1// SPDX-License-Identifier: GPL-2.0
2/* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
3 *           auto carrier detecting ethernet driver.  Also known as the
4 *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 *
6 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
7 *		2006, 2008 David S. Miller (davem@davemloft.net)
8 *
9 * Changes :
10 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
11 *   - port to non-sparc architectures. Tested only on x86 and
12 *     only currently works with QFE PCI cards.
13 *   - ability to specify the MAC address at module load time by passing this
14 *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
15 */
16
17#include <linux/bitops.h>
18#include <linux/crc32.h>
19#include <linux/delay.h>
20#include <linux/dma-mapping.h>
21#include <linux/errno.h>
22#include <linux/etherdevice.h>
23#include <linux/ethtool.h>
24#include <linux/fcntl.h>
25#include <linux/in.h>
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/ioport.h>
30#include <linux/kernel.h>
31#include <linux/mii.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/netdevice.h>
35#include <linux/of.h>
36#include <linux/of_device.h>
37#include <linux/pci.h>
38#include <linux/platform_device.h>
39#include <linux/random.h>
40#include <linux/skbuff.h>
41#include <linux/slab.h>
42#include <linux/string.h>
43#include <linux/types.h>
44#include <linux/uaccess.h>
45
46#include <asm/byteorder.h>
47#include <asm/dma.h>
48#include <asm/irq.h>
49
50#ifdef CONFIG_SPARC
51#include <asm/auxio.h>
52#include <asm/idprom.h>
53#include <asm/openprom.h>
54#include <asm/oplib.h>
55#include <asm/prom.h>
56#endif
57
58#include "sunhme.h"
59
60#define DRV_NAME	"sunhme"
61
62MODULE_AUTHOR("David S. Miller <davem@davemloft.net>");
63MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
64MODULE_LICENSE("GPL");
65
66static int macaddr[6];
67
68/* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
69module_param_array(macaddr, int, NULL, 0);
70MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
71
72#ifdef CONFIG_SBUS
73static struct quattro *qfe_sbus_list;
74#endif
75
76#ifdef CONFIG_PCI
77static struct quattro *qfe_pci_list;
78#endif
79
80#define hme_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__)
81#define HMD hme_debug
82
83/* "Auto Switch Debug" aka phy debug */
84#if 1
85#define ASD hme_debug
86#else
87#define ASD(...)
88#endif
89
90#if 0
91struct hme_tx_logent {
92	unsigned int tstamp;
93	int tx_new, tx_old;
94	unsigned int action;
95#define TXLOG_ACTION_IRQ	0x01
96#define TXLOG_ACTION_TXMIT	0x02
97#define TXLOG_ACTION_TBUSY	0x04
98#define TXLOG_ACTION_NBUFS	0x08
99	unsigned int status;
100};
101#define TX_LOG_LEN	128
102static struct hme_tx_logent tx_log[TX_LOG_LEN];
103static int txlog_cur_entry;
104static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
105{
106	struct hme_tx_logent *tlp;
107	unsigned long flags;
108
109	local_irq_save(flags);
110	tlp = &tx_log[txlog_cur_entry];
111	tlp->tstamp = (unsigned int)jiffies;
112	tlp->tx_new = hp->tx_new;
113	tlp->tx_old = hp->tx_old;
114	tlp->action = a;
115	tlp->status = s;
116	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
117	local_irq_restore(flags);
118}
119static __inline__ void tx_dump_log(void)
120{
121	int i, this;
122
123	this = txlog_cur_entry;
124	for (i = 0; i < TX_LOG_LEN; i++) {
125		pr_err("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
126		       tx_log[this].tstamp,
127		       tx_log[this].tx_new, tx_log[this].tx_old,
128		       tx_log[this].action, tx_log[this].status);
129		this = (this + 1) & (TX_LOG_LEN - 1);
130	}
131}
132#else
133#define tx_add_log(hp, a, s)
134#define tx_dump_log()
135#endif
136
137#define DEFAULT_IPG0      16 /* For lance-mode only */
138#define DEFAULT_IPG1       8 /* For all modes */
139#define DEFAULT_IPG2       4 /* For all modes */
140#define DEFAULT_JAMSIZE    4 /* Toe jam */
141
142/* NOTE: In the descriptor writes one _must_ write the address
143 *	 member _first_.  The card must not be allowed to see
144 *	 the updated descriptor flags until the address is
145 *	 correct.  I've added a write memory barrier between
146 *	 the two stores so that I can sleep well at night... -DaveM
147 */
148
149#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
150static void sbus_hme_write32(void __iomem *reg, u32 val)
151{
152	sbus_writel(val, reg);
153}
154
155static u32 sbus_hme_read32(void __iomem *reg)
156{
157	return sbus_readl(reg);
158}
159
160static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
161{
162	rxd->rx_addr = (__force hme32)addr;
163	dma_wmb();
164	rxd->rx_flags = (__force hme32)flags;
165}
166
167static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
168{
169	txd->tx_addr = (__force hme32)addr;
170	dma_wmb();
171	txd->tx_flags = (__force hme32)flags;
172}
173
174static u32 sbus_hme_read_desc32(hme32 *p)
175{
176	return (__force u32)*p;
177}
178
179static void pci_hme_write32(void __iomem *reg, u32 val)
180{
181	writel(val, reg);
182}
183
184static u32 pci_hme_read32(void __iomem *reg)
185{
186	return readl(reg);
187}
188
189static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
190{
191	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
192	dma_wmb();
193	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
194}
195
196static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
197{
198	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
199	dma_wmb();
200	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
201}
202
203static u32 pci_hme_read_desc32(hme32 *p)
204{
205	return le32_to_cpup((__le32 *)p);
206}
207
208#define hme_write32(__hp, __reg, __val) \
209	((__hp)->write32((__reg), (__val)))
210#define hme_read32(__hp, __reg) \
211	((__hp)->read32(__reg))
212#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
213	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
214#define hme_write_txd(__hp, __txd, __flags, __addr) \
215	((__hp)->write_txd((__txd), (__flags), (__addr)))
216#define hme_read_desc32(__hp, __p) \
217	((__hp)->read_desc32(__p))
218#else
219#ifdef CONFIG_SBUS
220/* SBUS only compilation */
221#define hme_write32(__hp, __reg, __val) \
222	sbus_writel((__val), (__reg))
223#define hme_read32(__hp, __reg) \
224	sbus_readl(__reg)
225#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
226do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
227	dma_wmb(); \
228	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
229} while(0)
230#define hme_write_txd(__hp, __txd, __flags, __addr) \
231do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
232	dma_wmb(); \
233	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
234} while(0)
235#define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
236#else
237/* PCI only compilation */
238#define hme_write32(__hp, __reg, __val) \
239	writel((__val), (__reg))
240#define hme_read32(__hp, __reg) \
241	readl(__reg)
242#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
243do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
244	dma_wmb(); \
245	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
246} while(0)
247#define hme_write_txd(__hp, __txd, __flags, __addr) \
248do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
249	dma_wmb(); \
250	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
251} while(0)
252static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
253{
254	return le32_to_cpup((__le32 *)p);
255}
256#endif
257#endif
258
259
260/* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
261static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
262{
263	hme_write32(hp, tregs + TCVR_BBDATA, bit);
264	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
265	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
266}
267
268#if 0
269static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
270{
271	u32 ret;
272
273	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
274	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
275	ret = hme_read32(hp, tregs + TCVR_CFG);
276	if (internal)
277		ret &= TCV_CFG_MDIO0;
278	else
279		ret &= TCV_CFG_MDIO1;
280
281	return ret;
282}
283#endif
284
285static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
286{
287	u32 retval;
288
289	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
290	udelay(1);
291	retval = hme_read32(hp, tregs + TCVR_CFG);
292	if (internal)
293		retval &= TCV_CFG_MDIO0;
294	else
295		retval &= TCV_CFG_MDIO1;
296	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
297
298	return retval;
299}
300
301#define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
302
303static int happy_meal_bb_read(struct happy_meal *hp,
304			      void __iomem *tregs, int reg)
305{
306	u32 tmp;
307	int retval = 0;
308	int i;
309
310	/* Enable the MIF BitBang outputs. */
311	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
312
313	/* Force BitBang into the idle state. */
314	for (i = 0; i < 32; i++)
315		BB_PUT_BIT(hp, tregs, 1);
316
317	/* Give it the read sequence. */
318	BB_PUT_BIT(hp, tregs, 0);
319	BB_PUT_BIT(hp, tregs, 1);
320	BB_PUT_BIT(hp, tregs, 1);
321	BB_PUT_BIT(hp, tregs, 0);
322
323	/* Give it the PHY address. */
324	tmp = hp->paddr & 0xff;
325	for (i = 4; i >= 0; i--)
326		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
327
328	/* Tell it what register we want to read. */
329	tmp = (reg & 0xff);
330	for (i = 4; i >= 0; i--)
331		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
332
333	/* Close down the MIF BitBang outputs. */
334	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
335
336	/* Now read in the value. */
337	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
338	for (i = 15; i >= 0; i--)
339		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
340	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
341	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
342	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
343	ASD("reg=%d value=%x\n", reg, retval);
344	return retval;
345}
346
347static void happy_meal_bb_write(struct happy_meal *hp,
348				void __iomem *tregs, int reg,
349				unsigned short value)
350{
351	u32 tmp;
352	int i;
353
354	ASD("reg=%d value=%x\n", reg, value);
355
356	/* Enable the MIF BitBang outputs. */
357	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
358
359	/* Force BitBang into the idle state. */
360	for (i = 0; i < 32; i++)
361		BB_PUT_BIT(hp, tregs, 1);
362
363	/* Give it write sequence. */
364	BB_PUT_BIT(hp, tregs, 0);
365	BB_PUT_BIT(hp, tregs, 1);
366	BB_PUT_BIT(hp, tregs, 0);
367	BB_PUT_BIT(hp, tregs, 1);
368
369	/* Give it the PHY address. */
370	tmp = (hp->paddr & 0xff);
371	for (i = 4; i >= 0; i--)
372		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
373
374	/* Tell it what register we will be writing. */
375	tmp = (reg & 0xff);
376	for (i = 4; i >= 0; i--)
377		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
378
379	/* Tell it to become ready for the bits. */
380	BB_PUT_BIT(hp, tregs, 1);
381	BB_PUT_BIT(hp, tregs, 0);
382
383	for (i = 15; i >= 0; i--)
384		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
385
386	/* Close down the MIF BitBang outputs. */
387	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
388}
389
390#define TCVR_READ_TRIES   16
391
392static int happy_meal_tcvr_read(struct happy_meal *hp,
393				void __iomem *tregs, int reg)
394{
395	int tries = TCVR_READ_TRIES;
396	int retval;
397
398	if (hp->tcvr_type == none) {
399		ASD("no transceiver, value=TCVR_FAILURE\n");
400		return TCVR_FAILURE;
401	}
402
403	if (!(hp->happy_flags & HFLAG_FENABLE)) {
404		ASD("doing bit bang\n");
405		return happy_meal_bb_read(hp, tregs, reg);
406	}
407
408	hme_write32(hp, tregs + TCVR_FRAME,
409		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
410	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
411		udelay(20);
412	if (!tries) {
413		netdev_err(hp->dev, "Aieee, transceiver MIF read bolixed\n");
414		return TCVR_FAILURE;
415	}
416	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
417	ASD("reg=0x%02x value=%04x\n", reg, retval);
418	return retval;
419}
420
421#define TCVR_WRITE_TRIES  16
422
423static void happy_meal_tcvr_write(struct happy_meal *hp,
424				  void __iomem *tregs, int reg,
425				  unsigned short value)
426{
427	int tries = TCVR_WRITE_TRIES;
428
429	ASD("reg=0x%02x value=%04x\n", reg, value);
430
431	/* Welcome to Sun Microsystems, can I take your order please? */
432	if (!(hp->happy_flags & HFLAG_FENABLE)) {
433		happy_meal_bb_write(hp, tregs, reg, value);
434		return;
435	}
436
437	/* Would you like fries with that? */
438	hme_write32(hp, tregs + TCVR_FRAME,
439		    (FRAME_WRITE | (hp->paddr << 23) |
440		     ((reg & 0xff) << 18) | (value & 0xffff)));
441	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
442		udelay(20);
443
444	/* Anything else? */
445	if (!tries)
446		netdev_err(hp->dev, "Aieee, transceiver MIF write bolixed\n");
447
448	/* Fifty-two cents is your change, have a nice day. */
449}
450
451/* Auto negotiation.  The scheme is very simple.  We have a timer routine
452 * that keeps watching the auto negotiation process as it progresses.
