_thresh);
772	}
773
774	rhine_restart_tx(dev);
775}
776
777static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
778{
779	void __iomem *ioaddr = rp->base;
780	struct net_device_stats *stats = &rp->dev->stats;
781
782	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
783	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
784
785	/*
786	 * Clears the "tally counters" for CRC errors and missed frames(?).
787	 * It has been reported that some chips need a write of 0 to clear
788	 * these, for others the counters are set to 1 when written to and
789	 * instead cleared when read. So we clear them both ways ...
790	 */
791	iowrite32(0, ioaddr + RxMissed);
792	ioread16(ioaddr + RxCRCErrs);
793	ioread16(ioaddr + RxMissed);
794}
795
796#define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
797				 IntrRxErr | \
798				 IntrRxEmpty | \
799				 IntrRxOverflow	| \
800				 IntrRxDropped | \
801				 IntrRxNoBuf | \
802				 IntrRxWakeUp)
803
804#define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
805				 IntrTxAborted | \
806				 IntrTxUnderrun | \
807				 IntrTxDescRace)
808#define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
809
810#define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
811				 RHINE_EVENT_NAPI_TX | \
812				 IntrStatsMax)
813#define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
814#define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
815
816static int rhine_napipoll(struct napi_struct *napi, int budget)
817{
818	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
819	struct net_device *dev = rp->dev;
820	void __iomem *ioaddr = rp->base;
821	u16 enable_mask = RHINE_EVENT & 0xffff;
822	int work_done = 0;
823	u32 status;
824
825	status = rhine_get_events(rp);
826	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
827
828	if (status & RHINE_EVENT_NAPI_RX)
829		work_done += rhine_rx(dev, budget);
830
831	if (status & RHINE_EVENT_NAPI_TX) {
832		if (status & RHINE_EVENT_NAPI_TX_ERR) {
833			/* Avoid scavenging before Tx engine turned off */
834			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
835			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
836				netif_warn(rp, tx_err, dev, "Tx still on\n");
837		}
838
839		rhine_tx(dev);
840
841		if (status & RHINE_EVENT_NAPI_TX_ERR)
842			rhine_tx_err(rp, status);
843	}
844
845	if (status & IntrStatsMax) {
846		spin_lock(&rp->lock);
847		rhine_update_rx_crc_and_missed_errord(rp);
848		spin_unlock(&rp->lock);
849	}
850
851	if (status & RHINE_EVENT_SLOW) {
852		enable_mask &= ~RHINE_EVENT_SLOW;
853		schedule_work(&rp->slow_event_task);
854	}
855
856	if (work_done < budget) {
857		napi_complete_done(napi, work_done);
858		iowrite16(enable_mask, ioaddr + IntrEnable);
859	}
860	return work_done;
861}
862
863static void rhine_hw_init(struct net_device *dev, long pioaddr)
864{
865	struct rhine_private *rp = netdev_priv(dev);
866
867	/* Reset the chip to erase previous misconfiguration. */
868	rhine_chip_reset(dev);
869
870	/* Rhine-I needs extra time to recuperate before EEPROM reload */
871	if (rp->quirks & rqRhineI)
872		msleep(5);
873
874	/* Reload EEPROM controlled bytes cleared by soft reset */
875	if (dev_is_pci(dev->dev.parent))
876		rhine_reload_eeprom(pioaddr, dev);
877}
878
879static const struct net_device_ops rhine_netdev_ops = {
880	.ndo_open		 = rhine_open,
881	.ndo_stop		 = rhine_close,
882	.ndo_start_xmit		 = rhine_start_tx,
883	.ndo_get_stats64	 = rhine_get_stats64,
884	.ndo_set_rx_mode	 = rhine_set_rx_mode,
885	.ndo_validate_addr	 = eth_validate_addr,
886	.ndo_set_mac_address 	 = eth_mac_addr,
887	.ndo_eth_ioctl		 = netdev_ioctl,
888	.ndo_tx_timeout 	 = rhine_tx_timeout,
889	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
890	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
891#ifdef CONFIG_NET_POLL_CONTROLLER
892	.ndo_poll_controller	 = rhine_poll,
893#endif
894};
895
896static int rhine_init_one_common(struct device *hwdev, u32 quirks,
897				 long pioaddr, void __iomem *ioaddr, int irq)
898{
899	struct net_device *dev;
900	struct rhine_private *rp;
901	int i, rc, phy_id;
902	u8 addr[ETH_ALEN];
903	const char *name;
904
905	/* this should always be supported */
906	rc = dma_set_mask(hwdev, DMA_BIT_MASK(32));
907	if (rc) {
908		dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n");
909		goto err_out;
910	}
911
912	dev = alloc_etherdev(sizeof(struct rhine_private));
913	if (!dev) {
914		rc = -ENOMEM;
915		goto err_out;
916	}
917	SET_NETDEV_DEV(dev, hwdev);
918
919	rp = netdev_priv(dev);
920	rp->dev = dev;
921	rp->quirks = quirks;
922	rp->pioaddr = pioaddr;
923	rp->base = ioaddr;
924	rp->irq = irq;
925	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
926
927	phy_id = rp->quirks & rqIntPHY ? 1 : 0;
928
929	u64_stats_init(&rp->tx_stats.syncp);
930	u64_stats_init(&rp->rx_stats.syncp);
931
932	/* Get chip registers into a sane state */
933	rhine_power_init(dev);
934	rhine_hw_init(dev, pioaddr);
935
936	for (i = 0; i < 6; i++)
937		addr[i] = ioread8(ioaddr + StationAddr + i);
938	eth_hw_addr_set(dev, addr);
939
940	if (!is_valid_ether_addr(dev->dev_addr)) {
941		/* Report it and use a random ethernet address instead */
942		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
943		eth_hw_addr_random(dev);
944		netdev_info(dev, "Using random MAC address: %pM\n",
945			    dev->dev_addr);
946	}
947
948	/* For Rhine-I/II, phy_id is loaded from EEPROM */
949	if (!phy_id)
950		phy_id = ioread8(ioaddr + 0x6C);
951
952	spin_lock_init(&rp->lock);
953	mutex_init(&rp->task_lock);
954	INIT_WORK(&rp->reset_task, rhine_reset_task);
955	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
956
957	rp->mii_if.dev = dev;
958	rp->mii_if.mdio_read = mdio_read;
959	rp->mii_if.mdio_write = mdio_write;
960	rp->mii_if.phy_id_mask = 0x1f;
961	rp->mii_if.reg_num_mask = 0x1f;
962
963	/* The chip-specific entries in the device structure. */
964	dev->netdev_ops = &rhine_netdev_ops;
965	dev->ethtool_ops = &netdev_ethtool_ops;
966	dev->watchdog_timeo = TX_TIMEOUT;
967
968	netif_napi_add(dev, &rp->napi, rhine_napipoll);
969
970	if (rp->quirks & rqRhineI)
971		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
972
973	if (rp->quirks & rqMgmt)
974		dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
975				 NETIF_F_HW_VLAN_CTAG_RX |
976				 NETIF_F_HW_VLAN_CTAG_FILTER;
977
978	/* dev->name not defined before register_netdev()! */
979	rc = register_netdev(dev);
980	if (rc)
981		goto err_out_free_netdev;
982
983	if (rp->quirks & rqRhineI)
984		name = "Rhine";
985	else if (rp->quirks & rqStatusWBRace)
986		name = "Rhine II";
987	else if (rp->quirks & rqMgmt)
988		name = "Rhine III (Management Adapter)";
989	else
990		name = "Rhine III";
991
992	netdev_info(dev, "VIA %s at %p, %pM, IRQ %d\n",
993		    name, ioaddr, dev->dev_addr, rp->irq);
994
995	dev_set_drvdata(hwdev, dev);
996
997	{
998		u16 mii_cmd;
999		int mii_status = mdio_read(dev, phy_id, 1);
1000		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1001		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1002		if (mii_status != 0xffff && mii_status != 0x0000) {
1003			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1004			netdev_info(dev,
1005				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1006				    phy_id,
1007				    mii_status, rp->mii_if.advertising,
1008				    mdio_read(dev, phy_id, 5));
1009
1010			/* set IFF_RUNNING */
1011			if (mii_status & BMSR_LSTATUS)
1012				netif_carrier_on(dev);
1013			else
1014				netif_carrier_off(dev);
1015
1016		}
1017	}
1018	rp->mii_if.phy_id = phy_id;
1019	if (avoid_D3)
1020		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1021
1022	return 0;
1023
1024err_out_free_netdev:
1025	free_netdev(dev);
1026err_out:
1027	return rc;
1028}
1029
1030static int rhine_init_one_pci(struct pci_dev *pdev,
1031			      const struct pci_device_id *ent)
1032{
1033	struct device *hwdev = &pdev->dev;
1034	int rc;
1035	long pioaddr, memaddr;
1036	void __iomem *ioaddr;
1037	int io_size = pdev->revision < VTunknown0 ? 128 : 256;
1038
1039/* This driver was written to use PCI memory space. Some early versions
1040 * of the Rhine may only work correctly with I/O space accesses.
