1// SPDX-License-Identifier: GPL-2.0
2/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3 * sungem.c: Sun GEM ethernet driver.
4 *
5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 *
7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 *
11 * NAPI and NETPOLL support
12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13 *
14 */
15
16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/fcntl.h>
22#include <linux/interrupt.h>
23#include <linux/ioport.h>
24#include <linux/in.h>
25#include <linux/sched.h>
26#include <linux/string.h>
27#include <linux/delay.h>
28#include <linux/errno.h>
29#include <linux/pci.h>
30#include <linux/dma-mapping.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/mii.h>
35#include <linux/ethtool.h>
36#include <linux/crc32.h>
37#include <linux/random.h>
38#include <linux/workqueue.h>
39#include <linux/if_vlan.h>
40#include <linux/bitops.h>
41#include <linux/mm.h>
42#include <linux/gfp.h>
43#include <linux/of.h>
44
45#include <asm/io.h>
46#include <asm/byteorder.h>
47#include <linux/uaccess.h>
48#include <asm/irq.h>
49
50#ifdef CONFIG_SPARC
51#include <asm/idprom.h>
52#include <asm/prom.h>
53#endif
54
55#ifdef CONFIG_PPC_PMAC
56#include <asm/machdep.h>
57#include <asm/pmac_feature.h>
58#endif
59
60#include <linux/sungem_phy.h>
61#include "sungem.h"
62
63#define STRIP_FCS
64
65#define DEFAULT_MSG	(NETIF_MSG_DRV		| \
66			 NETIF_MSG_PROBE	| \
67			 NETIF_MSG_LINK)
68
69#define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
70			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
71			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
72			 SUPPORTED_Pause | SUPPORTED_Autoneg)
73
74#define DRV_NAME	"sungem"
75#define DRV_VERSION	"1.0"
76#define DRV_AUTHOR	"David S. Miller <davem@redhat.com>"
77
78static char version[] =
79        DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
80
81MODULE_AUTHOR(DRV_AUTHOR);
82MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
83MODULE_LICENSE("GPL");
84
85#define GEM_MODULE_NAME	"gem"
86
87static const struct pci_device_id gem_pci_tbl[] = {
88	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
89	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
90
91	/* These models only differ from the original GEM in
92	 * that their tx/rx fifos are of a different size and
93	 * they only support 10/100 speeds. -DaveM
94	 *
95	 * Apple's GMAC does support gigabit on machines with
96	 * the BCM54xx PHYs. -BenH
97	 */
98	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
99	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
100	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
101	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
103	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
105	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
107	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
109	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
111	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112	{0, }
113};
114
115MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
116
117static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
118{
119	u32 cmd;
120	int limit = 10000;
121
122	cmd  = (1 << 30);
123	cmd |= (2 << 28);
124	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
125	cmd |= (reg << 18) & MIF_FRAME_REGAD;
126	cmd |= (MIF_FRAME_TAMSB);
127	writel(cmd, gp->regs + MIF_FRAME);
128
129	while (--limit) {
130		cmd = readl(gp->regs + MIF_FRAME);
131		if (cmd & MIF_FRAME_TALSB)
132			break;
133
134		udelay(10);
135	}
136
137	if (!limit)
138		cmd = 0xffff;
139
140	return cmd & MIF_FRAME_DATA;
141}
142
143static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
144{
145	struct gem *gp = netdev_priv(dev);
146	return __sungem_phy_read(gp, mii_id, reg);
147}
148
149static inline u16 sungem_phy_read(struct gem *gp, int reg)
150{
151	return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
152}
153
154static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
155{
156	u32 cmd;
157	int limit = 10000;
158
159	cmd  = (1 << 30);
160	cmd |= (1 << 28);
161	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
162	cmd |= (reg << 18) & MIF_FRAME_REGAD;
163	cmd |= (MIF_FRAME_TAMSB);
164	cmd |= (val & MIF_FRAME_DATA);
165	writel(cmd, gp->regs + MIF_FRAME);
166
167	while (limit--) {
168		cmd = readl(gp->regs + MIF_FRAME);
169		if (cmd & MIF_FRAME_TALSB)
170			break;
171
172		udelay(10);
173	}
174}
175
176static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
177{
178	struct gem *gp = netdev_priv(dev);
179	__sungem_phy_write(gp, mii_id, reg, val & 0xffff);
180}
181
182static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
183{
184	__sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
185}
186
187static inline void gem_enable_ints(struct gem *gp)
188{
189	/* Enable all interrupts but TXDONE */
190	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
191}
192
193static inline void gem_disable_ints(struct gem *gp)
194{
195	/* Disable all interrupts, including TXDONE */
196	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
197	(void)readl(gp->regs + GREG_IMASK); /* write posting */
198}
199
200static void gem_get_cell(struct gem *gp)
201{
202	BUG_ON(gp->cell_enabled < 0);
203	gp->cell_enabled++;
204#ifdef CONFIG_PPC_PMAC
205	if (gp->cell_enabled == 1) {
206		mb();
207		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
208		udelay(10);
209	}
210#endif /* CONFIG_PPC_PMAC */
211}
212
213/* Turn off the chip's clock */
214static void gem_put_cell(struct gem *gp)
215{
216	BUG_ON(gp->cell_enabled <= 0);
217	gp->cell_enabled--;
218#ifdef CONFIG_PPC_PMAC
219	if (gp->cell_enabled == 0) {
220		mb();
221		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
222		udelay(10);
223	}
224#endif /* CONFIG_PPC_PMAC */
225}
226
227static inline void gem_netif_stop(struct gem *gp)
228{
229	netif_trans_update(gp->dev);	/* prevent tx timeout */
230	napi_disable(&gp->napi);
231	netif_tx_disable(gp->dev);
232}
233
234static inline void gem_netif_start(struct gem *gp)
235{
236	/* NOTE: unconditional netif_wake_queue is only
237	 * appropriate so long as all callers are assured to
238	 * have free tx slots.
239	 */
240	netif_wake_queue(gp->dev);
241	napi_enable(&gp->napi);
242}
243
244static void gem_schedule_reset(struct gem *gp)
245{
246	gp->reset_task_pending = 1;
247	schedule_work(&gp->reset_task);
248}
249
250static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
251{
252	if (netif_msg_intr(gp))
253		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
254}
255
256static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
257{
258	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
259	u32 pcs_miistat;
260
261	if (netif_msg_intr(gp))
262		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263			gp->dev->name, pcs_istat);
264
265	if (!(pcs_istat & PCS_ISTAT_LSC)) {
266		netdev_err(dev, "PCS irq but no link status change???\n");
267		return 0;
268	}
269
270	/* The link status bit latches on zero, so you must
271	 * read it twice in such a case to see a transition
272	 * to the link being up.
273	 */
274	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
275	if (!(pcs_miistat & PCS_MIISTAT_LS))
276		pcs_miistat |=
277			(readl(gp->regs + PCS_MIISTAT) &
278			 PCS_MIISTAT_LS);
279
280	if (pcs_miistat & PCS_MIISTAT_ANC) {
281		/* The remote-fault indication is only valid
282		 * when autoneg has completed.
283		 */
284		if (pcs_miistat & PCS_MIISTAT_RF)
285			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
286		else
287			netdev_info(dev, "PCS AutoNEG complete\n");
288	}
289
290	if (pcs_miistat & PCS_MIISTAT_LS) {
291		netdev_info(dev, "PCS link is now up\n");
292		netif_carrier_on(gp->dev);
293	} else {
294		netdev_info(dev, "PCS link is now down\n");
295		netif_carrier_off(gp->dev);
296		/* If this happens and the link timer is not running,
297		 * reset so we re-negotiate.
298		 */
299		if (!timer_pending(&gp->link_timer))
300			return 1;
301	}
302
303	return 0;
304}
305
306static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
307{
308	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
309
310	if (netif_msg_intr(gp))
311		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
312			gp->dev->name, txmac_stat);
313
314	/* Defer timer expiration is quite normal,
315	 * don't even log the event.
316	 */
317	if ((txmac_stat & MAC_TXSTAT_DTE) &&
318	    !(txmac_stat & ~MAC_TXSTAT_DTE))
319		return 0;
320
321	if (txmac_stat & MAC_TXSTAT_URUN) {
322		netdev_err(dev, "TX MAC xmit underrun\n");
323		dev->stats.tx_fifo_errors++;
324	}
325
326	if (txmac_stat & MAC_TXSTAT_MPE) {
327		netdev_err(dev, "TX MAC max packet size error\n");
328		dev->stats.tx_errors++;
329	}
330
331	/* The rest are all cases of one of the 16-bit TX
332	 * counters expiring.
333	 */
334	if (txmac_stat & MAC_TXSTAT_NCE)
335		dev->stats.collisions += 0x10000;
336
337	if (txmac_stat & MAC_TXSTAT_ECE) {
338		dev->stats.tx_aborted_errors += 0x10000;
339		dev->stats.collisions += 0x10000;
340	}
341
342	if (txmac_stat & MAC_TXSTAT_LCE) {
343		dev->stats.tx_aborted_errors += 0x10000;
344		dev->stats.collisions += 0x10000;
345	}
346
347	/* We do not keep track of MAC_TXSTAT_FCE and
348	 * MAC_TXSTAT_PCE events.
349	 */
350	return 0;
351}
352
353/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354 * so we do the following.
355 *
356 * If any part of the reset goes wrong, we return 1 and that causes the
357 * whole chip to be reset.
358 */
359static int gem_rxmac_reset(struct gem *gp)
360{
361	struct net_device *dev = gp->dev;
362	int limit, i;
363	u64 desc_dma;
364	u32 val;
365
366	/* First, reset & disable MAC RX. */
367	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
368	for (limit = 0; limit < 5000; limit++) {
369		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
370			break;
371		udelay(10);
372	}
373	if (limit == 5000) {
374		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
375		return 1;
376	}
377
378	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
379	       gp->regs + MAC_RXCFG);
380	for (limit = 0; limit < 5000; limit++) {
381		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
382			break;
383		udelay(10);
384	}
385	if (limit == 5000) {
386		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
387		return 1;
388	}
389
390	/* Second, disable RX DMA. */
391	writel(0, gp->regs + RXDMA_CFG);
392	for (limit = 0; limit < 5000; limit++) {
393		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
394			break;
395		udelay(10);
396	}
397	if (limit == 5000) {
398		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
399		return 1;
400	}
401
402	mdelay(5);
403
404	/* Execute RX reset command. */
405	writel(gp->swrst_base | GREG_SWRST_RXRST,
406	       gp->regs + GREG_SWRST);
407	for (limit = 0; limit < 5000; limit++) {
408		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
409			break;
410		udelay(10);
411	}
412	if (limit == 5000) {
413		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
414		return 1;
415	}
416
417	/* Refresh the RX ring. */
418	for (i = 0; i < RX_RING_SIZE; i++) {
419		struct gem_rxd *rxd = &gp->init_block->rxd[i];
420
421		if (gp->rx_skbs[i] == NULL) {
422			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
423			return 1;
424		}
425
426		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
427	}
428	gp->rx_new = gp->rx_old = 0;
429
430	/* Now we must reprogram the rest of RX unit. */
431	desc_dma = (u64) gp->gblock_dvma;
432	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
433	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
434	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
435	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
436	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
437	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
438	writel(val, gp->regs + RXDMA_CFG);
439	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
440		writel(((5 & RXDMA_BLANK_IPKTS) |
441			((8 << 12) & RXDMA_BLANK_ITIME)),
442		       gp->regs + RXDMA_BLANK);
443	else
444		writel(((5 & RXDMA_BLANK_IPKTS) |
445			((4 << 12) & RXDMA_BLANK_ITIME)),
446		       gp->regs + RXDMA_BLANK);
447	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
448	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
449	writel(val, gp->regs + RXDMA_PTHRESH);
450	val = readl(gp->regs + RXDMA_CFG);
451	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
452	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
453	val = readl(gp->regs + MAC_RXCFG);
454	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
455
456	return 0;
457}
458
459static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
460{
461	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
462	int ret = 0;
463
464	if (netif_msg_intr(gp))
465		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466			gp->dev->name, rxmac_stat);
467
468	if (rxmac_stat & MAC_RXSTAT_OFLW) {
469		u32 smac = readl(gp->regs + MAC_SMACHINE);
470
471		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
472		dev->stats.rx_over_errors++;
473		dev->stats.rx_fifo_errors++;
474
475		ret = gem_rxmac_reset(gp);
476	}
477
478	if (rxmac_stat & MAC_RXSTAT_ACE)
479		dev->stats.rx_frame_errors += 0x10000;
480
481	if (rxmac_stat & MAC_RXSTAT_CCE)
482		dev->stats.rx_crc_errors += 0x10000;
483
484	if (rxmac_stat & MAC_RXSTAT_LCE)
485		dev->stats.rx_length_errors += 0x10000;
486
487	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
488	 * events.