453 * The DP83840 is first told to start doing it's thing, we set up the time
454 * and place the timer state machine in it's initial state.
455 *
456 * Here the timer peeks at the DP83840 status registers at each click to see
457 * if the auto negotiation has completed, we assume here that the DP83840 PHY
458 * will time out at some point and just tell us what (didn't) happen.  For
459 * complete coverage we only allow so many of the ticks at this level to run,
460 * when this has expired we print a warning message and try another strategy.
461 * This "other" strategy is to force the interface into various speed/duplex
462 * configurations and we stop when we see a link-up condition before the
463 * maximum number of "peek" ticks have occurred.
464 *
465 * Once a valid link status has been detected we configure the BigMAC and
466 * the rest of the Happy Meal to speak the most efficient protocol we could
467 * get a clean link for.  The priority for link configurations, highest first
468 * is:
469 *                 100 Base-T Full Duplex
470 *                 100 Base-T Half Duplex
471 *                 10 Base-T Full Duplex
472 *                 10 Base-T Half Duplex
473 *
474 * We start a new timer now, after a successful auto negotiation status has
475 * been detected.  This timer just waits for the link-up bit to get set in
476 * the BMCR of the DP83840.  When this occurs we print a kernel log message
477 * describing the link type in use and the fact that it is up.
478 *
479 * If a fatal error of some sort is signalled and detected in the interrupt
480 * service routine, and the chip is reset, or the link is ifconfig'd down
481 * and then back up, this entire process repeats itself all over again.
482 */
483static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
484{
485	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
486
487	/* Downgrade from full to half duplex.  Only possible
488	 * via ethtool.
489	 */
490	if (hp->sw_bmcr & BMCR_FULLDPLX) {
491		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
492		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
493		return 0;
494	}
495
496	/* Downgrade from 100 to 10. */
497	if (hp->sw_bmcr & BMCR_SPEED100) {
498		hp->sw_bmcr &= ~(BMCR_SPEED100);
499		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
500		return 0;
501	}
502
503	/* We've tried everything. */
504	return -1;
505}
506
507static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
508{
509	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
510
511	netdev_info(hp->dev,
512		    "Link is up using %s transceiver at %dMb/s, %s Duplex.\n",
513		    hp->tcvr_type == external ? "external" : "internal",
514		    hp->sw_lpa & (LPA_100HALF | LPA_100FULL) ? 100 : 10,
515		    hp->sw_lpa & (LPA_100FULL | LPA_10FULL) ? "Full" : "Half");
516}
517
518static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
519{
520	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
521
522	netdev_info(hp->dev,
523		    "Link has been forced up using %s transceiver at %dMb/s, %s Duplex.\n",
524		    hp->tcvr_type == external ? "external" : "internal",
525		    hp->sw_bmcr & BMCR_SPEED100 ? 100 : 10,
526		    hp->sw_bmcr & BMCR_FULLDPLX ? "Full" : "Half");
527}
528
529static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
530{
531	int full;
532
533	/* All we care about is making sure the bigmac tx_cfg has a
534	 * proper duplex setting.
535	 */
536	if (hp->timer_state == arbwait) {
537		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
538		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
539			goto no_response;
540		if (hp->sw_lpa & LPA_100FULL)
541			full = 1;
542		else if (hp->sw_lpa & LPA_100HALF)
543			full = 0;
544		else if (hp->sw_lpa & LPA_10FULL)
545			full = 1;
546		else
547			full = 0;
548	} else {
549		/* Forcing a link mode. */
550		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
551		if (hp->sw_bmcr & BMCR_FULLDPLX)
552			full = 1;
553		else
554			full = 0;
555	}
556
557	/* Before changing other bits in the tx_cfg register, and in
558	 * general any of other the TX config registers too, you
559	 * must:
560	 * 1) Clear Enable
561	 * 2) Poll with reads until that bit reads back as zero
562	 * 3) Make TX configuration changes
563	 * 4) Set Enable once more
564	 */
565	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
566		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
567		    ~(BIGMAC_TXCFG_ENABLE));
568	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
569		barrier();
570	if (full) {
571		hp->happy_flags |= HFLAG_FULL;
572		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
573			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
574			    BIGMAC_TXCFG_FULLDPLX);
575	} else {
576		hp->happy_flags &= ~(HFLAG_FULL);
577		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
578			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
579			    ~(BIGMAC_TXCFG_FULLDPLX));
580	}
581	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
582		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
583		    BIGMAC_TXCFG_ENABLE);
584	return 0;
585no_response:
586	return 1;
587}
588
589static int is_lucent_phy(struct happy_meal *hp)
590{
591	void __iomem *tregs = hp->tcvregs;
592	unsigned short mr2, mr3;
593	int ret = 0;
594
595	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
596	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
597	if ((mr2 & 0xffff) == 0x0180 &&
598	    ((mr3 & 0xffff) >> 10) == 0x1d)
599		ret = 1;
600
601	return ret;
602}
603
604/* hp->happy_lock must be held */
605static void
606happy_meal_begin_auto_negotiation(struct happy_meal *hp,
607				  void __iomem *tregs,
608				  const struct ethtool_link_ksettings *ep)
609{
610	int timeout;
611
612	/* Read all of the registers we are interested in now. */
613	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
614	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
615	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
616	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
617
618	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
619
620	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
621	if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
622		/* Advertise everything we can support. */
623		if (hp->sw_bmsr & BMSR_10HALF)
624			hp->sw_advertise |= (ADVERTISE_10HALF);
625		else
626			hp->sw_advertise &= ~(ADVERTISE_10HALF);
627
628		if (hp->sw_bmsr & BMSR_10FULL)
629			hp->sw_advertise |= (ADVERTISE_10FULL);
630		else
631			hp->sw_advertise &= ~(ADVERTISE_10FULL);
632		if (hp->sw_bmsr & BMSR_100HALF)
633			hp->sw_advertise |= (ADVERTISE_100HALF);
634		else
635			hp->sw_advertise &= ~(ADVERTISE_100HALF);
636		if (hp->sw_bmsr & BMSR_100FULL)
637			hp->sw_advertise |= (ADVERTISE_100FULL);
638		else
639			hp->sw_advertise &= ~(ADVERTISE_100FULL);
640		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
641
642		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
643		 * XXX and this is because the DP83840 does not support it, changes
644		 * XXX would need to be made to the tx/rx logic in the driver as well
645		 * XXX so I completely skip checking for it in the BMSR for now.
646		 */
647
648		ASD("Advertising [ %s%s%s%s]\n",
649		    hp->sw_advertise & ADVERTISE_10HALF ? "10H " : "",
650		    hp->sw_advertise & ADVERTISE_10FULL ? "10F " : "",
651		    hp->sw_advertise & ADVERTISE_100HALF ? "100H " : "",
652		    hp->sw_advertise & ADVERTISE_100FULL ? "100F " : "");
653
654		/* Enable Auto-Negotiation, this is usually on already... */
655		hp->sw_bmcr |= BMCR_ANENABLE;
656		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
657
658		/* Restart it to make sure it is going. */
659		hp->sw_bmcr |= BMCR_ANRESTART;
660		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
661
662		/* BMCR_ANRESTART self clears when the process has begun. */
663
664		timeout = 64;  /* More than enough. */
665		while (--timeout) {
666			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
667			if (!(hp->sw_bmcr & BMCR_ANRESTART))
668				break; /* got it. */
669			udelay(10);
670		}
671		if (!timeout) {
672			netdev_err(hp->dev,
673				   "Happy Meal would not start auto negotiation BMCR=0x%04x\n",
674				   hp->sw_bmcr);
675			netdev_notice(hp->dev,
676				      "Performing force link detection.\n");
677			goto force_link;
678		} else {
679			hp->timer_state = arbwait;
680		}
681	} else {
682force_link:
683		/* Force the link up, trying first a particular mode.
684		 * Either we are here at the request of ethtool or
685		 * because the Happy Meal would not start to autoneg.
686		 */
687
688		/* Disable auto-negotiation in BMCR, enable the duplex and
689		 * speed setting, init the timer state machine, and fire it off.
690		 */
691		if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
692			hp->sw_bmcr = BMCR_SPEED100;
693		} else {
694			if (ep->base.speed == SPEED_100)
695				hp->sw_bmcr = BMCR_SPEED100;
696			else
697				hp->sw_bmcr = 0;
698			if (ep->base.duplex == DUPLEX_FULL)
699				hp->sw_bmcr |= BMCR_FULLDPLX;
700		}
701		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
702
703		if (!is_lucent_phy(hp)) {
704			/* OK, seems we need do disable the transceiver for the first
705			 * tick to make sure we get an accurate link state at the
706			 * second tick.
707			 */
708			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
709							       DP83840_CSCONFIG);
710			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
711			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
712					      hp->sw_csconfig);
713		}
714		hp->timer_state = ltrywait;
715	}
716
717	hp->timer_ticks = 0;
718	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
719	add_timer(&hp->happy_timer);
720}
721
722static void happy_meal_timer(struct timer_list *t)
723{
724	struct happy_meal *hp = from_timer(hp, t, happy_timer);
725	void __iomem *tregs = hp->tcvregs;
726	int restart_timer = 0;
727
728	spin_lock_irq(&hp->happy_lock);
729
730	hp->timer_ticks++;
731	switch(hp->timer_state) {
732	case arbwait:
733		/* Only allow for 5 ticks, thats 10 seconds and much too
734		 * long to wait for arbitration to complete.
735		 */
736		if (hp->timer_ticks >= 10) {
737			/* Enter force mode. */
738	do_force_mode:
739			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
740			netdev_notice(hp->dev,
741				      "Auto-Negotiation unsuccessful, trying force link mode\n");
742			hp->sw_bmcr = BMCR_SPEED100;
743			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
744
745			if (!is_lucent_phy(hp)) {
746				/* OK, seems we need do disable the transceiver for the first
747				 * tick to make sure we get an accurate link state at the
748				 * second tick.
749				 */
750				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
751				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
752				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
753			}
754			hp->timer_state = ltrywait;
755			hp->timer_ticks = 0;
756			restart_timer = 1;
757		} else {
758			/* Anything interesting happen? */
759			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
760			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
761				int ret;
762
763				/* Just what we've been waiting for... */
764				ret = set_happy_link_modes(hp, tregs);
765				if (ret) {
766					/* Ooops, something bad happened, go to force
767					 * mode.
