1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * smc91x.c
4 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 *
6 * Copyright (C) 1996 by Erik Stahlman
7 * Copyright (C) 2001 Standard Microsystems Corporation
8 *	Developed by Simple Network Magic Corporation
9 * Copyright (C) 2003 Monta Vista Software, Inc.
10 *	Unified SMC91x driver by Nicolas Pitre
11 *
12 * Arguments:
13 * 	io	= for the base address
14 *	irq	= for the IRQ
15 *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
16 *
17 * original author:
18 * 	Erik Stahlman <erik@vt.edu>
19 *
20 * hardware multicast code:
21 *    Peter Cammaert <pc@denkart.be>
22 *
23 * contributors:
24 * 	Daris A Nevil <dnevil@snmc.com>
25 *      Nicolas Pitre <nico@fluxnic.net>
26 *	Russell King <rmk@arm.linux.org.uk>
27 *
28 * History:
29 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
30 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
31 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
32 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
33 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
34 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
35 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
36 *                                more bus abstraction, big cleanup, etc.
37 *   29/09/03  Russell King       - add driver model support
38 *                                - ethtool support
39 *                                - convert to use generic MII interface
40 *                                - add link up/down notification
41 *                                - don't try to handle full negotiation in
42 *                                  smc_phy_configure
43 *                                - clean up (and fix stack overrun) in PHY
44 *                                  MII read/write functions
45 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
46 */
47static const char version[] =
48	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
49
50/* Debugging level */
51#ifndef SMC_DEBUG
52#define SMC_DEBUG		0
53#endif
54
55
56#include <linux/module.h>
57#include <linux/kernel.h>
58#include <linux/sched.h>
59#include <linux/delay.h>
60#include <linux/gpio/consumer.h>
61#include <linux/interrupt.h>
62#include <linux/irq.h>
63#include <linux/errno.h>
64#include <linux/ioport.h>
65#include <linux/crc32.h>
66#include <linux/platform_device.h>
67#include <linux/spinlock.h>
68#include <linux/ethtool.h>
69#include <linux/mii.h>
70#include <linux/workqueue.h>
71#include <linux/of.h>
72#include <linux/of_device.h>
73
74#include <linux/netdevice.h>
75#include <linux/etherdevice.h>
76#include <linux/skbuff.h>
77
78#include <asm/io.h>
79
80#include "smc91x.h"
81
82#if defined(CONFIG_ASSABET_NEPONSET)
83#include <mach/assabet.h>
84#include <mach/neponset.h>
85#endif
86
87#ifndef SMC_NOWAIT
88# define SMC_NOWAIT		0
89#endif
90static int nowait = SMC_NOWAIT;
91module_param(nowait, int, 0400);
92MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
93
94/*
95 * Transmit timeout, default 5 seconds.
96 */
97static int watchdog = 1000;
98module_param(watchdog, int, 0400);
99MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
100
101MODULE_DESCRIPTION("SMC 91C9x/91C1xxx Ethernet driver");
102MODULE_LICENSE("GPL");
103MODULE_ALIAS("platform:smc91x");
104
105/*
106 * The internal workings of the driver.  If you are changing anything
107 * here with the SMC stuff, you should have the datasheet and know
108 * what you are doing.
109 */
110#define CARDNAME "smc91x"
111
112/*
113 * Use power-down feature of the chip
114 */
115#define POWER_DOWN		1
116
117/*
118 * Wait time for memory to be free.  This probably shouldn't be
119 * tuned that much, as waiting for this means nothing else happens
120 * in the system
121 */
122#define MEMORY_WAIT_TIME	16
123
124/*
125 * The maximum number of processing loops allowed for each call to the
126 * IRQ handler.
127 */
128#define MAX_IRQ_LOOPS		8
129
130/*
131 * This selects whether TX packets are sent one by one to the SMC91x internal
132 * memory and throttled until transmission completes.  This may prevent
133 * RX overruns a litle by keeping much of the memory free for RX packets
134 * but to the expense of reduced TX throughput and increased IRQ overhead.
135 * Note this is not a cure for a too slow data bus or too high IRQ latency.
136 */
137#define THROTTLE_TX_PKTS	0
138
139/*
140 * The MII clock high/low times.  2x this number gives the MII clock period
141 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
142 */
143#define MII_DELAY		1
144
145#define DBG(n, dev, fmt, ...)					\
146	do {							\
147		if (SMC_DEBUG >= (n))				\
148			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
149	} while (0)
150
151#define PRINTK(dev, fmt, ...)					\
152	do {							\
153		if (SMC_DEBUG > 0)				\
154			netdev_info(dev, fmt, ##__VA_ARGS__);	\
155		else						\
156			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
157	} while (0)
158
159#if SMC_DEBUG > 3
160static void PRINT_PKT(u_char *buf, int length)
161{
162	int i;
163	int remainder;
164	int lines;
165
166	lines = length / 16;
167	remainder = length % 16;
168
169	for (i = 0; i < lines ; i ++) {
170		int cur;
171		printk(KERN_DEBUG);
172		for (cur = 0; cur < 8; cur++) {
173			u_char a, b;
174			a = *buf++;
175			b = *buf++;
176			pr_cont("%02x%02x ", a, b);
177		}
178		pr_cont("\n");
179	}
180	printk(KERN_DEBUG);
181	for (i = 0; i < remainder/2 ; i++) {
182		u_char a, b;
183		a = *buf++;
184		b = *buf++;
185		pr_cont("%02x%02x ", a, b);
186	}
187	pr_cont("\n");
188}
189#else
190static inline void PRINT_PKT(u_char *buf, int length) { }
191#endif
192
193
194/* this enables an interrupt in the interrupt mask register */
195#define SMC_ENABLE_INT(lp, x) do {					\
196	unsigned char mask;						\
197	unsigned long smc_enable_flags;					\
198	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
199	mask = SMC_GET_INT_MASK(lp);					\
200	mask |= (x);							\
201	SMC_SET_INT_MASK(lp, mask);					\
202	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
203} while (0)
204
205/* this disables an interrupt from the interrupt mask register */
206#define SMC_DISABLE_INT(lp, x) do {					\
207	unsigned char mask;						\
208	unsigned long smc_disable_flags;				\
209	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
210	mask = SMC_GET_INT_MASK(lp);					\
211	mask &= ~(x);							\
212	SMC_SET_INT_MASK(lp, mask);					\
213	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
214} while (0)
215
216/*
217 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
218 * if at all, but let's avoid deadlocking the system if the hardware
219 * decides to go south.