489	 */
490	return ret;
491}
492
493static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
494{
495	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
496
497	if (netif_msg_intr(gp))
498		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
499			gp->dev->name, mac_cstat);
500
501	/* This interrupt is just for pause frame and pause
502	 * tracking.  It is useful for diagnostics and debug
503	 * but probably by default we will mask these events.
504	 */
505	if (mac_cstat & MAC_CSTAT_PS)
506		gp->pause_entered++;
507
508	if (mac_cstat & MAC_CSTAT_PRCV)
509		gp->pause_last_time_recvd = (mac_cstat >> 16);
510
511	return 0;
512}
513
514static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
515{
516	u32 mif_status = readl(gp->regs + MIF_STATUS);
517	u32 reg_val, changed_bits;
518
519	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
520	changed_bits = (mif_status & MIF_STATUS_STAT);
521
522	gem_handle_mif_event(gp, reg_val, changed_bits);
523
524	return 0;
525}
526
527static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
528{
529	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
530
531	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
532	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
533		netdev_err(dev, "PCI error [%04x]", pci_estat);
534
535		if (pci_estat & GREG_PCIESTAT_BADACK)
536			pr_cont(" <No ACK64# during ABS64 cycle>");
537		if (pci_estat & GREG_PCIESTAT_DTRTO)
538			pr_cont(" <Delayed transaction timeout>");
539		if (pci_estat & GREG_PCIESTAT_OTHER)
540			pr_cont(" <other>");
541		pr_cont("\n");
542	} else {
543		pci_estat |= GREG_PCIESTAT_OTHER;
544		netdev_err(dev, "PCI error\n");
545	}
546
547	if (pci_estat & GREG_PCIESTAT_OTHER) {
548		int pci_errs;
549
550		/* Interrogate PCI config space for the
551		 * true cause.
552		 */
553		pci_errs = pci_status_get_and_clear_errors(gp->pdev);
554		netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
555		if (pci_errs & PCI_STATUS_PARITY)
556			netdev_err(dev, "PCI parity error detected\n");
557		if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
558			netdev_err(dev, "PCI target abort\n");
559		if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
560			netdev_err(dev, "PCI master acks target abort\n");
561		if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
562			netdev_err(dev, "PCI master abort\n");
563		if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
564			netdev_err(dev, "PCI system error SERR#\n");
565		if (pci_errs & PCI_STATUS_DETECTED_PARITY)
566			netdev_err(dev, "PCI parity error\n");
567	}
568
569	/* For all PCI errors, we should reset the chip. */
570	return 1;
571}
572
573/* All non-normal interrupt conditions get serviced here.
574 * Returns non-zero if we should just exit the interrupt
575 * handler right now (ie. if we reset the card which invalidates
576 * all of the other original irq status bits).
577 */
578static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
579{
580	if (gem_status & GREG_STAT_RXNOBUF) {
581		/* Frame arrived, no free RX buffers available. */
582		if (netif_msg_rx_err(gp))
583			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
584				gp->dev->name);
585		dev->stats.rx_dropped++;
586	}
587
588	if (gem_status & GREG_STAT_RXTAGERR) {
589		/* corrupt RX tag framing */
590		if (netif_msg_rx_err(gp))
591			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
592				gp->dev->name);
593		dev->stats.rx_errors++;
594
595		return 1;
596	}
597
598	if (gem_status & GREG_STAT_PCS) {
599		if (gem_pcs_interrupt(dev, gp, gem_status))
600			return 1;
601	}
602
603	if (gem_status & GREG_STAT_TXMAC) {
604		if (gem_txmac_interrupt(dev, gp, gem_status))
605			return 1;
606	}
607
608	if (gem_status & GREG_STAT_RXMAC) {
609		if (gem_rxmac_interrupt(dev, gp, gem_status))
610			return 1;
611	}
612
613	if (gem_status & GREG_STAT_MAC) {
614		if (gem_mac_interrupt(dev, gp, gem_status))
615			return 1;
616	}
617
618	if (gem_status & GREG_STAT_MIF) {
619		if (gem_mif_interrupt(dev, gp, gem_status))
620			return 1;
621	}
622
623	if (gem_status & GREG_STAT_PCIERR) {
624		if (gem_pci_interrupt(dev, gp, gem_status))
625			return 1;
626	}
627
628	return 0;
629}
630
631static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
632{
633	int entry, limit;
634
635	entry = gp->tx_old;
636	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
637	while (entry != limit) {
638		struct sk_buff *skb;
639		struct gem_txd *txd;
640		dma_addr_t dma_addr;
641		u32 dma_len;
642		int frag;
643
644		if (netif_msg_tx_done(gp))
645			printk(KERN_DEBUG "%s: tx done, slot %d\n",
646				gp->dev->name, entry);
647		skb = gp->tx_skbs[entry];
648		if (skb_shinfo(skb)->nr_frags) {
649			int last = entry + skb_shinfo(skb)->nr_frags;
650			int walk = entry;
651			int incomplete = 0;
652
653			last &= (TX_RING_SIZE - 1);
654			for (;;) {
655				walk = NEXT_TX(walk);
656				if (walk == limit)
657					incomplete = 1;
658				if (walk == last)
659					break;
660			}
661			if (incomplete)
662				break;
663		}
664		gp->tx_skbs[entry] = NULL;
665		dev->stats.tx_bytes += skb->len;
666
667		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
668			txd = &gp->init_block->txd[entry];
669
670			dma_addr = le64_to_cpu(txd->buffer);
671			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
672
673			dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len,
674				       DMA_TO_DEVICE);
675			entry = NEXT_TX(entry);
676		}
677
678		dev->stats.tx_packets++;
679		dev_consume_skb_any(skb);
680	}
681	gp->tx_old = entry;
682
683	/* Need to make the tx_old update visible to gem_start_xmit()
684	 * before checking for netif_queue_stopped().  Without the
685	 * memory barrier, there is a small possibility that gem_start_xmit()
686	 * will miss it and cause the queue to be stopped forever.
687	 */
688	smp_mb();
689
690	if (unlikely(netif_queue_stopped(dev) &&
691		     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
692		struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
693
694		__netif_tx_lock(txq, smp_processor_id());
695		if (netif_queue_stopped(dev) &&
696		    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
697			netif_wake_queue(dev);
698		__netif_tx_unlock(txq);
699	}
700}
701
702static __inline__ void gem_post_rxds(struct gem *gp, int limit)
703{
704	int cluster_start, curr, count, kick;
705
706	cluster_start = curr = (gp->rx_new & ~(4 - 1));
707	count = 0;
708	kick = -1;
709	dma_wmb();
710	while (curr != limit) {
711		curr = NEXT_RX(curr);
712		if (++count == 4) {
713			struct gem_rxd *rxd =
714				&gp->init_block->rxd[cluster_start];
715			for (;;) {
716				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
717				rxd++;
718				cluster_start = NEXT_RX(cluster_start);
719				if (cluster_start == curr)
720					break;
721			}
722			kick = curr;
723			count = 0;
724		}
725	}
726	if (kick >= 0) {
727		mb();
728		writel(kick, gp->regs + RXDMA_KICK);
729	}
730}
731
732#define ALIGNED_RX_SKB_ADDR(addr) \
733        ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
734static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
735						gfp_t gfp_flags)
736{
737	struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
738
739	if (likely(skb)) {
740		unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
741		skb_reserve(skb, offset);
742	}
743	return skb;
744}
745
746static int gem_rx(struct gem *gp, int work_to_do)
747{
748	struct net_device *dev = gp->dev;
749	int entry, drops, work_done = 0;
750	u32 done;
751
752	if (netif_msg_rx_status(gp))
753		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
754			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
755
756	entry = gp->rx_new;
757	drops = 0;
758	done = readl(gp->regs + RXDMA_DONE);
759	for (;;) {
760		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
761		struct sk_buff *skb;
762		u64 status = le64_to_cpu(rxd->status_word);
763		dma_addr_t dma_addr;
764		int len;
765
766		if ((status & RXDCTRL_OWN) != 0)
767			break;
768
769		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
770			break;
771
772		/* When writing back RX descriptor, GEM writes status
773		 * then buffer address, possibly in separate transactions.
774		 * If we don't wait for the chip to write both, we could
775		 * post a new buffer to this descriptor then have GEM spam
776		 * on the buffer address.  We sync on the RX completion
777		 * register to prevent this from happening.
778		 */
779		if (entry == done) {
780			done = readl(gp->regs + RXDMA_DONE);
781			if (entry == done)
782				break;
783		}
784
785		/* We can now account for the work we're about to do */
786		work_done++;
787
788		skb = gp->rx_skbs[entry];
789
790		len = (status & RXDCTRL_BUFSZ) >> 16;
791		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
792			dev->stats.rx_errors++;
793			if (len < ETH_ZLEN)
794				dev->stats.rx_length_errors++;
795			if (len & RXDCTRL_BAD)
796				dev->stats.rx_crc_errors++;
797
798			/* We'll just return it to GEM. */
799		drop_it:
800			dev->stats.rx_dropped++;
801			goto next;
802		}
803
804		dma_addr = le64_to_cpu(rxd->buffer);
805		if (len > RX_COPY_THRESHOLD) {
806			struct sk_buff *new_skb;
807
808			new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
809			if (new_skb == NULL) {
810				drops++;
811				goto drop_it;
812			}
813			dma_unmap_page(&gp->pdev->dev, dma_addr,
814				       RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE);
815			gp->rx_skbs[entry] = new_skb;
816			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
817			rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev,
818							       virt_to_page(new_skb->data),
819							       offset_in_page(new_skb->data),
820							       RX_BUF_ALLOC_SIZE(gp),
821							       DMA_FROM_DEVICE));
822			skb_reserve(new_skb, RX_OFFSET);
823
824			/* Trim the original skb for the netif. */
825			skb_trim(skb, len);
826		} else {
827			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
828
829			if (copy_skb == NULL) {
830				drops++;
831				goto drop_it;
832			}
833
834			skb_reserve(copy_skb, 2);
835			skb_put(copy_skb, len);
836			dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len,
837						DMA_FROM_DEVICE);
838			skb_copy_from_linear_data(skb, copy_skb->data, len);
839			dma_sync_single_for_device(&gp->pdev->dev, dma_addr,
840						   len, DMA_FROM_DEVICE);
841
842			/* We'll reuse the original ring buffer. */
843			skb = copy_skb;
844		}
845
846		if (likely(dev->features & NETIF_F_RXCSUM)) {
847			__sum16 csum;
848
849			csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
850			skb->csum = csum_unfold(csum);
851			skb->ip_summed = CHECKSUM_COMPLETE;
852		}
853		skb->protocol = eth_type_trans(skb, gp->dev);
854
855		napi_gro_receive(&gp->napi, skb);
856
857		dev->stats.rx_packets++;
858		dev->stats.rx_bytes += len;
859
860	next:
861		entry = NEXT_RX(entry);
862	}
863
864	gem_post_rxds(gp, entry);
865
866	gp->rx_new = entry;
867
868	if (drops)
869		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
870
871	return work_done;
872}
873
874static int gem_poll(struct napi_struct *napi, int budget)
875{
876	struct gem *gp = container_of(napi, struct gem, napi);
877	struct net_device *dev = gp->dev;
878	int work_done;
879
880	work_done = 0;
881	do {
882		/* Handle anomalies */
883		if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
884			struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
885			int reset;
886
887			/* We run the abnormal interrupt handling code with
888			 * the Tx lock. It only resets the Rx portion of the
889			 * chip, but we need to guard it against DMA being
890			 * restarted by the link poll timer
891			 */
892			__netif_tx_lock(txq, smp_processor_id());
893			reset = gem_abnormal_irq(dev, gp, gp->status);
894			__netif_tx_unlock(txq);
895			if (reset) {
896				gem_schedule_reset(gp);
897				napi_complete(napi);
898				return work_done;
899			}
900		}
901
902		/* Run TX completion thread */
903		gem_tx(dev, gp, gp->status);
904
905		/* Run RX thread. We don't use any locking here,
906		 * code willing to do bad things - like cleaning the
907		 * rx ring - must call napi_disable(), which
908		 * schedule_timeout()'s if polling is already disabled.