768					 *
769					 * XXX Broken hubs which don't support 802.3u
770					 * XXX auto-negotiation make this happen as well.
771					 */
772					goto do_force_mode;
773				}
774
775				/* Success, at least so far, advance our state engine. */
776				hp->timer_state = lupwait;
777				restart_timer = 1;
778			} else {
779				restart_timer = 1;
780			}
781		}
782		break;
783
784	case lupwait:
785		/* Auto negotiation was successful and we are awaiting a
786		 * link up status.  I have decided to let this timer run
787		 * forever until some sort of error is signalled, reporting
788		 * a message to the user at 10 second intervals.
789		 */
790		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
791		if (hp->sw_bmsr & BMSR_LSTATUS) {
792			/* Wheee, it's up, display the link mode in use and put
793			 * the timer to sleep.
794			 */
795			display_link_mode(hp, tregs);
796			hp->timer_state = asleep;
797			restart_timer = 0;
798		} else {
799			if (hp->timer_ticks >= 10) {
800				netdev_notice(hp->dev,
801					      "Auto negotiation successful, link still not completely up.\n");
802				hp->timer_ticks = 0;
803				restart_timer = 1;
804			} else {
805				restart_timer = 1;
806			}
807		}
808		break;
809
810	case ltrywait:
811		/* Making the timeout here too long can make it take
812		 * annoyingly long to attempt all of the link mode
813		 * permutations, but then again this is essentially
814		 * error recovery code for the most part.
815		 */
816		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
817		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
818		if (hp->timer_ticks == 1) {
819			if (!is_lucent_phy(hp)) {
820				/* Re-enable transceiver, we'll re-enable the transceiver next
821				 * tick, then check link state on the following tick.
822				 */
823				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
824				happy_meal_tcvr_write(hp, tregs,
825						      DP83840_CSCONFIG, hp->sw_csconfig);
826			}
827			restart_timer = 1;
828			break;
829		}
830		if (hp->timer_ticks == 2) {
831			if (!is_lucent_phy(hp)) {
832				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
833				happy_meal_tcvr_write(hp, tregs,
834						      DP83840_CSCONFIG, hp->sw_csconfig);
835			}
836			restart_timer = 1;
837			break;
838		}
839		if (hp->sw_bmsr & BMSR_LSTATUS) {
840			/* Force mode selection success. */
841			display_forced_link_mode(hp, tregs);
842			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
843			hp->timer_state = asleep;
844			restart_timer = 0;
845		} else {
846			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
847				int ret;
848
849				ret = try_next_permutation(hp, tregs);
850				if (ret == -1) {
851					/* Aieee, tried them all, reset the
852					 * chip and try all over again.
853					 */
854
855					/* Let the user know... */
856					netdev_notice(hp->dev,
857						      "Link down, cable problem?\n");
858
859					happy_meal_begin_auto_negotiation(hp, tregs, NULL);
860					goto out;
861				}
862				if (!is_lucent_phy(hp)) {
863					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
864									       DP83840_CSCONFIG);
865					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
866					happy_meal_tcvr_write(hp, tregs,
867							      DP83840_CSCONFIG, hp->sw_csconfig);
868				}
869				hp->timer_ticks = 0;
870				restart_timer = 1;
871			} else {
872				restart_timer = 1;
873			}
874		}
875		break;
876
877	case asleep:
878	default:
879		/* Can't happens.... */
880		netdev_err(hp->dev,
881			   "Aieee, link timer is asleep but we got one anyways!\n");
882		restart_timer = 0;
883		hp->timer_ticks = 0;
884		hp->timer_state = asleep; /* foo on you */
885		break;
886	}
887
888	if (restart_timer) {
889		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
890		add_timer(&hp->happy_timer);
891	}
892
893out:
894	spin_unlock_irq(&hp->happy_lock);
895}
896
897#define TX_RESET_TRIES     32
898#define RX_RESET_TRIES     32
899
900/* hp->happy_lock must be held */
901static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
902{
903	int tries = TX_RESET_TRIES;
904
905	HMD("reset...\n");
906
907	/* Would you like to try our SMCC Delux? */
908	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
909	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
910		udelay(20);
911
912	/* Lettuce, tomato, buggy hardware (no extra charge)? */
913	if (!tries)
914		netdev_err(hp->dev, "Transceiver BigMac ATTACK!");
915
916	/* Take care. */
917	HMD("done\n");
918}
919
920/* hp->happy_lock must be held */
921static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
922{
923	int tries = RX_RESET_TRIES;
924
925	HMD("reset...\n");
926
927	/* We have a special on GNU/Viking hardware bugs today. */
928	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
929	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
930		udelay(20);
931
932	/* Will that be all? */
933	if (!tries)
934		netdev_err(hp->dev, "Receiver BigMac ATTACK!\n");
935
936	/* Don't forget your vik_1137125_wa.  Have a nice day. */
937	HMD("done\n");
938}
939
940#define STOP_TRIES         16
941
942/* hp->happy_lock must be held */
943static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
944{
945	int tries = STOP_TRIES;
946
947	HMD("reset...\n");
948
949	/* We're consolidating our STB products, it's your lucky day. */
950	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
951	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
952		udelay(20);
953
954	/* Come back next week when we are "Sun Microelectronics". */
955	if (!tries)
956		netdev_err(hp->dev, "Fry guys.\n");
957
958	/* Remember: "Different name, same old buggy as shit hardware." */
959	HMD("done\n");
960}
961
962/* hp->happy_lock must be held */
963static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
964{
965	struct net_device_stats *stats = &hp->dev->stats;
966
967	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
968	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
969
970	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
971	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
972
973	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
974	hme_write32(hp, bregs + BMAC_GLECTR, 0);
975
976	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
977
978	stats->collisions +=
979		(hme_read32(hp, bregs + BMAC_EXCTR) +
980		 hme_read32(hp, bregs + BMAC_LTCTR));
981	hme_write32(hp, bregs + BMAC_EXCTR, 0);
982	hme_write32(hp, bregs + BMAC_LTCTR, 0);
983}
984
985/* Only Sun can take such nice parts and fuck up the programming interface
986 * like this.  Good job guys...
987 */
988#define TCVR_RESET_TRIES       16 /* It should reset quickly        */
989#define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
990
991/* hp->happy_lock must be held */
992static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
993{
994	u32 tconfig;
995	int result, tries = TCVR_RESET_TRIES;
996
997	tconfig = hme_read32(hp, tregs + TCVR_CFG);
998	ASD("tcfg=%08x\n", tconfig);
999	if (hp->tcvr_type == external) {
1000		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1001		hp->tcvr_type = internal;
1002		hp->paddr = TCV_PADDR_ITX;
1003		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1004				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1005		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1006		if (result == TCVR_FAILURE) {
1007			ASD("phyread_fail\n");
1008			return -1;
1009		}
1010		ASD("external: ISOLATE, phyread_ok, PSELECT\n");
1011		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1012		hp->tcvr_type = external;
1013		hp->paddr = TCV_PADDR_ETX;
1014	} else {
1015		if (tconfig & TCV_CFG_MDIO1) {
1016			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1017			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1018					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1019			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1020			if (result == TCVR_FAILURE) {
1021				ASD("phyread_fail>\n");
1022				return -1;
1023			}
1024			ASD("internal: PSELECT, ISOLATE, phyread_ok, ~PSELECT\n");
1025			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1026			hp->tcvr_type = internal;
1027			hp->paddr = TCV_PADDR_ITX;
1028		}
1029	}
1030
1031	ASD("BMCR_RESET...\n");
1032	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1033
1034	while (--tries) {
1035		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1036		if (result == TCVR_FAILURE)
1037			return -1;
1038		hp->sw_bmcr = result;
1039		if (!(result & BMCR_RESET))
1040			break;
1041		udelay(20);
1042	}
1043	if (!tries) {
1044		ASD("BMCR RESET FAILED!\n");
1045		return -1;
1046	}
1047	ASD("RESET_OK\n");
1048
1049	/* Get fresh copies of the PHY registers. */
1050	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1051	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1052	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1053	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1054
1055	ASD("UNISOLATE...\n");
1056	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1057	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1058
1059	tries = TCVR_UNISOLATE_TRIES;
1060	while (--tries) {
1061		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1062		if (result == TCVR_FAILURE)
1063			return -1;
1064		if (!(result & BMCR_ISOLATE))
1065			break;
1066		udelay(20);
1067	}
1068	if (!tries) {
1069		ASD("UNISOLATE FAILED!\n");
1070		return -1;
1071	}
1072	ASD("SUCCESS and CSCONFIG_DFBYPASS\n");
1073	if (!is_lucent_phy(hp)) {
1074		result = happy_meal_tcvr_read(hp, tregs,
1075					      DP83840_CSCONFIG);
1076		happy_meal_tcvr_write(hp, tregs,
1077				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1078	}
1079	return 0;
1080}
1081
1082/* Figure out whether we have an internal or external transceiver.
1083 *
1084 * hp->happy_lock must be held
1085 */
1086static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1087{
1088	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1089	u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1090
1091	ASD("tcfg=%08lx\n", tconfig);
1092	if (reread & TCV_CFG_MDIO1) {
1093		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1094		hp->paddr = TCV_PADDR_ETX;
1095		hp->tcvr_type = external;
1096		ASD("not polling, external\n");
1097	} else {
1098		if (reread & TCV_CFG_MDIO0) {
1099			hme_write32(hp, tregs + TCVR_CFG,
1100				    tconfig & ~(TCV_CFG_PSELECT));
1101			hp->paddr = TCV_PADDR_ITX;
1102			hp->tcvr_type = internal;
1103			ASD("not polling, internal\n");
1104		} else {
1105			netdev_err(hp->dev,
1106				   "Transceiver and a coke please.");
1107			hp->tcvr_type = none; /* Grrr... */
1108			ASD("not polling, none\n");
1109		}
1110	}
1111}
1112
1113/* The receive ring buffers are a bit tricky to get right.  Here goes...
1114 *
1115 * The buffers we dma into must be 64 byte aligned.  So we use a special
1116 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1117 * we really need.
1118 *
1119 * We use skb_reserve() to align the data block we get in the skb.  We
1120 * also program the etxregs->cfg register to use an offset of 2.  This
1121 * imperical constant plus the ethernet header size will always leave
1122 * us with a nicely aligned ip header once we pass things up to the
1123 * protocol layers.
1124 *
1125 * The numbers work out to:
1126 *
1127 *         Max ethernet frame size         1518
1128 *         Ethernet header size              14
1129 *         Happy Meal base offset             2
1130 *
1131 * Say a skb data area is at 0xf001b010, and its size alloced is
1132 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1133 *
1134 * First our alloc_skb() routine aligns the data base to a 64 byte
1135 * boundary.  We now have 0xf001b040 as our skb data address.  We
1136 * plug this into the receive descriptor address.
1137 *
1138 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1139 * So now the data we will end up looking at starts at 0xf001b042.  When
1140 * the packet arrives, we will check out the size received and subtract
1141 * this from the skb->length.  Then we just pass the packet up to the
1142 * protocols as is, and allocate a new skb to replace this slot we have
1143 * just received from.
1144 *
1145 * The ethernet layer will strip the ether header from the front of the
1146 * skb we just sent to it, this leaves us with the ip header sitting
1147 * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1148 * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1149 * bit checksum is obtained from the low bits of the receive descriptor
1150 * flags, thus:
1151 *
1152 * 	skb->csum = rxd->rx_flags & 0xffff;
1153 * 	skb->ip_summed = CHECKSUM_COMPLETE;
1154 *
1155 * before sending off the skb to the protocols, and we are good as gold.