220 */
221#define SMC_WAIT_MMU_BUSY(lp) do {					\
222	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
223		unsigned long timeout = jiffies + 2;			\
224		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
225			if (time_after(jiffies, timeout)) {		\
226				netdev_dbg(dev, "timeout %s line %d\n",	\
227					   __FILE__, __LINE__);		\
228				break;					\
229			}						\
230			cpu_relax();					\
231		}							\
232	}								\
233} while (0)
234
235
236/*
237 * this does a soft reset on the device
238 */
239static void smc_reset(struct net_device *dev)
240{
241	struct smc_local *lp = netdev_priv(dev);
242	void __iomem *ioaddr = lp->base;
243	unsigned int ctl, cfg;
244	struct sk_buff *pending_skb;
245
246	DBG(2, dev, "%s\n", __func__);
247
248	/* Disable all interrupts, block TX tasklet */
249	spin_lock_irq(&lp->lock);
250	SMC_SELECT_BANK(lp, 2);
251	SMC_SET_INT_MASK(lp, 0);
252	pending_skb = lp->pending_tx_skb;
253	lp->pending_tx_skb = NULL;
254	spin_unlock_irq(&lp->lock);
255
256	/* free any pending tx skb */
257	if (pending_skb) {
258		dev_kfree_skb(pending_skb);
259		dev->stats.tx_errors++;
260		dev->stats.tx_aborted_errors++;
261	}
262
263	/*
264	 * This resets the registers mostly to defaults, but doesn't
265	 * affect EEPROM.  That seems unnecessary
266	 */
267	SMC_SELECT_BANK(lp, 0);
268	SMC_SET_RCR(lp, RCR_SOFTRST);
269
270	/*
271	 * Setup the Configuration Register
272	 * This is necessary because the CONFIG_REG is not affected
273	 * by a soft reset
274	 */
275	SMC_SELECT_BANK(lp, 1);
276
277	cfg = CONFIG_DEFAULT;
278
279	/*
280	 * Setup for fast accesses if requested.  If the card/system
281	 * can't handle it then there will be no recovery except for
282	 * a hard reset or power cycle
283	 */
284	if (lp->cfg.flags & SMC91X_NOWAIT)
285		cfg |= CONFIG_NO_WAIT;
286
287	/*
288	 * Release from possible power-down state
289	 * Configuration register is not affected by Soft Reset
290	 */
291	cfg |= CONFIG_EPH_POWER_EN;
292
293	SMC_SET_CONFIG(lp, cfg);
294
295	/* this should pause enough for the chip to be happy */
296	/*
297	 * elaborate?  What does the chip _need_? --jgarzik
298	 *
299	 * This seems to be undocumented, but something the original
300	 * driver(s) have always done.  Suspect undocumented timing
301	 * info/determined empirically. --rmk
302	 */
303	udelay(1);
304
305	/* Disable transmit and receive functionality */
306	SMC_SELECT_BANK(lp, 0);
307	SMC_SET_RCR(lp, RCR_CLEAR);
308	SMC_SET_TCR(lp, TCR_CLEAR);
309
310	SMC_SELECT_BANK(lp, 1);
311	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
312
313	/*
314	 * Set the control register to automatically release successfully
315	 * transmitted packets, to make the best use out of our limited
316	 * memory
317	 */
318	if(!THROTTLE_TX_PKTS)
319		ctl |= CTL_AUTO_RELEASE;
320	else
321		ctl &= ~CTL_AUTO_RELEASE;
322	SMC_SET_CTL(lp, ctl);
323
324	/* Reset the MMU */
325	SMC_SELECT_BANK(lp, 2);
326	SMC_SET_MMU_CMD(lp, MC_RESET);
327	SMC_WAIT_MMU_BUSY(lp);
328}
329
330/*
331 * Enable Interrupts, Receive, and Transmit
332 */
333static void smc_enable(struct net_device *dev)
334{
335	struct smc_local *lp = netdev_priv(dev);
336	void __iomem *ioaddr = lp->base;
337	int mask;
338
339	DBG(2, dev, "%s\n", __func__);
340
341	/* see the header file for options in TCR/RCR DEFAULT */
342	SMC_SELECT_BANK(lp, 0);
343	SMC_SET_TCR(lp, lp->tcr_cur_mode);
344	SMC_SET_RCR(lp, lp->rcr_cur_mode);
345
346	SMC_SELECT_BANK(lp, 1);
347	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
348
349	/* now, enable interrupts */
350	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
351	if (lp->version >= (CHIP_91100 << 4))
352		mask |= IM_MDINT;
353	SMC_SELECT_BANK(lp, 2);
354	SMC_SET_INT_MASK(lp, mask);
355
356	/*
357	 * From this point the register bank must _NOT_ be switched away
358	 * to something else than bank 2 without proper locking against
359	 * races with any tasklet or interrupt handlers until smc_shutdown()
360	 * or smc_reset() is called.