909		 */
910		work_done += gem_rx(gp, budget - work_done);
911
912		if (work_done >= budget)
913			return work_done;
914
915		gp->status = readl(gp->regs + GREG_STAT);
916	} while (gp->status & GREG_STAT_NAPI);
917
918	napi_complete_done(napi, work_done);
919	gem_enable_ints(gp);
920
921	return work_done;
922}
923
924static irqreturn_t gem_interrupt(int irq, void *dev_id)
925{
926	struct net_device *dev = dev_id;
927	struct gem *gp = netdev_priv(dev);
928
929	if (napi_schedule_prep(&gp->napi)) {
930		u32 gem_status = readl(gp->regs + GREG_STAT);
931
932		if (unlikely(gem_status == 0)) {
933			napi_enable(&gp->napi);
934			return IRQ_NONE;
935		}
936		if (netif_msg_intr(gp))
937			printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
938			       gp->dev->name, gem_status);
939
940		gp->status = gem_status;
941		gem_disable_ints(gp);
942		__napi_schedule(&gp->napi);
943	}
944
945	/* If polling was disabled at the time we received that
946	 * interrupt, we may return IRQ_HANDLED here while we
947	 * should return IRQ_NONE. No big deal...
948	 */
949	return IRQ_HANDLED;
950}
951
952#ifdef CONFIG_NET_POLL_CONTROLLER
953static void gem_poll_controller(struct net_device *dev)
954{
955	struct gem *gp = netdev_priv(dev);
956
957	disable_irq(gp->pdev->irq);
958	gem_interrupt(gp->pdev->irq, dev);
959	enable_irq(gp->pdev->irq);
960}
961#endif
962
963static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
964{
965	struct gem *gp = netdev_priv(dev);
966
967	netdev_err(dev, "transmit timed out, resetting\n");
968
969	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
970		   readl(gp->regs + TXDMA_CFG),
971		   readl(gp->regs + MAC_TXSTAT),
972		   readl(gp->regs + MAC_TXCFG));
973	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
974		   readl(gp->regs + RXDMA_CFG),
975		   readl(gp->regs + MAC_RXSTAT),
976		   readl(gp->regs + MAC_RXCFG));
977
978	gem_schedule_reset(gp);
979}
980
981static __inline__ int gem_intme(int entry)
982{
983	/* Algorithm: IRQ every 1/2 of descriptors. */
984	if (!(entry & ((TX_RING_SIZE>>1)-1)))
985		return 1;
986
987	return 0;
988}
989
990static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
991				  struct net_device *dev)
992{
993	struct gem *gp = netdev_priv(dev);
994	int entry;
995	u64 ctrl;
996
997	ctrl = 0;
998	if (skb->ip_summed == CHECKSUM_PARTIAL) {
999		const u64 csum_start_off = skb_checksum_start_offset(skb);
1000		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1001
1002		ctrl = (TXDCTRL_CENAB |
1003			(csum_start_off << 15) |
1004			(csum_stuff_off << 21));
1005	}
1006
1007	if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1008		/* This is a hard error, log it. */
1009		if (!netif_queue_stopped(dev)) {
1010			netif_stop_queue(dev);
1011			netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1012		}
1013		return NETDEV_TX_BUSY;
1014	}
1015
1016	entry = gp->tx_new;
1017	gp->tx_skbs[entry] = skb;
1018
1019	if (skb_shinfo(skb)->nr_frags == 0) {
1020		struct gem_txd *txd = &gp->init_block->txd[entry];
1021		dma_addr_t mapping;
1022		u32 len;
1023
1024		len = skb->len;
1025		mapping = dma_map_page(&gp->pdev->dev,
1026				       virt_to_page(skb->data),
1027				       offset_in_page(skb->data),
1028				       len, DMA_TO_DEVICE);
1029		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1030		if (gem_intme(entry))
1031			ctrl |= TXDCTRL_INTME;
1032		txd->buffer = cpu_to_le64(mapping);
1033		dma_wmb();
1034		txd->control_word = cpu_to_le64(ctrl);
1035		entry = NEXT_TX(entry);
1036	} else {
1037		struct gem_txd *txd;
1038		u32 first_len;
1039		u64 intme;
1040		dma_addr_t first_mapping;
1041		int frag, first_entry = entry;
1042
1043		intme = 0;
1044		if (gem_intme(entry))
1045			intme |= TXDCTRL_INTME;
1046
1047		/* We must give this initial chunk to the device last.
1048		 * Otherwise we could race with the device.
1049		 */
1050		first_len = skb_headlen(skb);
1051		first_mapping = dma_map_page(&gp->pdev->dev,
1052					     virt_to_page(skb->data),
1053					     offset_in_page(skb->data),
1054					     first_len, DMA_TO_DEVICE);
1055		entry = NEXT_TX(entry);
1056
1057		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1058			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1059			u32 len;
1060			dma_addr_t mapping;
1061			u64 this_ctrl;
1062
1063			len = skb_frag_size(this_frag);
1064			mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1065						   0, len, DMA_TO_DEVICE);
1066			this_ctrl = ctrl;
1067			if (frag == skb_shinfo(skb)->nr_frags - 1)
1068				this_ctrl |= TXDCTRL_EOF;
1069
1070			txd = &gp->init_block->txd[entry];
1071			txd->buffer = cpu_to_le64(mapping);
1072			dma_wmb();
1073			txd->control_word = cpu_to_le64(this_ctrl | len);
1074
1075			if (gem_intme(entry))
1076				intme |= TXDCTRL_INTME;
1077
1078			entry = NEXT_TX(entry);
1079		}
1080		txd = &gp->init_block->txd[first_entry];
1081		txd->buffer = cpu_to_le64(first_mapping);
1082		dma_wmb();
1083		txd->control_word =
1084			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1085	}
1086
1087	gp->tx_new = entry;
1088	if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1089		netif_stop_queue(dev);
1090
1091		/* netif_stop_queue() must be done before checking
1092		 * tx index in TX_BUFFS_AVAIL() below, because
1093		 * in gem_tx(), we update tx_old before checking for
1094		 * netif_queue_stopped().
1095		 */
1096		smp_mb();
1097		if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1098			netif_wake_queue(dev);
1099	}
1100	if (netif_msg_tx_queued(gp))
1101		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1102		       dev->name, entry, skb->len);
1103	mb();
1104	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1105
1106	return NETDEV_TX_OK;
1107}
1108
1109static void gem_pcs_reset(struct gem *gp)
1110{
1111	int limit;
1112	u32 val;
1113
1114	/* Reset PCS unit. */
1115	val = readl(gp->regs + PCS_MIICTRL);
1116	val |= PCS_MIICTRL_RST;
1117	writel(val, gp->regs + PCS_MIICTRL);
1118
1119	limit = 32;
1120	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1121		udelay(100);
1122		if (limit-- <= 0)
1123			break;
1124	}
1125	if (limit < 0)
1126		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1127}
1128
1129static void gem_pcs_reinit_adv(struct gem *gp)
1130{
1131	u32 val;
1132
1133	/* Make sure PCS is disabled while changing advertisement
1134	 * configuration.
1135	 */
1136	val = readl(gp->regs + PCS_CFG);
1137	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1138	writel(val, gp->regs + PCS_CFG);
1139
1140	/* Advertise all capabilities except asymmetric
1141	 * pause.
1142	 */
1143	val = readl(gp->regs + PCS_MIIADV);
1144	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1145		PCS_MIIADV_SP | PCS_MIIADV_AP);
1146	writel(val, gp->regs + PCS_MIIADV);
1147
1148	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1149	 * and re-enable PCS.
1150	 */
1151	val = readl(gp->regs + PCS_MIICTRL);
1152	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1153	val &= ~PCS_MIICTRL_WB;
1154	writel(val, gp->regs + PCS_MIICTRL);
1155
1156	val = readl(gp->regs + PCS_CFG);
1157	val |= PCS_CFG_ENABLE;
1158	writel(val, gp->regs + PCS_CFG);
1159
1160	/* Make sure serialink loopback is off.  The meaning
1161	 * of this bit is logically inverted based upon whether
1162	 * you are in Serialink or SERDES mode.
1163	 */
1164	val = readl(gp->regs + PCS_SCTRL);
1165	if (gp->phy_type == phy_serialink)
1166		val &= ~PCS_SCTRL_LOOP;
1167	else
1168		val |= PCS_SCTRL_LOOP;
1169	writel(val, gp->regs + PCS_SCTRL);
1170}
1171
1172#define STOP_TRIES 32
1173
1174static void gem_reset(struct gem *gp)
1175{
1176	int limit;
1177	u32 val;
1178
1179	/* Make sure we won't get any more interrupts */
1180	writel(0xffffffff, gp->regs + GREG_IMASK);
1181
1182	/* Reset the chip */
1183	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1184	       gp->regs + GREG_SWRST);
1185
1186	limit = STOP_TRIES;
1187
1188	do {
1189		udelay(20);
1190		val = readl(gp->regs + GREG_SWRST);
1191		if (limit-- <= 0)
1192			break;
1193	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1194
1195	if (limit < 0)
1196		netdev_err(gp->dev, "SW reset is ghetto\n");
1197
1198	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1199		gem_pcs_reinit_adv(gp);
1200}
1201
1202static void gem_start_dma(struct gem *gp)
1203{
1204	u32 val;
1205
1206	/* We are ready to rock, turn everything on. */
1207	val = readl(gp->regs + TXDMA_CFG);
1208	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1209	val = readl(gp->regs + RXDMA_CFG);
1210	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1211	val = readl(gp->regs + MAC_TXCFG);
1212	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1213	val = readl(gp->regs + MAC_RXCFG);
1214	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1215
1216	(void) readl(gp->regs + MAC_RXCFG);
1217	udelay(100);
1218
1219	gem_enable_ints(gp);
1220
1221	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1222}
1223
1224/* DMA won't be actually stopped before about 4ms tho ...