1156 */
1157static void happy_meal_clean_rings(struct happy_meal *hp)
1158{
1159	int i;
1160
1161	for (i = 0; i < RX_RING_SIZE; i++) {
1162		if (hp->rx_skbs[i] != NULL) {
1163			struct sk_buff *skb = hp->rx_skbs[i];
1164			struct happy_meal_rxd *rxd;
1165			u32 dma_addr;
1166
1167			rxd = &hp->happy_block->happy_meal_rxd[i];
1168			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1169			dma_unmap_single(hp->dma_dev, dma_addr,
1170					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1171			dev_kfree_skb_any(skb);
1172			hp->rx_skbs[i] = NULL;
1173		}
1174	}
1175
1176	for (i = 0; i < TX_RING_SIZE; i++) {
1177		if (hp->tx_skbs[i] != NULL) {
1178			struct sk_buff *skb = hp->tx_skbs[i];
1179			struct happy_meal_txd *txd;
1180			u32 dma_addr;
1181			int frag;
1182
1183			hp->tx_skbs[i] = NULL;
1184
1185			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1186				txd = &hp->happy_block->happy_meal_txd[i];
1187				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1188				if (!frag)
1189					dma_unmap_single(hp->dma_dev, dma_addr,
1190							 (hme_read_desc32(hp, &txd->tx_flags)
1191							  & TXFLAG_SIZE),
1192							 DMA_TO_DEVICE);
1193				else
1194					dma_unmap_page(hp->dma_dev, dma_addr,
1195							 (hme_read_desc32(hp, &txd->tx_flags)
1196							  & TXFLAG_SIZE),
1197							 DMA_TO_DEVICE);
1198
1199				if (frag != skb_shinfo(skb)->nr_frags)
1200					i++;
1201			}
1202
1203			dev_kfree_skb_any(skb);
1204		}
1205	}
1206}
1207
1208/* hp->happy_lock must be held */
1209static void happy_meal_init_rings(struct happy_meal *hp)
1210{
1211	struct hmeal_init_block *hb = hp->happy_block;
1212	int i;
1213
1214	HMD("counters to zero\n");
1215	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1216
1217	/* Free any skippy bufs left around in the rings. */
1218	happy_meal_clean_rings(hp);
1219
1220	/* Now get new skippy bufs for the receive ring. */
1221	HMD("init rxring\n");
1222	for (i = 0; i < RX_RING_SIZE; i++) {
1223		struct sk_buff *skb;
1224		u32 mapping;
1225
1226		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1227		if (!skb) {
1228			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1229			continue;
1230		}
1231		hp->rx_skbs[i] = skb;
1232
1233		/* Because we reserve afterwards. */
1234		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1235		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1236					 DMA_FROM_DEVICE);
1237		if (dma_mapping_error(hp->dma_dev, mapping)) {
1238			dev_kfree_skb_any(skb);
1239			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1240			continue;
1241		}
1242		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1243			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1244			      mapping);
1245		skb_reserve(skb, RX_OFFSET);
1246	}
1247
1248	HMD("init txring\n");
1249	for (i = 0; i < TX_RING_SIZE; i++)
1250		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1251
1252	HMD("done\n");
1253}
1254
1255/* hp->happy_lock must be held */
1256static int happy_meal_init(struct happy_meal *hp)
1257{
1258	const unsigned char *e = &hp->dev->dev_addr[0];
1259	void __iomem *gregs        = hp->gregs;
1260	void __iomem *etxregs      = hp->etxregs;
1261	void __iomem *erxregs      = hp->erxregs;
1262	void __iomem *bregs        = hp->bigmacregs;
1263	void __iomem *tregs        = hp->tcvregs;
1264	const char *bursts = "64";
1265	u32 regtmp, rxcfg;
1266
1267	/* If auto-negotiation timer is running, kill it. */
1268	del_timer(&hp->happy_timer);
1269
1270	HMD("happy_flags[%08x]\n", hp->happy_flags);
1271	if (!(hp->happy_flags & HFLAG_INIT)) {
1272		HMD("set HFLAG_INIT\n");
1273		hp->happy_flags |= HFLAG_INIT;
1274		happy_meal_get_counters(hp, bregs);
1275	}
1276
1277	/* Stop transmitter and receiver. */
1278	HMD("to happy_meal_stop\n");
1279	happy_meal_stop(hp, gregs);
1280
1281	/* Alloc and reset the tx/rx descriptor chains. */
1282	HMD("to happy_meal_init_rings\n");
1283	happy_meal_init_rings(hp);
1284
1285	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1286	if (hp->happy_flags & HFLAG_FENABLE) {
1287		HMD("use frame old[%08x]\n",
1288		    hme_read32(hp, tregs + TCVR_CFG));
1289		hme_write32(hp, tregs + TCVR_CFG,
1290			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1291	} else {
1292		HMD("use bitbang old[%08x]\n",
1293		    hme_read32(hp, tregs + TCVR_CFG));
1294		hme_write32(hp, tregs + TCVR_CFG,
1295			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1296	}
1297
1298	/* Check the state of the transceiver. */
1299	HMD("to happy_meal_transceiver_check\n");
1300	happy_meal_transceiver_check(hp, tregs);
1301
1302	/* Put the Big Mac into a sane state. */
1303	switch(hp->tcvr_type) {
1304	case none:
1305		/* Cannot operate if we don't know the transceiver type! */
1306		HMD("AAIEEE no transceiver type, EAGAIN\n");
1307		return -EAGAIN;
1308
1309	case internal:
1310		/* Using the MII buffers. */
1311		HMD("internal, using MII\n");
1312		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1313		break;
1314
1315	case external:
1316		/* Not using the MII, disable it. */
1317		HMD("external, disable MII\n");
1318		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1319		break;
1320	}
1321
1322	if (happy_meal_tcvr_reset(hp, tregs))
1323		return -EAGAIN;
1324
1325	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1326	HMD("tx/rx reset\n");
1327	happy_meal_tx_reset(hp, bregs);
1328	happy_meal_rx_reset(hp, bregs);
1329
1330	/* Set jam size and inter-packet gaps to reasonable defaults. */
1331	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1332	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1333	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1334
1335	/* Load up the MAC address and random seed. */
1336
1337	/* The docs recommend to use the 10LSB of our MAC here. */
1338	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1339
1340	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1341	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1342	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1343
1344	if ((hp->dev->flags & IFF_ALLMULTI) ||
1345	    (netdev_mc_count(hp->dev) > 64)) {
1346		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1347		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1348		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1349		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1350	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1351		u16 hash_table[4];
1352		struct netdev_hw_addr *ha;
1353		u32 crc;
1354
1355		memset(hash_table, 0, sizeof(hash_table));
1356		netdev_for_each_mc_addr(ha, hp->dev) {
1357			crc = ether_crc_le(6, ha->addr);
1358			crc >>= 26;
1359			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1360		}
1361		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1362		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1363		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1364		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1365	} else {
1366		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1367		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1368		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1369		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1370	}
1371
1372	/* Set the RX and TX ring ptrs. */
1373	HMD("ring ptrs rxr[%08x] txr[%08x]\n",
1374	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1375	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1376	hme_write32(hp, erxregs + ERX_RING,
1377		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1378	hme_write32(hp, etxregs + ETX_RING,
1379		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1380
1381	/* Parity issues in the ERX unit of some HME revisions can cause some
1382	 * registers to not be written unless their parity is even.  Detect such
1383	 * lost writes and simply rewrite with a low bit set (which will be ignored
1384	 * since the rxring needs to be 2K aligned).
1385	 */
1386	if (hme_read32(hp, erxregs + ERX_RING) !=
1387	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1388		hme_write32(hp, erxregs + ERX_RING,
1389			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1390			    | 0x4);
1391
1392	/* Set the supported burst sizes. */
1393#ifndef CONFIG_SPARC
1394	/* It is always PCI and can handle 64byte bursts. */
1395	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1396#else
1397	if ((hp->happy_bursts & DMA_BURST64) &&
1398	    ((hp->happy_flags & HFLAG_PCI) != 0
1399#ifdef CONFIG_SBUS
1400	     || sbus_can_burst64()
1401#endif
1402	     || 0)) {
1403		u32 gcfg = GREG_CFG_BURST64;
1404
1405		/* I have no idea if I should set the extended
1406		 * transfer mode bit for Cheerio, so for now I
1407		 * do not.  -DaveM
1408		 */
1409#ifdef CONFIG_SBUS
1410		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1411			struct platform_device *op = hp->happy_dev;
1412			if (sbus_can_dma_64bit()) {
1413				sbus_set_sbus64(&op->dev,
1414						hp->happy_bursts);
1415				gcfg |= GREG_CFG_64BIT;
1416			}
1417		}
1418#endif
1419
1420		bursts = "64";
1421		hme_write32(hp, gregs + GREG_CFG, gcfg);
1422	} else if (hp->happy_bursts & DMA_BURST32) {
1423		bursts = "32";
1424		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1425	} else if (hp->happy_bursts & DMA_BURST16) {
1426		bursts = "16";
1427		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1428	} else {
1429		bursts = "XXX";
1430		hme_write32(hp, gregs + GREG_CFG, 0);
1431	}
1432#endif /* CONFIG_SPARC */
1433
1434	HMD("old[%08x] bursts<%s>\n",
1435	    hme_read32(hp, gregs + GREG_CFG), bursts);
1436
1437	/* Turn off interrupts we do not want to hear. */
1438	hme_write32(hp, gregs + GREG_IMASK,
1439		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1440		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1441
1442	/* Set the transmit ring buffer size. */
1443	HMD("tx rsize=%d oreg[%08x]\n", (int)TX_RING_SIZE,
1444	    hme_read32(hp, etxregs + ETX_RSIZE));
1445	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1446
1447	/* Enable transmitter DVMA. */
1448	HMD("tx dma enable old[%08x]\n", hme_read32(hp, etxregs + ETX_CFG));
1449	hme_write32(hp, etxregs + ETX_CFG,
1450		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1451
1452	/* This chip really rots, for the receiver sometimes when you
1453	 * write to its control registers not all the bits get there
1454	 * properly.  I cannot think of a sane way to provide complete
1455	 * coverage for this hardware bug yet.
1456	 */
1457	HMD("erx regs bug old[%08x]\n",
1458	    hme_read32(hp, erxregs + ERX_CFG));
1459	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1460	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1461	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1462	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1463		netdev_err(hp->dev,
1464			   "Eieee, rx config register gets greasy fries.\n");
1465		netdev_err(hp->dev,
1466			   "Trying to set %08x, reread gives %08x\n",
1467			   ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1468		/* XXX Should return failure here... */
1469	}
1470
1471	/* Enable Big Mac hash table filter. */
1472	HMD("enable hash rx_cfg_old[%08x]\n",
1473	    hme_read32(hp, bregs + BMAC_RXCFG));
1474	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1475	if (hp->dev->flags & IFF_PROMISC)
1476		rxcfg |= BIGMAC_RXCFG_PMISC;
1477	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1478
1479	/* Let the bits settle in the chip. */
1480	udelay(10);
1481
1482	/* Ok, configure the Big Mac transmitter. */
1483	HMD("BIGMAC init\n");
1484	regtmp = 0;
1485	if (hp->happy_flags & HFLAG_FULL)
1486		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1487
1488	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1489	 * to deadlock with the PHY if a Jabber occurs.