1041 * TODO: determine for which revisions this is true and assign the flag
1042 *	 in code as opposed to this Kconfig option (???)
1043 */
1044#ifdef CONFIG_VIA_RHINE_MMIO
1045	u32 quirks = rqNeedEnMMIO;
1046#else
1047	u32 quirks = 0;
1048#endif
1049
1050	rc = pci_enable_device(pdev);
1051	if (rc)
1052		goto err_out;
1053
1054	if (pdev->revision < VTunknown0) {
1055		quirks |= rqRhineI;
1056	} else if (pdev->revision >= VT6102) {
1057		quirks |= rqWOL | rqForceReset;
1058		if (pdev->revision < VT6105) {
1059			quirks |= rqStatusWBRace;
1060		} else {
1061			quirks |= rqIntPHY;
1062			if (pdev->revision >= VT6105_B0)
1063				quirks |= rq6patterns;
1064			if (pdev->revision >= VT6105M)
1065				quirks |= rqMgmt;
1066		}
1067	}
1068
1069	/* sanity check */
1070	if ((pci_resource_len(pdev, 0) < io_size) ||
1071	    (pci_resource_len(pdev, 1) < io_size)) {
1072		rc = -EIO;
1073		dev_err(hwdev, "Insufficient PCI resources, aborting\n");
1074		goto err_out_pci_disable;
1075	}
1076
1077	pioaddr = pci_resource_start(pdev, 0);
1078	memaddr = pci_resource_start(pdev, 1);
1079
1080	pci_set_master(pdev);
1081
1082	rc = pci_request_regions(pdev, DRV_NAME);
1083	if (rc)
1084		goto err_out_pci_disable;
1085
1086	ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size);
1087	if (!ioaddr) {
1088		rc = -EIO;
1089		dev_err(hwdev,
1090			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
1091			dev_name(hwdev), io_size, memaddr);
1092		goto err_out_free_res;
1093	}
1094
1095	enable_mmio(pioaddr, quirks);
1096
1097	rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks);
1098	if (rc)
1099		goto err_out_unmap;
1100
1101	rc = rhine_init_one_common(&pdev->dev, quirks,
1102				   pioaddr, ioaddr, pdev->irq);
1103	if (!rc)
1104		return 0;
1105
1106err_out_unmap:
1107	pci_iounmap(pdev, ioaddr);
1108err_out_free_res:
1109	pci_release_regions(pdev);
1110err_out_pci_disable:
1111	pci_disable_device(pdev);
1112err_out:
1113	return rc;
1114}
1115
1116static int rhine_init_one_platform(struct platform_device *pdev)
1117{
1118	const u32 *quirks;
1119	int irq;
1120	void __iomem *ioaddr;
1121
1122	quirks = of_device_get_match_data(&pdev->dev);
1123	if (!quirks)
1124		return -EINVAL;
1125
1126	ioaddr = devm_platform_ioremap_resource(pdev, 0);
1127	if (IS_ERR(ioaddr))
1128		return PTR_ERR(ioaddr);
1129
1130	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1131	if (!irq)
1132		return -EINVAL;
1133
1134	return rhine_init_one_common(&pdev->dev, *quirks,
1135				     (long)ioaddr, ioaddr, irq);
1136}
1137
1138static int alloc_ring(struct net_device* dev)
1139{
1140	struct rhine_private *rp = netdev_priv(dev);
1141	struct device *hwdev = dev->dev.parent;
1142	void *ring;
1143	dma_addr_t ring_dma;
1144
1145	ring = dma_alloc_coherent(hwdev,
1146				  RX_RING_SIZE * sizeof(struct rx_desc) +
1147				  TX_RING_SIZE * sizeof(struct tx_desc),
1148				  &ring_dma,
1149				  GFP_ATOMIC);
1150	if (!ring) {
1151		netdev_err(dev, "Could not allocate DMA memory\n");
1152		return -ENOMEM;
1153	}
1154	if (rp->quirks & rqRhineI) {
1155		rp->tx_bufs = dma_alloc_coherent(hwdev,
1156						 PKT_BUF_SZ * TX_RING_SIZE,
1157						 &rp->tx_bufs_dma,
1158						 GFP_ATOMIC);
1159		if (rp->tx_bufs == NULL) {
1160			dma_free_coherent(hwdev,
1161					  RX_RING_SIZE * sizeof(struct rx_desc) +
1162					  TX_RING_SIZE * sizeof(struct tx_desc),
1163					  ring, ring_dma);
1164			return -ENOMEM;
1165		}
1166	}
1167
1168	rp->rx_ring = ring;
1169	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1170	rp->rx_ring_dma = ring_dma;
1171	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1172
1173	return 0;
1174}
1175
1176static void free_ring(struct net_device* dev)
1177{
1178	struct rhine_private *rp = netdev_priv(dev);
1179	struct device *hwdev = dev->dev.parent;
1180
1181	dma_free_coherent(hwdev,
1182			  RX_RING_SIZE * sizeof(struct rx_desc) +
1183			  TX_RING_SIZE * sizeof(struct tx_desc),
1184			  rp->rx_ring, rp->rx_ring_dma);
1185	rp->tx_ring = NULL;
1186
1187	if (rp->tx_bufs)
1188		dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE,
1189				  rp->tx_bufs, rp->tx_bufs_dma);
1190
1191	rp->tx_bufs = NULL;
1192
1193}
1194
1195struct rhine_skb_dma {
1196	struct sk_buff *skb;
1197	dma_addr_t dma;
1198};
1199
1200static inline int rhine_skb_dma_init(struct net_device *dev,
1201				     struct rhine_skb_dma *sd)
1202{
1203	struct rhine_private *rp = netdev_priv(dev);
1204	struct device *hwdev = dev->dev.parent;
1205	const int size = rp->rx_buf_sz;
1206
1207	sd->skb = netdev_alloc_skb(dev, size);
1208	if (!sd->skb)
1209		return -ENOMEM;
1210
1211	sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE);
1212	if (unlikely(dma_mapping_error(hwdev, sd->dma))) {
1213		netif_err(rp, drv, dev, "Rx DMA mapping failure\n");
1214		dev_kfree_skb_any(sd->skb);
1215		return -EIO;
1216	}
1217
1218	return 0;
1219}
1220
1221static void rhine_reset_rbufs(struct rhine_private *rp)
1222{
1223	int i;
1224
1225	rp->cur_rx = 0;
1226
1227	for (i = 0; i < RX_RING_SIZE; i++)
1228		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1229}
1230
1231static inline void rhine_skb_dma_nic_store(struct rhine_private *rp,
1232					   struct rhine_skb_dma *sd, int entry)
1233{
1234	rp->rx_skbuff_dma[entry] = sd->dma;
1235	rp->rx_skbuff[entry] = sd->skb;
1236
1237	rp->rx_ring[entry].addr = cpu_to_le32(sd->dma);
1238	dma_wmb();
1239}
1240
1241static void free_rbufs(struct net_device* dev);
1242
1243static int alloc_rbufs(struct net_device *dev)
1244{
1245	struct rhine_private *rp = netdev_priv(dev);
1246	dma_addr_t next;
1247	int rc, i;
1248
1249	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1250	next = rp->rx_ring_dma;
1251