1225 */
1226static void gem_stop_dma(struct gem *gp)
1227{
1228	u32 val;
1229
1230	/* We are done rocking, turn everything off. */
1231	val = readl(gp->regs + TXDMA_CFG);
1232	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1233	val = readl(gp->regs + RXDMA_CFG);
1234	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1235	val = readl(gp->regs + MAC_TXCFG);
1236	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1237	val = readl(gp->regs + MAC_RXCFG);
1238	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1239
1240	(void) readl(gp->regs + MAC_RXCFG);
1241
1242	/* Need to wait a bit ... done by the caller */
1243}
1244
1245
1246// XXX dbl check what that function should do when called on PCS PHY
1247static void gem_begin_auto_negotiation(struct gem *gp,
1248				       const struct ethtool_link_ksettings *ep)
1249{
1250	u32 advertise, features;
1251	int autoneg;
1252	int speed;
1253	int duplex;
1254	u32 advertising;
1255
1256	if (ep)
1257		ethtool_convert_link_mode_to_legacy_u32(
1258			&advertising, ep->link_modes.advertising);
1259
1260	if (gp->phy_type != phy_mii_mdio0 &&
1261	    gp->phy_type != phy_mii_mdio1)
1262		goto non_mii;
1263
1264	/* Setup advertise */
1265	if (found_mii_phy(gp))
1266		features = gp->phy_mii.def->features;
1267	else
1268		features = 0;
1269
1270	advertise = features & ADVERTISE_MASK;
1271	if (gp->phy_mii.advertising != 0)
1272		advertise &= gp->phy_mii.advertising;
1273
1274	autoneg = gp->want_autoneg;
1275	speed = gp->phy_mii.speed;
1276	duplex = gp->phy_mii.duplex;
1277
1278	/* Setup link parameters */
1279	if (!ep)
1280		goto start_aneg;
1281	if (ep->base.autoneg == AUTONEG_ENABLE) {
1282		advertise = advertising;
1283		autoneg = 1;
1284	} else {
1285		autoneg = 0;
1286		speed = ep->base.speed;
1287		duplex = ep->base.duplex;
1288	}
1289
1290start_aneg:
1291	/* Sanitize settings based on PHY capabilities */
1292	if ((features & SUPPORTED_Autoneg) == 0)
1293		autoneg = 0;
1294	if (speed == SPEED_1000 &&
1295	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1296		speed = SPEED_100;
1297	if (speed == SPEED_100 &&
1298	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1299		speed = SPEED_10;
1300	if (duplex == DUPLEX_FULL &&
1301	    !(features & (SUPPORTED_1000baseT_Full |
1302	    		  SUPPORTED_100baseT_Full |
1303	    		  SUPPORTED_10baseT_Full)))
1304	    	duplex = DUPLEX_HALF;
1305	if (speed == 0)
1306		speed = SPEED_10;
1307
1308	/* If we are asleep, we don't try to actually setup the PHY, we
1309	 * just store the settings
1310	 */
1311	if (!netif_device_present(gp->dev)) {
1312		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1313		gp->phy_mii.speed = speed;
1314		gp->phy_mii.duplex = duplex;
1315		return;
1316	}
1317
1318	/* Configure PHY & start aneg */
1319	gp->want_autoneg = autoneg;
1320	if (autoneg) {
1321		if (found_mii_phy(gp))
1322			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1323		gp->lstate = link_aneg;
1324	} else {
1325		if (found_mii_phy(gp))
1326			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1327		gp->lstate = link_force_ok;
1328	}
1329
1330non_mii:
1331	gp->timer_ticks = 0;
1332	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1333}
1334
1335/* A link-up condition has occurred, initialize and enable the
1336 * rest of the chip.
1337 */
1338static int gem_set_link_modes(struct gem *gp)
1339{
1340	struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1341	int full_duplex, speed, pause;
1342	u32 val;
1343
1344	full_duplex = 0;
1345	speed = SPEED_10;
1346	pause = 0;
1347
1348	if (found_mii_phy(gp)) {
1349	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1350	    		return 1;
1351		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1352		speed = gp->phy_mii.speed;
1353		pause = gp->phy_mii.pause;
1354	} else if (gp->phy_type == phy_serialink ||
1355	    	   gp->phy_type == phy_serdes) {
1356		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1357
1358		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1359			full_duplex = 1;
1360		speed = SPEED_1000;
1361	}
1362
1363	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1364		   speed, (full_duplex ? "full" : "half"));
1365
1366
1367	/* We take the tx queue lock to avoid collisions between
1368	 * this code, the tx path and the NAPI-driven error path
1369	 */
1370	__netif_tx_lock(txq, smp_processor_id());
1371
1372	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1373	if (full_duplex) {
1374		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1375	} else {
1376		/* MAC_TXCFG_NBO must be zero. */
1377	}
1378	writel(val, gp->regs + MAC_TXCFG);
1379
1380	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1381	if (!full_duplex &&
1382	    (gp->phy_type == phy_mii_mdio0 ||
1383	     gp->phy_type == phy_mii_mdio1)) {
1384		val |= MAC_XIFCFG_DISE;
1385	} else if (full_duplex) {
1386		val |= MAC_XIFCFG_FLED;
1387	}
1388
1389	if (speed == SPEED_1000)
1390		val |= (MAC_XIFCFG_GMII);
1391
1392	writel(val, gp->regs + MAC_XIFCFG);
1393
1394	/* If gigabit and half-duplex, enable carrier extension
1395	 * mode.  Else, disable it.
1396	 */
1397	if (speed == SPEED_1000 && !full_duplex) {
1398		val = readl(gp->regs + MAC_TXCFG);
1399		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1400
1401		val = readl(gp->regs + MAC_RXCFG);
1402		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1403	} else {
1404		val = readl(gp->regs + MAC_TXCFG);
1405		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1406
1407		val = readl(gp->regs + MAC_RXCFG);
1408		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1409	}
1410
1411	if (gp->phy_type == phy_serialink ||
1412	    gp->phy_type == phy_serdes) {
1413		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1414
1415		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1416			pause = 1;
1417	}
1418
1419	if (!full_duplex)
1420		writel(512, gp->regs + MAC_STIME);
1421	else
1422		writel(64, gp->regs + MAC_STIME);
1423	val = readl(gp->regs + MAC_MCCFG);
1424	if (pause)
1425		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1426	else
1427		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1428	writel(val, gp->regs + MAC_MCCFG);
1429
1430	gem_start_dma(gp);
1431
1432	__netif_tx_unlock(txq);
1433
1434	if (netif_msg_link(gp)) {
1435		if (pause) {
1436			netdev_info(gp->dev,
1437				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1438				    gp->rx_fifo_sz,
1439				    gp->rx_pause_off,
1440				    gp->rx_pause_on);
1441		} else {
1442			netdev_info(gp->dev, "Pause is disabled\n");
1443		}
1444	}
1445
1446	return 0;
1447}
1448
1449static int gem_mdio_link_not_up(struct gem *gp)
1450{
1451	switch (gp->lstate) {
1452	case link_force_ret:
1453		netif_info(gp, link, gp->dev,
1454			   "Autoneg failed again, keeping forced mode\n");
1455		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1456			gp->last_forced_speed, DUPLEX_HALF);
1457		gp->timer_ticks = 5;
1458		gp->lstate = link_force_ok;
1459		return 0;
1460	case link_aneg:
1461		/* We try forced modes after a failed aneg only on PHYs that don't
1462		 * have "magic_aneg" bit set, which means they internally do the
1463		 * while forced-mode thingy. On these, we just restart aneg
1464		 */
1465		if (gp->phy_mii.def->magic_aneg)
1466			return 1;
1467		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1468		/* Try forced modes. */
1469		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1470			DUPLEX_HALF);
1471		gp->timer_ticks = 5;
1472		gp->lstate = link_force_try;
1473		return 0;
1474	case link_force_try:
1475		/* Downgrade from 100 to 10 Mbps if necessary.
1476		 * If already at 10Mbps, warn user about the
1477		 * situation every 10 ticks.
1478		 */
1479		if (gp->phy_mii.speed == SPEED_100) {
1480			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1481				DUPLEX_HALF);
1482			gp->timer_ticks = 5;
1483			netif_info(gp, link, gp->dev,
1484				   "switching to forced 10bt\n");
1485			return 0;
1486		} else
1487			return 1;
1488	default:
1489		return 0;
1490	}
1491}
1492
1493static void gem_link_timer(struct timer_list *t)
1494{
1495	struct gem *gp = from_timer(gp, t, link_timer);
1496	struct net_device *dev = gp->dev;
1497	int restart_aneg = 0;
1498
1499	/* There's no point doing anything if we're going to be reset */
1500	if (gp->reset_task_pending)
1501		return;
1502
1503	if (gp->phy_type == phy_serialink ||
1504	    gp->phy_type == phy_serdes) {
1505		u32 val = readl(gp->regs + PCS_MIISTAT);
1506
1507		if (!(val & PCS_MIISTAT_LS))
1508			val = readl(gp->regs + PCS_MIISTAT);
1509
1510		if ((val & PCS_MIISTAT_LS) != 0) {
1511			if (gp->lstate == link_up)
1512				goto restart;
1513
1514			gp->lstate = link_up;
1515			netif_carrier_on(dev);
1516			(void)gem_set_link_modes(gp);
1517		}
1518		goto restart;
1519	}
1520	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1521		/* Ok, here we got a link. If we had it due to a forced
1522		 * fallback, and we were configured for autoneg, we do
1523		 * retry a short autoneg pass. If you know your hub is
1524		 * broken, use ethtool ;)
1525		 */
1526		if (gp->lstate == link_force_try && gp->want_autoneg) {
1527			gp->lstate = link_force_ret;
1528			gp->last_forced_speed = gp->phy_mii.speed;
1529			gp->timer_ticks = 5;
1530			if (netif_msg_link(gp))
1531				netdev_info(dev,
1532					    "Got link after fallback, retrying autoneg once...\n");
1533			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1534		} else if (gp->lstate != link_up) {
1535			gp->lstate = link_up;
1536			netif_carrier_on(dev);
1537			if (gem_set_link_modes(gp))
1538				restart_aneg = 1;
1539		}
1540	} else {
1541		/* If the link was previously up, we restart the
1542		 * whole process
1543		 */
1544		if (gp->lstate == link_up) {
1545			gp->lstate = link_down;
1546			netif_info(gp, link, dev, "Link down\n");
1547			netif_carrier_off(dev);
1548			gem_schedule_reset(gp);
1549			/* The reset task will restart the timer */
1550			return;
1551		} else if (++gp->timer_ticks > 10) {
1552			if (found_mii_phy(gp))
1553				restart_aneg = gem_mdio_link_not_up(gp);
1554			else
1555				restart_aneg = 1;
1556		}
1557	}
1558	if (restart_aneg) {
1559		gem_begin_auto_negotiation(gp, NULL);
1560		return;
1561	}
1562restart:
1563	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1564}
1565
1566static void gem_clean_rings(struct gem *gp)
1567{
1568	struct gem_init_block *gb = gp->init_block;
1569	struct sk_buff *skb;
1570	int i;
1571	dma_addr_t dma_addr;
1572
1573	for (i = 0; i < RX_RING_SIZE; i++) {
1574		struct gem_rxd *rxd;
1575
1576		rxd = &gb->rxd[i];
1577		if (gp->rx_skbs[i] != NULL) {
1578			skb = gp->rx_skbs[i];
1579			dma_addr = le64_to_cpu(rxd->buffer);
1580			dma_unmap_page(&gp->pdev->dev, dma_addr,
1581				       RX_BUF_ALLOC_SIZE(gp),
1582				       DMA_FROM_DEVICE);
1583			dev_kfree_skb_any(skb);
1584			gp->rx_skbs[i] = NULL;
1585		}
1586		rxd->status_word = 0;
1587		dma_wmb();
1588		rxd->buffer = 0;
1589	}
1590
1591	for (i = 0; i < TX_RING_SIZE; i++) {
1592		if (gp->tx_skbs[i] != NULL) {
1593			struct gem_txd *txd;
1594			int frag;