361	 */
362}
363
364/*
365 * this puts the device in an inactive state
366 */
367static void smc_shutdown(struct net_device *dev)
368{
369	struct smc_local *lp = netdev_priv(dev);
370	void __iomem *ioaddr = lp->base;
371	struct sk_buff *pending_skb;
372
373	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
374
375	/* no more interrupts for me */
376	spin_lock_irq(&lp->lock);
377	SMC_SELECT_BANK(lp, 2);
378	SMC_SET_INT_MASK(lp, 0);
379	pending_skb = lp->pending_tx_skb;
380	lp->pending_tx_skb = NULL;
381	spin_unlock_irq(&lp->lock);
382	dev_kfree_skb(pending_skb);
383
384	/* and tell the card to stay away from that nasty outside world */
385	SMC_SELECT_BANK(lp, 0);
386	SMC_SET_RCR(lp, RCR_CLEAR);
387	SMC_SET_TCR(lp, TCR_CLEAR);
388
389#ifdef POWER_DOWN
390	/* finally, shut the chip down */
391	SMC_SELECT_BANK(lp, 1);
392	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
393#endif
394}
395
396/*
397 * This is the procedure to handle the receipt of a packet.
398 */
399static inline void  smc_rcv(struct net_device *dev)
400{
401	struct smc_local *lp = netdev_priv(dev);
402	void __iomem *ioaddr = lp->base;
403	unsigned int packet_number, status, packet_len;
404
405	DBG(3, dev, "%s\n", __func__);
406
407	packet_number = SMC_GET_RXFIFO(lp);
408	if (unlikely(packet_number & RXFIFO_REMPTY)) {
409		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
410		return;
411	}
412
413	/* read from start of packet */
414	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
415
416	/* First two words are status and packet length */
417	SMC_GET_PKT_HDR(lp, status, packet_len);
418	packet_len &= 0x07ff;  /* mask off top bits */
419	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
420	    packet_number, status, packet_len, packet_len);
421
422	back:
423	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
424		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
425			/* accept VLAN packets */
426			status &= ~RS_TOOLONG;
427			goto back;
428		}
429		if (packet_len < 6) {
430			/* bloody hardware */
431			netdev_err(dev, "fubar (rxlen %u status %x\n",
432				   packet_len, status);
433			status |= RS_TOOSHORT;
434		}
435		SMC_WAIT_MMU_BUSY(lp);
436		SMC_SET_MMU_CMD(lp, MC_RELEASE);
437		dev->stats.rx_errors++;
438		if (status & RS_ALGNERR)
439			dev->stats.rx_frame_errors++;
440		if (status & (RS_TOOSHORT | RS_TOOLONG))
441			dev->stats.rx_length_errors++;
442		if (status & RS_BADCRC)
443			dev->stats.rx_crc_errors++;
444	} else {
445		struct sk_buff *skb;
446		unsigned char *data;
447		unsigned int data_len;
448
449		/* set multicast stats */
450		if (status & RS_MULTICAST)
451			dev->stats.multicast++;
452
453		/*
454		 * Actual payload is packet_len - 6 (or 5 if odd byte).
455		 * We want skb_reserve(2) and the final ctrl word
456		 * (2 bytes, possibly containing the payload odd byte).
457		 * Furthermore, we add 2 bytes to allow rounding up to
458		 * multiple of 4 bytes on 32 bit buses.
459		 * Hence packet_len - 6 + 2 + 2 + 2.
460		 */
461		skb = netdev_alloc_skb(dev, packet_len);
462		if (unlikely(skb == NULL)) {
463			SMC_WAIT_MMU_BUSY(lp);
464			SMC_SET_MMU_CMD(lp, MC_RELEASE);
465			dev->stats.rx_dropped++;
466			return;
467		}
468
469		/* Align IP header to 32 bits */
470		skb_reserve(skb, 2);
471
472		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
473		if (lp->version == 0x90)
474			status |= RS_ODDFRAME;
475
476		/*
477		 * If odd length: packet_len - 5,
478		 * otherwise packet_len - 6.
479		 * With the trailing ctrl byte it's packet_len - 4.
480		 */
481		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
482		data = skb_put(skb, data_len);
483		SMC_PULL_DATA(lp, data, packet_len - 4);
484
485		SMC_WAIT_MMU_BUSY(lp);
486		SMC_SET_MMU_CMD(lp, MC_RELEASE);
487
488		PRINT_PKT(data, packet_len - 4);
489
490		skb->protocol = eth_type_trans(skb, dev);
491		netif_rx(skb);
492		dev->stats.rx_packets++;
493		dev->stats.rx_bytes += data_len;
494	}
495}
496
497#ifdef CONFIG_SMP
498/*
499 * On SMP we have the following problem:
500 *
501 * 	A = smc_hardware_send_pkt()
502 * 	B = smc_hard_start_xmit()
503 * 	C = smc_interrupt()
504 *
505 * A and B can never be executed simultaneously.  However, at least on UP,
506 * it is possible (and even desirable) for C to interrupt execution of
507 * A or B in order to have better RX reliability and avoid overruns.
508 * C, just like A and B, must have exclusive access to the chip and
509 * each of them must lock against any other concurrent access.
510 * Unfortunately this is not possible to have C suspend execution of A or
511 * B taking place on another CPU. On UP this is no an issue since A and B
512 * are run from softirq context and C from hard IRQ context, and there is
513 * no other CPU where concurrent access can happen.
514 * If ever there is a way to force at least B and C to always be executed
515 * on the same CPU then we could use read/write locks to protect against
516 * any other concurrent access and C would always interrupt B. But life
517 * isn't that easy in a SMP world...
518 */
519#define smc_special_trylock(lock, flags)				\
520({									\
521	int __ret;							\
522	local_irq_save(flags);						\
523	__ret = spin_trylock(lock);					\
524	if (!__ret)							\
525		local_irq_restore(flags);				\
526	__ret;								\
527})
528#define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
529#define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
530#else
531#define smc_special_trylock(lock, flags)	((void)flags, true)
532#define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
533#define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
534#endif
535
536/*
537 * This is called to actually send a packet to the chip.