1252	/* Init the ring entries */
1253	for (i = 0; i < RX_RING_SIZE; i++) {
1254		rp->rx_ring[i].rx_status = 0;
1255		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1256		next += sizeof(struct rx_desc);
1257		rp->rx_ring[i].next_desc = cpu_to_le32(next);
1258		rp->rx_skbuff[i] = NULL;
1259	}
1260	/* Mark the last entry as wrapping the ring. */
1261	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1262
1263	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1264	for (i = 0; i < RX_RING_SIZE; i++) {
1265		struct rhine_skb_dma sd;
1266
1267		rc = rhine_skb_dma_init(dev, &sd);
1268		if (rc < 0) {
1269			free_rbufs(dev);
1270			goto out;
1271		}
1272
1273		rhine_skb_dma_nic_store(rp, &sd, i);
1274	}
1275
1276	rhine_reset_rbufs(rp);
1277out:
1278	return rc;
1279}
1280
1281static void free_rbufs(struct net_device* dev)
1282{
1283	struct rhine_private *rp = netdev_priv(dev);
1284	struct device *hwdev = dev->dev.parent;
1285	int i;
1286
1287	/* Free all the skbuffs in the Rx queue. */
1288	for (i = 0; i < RX_RING_SIZE; i++) {
1289		rp->rx_ring[i].rx_status = 0;
1290		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1291		if (rp->rx_skbuff[i]) {
1292			dma_unmap_single(hwdev,
1293					 rp->rx_skbuff_dma[i],
1294					 rp->rx_buf_sz, DMA_FROM_DEVICE);
1295			dev_kfree_skb(rp->rx_skbuff[i]);
1296		}
1297		rp->rx_skbuff[i] = NULL;
1298	}
1299}
1300
1301static void alloc_tbufs(struct net_device* dev)
1302{
1303	struct rhine_private *rp = netdev_priv(dev);
1304	dma_addr_t next;
1305	int i;
1306
1307	rp->dirty_tx = rp->cur_tx = 0;
1308	next = rp->tx_ring_dma;
1309	for (i = 0; i < TX_RING_SIZE; i++) {
1310		rp->tx_skbuff[i] = NULL;
1311		rp->tx_ring[i].tx_status = 0;
1312		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1313		next += sizeof(struct tx_desc);
1314		rp->tx_ring[i].next_desc = cpu_to_le32(next);
1315		if (rp->quirks & rqRhineI)
1316			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1317	}
1318	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1319
1320	netdev_reset_queue(dev);
1321}
1322
1323static void free_tbufs(struct net_device* dev)
1324{
1325	struct rhine_private *rp = netdev_priv(dev);
1326	struct device *hwdev = dev->dev.parent;
1327	int i;
1328
1329	for (i = 0; i < TX_RING_SIZE; i++) {
1330		rp->tx_ring[i].tx_status = 0;
1331		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1332		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1333		if (rp->tx_skbuff[i]) {
1334			if (rp->tx_skbuff_dma[i]) {
1335				dma_unmap_single(hwdev,
1336						 rp->tx_skbuff_dma[i],
1337						 rp->tx_skbuff[i]->len,
1338						 DMA_TO_DEVICE);
1339			}
1340			dev_kfree_skb(rp->tx_skbuff[i]);
1341		}
1342		rp->tx_skbuff[i] = NULL;
1343		rp->tx_buf[i] = NULL;
1344	}
1345}
1346
1347static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1348{
1349	struct rhine_private *rp = netdev_priv(dev);
1350	void __iomem *ioaddr = rp->base;
1351
1352	if (!rp->mii_if.force_media)
1353		mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1354
1355	if (rp->mii_if.full_duplex)
1356	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1357		   ioaddr + ChipCmd1);
1358	else
1359	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1360		   ioaddr + ChipCmd1);
1361
1362	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1363		   rp->mii_if.force_media, netif_carrier_ok(dev));
1364}
1365
1366/* Called after status of force_media possibly changed */
1367static void rhine_set_carrier(struct mii_if_info *mii)
1368{
1369	struct net_device *dev = mii->dev;
1370	struct rhine_private *rp = netdev_priv(dev);
1371
1372	if (mii->force_media) {
1373		/* autoneg is off: Link is always assumed to be up */
1374		if (!netif_carrier_ok(dev))
1375			netif_carrier_on(dev);
1376	}
1377
1378	rhine_check_media(dev, 0);
1379
1380	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1381		   mii->force_media, netif_carrier_ok(dev));
1382}
1383
1384/**
1385 * rhine_set_cam - set CAM multicast filters
1386 * @ioaddr: register block of this Rhine
1387 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1388 * @addr: multicast address (6 bytes)
1389 *
1390 * Load addresses into multicast filters.
1391 */
1392static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1393{
1394	int i;
1395
1396	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1397	wmb();
1398
1399	/* Paranoid -- idx out of range should never happen */
1400	idx &= (MCAM_SIZE - 1);
1401
1402	iowrite8((u8) idx, ioaddr + CamAddr);
1403
1404	for (i = 0; i < 6; i++, addr++)
1405		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1406	udelay(10);
1407	wmb();
1408
1409	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1410	udelay(10);
1411
1412	iowrite8(0, ioaddr + CamCon);
1413}
1414
1415/**
1416 * rhine_set_vlan_cam - set CAM VLAN filters
1417 * @ioaddr: register block of this Rhine
1418 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1419 * @addr: VLAN ID (2 bytes)
1420 *
1421 * Load addresses into VLAN filters.
1422 */
1423static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1424{
1425	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1426	wmb();
1427
1428	/* Paranoid -- idx out of range should never happen */
1429	idx &= (VCAM_SIZE - 1);
1430
1431	iowrite8((u8) idx, ioaddr + CamAddr);
1432
1433	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1434	udelay(10);
1435	wmb();
1436
1437	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1438	udelay(10);
1439
1440	iowrite8(0, ioaddr + CamCon);
1441}
1442
1443/**
1444 * rhine_set_cam_mask - set multicast CAM mask
1445 * @ioaddr: register block of this Rhine
1446 * @mask: multicast CAM mask
1447 *
1448 * Mask sets multicast filters active/inactive.