1595
1596			skb = gp->tx_skbs[i];
1597			gp->tx_skbs[i] = NULL;
1598
1599			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1600				int ent = i & (TX_RING_SIZE - 1);
1601
1602				txd = &gb->txd[ent];
1603				dma_addr = le64_to_cpu(txd->buffer);
1604				dma_unmap_page(&gp->pdev->dev, dma_addr,
1605					       le64_to_cpu(txd->control_word) &
1606					       TXDCTRL_BUFSZ, DMA_TO_DEVICE);
1607
1608				if (frag != skb_shinfo(skb)->nr_frags)
1609					i++;
1610			}
1611			dev_kfree_skb_any(skb);
1612		}
1613	}
1614}
1615
1616static void gem_init_rings(struct gem *gp)
1617{
1618	struct gem_init_block *gb = gp->init_block;
1619	struct net_device *dev = gp->dev;
1620	int i;
1621	dma_addr_t dma_addr;
1622
1623	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1624
1625	gem_clean_rings(gp);
1626
1627	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1628			    (unsigned)VLAN_ETH_FRAME_LEN);
1629
1630	for (i = 0; i < RX_RING_SIZE; i++) {
1631		struct sk_buff *skb;
1632		struct gem_rxd *rxd = &gb->rxd[i];
1633
1634		skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1635		if (!skb) {
1636			rxd->buffer = 0;
1637			rxd->status_word = 0;
1638			continue;
1639		}
1640
1641		gp->rx_skbs[i] = skb;
1642		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1643		dma_addr = dma_map_page(&gp->pdev->dev,
1644					virt_to_page(skb->data),
1645					offset_in_page(skb->data),
1646					RX_BUF_ALLOC_SIZE(gp),
1647					DMA_FROM_DEVICE);
1648		rxd->buffer = cpu_to_le64(dma_addr);
1649		dma_wmb();
1650		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1651		skb_reserve(skb, RX_OFFSET);
1652	}
1653
1654	for (i = 0; i < TX_RING_SIZE; i++) {
1655		struct gem_txd *txd = &gb->txd[i];
1656
1657		txd->control_word = 0;
1658		dma_wmb();
1659		txd->buffer = 0;
1660	}
1661	wmb();
1662}
1663
1664/* Init PHY interface and start link poll state machine */
1665static void gem_init_phy(struct gem *gp)
1666{
1667	u32 mifcfg;
1668
1669	/* Revert MIF CFG setting done on stop_phy */
1670	mifcfg = readl(gp->regs + MIF_CFG);
1671	mifcfg &= ~MIF_CFG_BBMODE;
1672	writel(mifcfg, gp->regs + MIF_CFG);
1673
1674	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1675		int i;
1676
1677		/* Those delays sucks, the HW seems to love them though, I'll
1678		 * seriously consider breaking some locks here to be able
1679		 * to schedule instead
1680		 */
1681		for (i = 0; i < 3; i++) {
1682#ifdef CONFIG_PPC_PMAC
1683			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1684			msleep(20);
1685#endif
1686			/* Some PHYs used by apple have problem getting back to us,
1687			 * we do an additional reset here
1688			 */
1689			sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1690			msleep(20);
1691			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1692				break;
1693			if (i == 2)
1694				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1695		}
1696	}
1697
1698	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1699	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1700		u32 val;
1701
1702		/* Init datapath mode register. */
1703		if (gp->phy_type == phy_mii_mdio0 ||
1704		    gp->phy_type == phy_mii_mdio1) {
1705			val = PCS_DMODE_MGM;
1706		} else if (gp->phy_type == phy_serialink) {
1707			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1708		} else {
1709			val = PCS_DMODE_ESM;
1710		}
1711
1712		writel(val, gp->regs + PCS_DMODE);
1713	}
1714
1715	if (gp->phy_type == phy_mii_mdio0 ||
1716	    gp->phy_type == phy_mii_mdio1) {
1717		/* Reset and detect MII PHY */
1718		sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1719
1720		/* Init PHY */
1721		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1722			gp->phy_mii.def->ops->init(&gp->phy_mii);
1723	} else {
1724		gem_pcs_reset(gp);
1725		gem_pcs_reinit_adv(gp);
1726	}
1727
1728	/* Default aneg parameters */
1729	gp->timer_ticks = 0;
1730	gp->lstate = link_down;
1731	netif_carrier_off(gp->dev);
1732
1733	/* Print things out */
1734	if (gp->phy_type == phy_mii_mdio0 ||
1735	    gp->phy_type == phy_mii_mdio1)
1736		netdev_info(gp->dev, "Found %s PHY\n",
1737			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1738
1739	gem_begin_auto_negotiation(gp, NULL);
1740}
1741
1742static void gem_init_dma(struct gem *gp)
1743{
1744	u64 desc_dma = (u64) gp->gblock_dvma;
1745	u32 val;
1746
1747	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1748	writel(val, gp->regs + TXDMA_CFG);
1749
1750	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1751	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1752	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1753
1754	writel(0, gp->regs + TXDMA_KICK);
1755
1756	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1757	       (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1758	writel(val, gp->regs + RXDMA_CFG);
1759
1760	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1761	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1762
1763	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1764
1765	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1766	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1767	writel(val, gp->regs + RXDMA_PTHRESH);
1768
1769	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1770		writel(((5 & RXDMA_BLANK_IPKTS) |
1771			((8 << 12) & RXDMA_BLANK_ITIME)),
1772		       gp->regs + RXDMA_BLANK);
1773	else
1774		writel(((5 & RXDMA_BLANK_IPKTS) |
1775			((4 << 12) & RXDMA_BLANK_ITIME)),
1776		       gp->regs + RXDMA_BLANK);
1777}
1778
1779static u32 gem_setup_multicast(struct gem *gp)
1780{
1781	u32 rxcfg = 0;
1782	int i;
1783
1784	if ((gp->dev->flags & IFF_ALLMULTI) ||
1785	    (netdev_mc_count(gp->dev) > 256)) {
1786	    	for (i=0; i<16; i++)
1787			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1788		rxcfg |= MAC_RXCFG_HFE;
1789	} else if (gp->dev->flags & IFF_PROMISC) {
1790		rxcfg |= MAC_RXCFG_PROM;
1791	} else {
1792		u16 hash_table[16];
1793		u32 crc;
1794		struct netdev_hw_addr *ha;
1795		int i;
1796
1797		memset(hash_table, 0, sizeof(hash_table));
1798		netdev_for_each_mc_addr(ha, gp->dev) {
1799			crc = ether_crc_le(6, ha->addr);
1800			crc >>= 24;
1801			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1802		}
1803	    	for (i=0; i<16; i++)
1804			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1805		rxcfg |= MAC_RXCFG_HFE;
1806	}
1807
1808	return rxcfg;
1809}
1810
1811static void gem_init_mac(struct gem *gp)
1812{
1813	const unsigned char *e = &gp->dev->dev_addr[0];
1814
1815	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1816
1817	writel(0x00, gp->regs + MAC_IPG0);
1818	writel(0x08, gp->regs + MAC_IPG1);
1819	writel(0x04, gp->regs + MAC_IPG2);
1820	writel(0x40, gp->regs + MAC_STIME);
1821	writel(0x40, gp->regs + MAC_MINFSZ);
1822
1823	/* Ethernet payload + header + FCS + optional VLAN tag. */
1824	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1825
1826	writel(0x07, gp->regs + MAC_PASIZE);
1827	writel(0x04, gp->regs + MAC_JAMSIZE);
1828	writel(0x10, gp->regs + MAC_ATTLIM);
1829	writel(0x8808, gp->regs + MAC_MCTYPE);
1830
1831	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1832
1833	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1834	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1835	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1836
1837	writel(0, gp->regs + MAC_ADDR3);
1838	writel(0, gp->regs + MAC_ADDR4);
1839	writel(0, gp->regs + MAC_ADDR5);
1840
1841	writel(0x0001, gp->regs + MAC_ADDR6);
1842	writel(0xc200, gp->regs + MAC_ADDR7);
1843	writel(0x0180, gp->regs + MAC_ADDR8);
1844
1845	writel(0, gp->regs + MAC_AFILT0);
1846	writel(0, gp->regs + MAC_AFILT1);
1847	writel(0, gp->regs + MAC_AFILT2);
1848	writel(0, gp->regs + MAC_AF21MSK);
1849	writel(0, gp->regs + MAC_AF0MSK);
1850
1851	gp->mac_rx_cfg = gem_setup_multicast(gp);
1852#ifdef STRIP_FCS
1853	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1854#endif
1855	writel(0, gp->regs + MAC_NCOLL);
1856	writel(0, gp->regs + MAC_FASUCC);
1857	writel(0, gp->regs + MAC_ECOLL);
1858	writel(0, gp->regs + MAC_LCOLL);
1859	writel(0, gp->regs + MAC_DTIMER);
1860	writel(0, gp->regs + MAC_PATMPS);
1861	writel(0, gp->regs + MAC_RFCTR);
1862	writel(0, gp->regs + MAC_LERR);
1863	writel(0, gp->regs + MAC_AERR);
1864	writel(0, gp->regs + MAC_FCSERR);
1865	writel(0, gp->regs + MAC_RXCVERR);
1866
1867	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1868	 * them once a link is established.
1869	 */
1870	writel(0, gp->regs + MAC_TXCFG);
1871	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1872	writel(0, gp->regs + MAC_MCCFG);
1873	writel(0, gp->regs + MAC_XIFCFG);
1874
1875	/* Setup MAC interrupts.  We want to get all of the interesting
1876	 * counter expiration events, but we do not want to hear about
1877	 * normal rx/tx as the DMA engine tells us that.
1878	 */
1879	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1880	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1881
1882	/* Don't enable even the PAUSE interrupts for now, we
1883	 * make no use of those events other than to record them.
1884	 */
1885	writel(0xffffffff, gp->regs + MAC_MCMASK);
1886
1887	/* Don't enable GEM's WOL in normal operations
1888	 */
1889	if (gp->has_wol)
1890		writel(0, gp->regs + WOL_WAKECSR);
1891}
1892
1893static void gem_init_pause_thresholds(struct gem *gp)
1894{
1895	u32 cfg;
1896
1897	/* Calculate pause thresholds.  Setting the OFF threshold to the
1898	 * full RX fifo size effectively disables PAUSE generation which
1899	 * is what we do for 10/100 only GEMs which have FIFOs too small
1900	 * to make real gains from PAUSE.
1901	 */
1902	if (gp->rx_fifo_sz <= (2 * 1024)) {
1903		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1904	} else {
1905		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1906		int off = (gp->rx_fifo_sz - (max_frame * 2));
1907		int on = off - max_frame;
1908
1909		gp->rx_pause_off = off;
1910		gp->rx_pause_on = on;
1911	}
1912
1913
1914	/* Configure the chip "burst" DMA mode & enable some
1915	 * HW bug fixes on Apple version
1916	 */
1917	cfg  = 0;
1918	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1919		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1920#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1921	cfg |= GREG_CFG_IBURST;
1922#endif
1923	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1924	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1925	writel(cfg, gp->regs + GREG_CFG);
1926
1927	/* If Infinite Burst didn't stick, then use different
1928	 * thresholds (and Apple bug fixes don't exist)
1929	 */
1930	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1931		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1932		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1933		writel(cfg, gp->regs + GREG_CFG);
1934	}
1935}
1936
1937static int gem_check_invariants(struct gem *gp)
1938{
1939	struct pci_dev *pdev = gp->pdev;
1940	u32 mif_cfg;
1941
1942	/* On Apple's sungem, we can't rely on registers as the chip
1943	 * was been powered down by the firmware. The PHY is looked
1944	 * up later on.