1490	 */
1491	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1492
1493	/* Give up after 16 TX attempts. */
1494	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1495
1496	/* Enable the output drivers no matter what. */
1497	regtmp = BIGMAC_XCFG_ODENABLE;
1498
1499	/* If card can do lance mode, enable it. */
1500	if (hp->happy_flags & HFLAG_LANCE)
1501		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1502
1503	/* Disable the MII buffers if using external transceiver. */
1504	if (hp->tcvr_type == external)
1505		regtmp |= BIGMAC_XCFG_MIIDISAB;
1506
1507	HMD("XIF config old[%08x]\n", hme_read32(hp, bregs + BMAC_XIFCFG));
1508	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1509
1510	/* Start things up. */
1511	HMD("tx old[%08x] and rx [%08x] ON!\n",
1512	    hme_read32(hp, bregs + BMAC_TXCFG),
1513	    hme_read32(hp, bregs + BMAC_RXCFG));
1514
1515	/* Set larger TX/RX size to allow for 802.1q */
1516	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1517	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1518
1519	hme_write32(hp, bregs + BMAC_TXCFG,
1520		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1521	hme_write32(hp, bregs + BMAC_RXCFG,
1522		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1523
1524	/* Get the autonegotiation started, and the watch timer ticking. */
1525	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1526
1527	/* Success. */
1528	return 0;
1529}
1530
1531/* hp->happy_lock must be held */
1532static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1533{
1534	void __iomem *tregs	= hp->tcvregs;
1535	void __iomem *bregs	= hp->bigmacregs;
1536	void __iomem *gregs	= hp->gregs;
1537
1538	happy_meal_stop(hp, gregs);
1539	if (hp->happy_flags & HFLAG_FENABLE)
1540		hme_write32(hp, tregs + TCVR_CFG,
1541			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1542	else
1543		hme_write32(hp, tregs + TCVR_CFG,
1544			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1545	happy_meal_transceiver_check(hp, tregs);
1546	switch(hp->tcvr_type) {
1547	case none:
1548		return;
1549	case internal:
1550		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1551		break;
1552	case external:
1553		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1554		break;
1555	}
1556	if (happy_meal_tcvr_reset(hp, tregs))
1557		return;
1558
1559	/* Latch PHY registers as of now. */
1560	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1561	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1562
1563	/* Advertise everything we can support. */
1564	if (hp->sw_bmsr & BMSR_10HALF)
1565		hp->sw_advertise |= (ADVERTISE_10HALF);
1566	else
1567		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1568
1569	if (hp->sw_bmsr & BMSR_10FULL)
1570		hp->sw_advertise |= (ADVERTISE_10FULL);
1571	else
1572		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1573	if (hp->sw_bmsr & BMSR_100HALF)
1574		hp->sw_advertise |= (ADVERTISE_100HALF);
1575	else
1576		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1577	if (hp->sw_bmsr & BMSR_100FULL)
1578		hp->sw_advertise |= (ADVERTISE_100FULL);
1579	else
1580		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1581
1582	/* Update the PHY advertisement register. */
1583	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1584}
1585
1586/* Once status is latched (by happy_meal_interrupt) it is cleared by
1587 * the hardware, so we cannot re-read it and get a correct value.
1588 *
1589 * hp->happy_lock must be held
1590 */
1591static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1592{
1593	int reset = 0;
1594
1595	/* Only print messages for non-counter related interrupts. */
1596	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1597		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1598		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1599		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1600		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1601		      GREG_STAT_SLVPERR))
1602		netdev_err(hp->dev,
1603			   "Error interrupt for happy meal, status = %08x\n",
1604			   status);
1605
1606	if (status & GREG_STAT_RFIFOVF) {
1607		/* Receive FIFO overflow is harmless and the hardware will take
1608		   care of it, just some packets are lost. Who cares. */
1609		netdev_dbg(hp->dev, "Happy Meal receive FIFO overflow.\n");
1610	}
1611
1612	if (status & GREG_STAT_STSTERR) {
1613		/* BigMAC SQE link test failed. */
1614		netdev_err(hp->dev, "Happy Meal BigMAC SQE test failed.\n");
1615		reset = 1;
1616	}
1617
1618	if (status & GREG_STAT_TFIFO_UND) {
1619		/* Transmit FIFO underrun, again DMA error likely. */
1620		netdev_err(hp->dev,
1621			   "Happy Meal transmitter FIFO underrun, DMA error.\n");
1622		reset = 1;
1623	}
1624
1625	if (status & GREG_STAT_MAXPKTERR) {
1626		/* Driver error, tried to transmit something larger
1627		 * than ethernet max mtu.
1628		 */
1629		netdev_err(hp->dev, "Happy Meal MAX Packet size error.\n");
1630		reset = 1;
1631	}
1632
1633	if (status & GREG_STAT_NORXD) {
1634		/* This is harmless, it just means the system is
1635		 * quite loaded and the incoming packet rate was
1636		 * faster than the interrupt handler could keep up
1637		 * with.
1638		 */
1639		netdev_info(hp->dev,
1640			    "Happy Meal out of receive descriptors, packet dropped.\n");
1641	}
1642
1643	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1644		/* All sorts of DMA receive errors. */
1645		netdev_err(hp->dev, "Happy Meal rx DMA errors [ %s%s%s]\n",
1646			   status & GREG_STAT_RXERR ? "GenericError " : "",
1647			   status & GREG_STAT_RXPERR ? "ParityError " : "",
1648			   status & GREG_STAT_RXTERR ? "RxTagBotch " : "");
1649		reset = 1;
1650	}
1651
1652	if (status & GREG_STAT_EOPERR) {
1653		/* Driver bug, didn't set EOP bit in tx descriptor given
1654		 * to the happy meal.
1655		 */
1656		netdev_err(hp->dev,
1657			   "EOP not set in happy meal transmit descriptor!\n");
1658		reset = 1;
1659	}
1660
1661	if (status & GREG_STAT_MIFIRQ) {
1662		/* MIF signalled an interrupt, were we polling it? */
1663		netdev_err(hp->dev, "Happy Meal MIF interrupt.\n");
1664	}
1665
1666	if (status &
1667	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1668		/* All sorts of transmit DMA errors. */
1669		netdev_err(hp->dev, "Happy Meal tx DMA errors [ %s%s%s%s]\n",
1670			   status & GREG_STAT_TXEACK ? "GenericError " : "",
1671			   status & GREG_STAT_TXLERR ? "LateError " : "",
1672			   status & GREG_STAT_TXPERR ? "ParityError " : "",
1673			   status & GREG_STAT_TXTERR ? "TagBotch " : "");
1674		reset = 1;
1675	}
1676
1677	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1678		/* Bus or parity error when cpu accessed happy meal registers
1679		 * or it's internal FIFO's.  Should never see this.
1680		 */
1681		netdev_err(hp->dev,
1682			   "Happy Meal register access SBUS slave (%s) error.\n",
1683			   (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1684		reset = 1;
1685	}
1686
1687	if (reset) {
1688		netdev_notice(hp->dev, "Resetting...\n");
1689		happy_meal_init(hp);
1690		return 1;
1691	}
1692	return 0;
1693}
1694
1695/* hp->happy_lock must be held */
1696static void happy_meal_tx(struct happy_meal *hp)
1697{
1698	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1699	struct happy_meal_txd *this;
1700	struct net_device *dev = hp->dev;
1701	int elem;
1702
1703	elem = hp->tx_old;
1704	while (elem != hp->tx_new) {
1705		struct sk_buff *skb;
1706		u32 flags, dma_addr, dma_len;
1707		int frag;
1708
1709		netdev_vdbg(hp->dev, "TX[%d]\n", elem);
1710		this = &txbase[elem];
1711		flags = hme_read_desc32(hp, &this->tx_flags);
1712		if (flags & TXFLAG_OWN)
1713			break;
1714		skb = hp->tx_skbs[elem];
1715		if (skb_shinfo(skb)->nr_frags) {
1716			int last;
1717
1718			last = elem + skb_shinfo(skb)->nr_frags;
1719			last &= (TX_RING_SIZE - 1);
1720			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1721			if (flags & TXFLAG_OWN)
1722				break;
1723		}
1724		hp->tx_skbs[elem] = NULL;
1725		dev->stats.tx_bytes += skb->len;
1726
1727		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1728			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1729			dma_len = hme_read_desc32(hp, &this->tx_flags);
1730
1731			dma_len &= TXFLAG_SIZE;
1732			if (!frag)
1733				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1734			else
1735				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1736
1737			elem = NEXT_TX(elem);
1738			this = &txbase[elem];
1739		}
1740
1741		dev_consume_skb_irq(skb);
1742		dev->stats.tx_packets++;
1743	}
1744	hp->tx_old = elem;
1745
1746	if (netif_queue_stopped(dev) &&
1747	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1748		netif_wake_queue(dev);
1749}
1750
1751/* Originally I used to handle the allocation failure by just giving back just
1752 * that one ring buffer to the happy meal.  Problem is that usually when that
1753 * condition is triggered, the happy meal expects you to do something reasonable
1754 * with all of the packets it has DMA'd in.  So now I just drop the entire
1755 * ring when we cannot get a new skb and give them all back to the happy meal,
1756 * maybe things will be "happier" now.