1449 */
1450static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1451{
1452	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1453	wmb();
1454
1455	/* write mask */
1456	iowrite32(mask, ioaddr + CamMask);
1457
1458	/* disable CAMEN */
1459	iowrite8(0, ioaddr + CamCon);
1460}
1461
1462/**
1463 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1464 * @ioaddr: register block of this Rhine
1465 * @mask: VLAN CAM mask
1466 *
1467 * Mask sets VLAN filters active/inactive.
1468 */
1469static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1470{
1471	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1472	wmb();
1473
1474	/* write mask */
1475	iowrite32(mask, ioaddr + CamMask);
1476
1477	/* disable CAMEN */
1478	iowrite8(0, ioaddr + CamCon);
1479}
1480
1481/**
1482 * rhine_init_cam_filter - initialize CAM filters
1483 * @dev: network device
1484 *
1485 * Initialize (disable) hardware VLAN and multicast support on this
1486 * Rhine.
1487 */
1488static void rhine_init_cam_filter(struct net_device *dev)
1489{
1490	struct rhine_private *rp = netdev_priv(dev);
1491	void __iomem *ioaddr = rp->base;
1492
1493	/* Disable all CAMs */
1494	rhine_set_vlan_cam_mask(ioaddr, 0);
1495	rhine_set_cam_mask(ioaddr, 0);
1496
1497	/* disable hardware VLAN support */
1498	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1499	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1500}
1501
1502/**
1503 * rhine_update_vcam - update VLAN CAM filters
1504 * @dev: rhine_private data of this Rhine
1505 *
1506 * Update VLAN CAM filters to match configuration change.
1507 */
1508static void rhine_update_vcam(struct net_device *dev)
1509{
1510	struct rhine_private *rp = netdev_priv(dev);
1511	void __iomem *ioaddr = rp->base;
1512	u16 vid;
1513	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
1514	unsigned int i = 0;
1515
1516	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1517		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1518		vCAMmask |= 1 << i;
1519		if (++i >= VCAM_SIZE)
1520			break;
1521	}
1522	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1523}
1524
1525static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1526{
1527	struct rhine_private *rp = netdev_priv(dev);
1528
1529	spin_lock_bh(&rp->lock);
1530	set_bit(vid, rp->active_vlans);
1531	rhine_update_vcam(dev);
1532	spin_unlock_bh(&rp->lock);
1533	return 0;
1534}
1535
1536static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1537{
1538	struct rhine_private *rp = netdev_priv(dev);
1539
1540	spin_lock_bh(&rp->lock);
1541	clear_bit(vid, rp->active_vlans);
1542	rhine_update_vcam(dev);
1543	spin_unlock_bh(&rp->lock);
1544	return 0;
1545}
1546
1547static void init_registers(struct net_device *dev)
1548{
1549	struct rhine_private *rp = netdev_priv(dev);
1550	void __iomem *ioaddr = rp->base;
1551	int i;
1552
1553	for (i = 0; i < 6; i++)
1554		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1555
1556	/* Initialize other registers. */
1557	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
1558	/* Configure initial FIFO thresholds. */
1559	iowrite8(0x20, ioaddr + TxConfig);
1560	rp->tx_thresh = 0x20;
1561	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
1562
1563	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1564	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1565
1566	rhine_set_rx_mode(dev);
1567
1568	if (rp->quirks & rqMgmt)
1569		rhine_init_cam_filter(dev);
1570
1571	napi_enable(&rp->napi);
1572
1573	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1574
1575	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1576	       ioaddr + ChipCmd);
1577	rhine_check_media(dev, 1);
1578}
1579
1580/* Enable MII link status auto-polling (required for IntrLinkChange) */
1581static void rhine_enable_linkmon(struct rhine_private *rp)
1582{
1583	void __iomem *ioaddr = rp->base;
1584
1585	iowrite8(0, ioaddr + MIICmd);
1586	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1587	iowrite8(0x80, ioaddr + MIICmd);
1588
1589	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1590
1591	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1592}
1593
1594/* Disable MII link status auto-polling (required for MDIO access) */
1595static void rhine_disable_linkmon(struct rhine_private *rp)
1596{
1597	void __iomem *ioaddr = rp->base;
1598
1599	iowrite8(0, ioaddr + MIICmd);
1600
1601	if (rp->quirks & rqRhineI) {
1602		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
1603
1604		/* Can be called from ISR. Evil. */
1605		mdelay(1);
1606
1607		/* 0x80 must be set immediately before turning it off */
1608		iowrite8(0x80, ioaddr + MIICmd);
1609
1610		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1611
1612		/* Heh. Now clear 0x80 again. */
1613		iowrite8(0, ioaddr + MIICmd);
1614	}
1615	else
1616		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1617}
1618
1619/* Read and write over the MII Management Data I/O (MDIO) interface. */
1620
1621static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1622{
1623	struct rhine_private *rp = netdev_priv(dev);
1624	void __iomem *ioaddr = rp->base;
1625	int result;
1626
1627	rhine_disable_linkmon(rp);
1628
1629	/* rhine_disable_linkmon already cleared MIICmd */
1630	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1631	iowrite8(regnum, ioaddr + MIIRegAddr);
1632	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
1633	rhine_wait_bit_low(rp, MIICmd, 0x40);
1634	result = ioread16(ioaddr + MIIData);
1635
1636	rhine_enable_linkmon(rp);
1637	return result;
1638}
1639
1640static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1641{
1642	struct rhine_private *rp = netdev_priv(dev);
1643	void __iomem *ioaddr = rp->base;
1644
1645	rhine_disable_linkmon(rp);
1646
1647	/* rhine_disable_linkmon already cleared MIICmd */
1648	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1649	iowrite8(regnum, ioaddr + MIIRegAddr);
1650	iowrite16(value, ioaddr + MIIData);
1651	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
1652	rhine_wait_bit_low(rp, MIICmd, 0x20);
1653
1654	rhine_enable_linkmon(rp);
1655}
1656
1657static void rhine_task_disable(struct rhine_private *rp)
1658{
1659	mutex_lock(&rp->task_lock);
1660	rp->task_enable = false;
1661	mutex_unlock(&rp->task_lock);
1662
1663	cancel_work_sync(&rp->slow_event_task);
1664	cancel_work_sync(&rp->reset_task);
1665}
1666
1667static void rhine_task_enable(struct rhine_private *rp)
1668{
1669	mutex_lock(&rp->task_lock);
1670	rp->task_enable = true;
1671	mutex_unlock(&rp->task_lock);
1672}
1673
1674static int rhine_open(struct net_device *dev)
1675{
1676	struct rhine_private *rp = netdev_priv(dev);
1677	void __iomem *ioaddr = rp->base;
1678	int rc;
1679
1680	rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev);
1681	if (rc)
1682		goto out;
1683
1684	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq);
1685
1686	rc = alloc_ring(dev);
1687	if (rc < 0)
1688		goto out_free_irq;
1689
1690	rc = alloc_rbufs(dev);