1945	 */
1946	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1947		gp->phy_type = phy_mii_mdio0;
1948		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1949		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1950		gp->swrst_base = 0;
1951
1952		mif_cfg = readl(gp->regs + MIF_CFG);
1953		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1954		mif_cfg |= MIF_CFG_MDI0;
1955		writel(mif_cfg, gp->regs + MIF_CFG);
1956		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1957		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1958
1959		/* We hard-code the PHY address so we can properly bring it out of
1960		 * reset later on, we can't really probe it at this point, though
1961		 * that isn't an issue.
1962		 */
1963		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1964			gp->mii_phy_addr = 1;
1965		else
1966			gp->mii_phy_addr = 0;
1967
1968		return 0;
1969	}
1970
1971	mif_cfg = readl(gp->regs + MIF_CFG);
1972
1973	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1974	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1975		/* One of the MII PHYs _must_ be present
1976		 * as this chip has no gigabit PHY.
1977		 */
1978		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1979			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1980			       mif_cfg);
1981			return -1;
1982		}
1983	}
1984
1985	/* Determine initial PHY interface type guess.  MDIO1 is the
1986	 * external PHY and thus takes precedence over MDIO0.
1987	 */
1988
1989	if (mif_cfg & MIF_CFG_MDI1) {
1990		gp->phy_type = phy_mii_mdio1;
1991		mif_cfg |= MIF_CFG_PSELECT;
1992		writel(mif_cfg, gp->regs + MIF_CFG);
1993	} else if (mif_cfg & MIF_CFG_MDI0) {
1994		gp->phy_type = phy_mii_mdio0;
1995		mif_cfg &= ~MIF_CFG_PSELECT;
1996		writel(mif_cfg, gp->regs + MIF_CFG);
1997	} else {
1998#ifdef CONFIG_SPARC
1999		const char *p;
2000
2001		p = of_get_property(gp->of_node, "shared-pins", NULL);
2002		if (p && !strcmp(p, "serdes"))
2003			gp->phy_type = phy_serdes;
2004		else
2005#endif
2006			gp->phy_type = phy_serialink;
2007	}
2008	if (gp->phy_type == phy_mii_mdio1 ||
2009	    gp->phy_type == phy_mii_mdio0) {
2010		int i;
2011
2012		for (i = 0; i < 32; i++) {
2013			gp->mii_phy_addr = i;
2014			if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2015				break;
2016		}
2017		if (i == 32) {
2018			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2019				pr_err("RIO MII phy will not respond\n");
2020				return -1;
2021			}
2022			gp->phy_type = phy_serdes;
2023		}
2024	}
2025
2026	/* Fetch the FIFO configurations now too. */
2027	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2028	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2029
2030	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2031		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2032			if (gp->tx_fifo_sz != (9 * 1024) ||
2033			    gp->rx_fifo_sz != (20 * 1024)) {
2034				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2035				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2036				return -1;
2037			}
2038			gp->swrst_base = 0;
2039		} else {
2040			if (gp->tx_fifo_sz != (2 * 1024) ||
2041			    gp->rx_fifo_sz != (2 * 1024)) {
2042				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2043				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2044				return -1;
2045			}
2046			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2047		}
2048	}
2049
2050	return 0;
2051}
2052
2053static void gem_reinit_chip(struct gem *gp)
2054{
2055	/* Reset the chip */
2056	gem_reset(gp);
2057
2058	/* Make sure ints are disabled */
2059	gem_disable_ints(gp);
2060
2061	/* Allocate & setup ring buffers */
2062	gem_init_rings(gp);
2063
2064	/* Configure pause thresholds */
2065	gem_init_pause_thresholds(gp);
2066
2067	/* Init DMA & MAC engines */
2068	gem_init_dma(gp);
2069	gem_init_mac(gp);
2070}
2071
2072
2073static void gem_stop_phy(struct gem *gp, int wol)
2074{
2075	u32 mifcfg;
2076
2077	/* Let the chip settle down a bit, it seems that helps
2078	 * for sleep mode on some models
2079	 */
2080	msleep(10);
2081
2082	/* Make sure we aren't polling PHY status change. We
2083	 * don't currently use that feature though
2084	 */
2085	mifcfg = readl(gp->regs + MIF_CFG);
2086	mifcfg &= ~MIF_CFG_POLL;
2087	writel(mifcfg, gp->regs + MIF_CFG);
2088
2089	if (wol && gp->has_wol) {
2090		const unsigned char *e = &gp->dev->dev_addr[0];
2091		u32 csr;
2092
2093		/* Setup wake-on-lan for MAGIC packet */
2094		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2095		       gp->regs + MAC_RXCFG);
2096		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2097		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2098		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2099
2100		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2101		csr = WOL_WAKECSR_ENABLE;
2102		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2103			csr |= WOL_WAKECSR_MII;
2104		writel(csr, gp->regs + WOL_WAKECSR);
2105	} else {
2106		writel(0, gp->regs + MAC_RXCFG);
2107		(void)readl(gp->regs + MAC_RXCFG);
2108		/* Machine sleep will die in strange ways if we
2109		 * dont wait a bit here, looks like the chip takes
2110		 * some time to really shut down
2111		 */
2112		msleep(10);
2113	}
2114
2115	writel(0, gp->regs + MAC_TXCFG);
2116	writel(0, gp->regs + MAC_XIFCFG);
2117	writel(0, gp->regs + TXDMA_CFG);
2118	writel(0, gp->regs + RXDMA_CFG);
2119
2120	if (!wol) {
2121		gem_reset(gp);
2122		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2123		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2124
2125		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2126			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2127
2128		/* According to Apple, we must set the MDIO pins to this begnign
2129		 * state or we may 1) eat more current, 2) damage some PHYs
2130		 */
2131		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2132		writel(0, gp->regs + MIF_BBCLK);
2133		writel(0, gp->regs + MIF_BBDATA);
2134		writel(0, gp->regs + MIF_BBOENAB);
2135		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2136		(void) readl(gp->regs + MAC_XIFCFG);
2137	}
2138}
2139
2140static int gem_do_start(struct net_device *dev)
2141{
2142	struct gem *gp = netdev_priv(dev);
2143	int rc;
2144
2145	pci_set_master(gp->pdev);
2146
2147	/* Init & setup chip hardware */
2148	gem_reinit_chip(gp);
2149
2150	/* An interrupt might come in handy */
2151	rc = request_irq(gp->pdev->irq, gem_interrupt,
2152			 IRQF_SHARED, dev->name, (void *)dev);
2153	if (rc) {
2154		netdev_err(dev, "failed to request irq !\n");
2155
2156		gem_reset(gp);
2157		gem_clean_rings(gp);
2158		gem_put_cell(gp);
2159		return rc;
2160	}
2161
2162	/* Mark us as attached again if we come from resume(), this has
2163	 * no effect if we weren't detached and needs to be done now.
2164	 */
2165	netif_device_attach(dev);
2166
2167	/* Restart NAPI & queues */
2168	gem_netif_start(gp);
2169
2170	/* Detect & init PHY, start autoneg etc... this will
2171	 * eventually result in starting DMA operations when
2172	 * the link is up
2173	 */
2174	gem_init_phy(gp);
2175
2176	return 0;
2177}
2178
2179static void gem_do_stop(struct net_device *dev, int wol)
2180{
2181	struct gem *gp = netdev_priv(dev);
2182
2183	/* Stop NAPI and stop tx queue */
2184	gem_netif_stop(gp);
2185
2186	/* Make sure ints are disabled. We don't care about
2187	 * synchronizing as NAPI is disabled, thus a stray
2188	 * interrupt will do nothing bad (our irq handler
2189	 * just schedules NAPI)
2190	 */
2191	gem_disable_ints(gp);
2192
2193	/* Stop the link timer */
2194	del_timer_sync(&gp->link_timer);
2195
2196	/* We cannot cancel the reset task while holding the
2197	 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2198	 * if we did. This is not an issue however as the reset
2199	 * task is synchronized vs. us (rtnl_lock) and will do
2200	 * nothing if the device is down or suspended. We do
2201	 * still clear reset_task_pending to avoid a spurrious
2202	 * reset later on in case we do resume before it gets
2203	 * scheduled.
2204	 */
2205	gp->reset_task_pending = 0;
2206
2207	/* If we are going to sleep with WOL */
2208	gem_stop_dma(gp);
2209	msleep(10);
2210	if (!wol)
2211		gem_reset(gp);
2212	msleep(10);
2213
2214	/* Get rid of rings */
2215	gem_clean_rings(gp);
2216
2217	/* No irq needed anymore */
2218	free_irq(gp->pdev->irq, (void *) dev);
2219
2220	/* Shut the PHY down eventually and setup WOL */
2221	gem_stop_phy(gp, wol);
2222}
2223
2224static void gem_reset_task(struct work_struct *work)
2225{
2226	struct gem *gp = container_of(work, struct gem, reset_task);
2227
2228	/* Lock out the network stack (essentially shield ourselves
2229	 * against a racing open, close, control call, or suspend
2230	 */
2231	rtnl_lock();
2232
2233	/* Skip the reset task if suspended or closed, or if it's
2234	 * been cancelled by gem_do_stop (see comment there)
2235	 */
2236	if (!netif_device_present(gp->dev) ||
2237	    !netif_running(gp->dev) ||
2238	    !gp->reset_task_pending) {
2239		rtnl_unlock();
2240		return;
2241	}
2242
2243	/* Stop the link timer */
2244	del_timer_sync(&gp->link_timer);
2245
2246	/* Stop NAPI and tx */
2247	gem_netif_stop(gp);
2248
2249	/* Reset the chip & rings */
2250	gem_reinit_chip(gp);
2251	if (gp->lstate == link_up)
2252		gem_set_link_modes(gp);
2253
2254	/* Restart NAPI and Tx */
2255	gem_netif_start(gp);
2256
2257	/* We are back ! */
2258	gp->reset_task_pending = 0;
2259
2260	/* If the link is not up, restart autoneg, else restart the
2261	 * polling timer
2262	 */
2263	if (gp->lstate != link_up)
2264		gem_begin_auto_negotiation(gp, NULL);
2265	else
2266		mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2267
2268	rtnl_unlock();
2269}
2270
2271static int gem_open(struct net_device *dev)
2272{
2273	struct gem *gp = netdev_priv(dev);
2274	int rc;
2275
2276	/* We allow open while suspended, we just do nothing,
2277	 * the chip will be initialized in resume()
2278	 */
2279	if (netif_device_present(dev)) {
2280		/* Enable the cell */
2281		gem_get_cell(gp);
2282
2283		/* Make sure PCI access and bus master are enabled */
2284		rc = pci_enable_device(gp->pdev);
2285		if (rc) {
2286			netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2287
2288			/* Put cell and forget it for now, it will be considered
2289			 *as still asleep, a new sleep cycle may bring it back
2290			 */
2291			gem_put_cell(gp);
2292			return -ENXIO;
2293		}
2294		return gem_do_start(dev);
2295	}
2296
2297	return 0;
2298}
2299
2300static int gem_close(struct net_device *dev)
2301{
2302	struct gem *gp = netdev_priv(dev);
2303
2304	if (netif_device_present(dev)) {
2305		gem_do_stop(dev, 0);
2306
2307		/* Make sure bus master is disabled */
2308		pci_disable_device(gp->pdev);
2309
2310		/* Cell not needed neither if no WOL */
2311		if (!gp->asleep_wol)
2312			gem_put_cell(gp);
2313	}
2314	return 0;
2315}
2316
2317static int __maybe_unused gem_suspend(struct device *dev_d)
2318{
2319	struct net_device *dev = dev_get_drvdata(dev_d);
2320	struct gem *gp = netdev_priv(dev);
2321
2322	/* Lock the network stack first to avoid racing with open/close,
2323	 * reset task and setting calls
2324	 */
2325	rtnl_lock();
2326
2327	/* Not running, mark ourselves non-present, no need for
2328	 * a lock here
2329	 */
2330	if (!netif_running(dev)) {
2331		netif_device_detach(dev);
2332		rtnl_unlock();
2333		return 0;
2334	}
2335	netdev_info(dev, "suspending, WakeOnLan %s\n",
2336		    (gp->wake_on_lan && netif_running(dev)) ?