1757 *
1758 * hp->happy_lock must be held
1759 */
1760static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1761{
1762	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1763	struct happy_meal_rxd *this;
1764	int elem = hp->rx_new, drops = 0;
1765	u32 flags;
1766
1767	this = &rxbase[elem];
1768	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1769		struct sk_buff *skb;
1770		int len = flags >> 16;
1771		u16 csum = flags & RXFLAG_CSUM;
1772		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
1773
1774		/* Check for errors. */
1775		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
1776			netdev_vdbg(dev, "RX[%d ERR(%08x)]", elem, flags);
1777			dev->stats.rx_errors++;
1778			if (len < ETH_ZLEN)
1779				dev->stats.rx_length_errors++;
1780			if (len & (RXFLAG_OVERFLOW >> 16)) {
1781				dev->stats.rx_over_errors++;
1782				dev->stats.rx_fifo_errors++;
1783			}
1784
1785			/* Return it to the Happy meal. */
1786	drop_it:
1787			dev->stats.rx_dropped++;
1788			hme_write_rxd(hp, this,
1789				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1790				      dma_addr);
1791			goto next;
1792		}
1793		skb = hp->rx_skbs[elem];
1794		if (len > RX_COPY_THRESHOLD) {
1795			struct sk_buff *new_skb;
1796			u32 mapping;
1797
1798			/* Now refill the entry, if we can. */
1799			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1800			if (new_skb == NULL) {
1801				drops++;
1802				goto drop_it;
1803			}
1804			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1805			mapping = dma_map_single(hp->dma_dev, new_skb->data,
1806						 RX_BUF_ALLOC_SIZE,
1807						 DMA_FROM_DEVICE);
1808			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
1809				dev_kfree_skb_any(new_skb);
1810				drops++;
1811				goto drop_it;
1812			}
1813
1814			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1815			hp->rx_skbs[elem] = new_skb;
1816			hme_write_rxd(hp, this,
1817				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1818				      mapping);
1819			skb_reserve(new_skb, RX_OFFSET);
1820
1821			/* Trim the original skb for the netif. */
1822			skb_trim(skb, len);
1823		} else {
1824			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
1825
1826			if (copy_skb == NULL) {
1827				drops++;
1828				goto drop_it;
1829			}
1830
1831			skb_reserve(copy_skb, 2);
1832			skb_put(copy_skb, len);
1833			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len + 2, DMA_FROM_DEVICE);
1834			skb_copy_from_linear_data(skb, copy_skb->data, len);
1835			dma_sync_single_for_device(hp->dma_dev, dma_addr, len + 2, DMA_FROM_DEVICE);
1836			/* Reuse original ring buffer. */
1837			hme_write_rxd(hp, this,
1838				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1839				      dma_addr);
1840
1841			skb = copy_skb;
1842		}
1843
1844		/* This card is _fucking_ hot... */
1845		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
1846		skb->ip_summed = CHECKSUM_COMPLETE;
1847
1848		netdev_vdbg(dev, "RX[%d len=%d csum=%4x]", elem, len, csum);
1849		skb->protocol = eth_type_trans(skb, dev);
1850		netif_rx(skb);
1851
1852		dev->stats.rx_packets++;
1853		dev->stats.rx_bytes += len;
1854	next:
1855		elem = NEXT_RX(elem);
1856		this = &rxbase[elem];
1857	}
1858	hp->rx_new = elem;
1859	if (drops)
1860		netdev_info(hp->dev, "Memory squeeze, deferring packet.\n");
1861}
1862
1863static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
1864{
1865	struct net_device *dev = dev_id;
1866	struct happy_meal *hp  = netdev_priv(dev);
1867	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
1868
1869	HMD("status=%08x\n", happy_status);
1870	if (!happy_status)
1871		return IRQ_NONE;
1872
1873	spin_lock(&hp->happy_lock);
1874
1875	if (happy_status & GREG_STAT_ERRORS) {
1876		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
1877			goto out;
1878	}
1879
1880	if (happy_status & GREG_STAT_TXALL)
1881		happy_meal_tx(hp);
1882
1883	if (happy_status & GREG_STAT_RXTOHOST)
1884		happy_meal_rx(hp, dev);
1885
1886	HMD("done\n");
1887out:
1888	spin_unlock(&hp->happy_lock);
1889
1890	return IRQ_HANDLED;
1891}
1892
1893static int happy_meal_open(struct net_device *dev)
1894{
1895	struct happy_meal *hp = netdev_priv(dev);
1896	int res;
1897
1898	res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
1899			  dev->name, dev);
1900	if (res) {
1901		netdev_err(dev, "Can't order irq %d to go.\n", hp->irq);
1902		return res;
1903	}
1904
1905	HMD("to happy_meal_init\n");
1906
1907	spin_lock_irq(&hp->happy_lock);
1908	res = happy_meal_init(hp);
1909	spin_unlock_irq(&hp->happy_lock);
1910
1911	if (res)
1912		free_irq(hp->irq, dev);
1913	return res;
1914}
1915
1916static int happy_meal_close(struct net_device *dev)
1917{
1918	struct happy_meal *hp = netdev_priv(dev);
1919
1920	spin_lock_irq(&hp->happy_lock);
1921	happy_meal_stop(hp, hp->gregs);
1922	happy_meal_clean_rings(hp);
1923
1924	/* If auto-negotiation timer is running, kill it. */
1925	del_timer(&hp->happy_timer);
1926
1927	spin_unlock_irq(&hp->happy_lock);
1928
1929	free_irq(hp->irq, dev);
1930
1931	return 0;
1932}
1933
1934static void happy_meal_tx_timeout(struct net_device *dev, unsigned int txqueue)
1935{
1936	struct happy_meal *hp = netdev_priv(dev);
1937
1938	netdev_err(dev, "transmit timed out, resetting\n");
1939	tx_dump_log();
1940	netdev_err(dev, "Happy Status %08x TX[%08x:%08x]\n",
1941		   hme_read32(hp, hp->gregs + GREG_STAT),
1942		   hme_read32(hp, hp->etxregs + ETX_CFG),
1943		   hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
1944
1945	spin_lock_irq(&hp->happy_lock);
1946	happy_meal_init(hp);
1947	spin_unlock_irq(&hp->happy_lock);
1948
1949	netif_wake_queue(dev);
1950}
1951
1952static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
1953				 u32 first_len, u32 first_entry, u32 entry)
1954{
1955	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1956
1957	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
1958
1959	first_entry = NEXT_TX(first_entry);
1960	while (first_entry != entry) {
1961		struct happy_meal_txd *this = &txbase[first_entry];
1962		u32 addr, len;
1963
1964		addr = hme_read_desc32(hp, &this->tx_addr);
1965		len = hme_read_desc32(hp, &this->tx_flags);
1966		len &= TXFLAG_SIZE;
1967		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
1968	}
1969}
1970
1971static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
1972					 struct net_device *dev)
1973{
1974	struct happy_meal *hp = netdev_priv(dev);
1975	int entry;
1976	u32 tx_flags;
1977
1978	tx_flags = TXFLAG_OWN;
1979	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1980		const u32 csum_start_off = skb_checksum_start_offset(skb);
1981		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
1982
1983		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
1984			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
1985			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
1986	}
1987
1988	spin_lock_irq(&hp->happy_lock);
1989
1990	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1991		netif_stop_queue(dev);
1992		spin_unlock_irq(&hp->happy_lock);
1993		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1994		return NETDEV_TX_BUSY;
1995	}
1996
1997	entry = hp->tx_new;
1998	netdev_vdbg(dev, "SX<l[%d]e[%d]>\n", skb->len, entry);
1999	hp->tx_skbs[entry] = skb;
2000
2001	if (skb_shinfo(skb)->nr_frags == 0) {
2002		u32 mapping, len;
2003
2004		len = skb->len;
2005		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2006		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2007			goto out_dma_error;
2008		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2009		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2010			      (tx_flags | (len & TXFLAG_SIZE)),
2011			      mapping);
2012		entry = NEXT_TX(entry);
2013	} else {
2014		u32 first_len, first_mapping;
2015		int frag, first_entry = entry;
2016
2017		/* We must give this initial chunk to the device last.
2018		 * Otherwise we could race with the device.
2019		 */
2020		first_len = skb_headlen(skb);
2021		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2022					       DMA_TO_DEVICE);
2023		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2024			goto out_dma_error;
2025		entry = NEXT_TX(entry);
2026
2027		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2028			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2029			u32 len, mapping, this_txflags;
2030
2031			len = skb_frag_size(this_frag);
2032			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2033						   0, len, DMA_TO_DEVICE);
2034			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2035				unmap_partial_tx_skb(hp, first_mapping, first_len,
2036						     first_entry, entry);
2037				goto out_dma_error;
2038			}
2039			this_txflags = tx_flags;
2040			if (frag == skb_shinfo(skb)->nr_frags - 1)
2041				this_txflags |= TXFLAG_EOP;
2042			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2043				      (this_txflags | (len & TXFLAG_SIZE)),
2044				      mapping);
2045			entry = NEXT_TX(entry);
2046		}
2047		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2048			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2049			      first_mapping);
2050	}
2051
2052	hp->tx_new = entry;
2053
2054	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2055		netif_stop_queue(dev);
2056
2057	/* Get it going. */
2058	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2059
2060	spin_unlock_irq(&hp->happy_lock);
2061
2062	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2063	return NETDEV_TX_OK;
2064
2065out_dma_error:
2066	hp->tx_skbs[hp->tx_new] = NULL;
2067	spin_unlock_irq(&hp->happy_lock);
2068
2069	dev_kfree_skb_any(skb);
2070	dev->stats.tx_dropped++;
2071	return NETDEV_TX_OK;
2072}
2073
2074static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2075{
2076	struct happy_meal *hp = netdev_priv(dev);
2077
2078	spin_lock_irq(&hp->happy_lock);
2079	happy_meal_get_counters(hp, hp->bigmacregs);
2080	spin_unlock_irq(&hp->happy_lock);
2081
2082	return &dev->stats;
2083}
2084
2085static void happy_meal_set_multicast(struct net_device *dev)
2086{
2087	struct happy_meal *hp = netdev_priv(dev);
2088	void __iomem *bregs = hp->bigmacregs;
2089	struct netdev_hw_addr *ha;
2090	u32 crc;
2091
2092	spin_lock_irq(&hp->happy_lock);
2093
2094	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2095		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2096		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2097		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2098		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2099	} else if (dev->flags & IFF_PROMISC) {
2100		hme_write32(hp, bregs + BMAC_RXCFG,
2101			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2102	} else {
2103		u16 hash_table[4];
2104
2105		memset(hash_table, 0, sizeof(hash_table));
2106		netdev_for_each_mc_addr(ha, dev) {
2107			crc = ether_crc_le(6, ha->addr);
2108			crc >>= 26;
2109			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2110		}
2111		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2112		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2113		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2114		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2115	}
2116
2117	spin_unlock_irq(&hp->happy_lock);
2118}
2119
2120/* Ethtool support... */
2121static int hme_get_link_ksettings(struct net_device *dev,
2122				  struct ethtool_link_ksettings *cmd)
2123{
2124	struct happy_meal *hp = netdev_priv(dev);
2125	u32 speed;
2126	u32 supported;
2127
2128	supported =
2129		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2130		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2131		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2132
2133	/* XXX hardcoded stuff for now */
2134	cmd->base.port = PORT_TP; /* XXX no MII support */
2135	cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2136
2137	/* Record PHY settings. */
2138	spin_lock_irq(&hp->happy_lock);
2139	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2140	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2141	spin_unlock_irq(&hp->happy_lock);
2142
2143	if (hp->sw_bmcr & BMCR_ANENABLE) {
2144		cmd->base.autoneg = AUTONEG_ENABLE;
2145		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2146			 SPEED_100 : SPEED_10);
2147		if (speed == SPEED_100)
2148			cmd->base.duplex =
2149				(hp->sw_lpa & (LPA_100FULL)) ?
2150				DUPLEX_FULL : DUPLEX_HALF;
2151		else
2152			cmd->base.duplex =
2153				(hp->sw_lpa & (LPA_10FULL)) ?
2154				DUPLEX_FULL : DUPLEX_HALF;
2155	} else {
2156		cmd->base.autoneg = AUTONEG_DISABLE;
2157		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2158		cmd->base.duplex =
2159			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2160			DUPLEX_FULL : DUPLEX_HALF;
2161	}
2162	cmd->base.speed = speed;
2163	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2164						supported);
2165
2166	return 0;
2167}
2168
2169static int hme_set_link_ksettings(struct net_device *dev,
2170				  const struct ethtool_link_ksettings *cmd)
2171{
2172	struct happy_meal *hp = netdev_priv(dev);
2173
2174	/* Verify the settings we care about. */
2175	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2176	    cmd->base.autoneg != AUTONEG_DISABLE)
2177		return -EINVAL;
2178	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2179	    ((cmd->base.speed != SPEED_100 &&
2180	      cmd->base.speed != SPEED_10) ||
2181	     (cmd->base.duplex != DUPLEX_HALF &&
2182	      cmd->base.duplex != DUPLEX_FULL)))
2183		return -EINVAL;
2184
2185	/* Ok, do it to it. */
2186	spin_lock_irq(&hp->happy_lock);
2187	del_timer(&hp->happy_timer);
2188	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2189	spin_unlock_irq(&hp->happy_lock);
2190
2191	return 0;
2192}
2193
2194static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2195{
2196	struct happy_meal *hp = netdev_priv(dev);
2197
2198	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2199	if (hp->happy_flags & HFLAG_PCI) {
2200		struct pci_dev *pdev = hp->happy_dev;
2201		strscpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2202	}
2203#ifdef CONFIG_SBUS
2204	else {
2205		const struct linux_prom_registers *regs;
2206		struct platform_device *op = hp->happy_dev;
2207		regs = of_get_property(op->dev.of_node, "regs", NULL);
2208		if (regs)
2209			snprintf(info->bus_info, sizeof(info->bus_info),
2210				"SBUS:%d",
2211				regs->which_io);
2212	}
2213#endif
2214}
2215
2216static u32 hme_get_link(struct net_device *dev)
2217{
2218	struct happy_meal *hp = netdev_priv(dev);
2219
2220	spin_lock_irq(&hp->happy_lock);
2221	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2222	spin_unlock_irq(&hp->happy_lock);
2223
2224	return hp->sw_bmsr & BMSR_LSTATUS;
2225}
2226
2227static const struct ethtool_ops hme_ethtool_ops = {
2228	.get_drvinfo		= hme_get_drvinfo,
2229	.get_link		= hme_get_link,
2230	.get_link_ksettings	= hme_get_link_ksettings,
2231	.set_link_ksettings	= hme_set_link_ksettings,
2232};
2233
2234#ifdef CONFIG_SBUS
2235/* Given a happy meal sbus device, find it's quattro parent.