1691	if (rc < 0)
1692		goto out_free_ring;
1693
1694	alloc_tbufs(dev);
1695	enable_mmio(rp->pioaddr, rp->quirks);
1696	rhine_power_init(dev);
1697	rhine_chip_reset(dev);
1698	rhine_task_enable(rp);
1699	init_registers(dev);
1700
1701	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1702		  __func__, ioread16(ioaddr + ChipCmd),
1703		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1704
1705	netif_start_queue(dev);
1706
1707out:
1708	return rc;
1709
1710out_free_ring:
1711	free_ring(dev);
1712out_free_irq:
1713	free_irq(rp->irq, dev);
1714	goto out;
1715}
1716
1717static void rhine_reset_task(struct work_struct *work)
1718{
1719	struct rhine_private *rp = container_of(work, struct rhine_private,
1720						reset_task);
1721	struct net_device *dev = rp->dev;
1722
1723	mutex_lock(&rp->task_lock);
1724
1725	if (!rp->task_enable)
1726		goto out_unlock;
1727
1728	napi_disable(&rp->napi);
1729	netif_tx_disable(dev);
1730	spin_lock_bh(&rp->lock);
1731
1732	/* clear all descriptors */
1733	free_tbufs(dev);
1734	alloc_tbufs(dev);
1735
1736	rhine_reset_rbufs(rp);
1737
1738	/* Reinitialize the hardware. */
1739	rhine_chip_reset(dev);
1740	init_registers(dev);
1741
1742	spin_unlock_bh(&rp->lock);
1743
1744	netif_trans_update(dev); /* prevent tx timeout */
1745	dev->stats.tx_errors++;
1746	netif_wake_queue(dev);
1747
1748out_unlock:
1749	mutex_unlock(&rp->task_lock);
1750}
1751
1752static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue)
1753{
1754	struct rhine_private *rp = netdev_priv(dev);
1755	void __iomem *ioaddr = rp->base;
1756
1757	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1758		    ioread16(ioaddr + IntrStatus),
1759		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1760
1761	schedule_work(&rp->reset_task);
1762}
1763
1764static inline bool rhine_tx_queue_full(struct rhine_private *rp)
1765{
1766	return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN;
1767}
1768
1769static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1770				  struct net_device *dev)
1771{
1772	struct rhine_private *rp = netdev_priv(dev);
1773	struct device *hwdev = dev->dev.parent;
1774	void __iomem *ioaddr = rp->base;
1775	unsigned entry;
1776
1777	/* Caution: the write order is important here, set the field
1778	   with the "ownership" bits last. */
1779
1780	/* Calculate the next Tx descriptor entry. */
1781	entry = rp->cur_tx % TX_RING_SIZE;
1782
1783	if (skb_padto(skb, ETH_ZLEN))
1784		return NETDEV_TX_OK;
1785
1786	rp->tx_skbuff[entry] = skb;
1787
1788	if ((rp->quirks & rqRhineI) &&
1789	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1790		/* Must use alignment buffer. */
1791		if (skb->len > PKT_BUF_SZ) {
1792			/* packet too long, drop it */
1793			dev_kfree_skb_any(skb);
1794			rp->tx_skbuff[entry] = NULL;
1795			dev->stats.tx_dropped++;
1796			return NETDEV_TX_OK;
1797		}
1798
1799		/* Padding is not copied and so must be redone. */
1800		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1801		if (skb->len < ETH_ZLEN)
1802			memset(rp->tx_buf[entry] + skb->len, 0,
1803			       ETH_ZLEN - skb->len);
1804		rp->tx_skbuff_dma[entry] = 0;
1805		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1806						      (rp->tx_buf[entry] -
1807						       rp->tx_bufs));
1808	} else {
1809		rp->tx_skbuff_dma[entry] =
1810			dma_map_single(hwdev, skb->data, skb->len,
1811				       DMA_TO_DEVICE);
1812		if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) {
1813			dev_kfree_skb_any(skb);
1814			rp->tx_skbuff_dma[entry] = 0;
1815			dev->stats.tx_dropped++;
1816			return NETDEV_TX_OK;
1817		}
1818		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1819	}
1820
1821	rp->tx_ring[entry].desc_length =
1822		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1823
1824	if (unlikely(skb_vlan_tag_present(skb))) {
1825		u16 vid_pcp = skb_vlan_tag_get(skb);
1826
1827		/* drop CFI/DEI bit, register needs VID and PCP */
1828		vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1829			  ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1830		rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
1831		/* request tagging */
1832		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1833	}
1834	else
1835		rp->tx_ring[entry].tx_status = 0;
1836
1837	netdev_sent_queue(dev, skb->len);
1838	/* lock eth irq */
1839	dma_wmb();
1840	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1841	wmb();
1842
1843	rp->cur_tx++;
1844	/*
1845	 * Nobody wants cur_tx write to rot for ages after the NIC will have
1846	 * seen the transmit request, especially as the transmit completion
1847	 * handler could miss it.
1848	 */
1849	smp_wmb();
1850
1851	/* Non-x86 Todo: explicitly flush cache lines here. */
1852
1853	if (skb_vlan_tag_present(skb))
1854		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1855		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1856
1857	/* Wake the potentially-idle transmit channel */
1858	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1859	       ioaddr + ChipCmd1);
1860	IOSYNC;
1861
1862	/* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */
1863	if (rhine_tx_queue_full(rp)) {
1864		netif_stop_queue(dev);
1865		smp_rmb();
1866		/* Rejuvenate. */
1867		if (!rhine_tx_queue_full(rp))
1868			netif_wake_queue(dev);
1869	}
1870
1871	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1872		  rp->cur_tx - 1, entry);
1873
1874	return NETDEV_TX_OK;
1875}
1876
1877static void rhine_irq_disable(struct rhine_private *rp)
1878{
1879	iowrite16(0x0000, rp->base + IntrEnable);
1880}
1881
1882/* The interrupt handler does all of the Rx thread work and cleans up
1883   after the Tx thread. */
1884static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1885{
1886	struct net_device *dev = dev_instance;
1887	struct rhine_private *rp = netdev_priv(dev);
1888	u32 status;
1889	int handled = 0;
1890
1891	status = rhine_get_events(rp);
1892
1893	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1894
1895	if (status & RHINE_EVENT) {
1896		handled = 1;
1897
1898		rhine_irq_disable(rp);
1899		napi_schedule(&rp->napi);
1900	}
1901
1902	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1903		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1904			  status);
1905	}
1906
1907	return IRQ_RETVAL(handled);
1908}
1909
1910/* This routine is logically part of the interrupt handler, but isolated
1911   for clarity. */
1912static void rhine_tx(struct net_device *dev)
1913{
1914	struct rhine_private *rp = netdev_priv(dev);
1915	struct device *hwdev = dev->dev.parent;
1916	unsigned int pkts_compl = 0, bytes_compl = 0;
1917	unsigned int dirty_tx = rp->dirty_tx;
1918	unsigned int cur_tx;
1919	struct sk_buff *skb;
1920
1921	/*
1922	 * The race with rhine_start_tx does not matter here as long as the
1923	 * driver enforces a value of cur_tx that was relevant when the
1924	 * packet was scheduled to the network chipset.
1925	 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx.