538 */
539static void smc_hardware_send_pkt(struct tasklet_struct *t)
540{
541	struct smc_local *lp = from_tasklet(lp, t, tx_task);
542	struct net_device *dev = lp->dev;
543	void __iomem *ioaddr = lp->base;
544	struct sk_buff *skb;
545	unsigned int packet_no, len;
546	unsigned char *buf;
547	unsigned long flags;
548
549	DBG(3, dev, "%s\n", __func__);
550
551	if (!smc_special_trylock(&lp->lock, flags)) {
552		netif_stop_queue(dev);
553		tasklet_schedule(&lp->tx_task);
554		return;
555	}
556
557	skb = lp->pending_tx_skb;
558	if (unlikely(!skb)) {
559		smc_special_unlock(&lp->lock, flags);
560		return;
561	}
562	lp->pending_tx_skb = NULL;
563
564	packet_no = SMC_GET_AR(lp);
565	if (unlikely(packet_no & AR_FAILED)) {
566		netdev_err(dev, "Memory allocation failed.\n");
567		dev->stats.tx_errors++;
568		dev->stats.tx_fifo_errors++;
569		smc_special_unlock(&lp->lock, flags);
570		goto done;
571	}
572
573	/* point to the beginning of the packet */
574	SMC_SET_PN(lp, packet_no);
575	SMC_SET_PTR(lp, PTR_AUTOINC);
576
577	buf = skb->data;
578	len = skb->len;
579	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
580	    packet_no, len, len, buf);
581	PRINT_PKT(buf, len);
582
583	/*
584	 * Send the packet length (+6 for status words, length, and ctl.
585	 * The card will pad to 64 bytes with zeroes if packet is too small.
586	 */
587	SMC_PUT_PKT_HDR(lp, 0, len + 6);
588
589	/* send the actual data */
590	SMC_PUSH_DATA(lp, buf, len & ~1);
591
592	/* Send final ctl word with the last byte if there is one */
593	SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
594		 DATA_REG(lp));
595
596	/*
597	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
598	 * have the effect of having at most one packet queued for TX
599	 * in the chip's memory at all time.
600	 *
601	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
602	 * when memory allocation (MC_ALLOC) does not succeed right away.
603	 */
604	if (THROTTLE_TX_PKTS)
605		netif_stop_queue(dev);
606
607	/* queue the packet for TX */
608	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
609	smc_special_unlock(&lp->lock, flags);
610
611	netif_trans_update(dev);
612	dev->stats.tx_packets++;
613	dev->stats.tx_bytes += len;
614
615	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
616
617done:	if (!THROTTLE_TX_PKTS)
618		netif_wake_queue(dev);
619
620	dev_consume_skb_any(skb);
621}
622
623/*
624 * Since I am not sure if I will have enough room in the chip's ram
625 * to store the packet, I call this routine which either sends it
626 * now, or set the card to generates an interrupt when ready
627 * for the packet.
628 */
629static netdev_tx_t
630smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
631{
632	struct smc_local *lp = netdev_priv(dev);
633	void __iomem *ioaddr = lp->base;
634	unsigned int numPages, poll_count, status;
635	unsigned long flags;
636
637	DBG(3, dev, "%s\n", __func__);
638
639	BUG_ON(lp->pending_tx_skb != NULL);
640
641	/*
642	 * The MMU wants the number of pages to be the number of 256 bytes
643	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
644	 *
645	 * The 91C111 ignores the size bits, but earlier models don't.
646	 *
647	 * Pkt size for allocating is data length +6 (for additional status
648	 * words, length and ctl)
649	 *
650	 * If odd size then last byte is included in ctl word.
651	 */
652	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
653	if (unlikely(numPages > 7)) {
654		netdev_warn(dev, "Far too big packet error.\n");
655		dev->stats.tx_errors++;
656		dev->stats.tx_dropped++;
657		dev_kfree_skb_any(skb);
658		return NETDEV_TX_OK;
659	}
660
661	smc_special_lock(&lp->lock, flags);
662
663	/* now, try to allocate the memory */
664	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
665
666	/*
667	 * Poll the chip for a short amount of time in case the
668	 * allocation succeeds quickly.
669	 */
670	poll_count = MEMORY_WAIT_TIME;
671	do {
672		status = SMC_GET_INT(lp);
673		if (status & IM_ALLOC_INT) {
674			SMC_ACK_INT(lp, IM_ALLOC_INT);
675			break;
676		}
677	} while (--poll_count);
678
679	smc_special_unlock(&lp->lock, flags);
680
681	lp->pending_tx_skb = skb;
682	if (!poll_count) {
683		/* oh well, wait until the chip finds memory later */
684		netif_stop_queue(dev);
685		DBG(2, dev, "TX memory allocation deferred.\n");
686		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
687	} else {
688		/*
689		 * Allocation succeeded: push packet to the chip's own memory
690		 * immediately.
691		 */
692		smc_hardware_send_pkt(&lp->tx_task);
693	}
694
695	return NETDEV_TX_OK;
696}
697
698/*
699 * This handles a TX interrupt, which is only called when:
700 * - a TX error occurred, or
701 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
702 */
703static void smc_tx(struct net_device *dev)
704{
705	struct smc_local *lp = netdev_priv(dev);
706	void __iomem *ioaddr = lp->base;
707	unsigned int saved_packet, packet_no, tx_status;
708	unsigned int pkt_len __always_unused;
709
710	DBG(3, dev, "%s\n", __func__);
711
712	/* If the TX FIFO is empty then nothing to do */
713	packet_no = SMC_GET_TXFIFO(lp);
714	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
715		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
716		return;
717	}
718
719	/* select packet to read from */
720	saved_packet = SMC_GET_PN(lp);
721	SMC_SET_PN(lp, packet_no);
722
723	/* read the first word (status word) from this packet */
724	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
725	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
726	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
727	    tx_status, packet_no);
728
729	if (!(tx_status & ES_TX_SUC))
730		dev->stats.tx_errors++;
731
732	if (tx_status & ES_LOSTCARR)
733		dev->stats.tx_carrier_errors++;
734
735	if (tx_status & (ES_LATCOL | ES_16COL)) {
736		PRINTK(dev, "%s occurred on last xmit\n",
737		       (tx_status & ES_LATCOL) ?