2337		    "enabled" : "disabled");
2338
2339	/* Tell the network stack we're gone. gem_do_stop() below will
2340	 * synchronize with TX, stop NAPI etc...
2341	 */
2342	netif_device_detach(dev);
2343
2344	/* Switch off chip, remember WOL setting */
2345	gp->asleep_wol = !!gp->wake_on_lan;
2346	gem_do_stop(dev, gp->asleep_wol);
2347
2348	/* Cell not needed neither if no WOL */
2349	if (!gp->asleep_wol)
2350		gem_put_cell(gp);
2351
2352	/* Unlock the network stack */
2353	rtnl_unlock();
2354
2355	return 0;
2356}
2357
2358static int __maybe_unused gem_resume(struct device *dev_d)
2359{
2360	struct net_device *dev = dev_get_drvdata(dev_d);
2361	struct gem *gp = netdev_priv(dev);
2362
2363	/* See locking comment in gem_suspend */
2364	rtnl_lock();
2365
2366	/* Not running, mark ourselves present, no need for
2367	 * a lock here
2368	 */
2369	if (!netif_running(dev)) {
2370		netif_device_attach(dev);
2371		rtnl_unlock();
2372		return 0;
2373	}
2374
2375	/* Enable the cell */
2376	gem_get_cell(gp);
2377
2378	/* Restart chip. If that fails there isn't much we can do, we
2379	 * leave things stopped.
2380	 */
2381	gem_do_start(dev);
2382
2383	/* If we had WOL enabled, the cell clock was never turned off during
2384	 * sleep, so we end up beeing unbalanced. Fix that here
2385	 */
2386	if (gp->asleep_wol)
2387		gem_put_cell(gp);
2388
2389	/* Unlock the network stack */
2390	rtnl_unlock();
2391
2392	return 0;
2393}
2394
2395static struct net_device_stats *gem_get_stats(struct net_device *dev)
2396{
2397	struct gem *gp = netdev_priv(dev);
2398
2399	/* I have seen this being called while the PM was in progress,
2400	 * so we shield against this. Let's also not poke at registers
2401	 * while the reset task is going on.
2402	 *
2403	 * TODO: Move stats collection elsewhere (link timer ?) and
2404	 * make this a nop to avoid all those synchro issues
2405	 */
2406	if (!netif_device_present(dev) || !netif_running(dev))
2407		goto bail;
2408
2409	/* Better safe than sorry... */
2410	if (WARN_ON(!gp->cell_enabled))
2411		goto bail;
2412
2413	dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2414	writel(0, gp->regs + MAC_FCSERR);
2415
2416	dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2417	writel(0, gp->regs + MAC_AERR);
2418
2419	dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2420	writel(0, gp->regs + MAC_LERR);
2421
2422	dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2423	dev->stats.collisions +=
2424		(readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2425	writel(0, gp->regs + MAC_ECOLL);
2426	writel(0, gp->regs + MAC_LCOLL);
2427 bail:
2428	return &dev->stats;
2429}
2430
2431static int gem_set_mac_address(struct net_device *dev, void *addr)
2432{
2433	struct sockaddr *macaddr = (struct sockaddr *) addr;
2434	const unsigned char *e = &dev->dev_addr[0];
2435	struct gem *gp = netdev_priv(dev);
2436
2437	if (!is_valid_ether_addr(macaddr->sa_data))
2438		return -EADDRNOTAVAIL;
2439
2440	eth_hw_addr_set(dev, macaddr->sa_data);
2441
2442	/* We'll just catch it later when the device is up'd or resumed */
2443	if (!netif_running(dev) || !netif_device_present(dev))
2444		return 0;
2445
2446	/* Better safe than sorry... */
2447	if (WARN_ON(!gp->cell_enabled))
2448		return 0;
2449
2450	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2451	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2452	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2453
2454	return 0;
2455}
2456
2457static void gem_set_multicast(struct net_device *dev)
2458{
2459	struct gem *gp = netdev_priv(dev);
2460	u32 rxcfg, rxcfg_new;
2461	int limit = 10000;
2462
2463	if (!netif_running(dev) || !netif_device_present(dev))
2464		return;
2465
2466	/* Better safe than sorry... */
2467	if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2468		return;
2469
2470	rxcfg = readl(gp->regs + MAC_RXCFG);
2471	rxcfg_new = gem_setup_multicast(gp);
2472#ifdef STRIP_FCS
2473	rxcfg_new |= MAC_RXCFG_SFCS;
2474#endif
2475	gp->mac_rx_cfg = rxcfg_new;
2476
2477	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2478	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2479		if (!limit--)
2480			break;
2481		udelay(10);
2482	}
2483
2484	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2485	rxcfg |= rxcfg_new;
2486
2487	writel(rxcfg, gp->regs + MAC_RXCFG);
2488}
2489
2490/* Jumbo-grams don't seem to work :-( */
2491#define GEM_MIN_MTU	ETH_MIN_MTU
2492#if 1
2493#define GEM_MAX_MTU	ETH_DATA_LEN
2494#else
2495#define GEM_MAX_MTU	9000
2496#endif
2497
2498static int gem_change_mtu(struct net_device *dev, int new_mtu)
2499{
2500	struct gem *gp = netdev_priv(dev);
2501
2502	dev->mtu = new_mtu;
2503
2504	/* We'll just catch it later when the device is up'd or resumed */
2505	if (!netif_running(dev) || !netif_device_present(dev))
2506		return 0;
2507
2508	/* Better safe than sorry... */
2509	if (WARN_ON(!gp->cell_enabled))
2510		return 0;
2511
2512	gem_netif_stop(gp);
2513	gem_reinit_chip(gp);
2514	if (gp->lstate == link_up)
2515		gem_set_link_modes(gp);
2516	gem_netif_start(gp);
2517
2518	return 0;
2519}
2520
2521static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2522{
2523	struct gem *gp = netdev_priv(dev);
2524
2525	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2526	strscpy(info->version, DRV_VERSION, sizeof(info->version));
2527	strscpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2528}
2529
2530static int gem_get_link_ksettings(struct net_device *dev,
2531				  struct ethtool_link_ksettings *cmd)
2532{
2533	struct gem *gp = netdev_priv(dev);
2534	u32 supported, advertising;
2535
2536	if (gp->phy_type == phy_mii_mdio0 ||
2537	    gp->phy_type == phy_mii_mdio1) {
2538		if (gp->phy_mii.def)
2539			supported = gp->phy_mii.def->features;
2540		else
2541			supported = (SUPPORTED_10baseT_Half |
2542					  SUPPORTED_10baseT_Full);
2543
2544		/* XXX hardcoded stuff for now */
2545		cmd->base.port = PORT_MII;
2546		cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2547
2548		/* Return current PHY settings */
2549		cmd->base.autoneg = gp->want_autoneg;
2550		cmd->base.speed = gp->phy_mii.speed;
2551		cmd->base.duplex = gp->phy_mii.duplex;
2552		advertising = gp->phy_mii.advertising;
2553
2554		/* If we started with a forced mode, we don't have a default
2555		 * advertise set, we need to return something sensible so
2556		 * userland can re-enable autoneg properly.
2557		 */
2558		if (advertising == 0)
2559			advertising = supported;
2560	} else { // XXX PCS ?
2561		supported =
2562			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2563			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2564			 SUPPORTED_Autoneg);
2565		advertising = supported;
2566		cmd->base.speed = 0;
2567		cmd->base.duplex = 0;
2568		cmd->base.port = 0;
2569		cmd->base.phy_address = 0;
2570		cmd->base.autoneg = 0;
2571
2572		/* serdes means usually a Fibre connector, with most fixed */
2573		if (gp->phy_type == phy_serdes) {
2574			cmd->base.port = PORT_FIBRE;
2575			supported = (SUPPORTED_1000baseT_Half |
2576				SUPPORTED_1000baseT_Full |
2577				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2578				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2579			advertising = supported;
2580			if (gp->lstate == link_up)
2581				cmd->base.speed = SPEED_1000;
2582			cmd->base.duplex = DUPLEX_FULL;
2583			cmd->base.autoneg = 1;
2584		}
2585	}
2586
2587	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2588						supported);
2589	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2590						advertising);
2591
2592	return 0;
2593}
2594
2595static int gem_set_link_ksettings(struct net_device *dev,
2596				  const struct ethtool_link_ksettings *cmd)
2597{
2598	struct gem *gp = netdev_priv(dev);
2599	u32 speed = cmd->base.speed;
2600	u32 advertising;
2601
2602	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2603						cmd->link_modes.advertising);
2604
2605	/* Verify the settings we care about. */
2606	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2607	    cmd->base.autoneg != AUTONEG_DISABLE)
2608		return -EINVAL;
2609
2610	if (cmd->base.autoneg == AUTONEG_ENABLE &&
2611	    advertising == 0)
2612		return -EINVAL;
2613
2614	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2615	    ((speed != SPEED_1000 &&
2616	      speed != SPEED_100 &&
2617	      speed != SPEED_10) ||
2618	     (cmd->base.duplex != DUPLEX_HALF &&
2619	      cmd->base.duplex != DUPLEX_FULL)))
2620		return -EINVAL;
2621
2622	/* Apply settings and restart link process. */
2623	if (netif_device_present(gp->dev)) {
2624		del_timer_sync(&gp->link_timer);
2625		gem_begin_auto_negotiation(gp, cmd);
2626	}
2627
2628	return 0;
2629}
2630
2631static int gem_nway_reset(struct net_device *dev)
2632{
2633	struct gem *gp = netdev_priv(dev);
2634
2635	if (!gp->want_autoneg)
2636		return -EINVAL;
2637
2638	/* Restart link process  */
2639	if (netif_device_present(gp->dev)) {
2640		del_timer_sync(&gp->link_timer);
2641		gem_begin_auto_negotiation(gp, NULL);
2642	}
2643
2644	return 0;
2645}
2646
2647static u32 gem_get_msglevel(struct net_device *dev)
2648{
2649	struct gem *gp = netdev_priv(dev);
2650	return gp->msg_enable;
2651}
2652
2653static void gem_set_msglevel(struct net_device *dev, u32 value)
2654{
2655	struct gem *gp = netdev_priv(dev);
2656	gp->msg_enable = value;
2657}
2658
2659
2660/* Add more when I understand how to program the chip */
2661/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2662
2663#define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2664
2665static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2666{
2667	struct gem *gp = netdev_priv(dev);
2668
2669	/* Add more when I understand how to program the chip */
2670	if (gp->has_wol) {
2671		wol->supported = WOL_SUPPORTED_MASK;
2672		wol->wolopts = gp->wake_on_lan;
2673	} else {
2674		wol->supported = 0;
2675		wol->wolopts = 0;
2676	}
2677}
2678
2679static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2680{
2681	struct gem *gp = netdev_priv(dev);
2682
2683	if (!gp->has_wol)
2684		return -EOPNOTSUPP;
2685	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2686	return 0;
2687}
2688
2689static const struct ethtool_ops gem_ethtool_ops = {
2690	.get_drvinfo		= gem_get_drvinfo,