1926	 */
1927	smp_rmb();
1928	cur_tx = rp->cur_tx;
1929	/* find and cleanup dirty tx descriptors */
1930	while (dirty_tx != cur_tx) {
1931		unsigned int entry = dirty_tx % TX_RING_SIZE;
1932		u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1933
1934		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1935			  entry, txstatus);
1936		if (txstatus & DescOwn)
1937			break;
1938		skb = rp->tx_skbuff[entry];
1939		if (txstatus & 0x8000) {
1940			netif_dbg(rp, tx_done, dev,
1941				  "Transmit error, Tx status %08x\n", txstatus);
1942			dev->stats.tx_errors++;
1943			if (txstatus & 0x0400)
1944				dev->stats.tx_carrier_errors++;
1945			if (txstatus & 0x0200)
1946				dev->stats.tx_window_errors++;
1947			if (txstatus & 0x0100)
1948				dev->stats.tx_aborted_errors++;
1949			if (txstatus & 0x0080)
1950				dev->stats.tx_heartbeat_errors++;
1951			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1952			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
1953				dev->stats.tx_fifo_errors++;
1954				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1955				break; /* Keep the skb - we try again */
1956			}
1957			/* Transmitter restarted in 'abnormal' handler. */
1958		} else {
1959			if (rp->quirks & rqRhineI)
1960				dev->stats.collisions += (txstatus >> 3) & 0x0F;
1961			else
1962				dev->stats.collisions += txstatus & 0x0F;
1963			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1964				  (txstatus >> 3) & 0xF, txstatus & 0xF);
1965
1966			u64_stats_update_begin(&rp->tx_stats.syncp);
1967			rp->tx_stats.bytes += skb->len;
1968			rp->tx_stats.packets++;
1969			u64_stats_update_end(&rp->tx_stats.syncp);
1970		}
1971		/* Free the original skb. */
1972		if (rp->tx_skbuff_dma[entry]) {
1973			dma_unmap_single(hwdev,
1974					 rp->tx_skbuff_dma[entry],
1975					 skb->len,
1976					 DMA_TO_DEVICE);
1977		}
1978		bytes_compl += skb->len;
1979		pkts_compl++;
1980		dev_consume_skb_any(skb);
1981		rp->tx_skbuff[entry] = NULL;
1982		dirty_tx++;
1983	}
1984
1985	rp->dirty_tx = dirty_tx;
1986	/* Pity we can't rely on the nearby BQL completion implicit barrier. */
1987	smp_wmb();
1988
1989	netdev_completed_queue(dev, pkts_compl, bytes_compl);
1990
1991	/* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */
1992	if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) {
1993		netif_wake_queue(dev);
1994		smp_rmb();
1995		/* Rejuvenate. */
1996		if (rhine_tx_queue_full(rp))
1997			netif_stop_queue(dev);
1998	}
1999}
2000
2001/**
2002 * rhine_get_vlan_tci - extract TCI from Rx data buffer
2003 * @skb: pointer to sk_buff
2004 * @data_size: used data area of the buffer including CRC
2005 *
2006 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
2007 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
2008 * aligned following the CRC.
2009 */
2010static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
2011{
2012	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
2013	return be16_to_cpup((__be16 *)trailer);
2014}
2015
2016static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc,
2017				     int data_size)
2018{
2019	dma_rmb();
2020	if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) {
2021		u16 vlan_tci;
2022
2023		vlan_tci = rhine_get_vlan_tci(skb, data_size);
2024		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
2025	}
2026}
2027
2028/* Process up to limit frames from receive ring */
2029static int rhine_rx(struct net_device *dev, int limit)
2030{
2031	struct rhine_private *rp = netdev_priv(dev);
2032	struct device *hwdev = dev->dev.parent;
2033	int entry = rp->cur_rx % RX_RING_SIZE;
2034	int count;
2035
2036	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
2037		  entry, le32_to_cpu(rp->rx_ring[entry].rx_status));
2038
2039	/* If EOP is set on the next entry, it's a new packet. Send it up. */
2040	for (count = 0; count < limit; ++count) {
2041		struct rx_desc *desc = rp->rx_ring + entry;
2042		u32 desc_status = le32_to_cpu(desc->rx_status);
2043		int data_size = desc_status >> 16;
2044
2045		if (desc_status & DescOwn)
2046			break;
2047
2048		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
2049			  desc_status);
2050
2051		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
2052			if ((desc_status & RxWholePkt) != RxWholePkt) {
2053				netdev_warn(dev,
2054	"Oversized Ethernet frame spanned multiple buffers, "
2055	"entry %#x length %d status %08x!\n",
2056					    entry, data_size,
2057					    desc_status);
2058				dev->stats.rx_length_errors++;
2059			} else if (desc_status & RxErr) {
2060				/* There was a error. */
2061				netif_dbg(rp, rx_err, dev,
2062					  "%s() Rx error %08x\n", __func__,
2063					  desc_status);
2064				dev->stats.rx_errors++;
2065				if (desc_status & 0x0030)
2066					dev->stats.rx_length_errors++;
2067				if (desc_status & 0x0048)
2068					dev->stats.rx_fifo_errors++;
2069				if (desc_status & 0x0004)
2070					dev->stats.rx_frame_errors++;
2071				if (desc_status & 0x0002) {
2072					/* this can also be updated outside the interrupt handler */
2073					spin_lock(&rp->lock);
2074					dev->stats.rx_crc_errors++;
2075					spin_unlock(&rp->lock);
2076				}
2077			}
2078		} else {
2079			/* Length should omit the CRC */
2080			int pkt_len = data_size - 4;
2081			struct sk_buff *skb;
2082
2083			/* Check if the packet is long enough to accept without
2084			   copying to a minimally-sized skbuff. */
2085			if (pkt_len < rx_copybreak) {
2086				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
2087				if (unlikely(!skb))
2088					goto drop;
2089
2090				dma_sync_single_for_cpu(hwdev,
2091							rp->rx_skbuff_dma[entry],
2092							rp->rx_buf_sz,
2093							DMA_FROM_DEVICE);
2094
2095				skb_copy_to_linear_data(skb,
2096						 rp->rx_skbuff[entry]->data,
2097						 pkt_len);
2098
2099				dma_sync_single_for_device(hwdev,
2100							   rp->rx_skbuff_dma[entry],
2101							   rp->rx_buf_sz,
2102							   DMA_FROM_DEVICE);
2103			} else {
2104				struct rhine_skb_dma sd;
2105
2106				if (unlikely(rhine_skb_dma_init(dev, &sd) < 0))
2107					goto drop;
2108
2109				skb = rp->rx_skbuff[entry];
2110
2111				dma_unmap_single(hwdev,
2112						 rp->rx_skbuff_dma[entry],
2113						 rp->rx_buf_sz,
2114						 DMA_FROM_DEVICE);
2115				rhine_skb_dma_nic_store(rp, &sd, entry);
2116			}
2117
2118			skb_put(skb, pkt_len);
2119
2120			rhine_rx_vlan_tag(skb, desc, data_size);
2121
2122			skb->protocol = eth_type_trans(skb, dev);
2123
2124			netif_receive_skb(skb);
2125
2126			u64_stats_update_begin(&rp->rx_stats.syncp);
2127			rp->rx_stats.bytes += pkt_len;
2128			rp->rx_stats.packets++;
2129			u64_stats_update_end(&rp->rx_stats.syncp);
2130		}
2131give_descriptor_to_nic:
2132		desc->rx_status = cpu_to_le32(DescOwn);
2133		entry = (++rp->cur_rx) % RX_RING_SIZE;
2134	}
2135
2136	return count;
2137
2138drop:
2139	dev->stats.rx_dropped++;
2140	goto give_descriptor_to_nic;
2141}
2142
2143static void rhine_restart_tx(struct net_device *dev) {
2144	struct rhine_private *rp = netdev_priv(dev);
2145	void __iomem *ioaddr = rp->base;
2146	int entry = rp->dirty_tx % TX_RING_SIZE;
2147	u32 intr_status;
2148
2149	/*
2150	 * If new errors occurred, we need to sort them out before doing Tx.