738			"late collision" : "too many collisions");
739		dev->stats.tx_window_errors++;
740		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
741			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
742		}
743	}
744
745	/* kill the packet */
746	SMC_WAIT_MMU_BUSY(lp);
747	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
748
749	/* Don't restore Packet Number Reg until busy bit is cleared */
750	SMC_WAIT_MMU_BUSY(lp);
751	SMC_SET_PN(lp, saved_packet);
752
753	/* re-enable transmit */
754	SMC_SELECT_BANK(lp, 0);
755	SMC_SET_TCR(lp, lp->tcr_cur_mode);
756	SMC_SELECT_BANK(lp, 2);
757}
758
759
760/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
761
762static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
763{
764	struct smc_local *lp = netdev_priv(dev);
765	void __iomem *ioaddr = lp->base;
766	unsigned int mii_reg, mask;
767
768	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
769	mii_reg |= MII_MDOE;
770
771	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
772		if (val & mask)
773			mii_reg |= MII_MDO;
774		else
775			mii_reg &= ~MII_MDO;
776
777		SMC_SET_MII(lp, mii_reg);
778		udelay(MII_DELAY);
779		SMC_SET_MII(lp, mii_reg | MII_MCLK);
780		udelay(MII_DELAY);
781	}
782}
783
784static unsigned int smc_mii_in(struct net_device *dev, int bits)
785{
786	struct smc_local *lp = netdev_priv(dev);
787	void __iomem *ioaddr = lp->base;
788	unsigned int mii_reg, mask, val;
789
790	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
791	SMC_SET_MII(lp, mii_reg);
792
793	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
794		if (SMC_GET_MII(lp) & MII_MDI)
795			val |= mask;
796
797		SMC_SET_MII(lp, mii_reg);
798		udelay(MII_DELAY);
799		SMC_SET_MII(lp, mii_reg | MII_MCLK);
800		udelay(MII_DELAY);
801	}
802
803	return val;
804}
805
806/*
807 * Reads a register from the MII Management serial interface
808 */
809static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
810{
811	struct smc_local *lp = netdev_priv(dev);
812	void __iomem *ioaddr = lp->base;
813	unsigned int phydata;
814
815	SMC_SELECT_BANK(lp, 3);
816
817	/* Idle - 32 ones */
818	smc_mii_out(dev, 0xffffffff, 32);
819
820	/* Start code (01) + read (10) + phyaddr + phyreg */
821	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
822
823	/* Turnaround (2bits) + phydata */
824	phydata = smc_mii_in(dev, 18);
825
826	/* Return to idle state */
827	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
828
829	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
830	    __func__, phyaddr, phyreg, phydata);
831
832	SMC_SELECT_BANK(lp, 2);
833	return phydata;
834}
835
836/*
837 * Writes a register to the MII Management serial interface
838 */
839static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
840			  int phydata)
841{
842	struct smc_local *lp = netdev_priv(dev);
843	void __iomem *ioaddr = lp->base;
844
845	SMC_SELECT_BANK(lp, 3);
846
847	/* Idle - 32 ones */
848	smc_mii_out(dev, 0xffffffff, 32);
849
850	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
851	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
852
853	/* Return to idle state */
854	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
855
856	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
857	    __func__, phyaddr, phyreg, phydata);
858
859	SMC_SELECT_BANK(lp, 2);
860}
861
862/*
863 * Finds and reports the PHY address
864 */
865static void smc_phy_detect(struct net_device *dev)
866{
867	struct smc_local *lp = netdev_priv(dev);
868	int phyaddr;
869
870	DBG(2, dev, "%s\n", __func__);
871
872	lp->phy_type = 0;
873
874	/*
875	 * Scan all 32 PHY addresses if necessary, starting at
876	 * PHY#1 to PHY#31, and then PHY#0 last.
877	 */
878	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
879		unsigned int id1, id2;
880
881		/* Read the PHY identifiers */
882		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
883		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
884
885		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
886		    id1, id2);
887
888		/* Make sure it is a valid identifier */
889		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
890		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
891			/* Save the PHY's address */
892			lp->mii.phy_id = phyaddr & 31;
893			lp->phy_type = id1 << 16 | id2;
894			break;
895		}
896	}
897}
898
899/*
900 * Sets the PHY to a configuration as determined by the user
901 */
902static int smc_phy_fixed(struct net_device *dev)
903{
904	struct smc_local *lp = netdev_priv(dev);
905	void __iomem *ioaddr = lp->base;
906	int phyaddr = lp->mii.phy_id;
907	int bmcr, cfg1;
908
909	DBG(3, dev, "%s\n", __func__);
910
911	/* Enter Link Disable state */
912	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
913	cfg1 |= PHY_CFG1_LNKDIS;
914	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
915
916	/*
917	 * Set our fixed capabilities
918	 * Disable auto-negotiation
919	 */
920	bmcr = 0;
921
922	if (lp->ctl_rfduplx)
923		bmcr |= BMCR_FULLDPLX;
924
925	if (lp->ctl_rspeed == 100)
926		bmcr |= BMCR_SPEED100;
927
928	/* Write our capabilities to the phy control register */
929	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
930
931	/* Re-Configure the Receive/Phy Control register */
932	SMC_SELECT_BANK(lp, 0);
933	SMC_SET_RPC(lp, lp->rpc_cur_mode);
934	SMC_SELECT_BANK(lp, 2);
935
936	return 1;
937}
938
939/**
940 * smc_phy_reset - reset the phy
941 * @dev: net device
942 * @phy: phy address
943 *
944 * Issue a software reset for the specified PHY and
945 * wait up to 100ms for the reset to complete.  We should
946 * not access the PHY for 50ms after issuing the reset.
947 *
948 * The time to wait appears to be dependent on the PHY.
949 *
950 * Must be called with lp->lock locked.