2691	.get_link		= ethtool_op_get_link,
2692	.nway_reset		= gem_nway_reset,
2693	.get_msglevel		= gem_get_msglevel,
2694	.set_msglevel		= gem_set_msglevel,
2695	.get_wol		= gem_get_wol,
2696	.set_wol		= gem_set_wol,
2697	.get_link_ksettings	= gem_get_link_ksettings,
2698	.set_link_ksettings	= gem_set_link_ksettings,
2699};
2700
2701static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2702{
2703	struct gem *gp = netdev_priv(dev);
2704	struct mii_ioctl_data *data = if_mii(ifr);
2705	int rc = -EOPNOTSUPP;
2706
2707	/* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2708	 * netif_device_present() is true and holds rtnl_lock for us
2709	 * so we have nothing to worry about
2710	 */
2711
2712	switch (cmd) {
2713	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2714		data->phy_id = gp->mii_phy_addr;
2715		fallthrough;
2716
2717	case SIOCGMIIREG:		/* Read MII PHY register. */
2718		data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2719					   data->reg_num & 0x1f);
2720		rc = 0;
2721		break;
2722
2723	case SIOCSMIIREG:		/* Write MII PHY register. */
2724		__sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2725			    data->val_in);
2726		rc = 0;
2727		break;
2728	}
2729	return rc;
2730}
2731
2732#if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2733/* Fetch MAC address from vital product data of PCI ROM. */
2734static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2735{
2736	int this_offset;
2737
2738	for (this_offset = 0x20; this_offset < len; this_offset++) {
2739		void __iomem *p = rom_base + this_offset;
2740		int i;
2741
2742		if (readb(p + 0) != 0x90 ||
2743		    readb(p + 1) != 0x00 ||
2744		    readb(p + 2) != 0x09 ||
2745		    readb(p + 3) != 0x4e ||
2746		    readb(p + 4) != 0x41 ||
2747		    readb(p + 5) != 0x06)
2748			continue;
2749
2750		this_offset += 6;
2751		p += 6;
2752
2753		for (i = 0; i < 6; i++)
2754			dev_addr[i] = readb(p + i);
2755		return 1;
2756	}
2757	return 0;
2758}
2759
2760static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2761{
2762	size_t size;
2763	void __iomem *p = pci_map_rom(pdev, &size);
2764
2765	if (p) {
2766		int found;
2767
2768		found = readb(p) == 0x55 &&
2769			readb(p + 1) == 0xaa &&
2770			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2771		pci_unmap_rom(pdev, p);
2772		if (found)
2773			return;
2774	}
2775
2776	/* Sun MAC prefix then 3 random bytes. */
2777	dev_addr[0] = 0x08;
2778	dev_addr[1] = 0x00;
2779	dev_addr[2] = 0x20;
2780	get_random_bytes(dev_addr + 3, 3);
2781}
2782#endif /* not Sparc and not PPC */
2783
2784static int gem_get_device_address(struct gem *gp)
2785{
2786#if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2787	struct net_device *dev = gp->dev;
2788	const unsigned char *addr;
2789
2790	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2791	if (addr == NULL) {
2792#ifdef CONFIG_SPARC
2793		addr = idprom->id_ethaddr;
2794#else
2795		printk("\n");
2796		pr_err("%s: can't get mac-address\n", dev->name);
2797		return -1;
2798#endif
2799	}
2800	eth_hw_addr_set(dev, addr);
2801#else
2802	u8 addr[ETH_ALEN];
2803
2804	get_gem_mac_nonobp(gp->pdev, addr);
2805	eth_hw_addr_set(gp->dev, addr);
2806#endif
2807	return 0;
2808}
2809
2810static void gem_remove_one(struct pci_dev *pdev)
2811{
2812	struct net_device *dev = pci_get_drvdata(pdev);
2813
2814	if (dev) {
2815		struct gem *gp = netdev_priv(dev);
2816
2817		unregister_netdev(dev);
2818
2819		/* Ensure reset task is truly gone */
2820		cancel_work_sync(&gp->reset_task);
2821
2822		/* Free resources */
2823		dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block),
2824				  gp->init_block, gp->gblock_dvma);
2825		iounmap(gp->regs);
2826		pci_release_regions(pdev);
2827		free_netdev(dev);
2828	}
2829}
2830
2831static const struct net_device_ops gem_netdev_ops = {
2832	.ndo_open		= gem_open,
2833	.ndo_stop		= gem_close,
2834	.ndo_start_xmit		= gem_start_xmit,
2835	.ndo_get_stats		= gem_get_stats,
2836	.ndo_set_rx_mode	= gem_set_multicast,
2837	.ndo_eth_ioctl		= gem_ioctl,
2838	.ndo_tx_timeout		= gem_tx_timeout,
2839	.ndo_change_mtu		= gem_change_mtu,
2840	.ndo_validate_addr	= eth_validate_addr,
2841	.ndo_set_mac_address    = gem_set_mac_address,
2842#ifdef CONFIG_NET_POLL_CONTROLLER
2843	.ndo_poll_controller    = gem_poll_controller,
2844#endif
2845};
2846
2847static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2848{
2849	unsigned long gemreg_base, gemreg_len;
2850	struct net_device *dev;
2851	struct gem *gp;
2852	int err, pci_using_dac;
2853
2854	printk_once(KERN_INFO "%s", version);
2855
2856	/* Apple gmac note: during probe, the chip is powered up by
2857	 * the arch code to allow the code below to work (and to let
2858	 * the chip be probed on the config space. It won't stay powered
2859	 * up until the interface is brought up however, so we can't rely
2860	 * on register configuration done at this point.
2861	 */
2862	err = pci_enable_device(pdev);
2863	if (err) {
2864		pr_err("Cannot enable MMIO operation, aborting\n");
2865		return err;
2866	}
2867	pci_set_master(pdev);
2868
2869	/* Configure DMA attributes. */
2870
2871	/* All of the GEM documentation states that 64-bit DMA addressing
2872	 * is fully supported and should work just fine.  However the
2873	 * front end for RIO based GEMs is different and only supports
2874	 * 32-bit addressing.
2875	 *
2876	 * For now we assume the various PPC GEMs are 32-bit only as well.
2877	 */
2878	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2879	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2880	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
2881		pci_using_dac = 1;
2882	} else {
2883		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2884		if (err) {
2885			pr_err("No usable DMA configuration, aborting\n");
2886			goto err_disable_device;
2887		}
2888		pci_using_dac = 0;
2889	}
2890
2891	gemreg_base = pci_resource_start(pdev, 0);
2892	gemreg_len = pci_resource_len(pdev, 0);
2893
2894	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2895		pr_err("Cannot find proper PCI device base address, aborting\n");
2896		err = -ENODEV;
2897		goto err_disable_device;
2898	}
2899
2900	dev = alloc_etherdev(sizeof(*gp));
2901	if (!dev) {
2902		err = -ENOMEM;
2903		goto err_disable_device;
2904	}
2905	SET_NETDEV_DEV(dev, &pdev->dev);
2906
2907	gp = netdev_priv(dev);
2908
2909	err = pci_request_regions(pdev, DRV_NAME);
2910	if (err) {
2911		pr_err("Cannot obtain PCI resources, aborting\n");
2912		goto err_out_free_netdev;
2913	}
2914
2915	gp->pdev = pdev;
2916	gp->dev = dev;
2917
2918	gp->msg_enable = DEFAULT_MSG;
2919
2920	timer_setup(&gp->link_timer, gem_link_timer, 0);
2921
2922	INIT_WORK(&gp->reset_task, gem_reset_task);
2923
2924	gp->lstate = link_down;
2925	gp->timer_ticks = 0;
2926	netif_carrier_off(dev);
2927
2928	gp->regs = ioremap(gemreg_base, gemreg_len);
2929	if (!gp->regs) {
2930		pr_err("Cannot map device registers, aborting\n");
2931		err = -EIO;
2932		goto err_out_free_res;
2933	}
2934
2935	/* On Apple, we want a reference to the Open Firmware device-tree
2936	 * node. We use it for clock control.
2937	 */
2938#if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2939	gp->of_node = pci_device_to_OF_node(pdev);
2940#endif
2941
2942	/* Only Apple version supports WOL afaik */
2943	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2944		gp->has_wol = 1;
2945
2946	/* Make sure cell is enabled */
2947	gem_get_cell(gp);
2948
2949	/* Make sure everything is stopped and in init state */
2950	gem_reset(gp);
2951
2952	/* Fill up the mii_phy structure (even if we won't use it) */
2953	gp->phy_mii.dev = dev;
2954	gp->phy_mii.mdio_read = _sungem_phy_read;
2955	gp->phy_mii.mdio_write = _sungem_phy_write;
2956#ifdef CONFIG_PPC_PMAC
2957	gp->phy_mii.platform_data = gp->of_node;
2958#endif
2959	/* By default, we start with autoneg */
2960	gp->want_autoneg = 1;
2961
2962	/* Check fifo sizes, PHY type, etc... */
2963	if (gem_check_invariants(gp)) {
2964		err = -ENODEV;
2965		goto err_out_iounmap;
2966	}
2967
2968	/* It is guaranteed that the returned buffer will be at least
2969	 * PAGE_SIZE aligned.
2970	 */
2971	gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block),
2972					    &gp->gblock_dvma, GFP_KERNEL);
2973	if (!gp->init_block) {
2974		pr_err("Cannot allocate init block, aborting\n");
2975		err = -ENOMEM;
2976		goto err_out_iounmap;
2977	}
2978
2979	err = gem_get_device_address(gp);
2980	if (err)
2981		goto err_out_free_consistent;
2982
2983	dev->netdev_ops = &gem_netdev_ops;
2984	netif_napi_add(dev, &gp->napi, gem_poll);
2985	dev->ethtool_ops = &gem_ethtool_ops;
2986	dev->watchdog_timeo = 5 * HZ;
2987	dev->dma = 0;
2988
2989	/* Set that now, in case PM kicks in now */
2990	pci_set_drvdata(pdev, dev);
2991
2992	/* We can do scatter/gather and HW checksum */
2993	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2994	dev->features = dev->hw_features;
2995	if (pci_using_dac)
2996		dev->features |= NETIF_F_HIGHDMA;
2997
2998	/* MTU range: 68 - 1500 (Jumbo mode is broken) */
2999	dev->min_mtu = GEM_MIN_MTU;
3000	dev->max_mtu = GEM_MAX_MTU;
3001
3002	/* Register with kernel */
3003	if (register_netdev(dev)) {
3004		pr_err("Cannot register net device, aborting\n");
3005		err = -ENOMEM;
3006		goto err_out_free_consistent;
3007	}
3008
3009	/* Undo the get_cell with appropriate locking (we could use
3010	 * ndo_init/uninit but that would be even more clumsy imho)
3011	 */
3012	rtnl_lock();
3013	gem_put_cell(gp);
3014	rtnl_unlock();
3015
3016	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3017		    dev->dev_addr);
3018	return 0;
3019
3020err_out_free_consistent:
3021	gem_remove_one(pdev);
3022err_out_iounmap:
3023	gem_put_cell(gp);
3024	iounmap(gp->regs);
3025
3026err_out_free_res:
3027	pci_release_regions(pdev);
3028
3029err_out_free_netdev:
3030	free_netdev(dev);
3031err_disable_device:
3032	pci_disable_device(pdev);
3033	return err;
3034
3035}
3036
3037static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume);
3038
3039static struct pci_driver gem_driver = {
3040	.name		= GEM_MODULE_NAME,
3041	.id_table	= gem_pci_tbl,
3042	.probe		= gem_init_one,
3043	.remove		= gem_remove_one,
3044	.driver.pm	= &gem_pm_ops,
3045};
3046
3047module_pci_driver(gem_driver);
3048