2236 * If none exist, allocate and return a new one.
2237 *
2238 * Return NULL on failure.
2239 */
2240static struct quattro *quattro_sbus_find(struct platform_device *child)
2241{
2242	struct device *parent = child->dev.parent;
2243	struct platform_device *op;
2244	struct quattro *qp;
2245
2246	op = to_platform_device(parent);
2247	qp = platform_get_drvdata(op);
2248	if (qp)
2249		return qp;
2250
2251	qp = kzalloc(sizeof(*qp), GFP_KERNEL);
2252	if (!qp)
2253		return NULL;
2254
2255	qp->quattro_dev = child;
2256	qp->next = qfe_sbus_list;
2257	qfe_sbus_list = qp;
2258
2259	platform_set_drvdata(op, qp);
2260	return qp;
2261}
2262#endif /* CONFIG_SBUS */
2263
2264#ifdef CONFIG_PCI
2265static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2266{
2267	int i;
2268	struct pci_dev *bdev = pdev->bus->self;
2269	struct quattro *qp;
2270
2271	if (!bdev)
2272		return ERR_PTR(-ENODEV);
2273
2274	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2275		struct pci_dev *qpdev = qp->quattro_dev;
2276
2277		if (qpdev == bdev)
2278			return qp;
2279	}
2280
2281	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2282	if (!qp)
2283		return ERR_PTR(-ENOMEM);
2284
2285	for (i = 0; i < 4; i++)
2286		qp->happy_meals[i] = NULL;
2287
2288	qp->quattro_dev = bdev;
2289	qp->next = qfe_pci_list;
2290	qfe_pci_list = qp;
2291
2292	/* No range tricks necessary on PCI. */
2293	qp->nranges = 0;
2294	return qp;
2295}
2296#endif /* CONFIG_PCI */
2297
2298static const struct net_device_ops hme_netdev_ops = {
2299	.ndo_open		= happy_meal_open,
2300	.ndo_stop		= happy_meal_close,
2301	.ndo_start_xmit		= happy_meal_start_xmit,
2302	.ndo_tx_timeout		= happy_meal_tx_timeout,
2303	.ndo_get_stats		= happy_meal_get_stats,
2304	.ndo_set_rx_mode	= happy_meal_set_multicast,
2305	.ndo_set_mac_address 	= eth_mac_addr,
2306	.ndo_validate_addr	= eth_validate_addr,
2307};
2308
2309#ifdef CONFIG_PCI
2310static int is_quattro_p(struct pci_dev *pdev)
2311{
2312	struct pci_dev *busdev = pdev->bus->self;
2313	struct pci_dev *this_pdev;
2314	int n_hmes;
2315
2316	if (!busdev || busdev->vendor != PCI_VENDOR_ID_DEC ||
2317	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2318		return 0;
2319
2320	n_hmes = 0;
2321	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2322		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2323		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2324			n_hmes++;
2325	}
2326
2327	if (n_hmes != 4)
2328		return 0;
2329
2330	return 1;
2331}
2332
2333/* Fetch MAC address from vital product data of PCI ROM. */
2334static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2335{
2336	int this_offset;
2337
2338	for (this_offset = 0x20; this_offset < len; this_offset++) {
2339		void __iomem *p = rom_base + this_offset;
2340
2341		if (readb(p + 0) != 0x90 ||
2342		    readb(p + 1) != 0x00 ||
2343		    readb(p + 2) != 0x09 ||
2344		    readb(p + 3) != 0x4e ||
2345		    readb(p + 4) != 0x41 ||
2346		    readb(p + 5) != 0x06)
2347			continue;
2348
2349		this_offset += 6;
2350		p += 6;
2351
2352		if (index == 0) {
2353			for (int i = 0; i < 6; i++)
2354				dev_addr[i] = readb(p + i);
2355			return 1;
2356		}
2357		index--;
2358	}
2359	return 0;
2360}
2361
2362static void __maybe_unused get_hme_mac_nonsparc(struct pci_dev *pdev,
2363						unsigned char *dev_addr)
2364{
2365	void __iomem *p;
2366	size_t size;
2367
2368	p = pci_map_rom(pdev, &size);
2369	if (p) {
2370		int index = 0;
2371		int found;
2372
2373		if (is_quattro_p(pdev))
2374			index = PCI_SLOT(pdev->devfn);
2375
2376		found = readb(p) == 0x55 &&
2377			readb(p + 1) == 0xaa &&
2378			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2379		pci_unmap_rom(pdev, p);
2380		if (found)
2381			return;
2382	}
2383
2384	/* Sun MAC prefix then 3 random bytes. */
2385	dev_addr[0] = 0x08;
2386	dev_addr[1] = 0x00;
2387	dev_addr[2] = 0x20;
2388	get_random_bytes(&dev_addr[3], 3);
2389}
2390#endif
2391
2392static void happy_meal_addr_init(struct happy_meal *hp,
2393				 struct device_node *dp, int qfe_slot)
2394{
2395	int i;
2396
2397	for (i = 0; i < 6; i++) {
2398		if (macaddr[i] != 0)
2399			break;
2400	}
2401
2402	if (i < 6) { /* a mac address was given */
2403		u8 addr[ETH_ALEN];
2404
2405		for (i = 0; i < 6; i++)
2406			addr[i] = macaddr[i];
2407		eth_hw_addr_set(hp->dev, addr);
2408		macaddr[5]++;
2409	} else {
2410#ifdef CONFIG_SPARC
2411		const unsigned char *addr;
2412		int len;
2413
2414		/* If user did not specify a MAC address specifically, use
2415		 * the Quattro local-mac-address property...
2416		 */
2417		if (qfe_slot != -1) {
2418			addr = of_get_property(dp, "local-mac-address", &len);
2419			if (addr && len == 6) {
2420				eth_hw_addr_set(hp->dev, addr);
2421				return;
2422			}
2423		}
2424
2425		eth_hw_addr_set(hp->dev, idprom->id_ethaddr);
2426#else
2427		u8 addr[ETH_ALEN];
2428
2429		get_hme_mac_nonsparc(hp->happy_dev, addr);
2430		eth_hw_addr_set(hp->dev, addr);
2431#endif
2432	}
2433}
2434
2435static int happy_meal_common_probe(struct happy_meal *hp,
2436				   struct device_node *dp)
2437{
2438	struct net_device *dev = hp->dev;
2439	int err;
2440
2441#ifdef CONFIG_SPARC
2442	hp->hm_revision = of_getintprop_default(dp, "hm-rev", hp->hm_revision);
2443#endif
2444
2445	/* Now enable the feature flags we can. */
2446	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2447		hp->happy_flags |= HFLAG_20_21;
2448	else if (hp->hm_revision != 0xa0)
2449		hp->happy_flags |= HFLAG_NOT_A0;
2450
2451	hp->happy_block = dmam_alloc_coherent(hp->dma_dev, PAGE_SIZE,
2452					      &hp->hblock_dvma, GFP_KERNEL);
2453	if (!hp->happy_block)
2454		return -ENOMEM;
2455
2456	/* Force check of the link first time we are brought up. */
2457	hp->linkcheck = 0;
2458
2459	/* Force timer state to 'asleep' with count of zero. */
2460	hp->timer_state = asleep;
2461	hp->timer_ticks = 0;
2462
2463	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2464
2465	dev->netdev_ops = &hme_netdev_ops;
2466	dev->watchdog_timeo = 5 * HZ;
2467	dev->ethtool_ops = &hme_ethtool_ops;
2468
2469	/* Happy Meal can do it all... */
2470	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2471	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2472
2473
2474	/* Grrr, Happy Meal comes up by default not advertising
2475	 * full duplex 100baseT capabilities, fix this.