2151	 * In that case the ISR will be back here RSN anyway.
2152	 */
2153	intr_status = rhine_get_events(rp);
2154
2155	if ((intr_status & IntrTxErrSummary) == 0) {
2156
2157		/* We know better than the chip where it should continue. */
2158		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2159		       ioaddr + TxRingPtr);
2160
2161		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2162		       ioaddr + ChipCmd);
2163
2164		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2165			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2166			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2167
2168		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2169		       ioaddr + ChipCmd1);
2170		IOSYNC;
2171	}
2172	else {
2173		/* This should never happen */
2174		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2175			   intr_status);
2176	}
2177
2178}
2179
2180static void rhine_slow_event_task(struct work_struct *work)
2181{
2182	struct rhine_private *rp =
2183		container_of(work, struct rhine_private, slow_event_task);
2184	struct net_device *dev = rp->dev;
2185	u32 intr_status;
2186
2187	mutex_lock(&rp->task_lock);
2188
2189	if (!rp->task_enable)
2190		goto out_unlock;
2191
2192	intr_status = rhine_get_events(rp);
2193	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2194
2195	if (intr_status & IntrLinkChange)
2196		rhine_check_media(dev, 0);
2197
2198	if (intr_status & IntrPCIErr)
2199		netif_warn(rp, hw, dev, "PCI error\n");
2200
2201	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2202
2203out_unlock:
2204	mutex_unlock(&rp->task_lock);
2205}
2206
2207static void
2208rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2209{
2210	struct rhine_private *rp = netdev_priv(dev);
2211	unsigned int start;
2212
2213	spin_lock_bh(&rp->lock);
2214	rhine_update_rx_crc_and_missed_errord(rp);
2215	spin_unlock_bh(&rp->lock);
2216
2217	netdev_stats_to_stats64(stats, &dev->stats);
2218
2219	do {
2220		start = u64_stats_fetch_begin(&rp->rx_stats.syncp);
2221		stats->rx_packets = rp->rx_stats.packets;
2222		stats->rx_bytes = rp->rx_stats.bytes;
2223	} while (u64_stats_fetch_retry(&rp->rx_stats.syncp, start));
2224
2225	do {
2226		start = u64_stats_fetch_begin(&rp->tx_stats.syncp);
2227		stats->tx_packets = rp->tx_stats.packets;
2228		stats->tx_bytes = rp->tx_stats.bytes;
2229	} while (u64_stats_fetch_retry(&rp->tx_stats.syncp, start));
2230}
2231
2232static void rhine_set_rx_mode(struct net_device *dev)
2233{
2234	struct rhine_private *rp = netdev_priv(dev);
2235	void __iomem *ioaddr = rp->base;
2236	u32 mc_filter[2];	/* Multicast hash filter */
2237	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
2238	struct netdev_hw_addr *ha;
2239
2240	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
2241		rx_mode = 0x1C;
2242		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2243		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2244	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2245		   (dev->flags & IFF_ALLMULTI)) {
2246		/* Too many to match, or accept all multicasts. */
2247		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2248		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2249	} else if (rp->quirks & rqMgmt) {
2250		int i = 0;
2251		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
2252		netdev_for_each_mc_addr(ha, dev) {
2253			if (i == MCAM_SIZE)
2254				break;
2255			rhine_set_cam(ioaddr, i, ha->addr);
2256			mCAMmask |= 1 << i;
2257			i++;
2258		}
2259		rhine_set_cam_mask(ioaddr, mCAMmask);
2260	} else {
2261		memset(mc_filter, 0, sizeof(mc_filter));
2262		netdev_for_each_mc_addr(ha, dev) {
2263			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2264
2265			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2266		}
2267		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2268		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2269	}
2270	/* enable/disable VLAN receive filtering */
2271	if (rp->quirks & rqMgmt) {
2272		if (dev->flags & IFF_PROMISC)
2273			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2274		else
2275			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2276	}
2277	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2278}
2279
2280static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2281{
2282	struct device *hwdev = dev->dev.parent;
2283
2284	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2285	strscpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info));
2286}
2287
2288static int netdev_get_link_ksettings(struct net_device *dev,
2289				     struct ethtool_link_ksettings *cmd)
2290{
2291	struct rhine_private *rp = netdev_priv(dev);
2292
2293	mutex_lock(&rp->task_lock);
2294	mii_ethtool_get_link_ksettings(&rp->mii_if, cmd);
2295	mutex_unlock(&rp->task_lock);
2296
2297	return 0;
2298}
2299
2300static int netdev_set_link_ksettings(struct net_device *dev,
2301				     const struct ethtool_link_ksettings *cmd)
2302{
2303	struct rhine_private *rp = netdev_priv(dev);
2304	int rc;
2305
2306	mutex_lock(&rp->task_lock);
2307	rc = mii_ethtool_set_link_ksettings(&rp->mii_if, cmd);
2308	rhine_set_carrier(&rp->mii_if);
2309	mutex_unlock(&rp->task_lock);
2310
2311	return rc;
2312}
2313
2314static int netdev_nway_reset(struct net_device *dev)
2315{
2316	struct rhine_private *rp = netdev_priv(dev);
2317
2318	return mii_nway_restart(&rp->mii_if);
2319}
2320
2321static u32 netdev_get_link(struct net_device *dev)
2322{
2323	struct rhine_private *rp = netdev_priv(dev);
2324
2325	return mii_link_ok(&rp->mii_if);
2326}
2327
2328static u32 netdev_get_msglevel(struct net_device *dev)
2329{
2330	struct rhine_private *rp = netdev_priv(dev);
2331
2332	return rp->msg_enable;
2333}
2334
2335static void netdev_set_msglevel(struct net_device *dev, u32 value)
2336{
2337	struct rhine_private *rp = netdev_priv(dev);
2338
2339	rp->msg_enable = value;
2340}
2341
2342static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2343{
2344	struct rhine_private *rp = netdev_priv(dev);
2345
2346	if (!(rp->quirks & rqWOL))
2347		return;
2348
2349	spin_lock_irq(&rp->lock);
2350	wol->supported = WAKE_PHY | WAKE_MAGIC |
2351			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2352	wol->wolopts = rp->wolopts;
2353	spin_unlock_irq(&rp->lock);
2354}
2355
2356static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2357{
2358	struct rhine_private *rp = netdev_priv(dev);
2359	u32 support = WAKE_PHY | WAKE_MAGIC |
2360		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2361
2362	if (!(rp->quirks & rqWOL))
2363		return -EINVAL;
2364
2365	if (wol->wolopts & ~support)
2366		return -EINVAL;
2367
2368	spin_lock_irq(&rp->lock);
2369	rp->wolopts = wol->wolopts;
2370	spin_unlock_irq(&rp->lock);
2371
2372	return 0;
2373}
2374
2375static const struct ethtool_ops netdev_ethtool_ops = {