951 */
952static int smc_phy_reset(struct net_device *dev, int phy)
953{
954	struct smc_local *lp = netdev_priv(dev);
955	unsigned int bmcr;
956	int timeout;
957
958	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
959
960	for (timeout = 2; timeout; timeout--) {
961		spin_unlock_irq(&lp->lock);
962		msleep(50);
963		spin_lock_irq(&lp->lock);
964
965		bmcr = smc_phy_read(dev, phy, MII_BMCR);
966		if (!(bmcr & BMCR_RESET))
967			break;
968	}
969
970	return bmcr & BMCR_RESET;
971}
972
973/**
974 * smc_phy_powerdown - powerdown phy
975 * @dev: net device
976 *
977 * Power down the specified PHY
978 */
979static void smc_phy_powerdown(struct net_device *dev)
980{
981	struct smc_local *lp = netdev_priv(dev);
982	unsigned int bmcr;
983	int phy = lp->mii.phy_id;
984
985	if (lp->phy_type == 0)
986		return;
987
988	/* We need to ensure that no calls to smc_phy_configure are
989	   pending.
990	*/
991	cancel_work_sync(&lp->phy_configure);
992
993	bmcr = smc_phy_read(dev, phy, MII_BMCR);
994	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
995}
996
997/**
998 * smc_phy_check_media - check the media status and adjust TCR
999 * @dev: net device
1000 * @init: set true for initialisation
1001 *
1002 * Select duplex mode depending on negotiation state.  This
1003 * also updates our carrier state.
1004 */
1005static void smc_phy_check_media(struct net_device *dev, int init)
1006{
1007	struct smc_local *lp = netdev_priv(dev);
1008	void __iomem *ioaddr = lp->base;
1009
1010	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1011		/* duplex state has changed */
1012		if (lp->mii.full_duplex) {
1013			lp->tcr_cur_mode |= TCR_SWFDUP;
1014		} else {
1015			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1016		}
1017
1018		SMC_SELECT_BANK(lp, 0);
1019		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1020	}
1021}
1022
1023/*
1024 * Configures the specified PHY through the MII management interface
1025 * using Autonegotiation.
1026 * Calls smc_phy_fixed() if the user has requested a certain config.
1027 * If RPC ANEG bit is set, the media selection is dependent purely on
1028 * the selection by the MII (either in the MII BMCR reg or the result
1029 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1030 * is controlled by the RPC SPEED and RPC DPLX bits.
1031 */
1032static void smc_phy_configure(struct work_struct *work)
1033{
1034	struct smc_local *lp =
1035		container_of(work, struct smc_local, phy_configure);
1036	struct net_device *dev = lp->dev;
1037	void __iomem *ioaddr = lp->base;
1038	int phyaddr = lp->mii.phy_id;
1039	int my_phy_caps; /* My PHY capabilities */
1040	int my_ad_caps; /* My Advertised capabilities */
1041
1042	DBG(3, dev, "smc_program_phy()\n");
1043
1044	spin_lock_irq(&lp->lock);
1045
1046	/*
1047	 * We should not be called if phy_type is zero.
1048	 */
1049	if (lp->phy_type == 0)
1050		goto smc_phy_configure_exit;
1051
1052	if (smc_phy_reset(dev, phyaddr)) {
1053		netdev_info(dev, "PHY reset timed out\n");
1054		goto smc_phy_configure_exit;
1055	}
1056
1057	/*
1058	 * Enable PHY Interrupts (for register 18)
1059	 * Interrupts listed here are disabled
1060	 */
1061	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1062		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1063		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1064		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1065
1066	/* Configure the Receive/Phy Control register */
1067	SMC_SELECT_BANK(lp, 0);
1068	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1069
1070	/* If the user requested no auto neg, then go set his request */
1071	if (lp->mii.force_media) {
1072		smc_phy_fixed(dev);
1073		goto smc_phy_configure_exit;
1074	}
1075
1076	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1077	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1078
1079	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1080		netdev_info(dev, "Auto negotiation NOT supported\n");
1081		smc_phy_fixed(dev);
1082		goto smc_phy_configure_exit;
1083	}
1084
1085	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1086
1087	if (my_phy_caps & BMSR_100BASE4)
1088		my_ad_caps |= ADVERTISE_100BASE4;
1089	if (my_phy_caps & BMSR_100FULL)
1090		my_ad_caps |= ADVERTISE_100FULL;
1091	if (my_phy_caps & BMSR_100HALF)
1092		my_ad_caps |= ADVERTISE_100HALF;
1093	if (my_phy_caps & BMSR_10FULL)
1094		my_ad_caps |= ADVERTISE_10FULL;
1095	if (my_phy_caps & BMSR_10HALF)
1096		my_ad_caps |= ADVERTISE_10HALF;
1097
1098	/* Disable capabilities not selected by our user */
1099	if (lp->ctl_rspeed != 100)
1100		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1101
1102	if (!lp->ctl_rfduplx)
1103		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1104
1105	/* Update our Auto-Neg Advertisement Register */
1106	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1107	lp->mii.advertising = my_ad_caps;
1108
1109	/*
1110	 * Read the register back.  Without this, it appears that when
1111	 * auto-negotiation is restarted, sometimes it isn't ready and
1112	 * the link does not come up.
1113	 */
1114	smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1115
1116	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1117	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1118
1119	/* Restart auto-negotiation process in order to advertise my caps */
1120	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1121
1122	smc_phy_check_media(dev, 1);
1123
1124smc_phy_configure_exit:
1125	SMC_SELECT_BANK(lp, 2);
1126	spin_unlock_irq(&lp->lock);
1127}
1128
1129/*
1130 * smc_phy_interrupt
1131 *
1132 * Purpose:  Handle interrupts relating to PHY register 18. This is
1133 *  called from the "hard" interrupt handler under our private spinlock.