2476	 */
2477	spin_lock_irq(&hp->happy_lock);
2478	happy_meal_set_initial_advertisement(hp);
2479	spin_unlock_irq(&hp->happy_lock);
2480
2481	err = devm_register_netdev(hp->dma_dev, dev);
2482	if (err)
2483		dev_err(hp->dma_dev, "Cannot register net device, aborting.\n");
2484	return err;
2485}
2486
2487#ifdef CONFIG_SBUS
2488static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2489{
2490	struct device_node *dp = op->dev.of_node, *sbus_dp;
2491	struct quattro *qp = NULL;
2492	struct happy_meal *hp;
2493	struct net_device *dev;
2494	int qfe_slot = -1;
2495	int err;
2496
2497	sbus_dp = op->dev.parent->of_node;
2498
2499	/* We can match PCI devices too, do not accept those here. */
2500	if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi"))
2501		return -ENODEV;
2502
2503	if (is_qfe) {
2504		qp = quattro_sbus_find(op);
2505		if (qp == NULL)
2506			return -ENODEV;
2507		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2508			if (qp->happy_meals[qfe_slot] == NULL)
2509				break;
2510		if (qfe_slot == 4)
2511			return -ENODEV;
2512	}
2513
2514	dev = devm_alloc_etherdev(&op->dev, sizeof(struct happy_meal));
2515	if (!dev)
2516		return -ENOMEM;
2517	SET_NETDEV_DEV(dev, &op->dev);
2518
2519	hp = netdev_priv(dev);
2520	hp->dev = dev;
2521	hp->happy_dev = op;
2522	hp->dma_dev = &op->dev;
2523	happy_meal_addr_init(hp, dp, qfe_slot);
2524
2525	spin_lock_init(&hp->happy_lock);
2526
2527	if (qp != NULL) {
2528		hp->qfe_parent = qp;
2529		hp->qfe_ent = qfe_slot;
2530		qp->happy_meals[qfe_slot] = dev;
2531	}
2532
2533	hp->gregs = devm_platform_ioremap_resource(op, 0);
2534	if (IS_ERR(hp->gregs)) {
2535		dev_err(&op->dev, "Cannot map global registers.\n");
2536		err = PTR_ERR(hp->gregs);
2537		goto err_out_clear_quattro;
2538	}
2539
2540	hp->etxregs = devm_platform_ioremap_resource(op, 1);
2541	if (IS_ERR(hp->etxregs)) {
2542		dev_err(&op->dev, "Cannot map MAC TX registers.\n");
2543		err = PTR_ERR(hp->etxregs);
2544		goto err_out_clear_quattro;
2545	}
2546
2547	hp->erxregs = devm_platform_ioremap_resource(op, 2);
2548	if (IS_ERR(hp->erxregs)) {
2549		dev_err(&op->dev, "Cannot map MAC RX registers.\n");
2550		err = PTR_ERR(hp->erxregs);
2551		goto err_out_clear_quattro;
2552	}
2553
2554	hp->bigmacregs = devm_platform_ioremap_resource(op, 3);
2555	if (IS_ERR(hp->bigmacregs)) {
2556		dev_err(&op->dev, "Cannot map BIGMAC registers.\n");
2557		err = PTR_ERR(hp->bigmacregs);
2558		goto err_out_clear_quattro;
2559	}
2560
2561	hp->tcvregs = devm_platform_ioremap_resource(op, 4);
2562	if (IS_ERR(hp->tcvregs)) {
2563		dev_err(&op->dev, "Cannot map TCVR registers.\n");
2564		err = PTR_ERR(hp->tcvregs);
2565		goto err_out_clear_quattro;
2566	}
2567
2568	hp->hm_revision = 0xa0;
2569
2570	if (qp != NULL)
2571		hp->happy_flags |= HFLAG_QUATTRO;
2572
2573	hp->irq = op->archdata.irqs[0];
2574
2575	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2576	hp->happy_bursts = of_getintprop_default(sbus_dp,
2577						 "burst-sizes", 0x00);
2578
2579#ifdef CONFIG_PCI
2580	/* Hook up SBUS register/descriptor accessors. */
2581	hp->read_desc32 = sbus_hme_read_desc32;
2582	hp->write_txd = sbus_hme_write_txd;
2583	hp->write_rxd = sbus_hme_write_rxd;
2584	hp->read32 = sbus_hme_read32;
2585	hp->write32 = sbus_hme_write32;
2586#endif
2587
2588	err = happy_meal_common_probe(hp, dp);
2589	if (err)
2590		goto err_out_clear_quattro;
2591
2592	platform_set_drvdata(op, hp);
2593
2594	if (qfe_slot != -1)
2595		netdev_info(dev,
2596			    "Quattro HME slot %d (SBUS) 10/100baseT Ethernet %pM\n",
2597			    qfe_slot, dev->dev_addr);
2598	else
2599		netdev_info(dev, "HAPPY MEAL (SBUS) 10/100baseT Ethernet %pM\n",
2600			    dev->dev_addr);
2601
2602	return 0;
2603
2604err_out_clear_quattro:
2605	if (qp)
2606		qp->happy_meals[qfe_slot] = NULL;
2607	return err;
2608}
2609#endif
2610
2611#ifdef CONFIG_PCI
2612static int happy_meal_pci_probe(struct pci_dev *pdev,
2613				const struct pci_device_id *ent)
2614{
2615	struct device_node *dp = NULL;
2616	struct quattro *qp = NULL;
2617	struct happy_meal *hp;
2618	struct net_device *dev;
2619	void __iomem *hpreg_base;
2620	struct resource *hpreg_res;
2621	char prom_name[64];
2622	int qfe_slot = -1;
2623	int err = -ENODEV;
2624
2625	/* Now make sure pci_dev cookie is there. */
2626#ifdef CONFIG_SPARC
2627	dp = pci_device_to_OF_node(pdev);
2628	snprintf(prom_name, sizeof(prom_name), "%pOFn", dp);
2629#else
2630	if (is_quattro_p(pdev))
2631		strcpy(prom_name, "SUNW,qfe");
2632	else
2633		strcpy(prom_name, "SUNW,hme");
2634#endif
2635
2636	err = pcim_enable_device(pdev);
2637	if (err)
2638		return err;
2639	pci_set_master(pdev);
2640
2641	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2642		qp = quattro_pci_find(pdev);
2643		if (IS_ERR(qp))
2644			return PTR_ERR(qp);
2645
2646		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2647			if (!qp->happy_meals[qfe_slot])
2648				break;
2649
2650		if (qfe_slot == 4)
2651			return -ENODEV;
2652	}
2653
2654	dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct happy_meal));
2655	if (!dev)
2656		return -ENOMEM;
2657	SET_NETDEV_DEV(dev, &pdev->dev);
2658
2659	hp = netdev_priv(dev);
2660	hp->dev = dev;
2661	hp->happy_dev = pdev;
2662	hp->dma_dev = &pdev->dev;
2663
2664	spin_lock_init(&hp->happy_lock);
2665
2666	if (qp != NULL) {
2667		hp->qfe_parent = qp;
2668		hp->qfe_ent = qfe_slot;
2669		qp->happy_meals[qfe_slot] = dev;
2670	}
2671
2672	err = -EINVAL;
2673	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2674		dev_err(&pdev->dev,
2675			"Cannot find proper PCI device base address.\n");
2676		goto err_out_clear_quattro;
2677	}
2678
2679	hpreg_res = devm_request_mem_region(&pdev->dev,
2680					    pci_resource_start(pdev, 0),
2681					    pci_resource_len(pdev, 0),
2682					    DRV_NAME);
2683	if (!hpreg_res) {
2684		err = -EBUSY;
2685		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
2686		goto err_out_clear_quattro;
2687	}
2688
2689	hpreg_base = pcim_iomap(pdev, 0, 0x8000);
2690	if (!hpreg_base) {
2691		err = -ENOMEM;
2692		dev_err(&pdev->dev, "Unable to remap card memory.\n");
2693		goto err_out_clear_quattro;
2694	}
2695
2696	happy_meal_addr_init(hp, dp, qfe_slot);
2697
2698	/* Layout registers. */
2699	hp->gregs      = (hpreg_base + 0x0000UL);
2700	hp->etxregs    = (hpreg_base + 0x2000UL);
2701	hp->erxregs    = (hpreg_base + 0x4000UL);
2702	hp->bigmacregs = (hpreg_base + 0x6000UL);
2703	hp->tcvregs    = (hpreg_base + 0x7000UL);
2704
2705	if (IS_ENABLED(CONFIG_SPARC))
2706		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
2707	else
2708		hp->hm_revision = 0x20;
2709
2710	if (qp != NULL)
2711		hp->happy_flags |= HFLAG_QUATTRO;
2712
2713	/* And of course, indicate this is PCI. */
2714	hp->happy_flags |= HFLAG_PCI;
2715
2716#ifdef CONFIG_SPARC
2717	/* Assume PCI happy meals can handle all burst sizes. */
2718	hp->happy_bursts = DMA_BURSTBITS;
2719#endif
2720	hp->irq = pdev->irq;
2721
2722#ifdef CONFIG_SBUS
2723	/* Hook up PCI register/descriptor accessors. */
2724	hp->read_desc32 = pci_hme_read_desc32;
2725	hp->write_txd = pci_hme_write_txd;
2726	hp->write_rxd = pci_hme_write_rxd;
2727	hp->read32 = pci_hme_read32;
2728	hp->write32 = pci_hme_write32;
2729#endif
2730
2731	err = happy_meal_common_probe(hp, dp);
2732	if (err)
2733		goto err_out_clear_quattro;
2734
2735	pci_set_drvdata(pdev, hp);
2736
2737	if (!qfe_slot) {
2738		struct pci_dev *qpdev = qp->quattro_dev;
2739
2740		prom_name[0] = 0;
2741		if (!strncmp(dev->name, "eth", 3)) {
2742			int i = simple_strtoul(dev->name + 3, NULL, 10);
2743			sprintf(prom_name, "-%d", i + 3);
2744		}
2745		netdev_info(dev,
2746			    "%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet bridge %04x.%04x\n",
2747			    prom_name, qpdev->vendor, qpdev->device);
2748	}
2749
2750	if (qfe_slot != -1)
2751		netdev_info(dev,
2752			    "Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet %pM\n",
2753			    qfe_slot, dev->dev_addr);
2754	else
2755		netdev_info(dev,
2756			    "HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet %pM\n",
2757			    dev->dev_addr);
2758
2759	return 0;
2760
2761err_out_clear_quattro:
2762	if (qp != NULL)
2763		qp->happy_meals[qfe_slot] = NULL;
2764	return err;
2765}
2766
2767static const struct pci_device_id happymeal_pci_ids[] = {
2768	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
2769	{ }			/* Terminating entry */
2770};
2771
2772MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
2773
2774static struct pci_driver hme_pci_driver = {
2775	.name		= "hme",
2776	.id_table	= happymeal_pci_ids,
2777	.probe		= happy_meal_pci_probe,
2778};
2779
2780static int __init happy_meal_pci_init(void)
2781{
2782	return pci_register_driver(&hme_pci_driver);
2783}
2784
2785static void happy_meal_pci_exit(void)
2786{
2787	pci_unregister_driver(&hme_pci_driver);
2788
2789	while (qfe_pci_list) {
2790		struct quattro *qfe = qfe_pci_list;
2791		struct quattro *next = qfe->next;
2792
2793		kfree(qfe);
2794
2795		qfe_pci_list = next;
2796	}
2797}
2798
2799#endif
2800
2801#ifdef CONFIG_SBUS
2802static const struct of_device_id hme_sbus_match[];
2803static int hme_sbus_probe(struct platform_device *op)
2804{
2805	const struct of_device_id *match;
2806	struct device_node *dp = op->dev.of_node;
2807	const char *model = of_get_property(dp, "model", NULL);
2808	int is_qfe;
2809
2810	match = of_match_device(hme_sbus_match, &op->dev);
2811	if (!match)
2812		return -EINVAL;
2813	is_qfe = (match->data != NULL);
2814
2815	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
2816		is_qfe = 1;
2817
2818	return happy_meal_sbus_probe_one(op, is_qfe);
2819}
2820
2821static const struct of_device_id hme_sbus_match[] = {
2822	{
2823		.name = "SUNW,hme",
2824	},
2825	{
2826		.name = "SUNW,qfe",
2827		.data = (void *) 1,
2828	},
2829	{
2830		.name = "qfe",
2831		.data = (void *) 1,
2832	},
2833	{},
2834};
2835
2836MODULE_DEVICE_TABLE(of, hme_sbus_match);
2837
2838static struct platform_driver hme_sbus_driver = {
2839	.driver = {
2840		.name = "hme",
2841		.of_match_table = hme_sbus_match,
2842	},
2843	.probe		= hme_sbus_probe,
2844};
2845
2846static int __init happy_meal_sbus_init(void)
2847{
2848	return platform_driver_register(&hme_sbus_driver);
2849}
2850
2851static void happy_meal_sbus_exit(void)
2852{
2853	platform_driver_unregister(&hme_sbus_driver);
2854
2855	while (qfe_sbus_list) {
2856		struct quattro *qfe = qfe_sbus_list;
2857		struct quattro *next = qfe->next;
2858
2859		kfree(qfe);
2860
2861		qfe_sbus_list = next;
2862	}
2863}
2864#endif
2865
2866static int __init happy_meal_probe(void)
2867{
2868	int err = 0;
2869
2870#ifdef CONFIG_SBUS
2871	err = happy_meal_sbus_init();
2872#endif
2873#ifdef CONFIG_PCI
2874	if (!err) {
2875		err = happy_meal_pci_init();
2876#ifdef CONFIG_SBUS
2877		if (err)
2878			happy_meal_sbus_exit();
2879#endif
2880	}
2881#endif
2882
2883	return err;
2884}
2885
2886
2887static void __exit happy_meal_exit(void)
2888{
2889#ifdef CONFIG_SBUS
2890	happy_meal_sbus_exit();
2891#endif
2892#ifdef CONFIG_PCI
2893	happy_meal_pci_exit();
2894#endif
2895}
2896
2897module_init(happy_meal_probe);
2898module_exit(happy_meal_exit);
2899