2376	.get_drvinfo		= netdev_get_drvinfo,
2377	.nway_reset		= netdev_nway_reset,
2378	.get_link		= netdev_get_link,
2379	.get_msglevel		= netdev_get_msglevel,
2380	.set_msglevel		= netdev_set_msglevel,
2381	.get_wol		= rhine_get_wol,
2382	.set_wol		= rhine_set_wol,
2383	.get_link_ksettings	= netdev_get_link_ksettings,
2384	.set_link_ksettings	= netdev_set_link_ksettings,
2385};
2386
2387static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2388{
2389	struct rhine_private *rp = netdev_priv(dev);
2390	int rc;
2391
2392	if (!netif_running(dev))
2393		return -EINVAL;
2394
2395	mutex_lock(&rp->task_lock);
2396	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2397	rhine_set_carrier(&rp->mii_if);
2398	mutex_unlock(&rp->task_lock);
2399
2400	return rc;
2401}
2402
2403static int rhine_close(struct net_device *dev)
2404{
2405	struct rhine_private *rp = netdev_priv(dev);
2406	void __iomem *ioaddr = rp->base;
2407
2408	rhine_task_disable(rp);
2409	napi_disable(&rp->napi);
2410	netif_stop_queue(dev);
2411
2412	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2413		  ioread16(ioaddr + ChipCmd));
2414
2415	/* Switch to loopback mode to avoid hardware races. */
2416	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2417
2418	rhine_irq_disable(rp);
2419
2420	/* Stop the chip's Tx and Rx processes. */
2421	iowrite16(CmdStop, ioaddr + ChipCmd);
2422
2423	free_irq(rp->irq, dev);
2424	free_rbufs(dev);
2425	free_tbufs(dev);
2426	free_ring(dev);
2427
2428	return 0;
2429}
2430
2431
2432static void rhine_remove_one_pci(struct pci_dev *pdev)
2433{
2434	struct net_device *dev = pci_get_drvdata(pdev);
2435	struct rhine_private *rp = netdev_priv(dev);
2436
2437	unregister_netdev(dev);
2438
2439	pci_iounmap(pdev, rp->base);
2440	pci_release_regions(pdev);
2441
2442	free_netdev(dev);
2443	pci_disable_device(pdev);
2444}
2445
2446static void rhine_remove_one_platform(struct platform_device *pdev)
2447{
2448	struct net_device *dev = platform_get_drvdata(pdev);
2449	struct rhine_private *rp = netdev_priv(dev);
2450
2451	unregister_netdev(dev);
2452
2453	iounmap(rp->base);
2454
2455	free_netdev(dev);
2456}
2457
2458static void rhine_shutdown_pci(struct pci_dev *pdev)
2459{
2460	struct net_device *dev = pci_get_drvdata(pdev);
2461	struct rhine_private *rp = netdev_priv(dev);
2462	void __iomem *ioaddr = rp->base;
2463
2464	if (!(rp->quirks & rqWOL))
2465		return; /* Nothing to do for non-WOL adapters */
2466
2467	rhine_power_init(dev);
2468
2469	/* Make sure we use pattern 0, 1 and not 4, 5 */
2470	if (rp->quirks & rq6patterns)
2471		iowrite8(0x04, ioaddr + WOLcgClr);
2472
2473	spin_lock(&rp->lock);
2474
2475	if (rp->wolopts & WAKE_MAGIC) {
2476		iowrite8(WOLmagic, ioaddr + WOLcrSet);
2477		/*
2478		 * Turn EEPROM-controlled wake-up back on -- some hardware may
2479		 * not cooperate otherwise.
2480		 */
2481		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2482	}
2483
2484	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2485		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2486
2487	if (rp->wolopts & WAKE_PHY)
2488		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2489
2490	if (rp->wolopts & WAKE_UCAST)
2491		iowrite8(WOLucast, ioaddr + WOLcrSet);
2492
2493	if (rp->wolopts) {
2494		/* Enable legacy WOL (for old motherboards) */
2495		iowrite8(0x01, ioaddr + PwcfgSet);
2496		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2497	}
2498
2499	spin_unlock(&rp->lock);
2500
2501	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2502		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2503
2504		pci_wake_from_d3(pdev, true);
2505		pci_set_power_state(pdev, PCI_D3hot);
2506	}
2507}
2508
2509#ifdef CONFIG_PM_SLEEP
2510static int rhine_suspend(struct device *device)
2511{
2512	struct net_device *dev = dev_get_drvdata(device);
2513	struct rhine_private *rp = netdev_priv(dev);
2514
2515	if (!netif_running(dev))
2516		return 0;
2517
2518	rhine_task_disable(rp);
2519	rhine_irq_disable(rp);
2520	napi_disable(&rp->napi);
2521
2522	netif_device_detach(dev);
2523
2524	if (dev_is_pci(device))
2525		rhine_shutdown_pci(to_pci_dev(device));
2526
2527	return 0;
2528}
2529
2530static int rhine_resume(struct device *device)
2531{
2532	struct net_device *dev = dev_get_drvdata(device);
2533	struct rhine_private *rp = netdev_priv(dev);
2534
2535	if (!netif_running(dev))
2536		return 0;
2537
2538	enable_mmio(rp->pioaddr, rp->quirks);
2539	rhine_power_init(dev);
2540	free_tbufs(dev);
2541	alloc_tbufs(dev);
2542	rhine_reset_rbufs(rp);
2543	rhine_task_enable(rp);
2544	spin_lock_bh(&rp->lock);
2545	init_registers(dev);
2546	spin_unlock_bh(&rp->lock);
2547
2548	netif_device_attach(dev);
2549
2550	return 0;
2551}
2552
2553static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2554#define RHINE_PM_OPS	(&rhine_pm_ops)
2555
2556#else
2557
2558#define RHINE_PM_OPS	NULL
2559
2560#endif /* !CONFIG_PM_SLEEP */
2561
2562static struct pci_driver rhine_driver_pci = {
2563	.name		= DRV_NAME,
2564	.id_table	= rhine_pci_tbl,
2565	.probe		= rhine_init_one_pci,
2566	.remove		= rhine_remove_one_pci,
2567	.shutdown	= rhine_shutdown_pci,
2568	.driver.pm	= RHINE_PM_OPS,
2569};
2570
2571static struct platform_driver rhine_driver_platform = {
2572	.probe		= rhine_init_one_platform,
2573	.remove_new	= rhine_remove_one_platform,
2574	.driver = {
2575		.name	= DRV_NAME,
2576		.of_match_table	= rhine_of_tbl,
2577		.pm		= RHINE_PM_OPS,
2578	}
2579};
2580
2581static const struct dmi_system_id rhine_dmi_table[] __initconst = {
2582	{
2583		.ident = "EPIA-M",
2584		.matches = {
2585			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2586			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2587		},
2588	},
2589	{
2590		.ident = "KV7",
2591		.matches = {
2592			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2593			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2594		},
2595	},
2596	{ NULL }
2597};
2598
2599static int __init rhine_init(void)
2600{
2601	int ret_pci, ret_platform;
2602
2603/* when a module, this is printed whether or not devices are found in probe */
2604	if (dmi_check_system(rhine_dmi_table)) {
2605		/* these BIOSes fail at PXE boot if chip is in D3 */
2606		avoid_D3 = true;
2607		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2608	}
2609	else if (avoid_D3)
2610		pr_info("avoid_D3 set\n");
2611
2612	ret_pci = pci_register_driver(&rhine_driver_pci);
2613	ret_platform = platform_driver_register(&rhine_driver_platform);
2614	if ((ret_pci < 0) && (ret_platform < 0))
2615		return ret_pci;
2616
2617	return 0;
2618}
2619
2620
2621static void __exit rhine_cleanup(void)
2622{
2623	platform_driver_unregister(&rhine_driver_platform);
2624	pci_unregister_driver(&rhine_driver_pci);
2625}
2626
2627
2628module_init(rhine_init);
2629module_exit(rhine_cleanup);
2630