1134 */
1135static void smc_phy_interrupt(struct net_device *dev)
1136{
1137	struct smc_local *lp = netdev_priv(dev);
1138	int phyaddr = lp->mii.phy_id;
1139	int phy18;
1140
1141	DBG(2, dev, "%s\n", __func__);
1142
1143	if (lp->phy_type == 0)
1144		return;
1145
1146	for(;;) {
1147		smc_phy_check_media(dev, 0);
1148
1149		/* Read PHY Register 18, Status Output */
1150		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1151		if ((phy18 & PHY_INT_INT) == 0)
1152			break;
1153	}
1154}
1155
1156/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1157
1158static void smc_10bt_check_media(struct net_device *dev, int init)
1159{
1160	struct smc_local *lp = netdev_priv(dev);
1161	void __iomem *ioaddr = lp->base;
1162	unsigned int old_carrier, new_carrier;
1163
1164	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1165
1166	SMC_SELECT_BANK(lp, 0);
1167	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1168	SMC_SELECT_BANK(lp, 2);
1169
1170	if (init || (old_carrier != new_carrier)) {
1171		if (!new_carrier) {
1172			netif_carrier_off(dev);
1173		} else {
1174			netif_carrier_on(dev);
1175		}
1176		if (netif_msg_link(lp))
1177			netdev_info(dev, "link %s\n",
1178				    new_carrier ? "up" : "down");
1179	}
1180}
1181
1182static void smc_eph_interrupt(struct net_device *dev)
1183{
1184	struct smc_local *lp = netdev_priv(dev);
1185	void __iomem *ioaddr = lp->base;
1186	unsigned int ctl;
1187
1188	smc_10bt_check_media(dev, 0);
1189
1190	SMC_SELECT_BANK(lp, 1);
1191	ctl = SMC_GET_CTL(lp);
1192	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1193	SMC_SET_CTL(lp, ctl);
1194	SMC_SELECT_BANK(lp, 2);
1195}
1196
1197/*
1198 * This is the main routine of the driver, to handle the device when
1199 * it needs some attention.
1200 */
1201static irqreturn_t smc_interrupt(int irq, void *dev_id)
1202{
1203	struct net_device *dev = dev_id;
1204	struct smc_local *lp = netdev_priv(dev);
1205	void __iomem *ioaddr = lp->base;
1206	int status, mask, timeout, card_stats;
1207	int saved_pointer;
1208
1209	DBG(3, dev, "%s\n", __func__);
1210
1211	spin_lock(&lp->lock);
1212
1213	/* A preamble may be used when there is a potential race
1214	 * between the interruptible transmit functions and this
1215	 * ISR. */
1216	SMC_INTERRUPT_PREAMBLE;
1217
1218	saved_pointer = SMC_GET_PTR(lp);
1219	mask = SMC_GET_INT_MASK(lp);
1220	SMC_SET_INT_MASK(lp, 0);
1221
1222	/* set a timeout value, so I don't stay here forever */
1223	timeout = MAX_IRQ_LOOPS;
1224
1225	do {
1226		status = SMC_GET_INT(lp);
1227
1228		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1229		    status, mask,
1230		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1231		       meminfo = SMC_GET_MIR(lp);
1232		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1233		    SMC_GET_FIFO(lp));
1234
1235		status &= mask;
1236		if (!status)
1237			break;
1238
1239		if (status & IM_TX_INT) {
1240			/* do this before RX as it will free memory quickly */
1241			DBG(3, dev, "TX int\n");
1242			smc_tx(dev);
1243			SMC_ACK_INT(lp, IM_TX_INT);
1244			if (THROTTLE_TX_PKTS)
1245				netif_wake_queue(dev);
1246		} else if (status & IM_RCV_INT) {
1247			DBG(3, dev, "RX irq\n");
1248			smc_rcv(dev);
1249		} else if (status & IM_ALLOC_INT) {
1250			DBG(3, dev, "Allocation irq\n");
1251			tasklet_hi_schedule(&lp->tx_task);
1252			mask &= ~IM_ALLOC_INT;
1253		} else if (status & IM_TX_EMPTY_INT) {
1254			DBG(3, dev, "TX empty\n");
1255			mask &= ~IM_TX_EMPTY_INT;
1256
1257			/* update stats */
1258			SMC_SELECT_BANK(lp, 0);
1259			card_stats = SMC_GET_COUNTER(lp);
1260			SMC_SELECT_BANK(lp, 2);
1261
1262			/* single collisions */
1263			dev->stats.collisions += card_stats & 0xF;
1264			card_stats >>= 4;
1265
1266			/* multiple collisions */
1267			dev->stats.collisions += card_stats & 0xF;
1268		} else if (status & IM_RX_OVRN_INT) {
1269			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1270			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1271			       eph_st = SMC_GET_EPH_STATUS(lp);
1272			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1273			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1274			dev->stats.rx_errors++;
1275			dev->stats.rx_fifo_errors++;
1276		} else if (status & IM_EPH_INT) {
1277			smc_eph_interrupt(dev);
1278		} else if (status & IM_MDINT) {
1279			SMC_ACK_INT(lp, IM_MDINT);
1280			smc_phy_interrupt(dev);
1281		} else if (status & IM_ERCV_INT) {
1282			SMC_ACK_INT(lp, IM_ERCV_INT);
1283			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1284		}
1285	} while (--timeout);
1286
1287	/* restore register states */
1288	SMC_SET_PTR(lp, saved_pointer);
1289	SMC_SET_INT_MASK(lp, mask);
1290	spin_unlock(&lp->lock);
1291
1292#ifndef CONFIG_NET_POLL_CONTROLLER
1293	if (timeout == MAX_IRQ_LOOPS)
1294		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1295		       mask);
1296#endif
1297	DBG(3, dev, "Interrupt done (%d loops)\n",
1298	    MAX_IRQ_LOOPS - timeout);
1299
1300	/*
1301	 * We return IRQ_HANDLED unconditionally here even if there was
1302	 * nothing to do.  There is a possibility that a packet might
1303	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1304	 * but just before the CPU acknowledges the IRQ.
1305	 * Better take an unneeded IRQ in some occasions than complexifying
1306	 * the code for all cases.
1307	 */
1308	return IRQ_HANDLED;
1309}
1310
1311#ifdef CONFIG_NET_POLL_CONTROLLER
1312/*
1313 * Polling receive - used by netconsole and other diagnostic tools
1314 * to allow network i/o with interrupts disabled.
1315 */
1316static void smc_poll_controller(struct net_device *dev)
1317{
1318	disable_irq(dev->irq);
1319	smc_interrupt(dev->irq, dev);
1320	enable_irq(dev->irq);
1321}
1322#endif
1323
1324/* Our watchdog timed out. Called by the networking layer */
1325static void smc_timeout(struct net_device *dev, unsigned int txqueue)
1326{
1327	struct smc_local *lp = netdev_priv(dev);
1328	void __iomem *ioaddr = lp->base;
1329	int status, mask, eph_st, meminfo, fifo;
1330
1331	DBG(2, dev, "%s\n", __func__);
1332
1333	spin_lock_irq(&lp->lock);
1334	status = SMC_GET_INT(lp);
1335	mask = SMC_GET_INT_MASK(lp);
1336	fifo = SMC_GET_FIFO(lp);
1337	SMC_SELECT_BANK(lp, 0);
1338	eph_st = SMC_GET_EPH_STATUS(lp);
1339	meminfo = SMC_GET_MIR(lp);
1340	SMC_SELECT_BANK(lp, 2);
1341	spin_unlock_irq(&lp->lock);
1342	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1343	       status, mask, meminfo, fifo, eph_st);
1344
1345	smc_reset(dev);
1346	smc_enable(dev);
1347
1348	/*
1349	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1350	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1351	 * which calls schedule().  Hence we use a work queue.
1352	 */
1353	if (lp->phy_type != 0)
1354		schedule_work(&lp->phy_configure);
1355
1356	/* We can accept TX packets again */
1357	netif_trans_update(dev); /* prevent tx timeout */
1358	netif_wake_queue(dev);
1359}
1360
1361/*
1362 * This routine will, depending on the values passed to it,
1363 * either make it accept multicast packets, go into
1364 * promiscuous mode (for TCPDUMP and cousins) or accept
1365 * a select set of multicast packets
1366 */
1367static void smc_set_multicast_list(struct net_device *dev)
1368{
1369	struct smc_local *lp = netdev_priv(dev);
1370	void __iomem *ioaddr = lp->base;
1371	unsigned char multicast_table[8];
1372	int update_multicast = 0;
1373
1374	DBG(2, dev, "%s\n", __func__);
1375
1376	if (dev->flags & IFF_PROMISC) {
1377		DBG(2, dev, "RCR_PRMS\n");
1378		lp->rcr_cur_mode |= RCR_PRMS;
1379	}
1380
1381/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1382   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1383   when promiscuous mode is turned on.
1384*/
1385
1386	/*
1387	 * Here, I am setting this to accept all multicast packets.
1388	 * I don't need to zero the multicast table, because the flag is
1389	 * checked before the table is
1390	 */
1391	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1392		DBG(2, dev, "RCR_ALMUL\n");
1393		lp->rcr_cur_mode |= RCR_ALMUL;
1394	}
1395
1396	/*
1397	 * This sets the internal hardware table to filter out unwanted
1398	 * multicast packets before they take up memory.
1399	 *
1400	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1401	 * address are the offset into the table.  If that bit is 1, then the
1402	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1403	 *
1404	 * To use the 6 bits as an offset into the table, the high 3 bits are
1405	 * the number of the 8 bit register, while the low 3 bits are the bit
1406	 * within that register.
1407	 */
1408	else if (!netdev_mc_empty(dev)) {
1409		struct netdev_hw_addr *ha;
1410
1411		/* table for flipping the order of 3 bits */
1412		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1413
1414		/* start with a table of all zeros: reject all */
1415		memset(multicast_table, 0, sizeof(multicast_table));
1416
1417		netdev_for_each_mc_addr(ha, dev) {
1418			int position;
1419
1420			/* only use the low order bits */
1421			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1422
1423			/* do some messy swapping to put the bit in the right spot */
1424			multicast_table[invert3[position&7]] |=
1425				(1<<invert3[(position>>3)&7]);
1426		}
1427
1428		/* be sure I get rid of flags I might have set */
1429		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1430
1431		/* now, the table can be loaded into the chipset */
1432		update_multicast = 1;
1433	} else  {
1434		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1435		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1436
1437		/*
1438		 * since I'm disabling all multicast entirely, I need to
1439		 * clear the multicast list
1440		 */
1441		memset(multicast_table, 0, sizeof(multicast_table));
1442		update_multicast = 1;
1443	}
1444
1445	spin_lock_irq(&lp->lock);
1446	SMC_SELECT_BANK(lp, 0);
1447	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1448	if (update_multicast) {
1449		SMC_SELECT_BANK(lp, 3);
1450		SMC_SET_MCAST(lp, multicast_table);
1451	}
1452	SMC_SELECT_BANK(lp, 2);
1453	spin_unlock_irq(&lp->lock);
1454}
1455
1456
1457/*
1458 * Open and Initialize the board
1459 *
1460 * Set up everything, reset the card, etc..
1461 */
1462static int
1463smc_open(struct net_device *dev)
1464{
1465	struct smc_local *lp = netdev_priv(dev);
1466
1467	DBG(2, dev, "%s\n", __func__);
1468
1469	/* Setup the default Register Modes */
1470	lp->tcr_cur_mode = TCR_DEFAULT;
1471	lp->rcr_cur_mode = RCR_DEFAULT;
1472	lp->rpc_cur_mode = RPC_DEFAULT |
1473				lp->cfg.leda << RPC_LSXA_SHFT |
1474				lp->cfg.ledb << RPC_LSXB_SHFT;
1475
1476	/*
1477	 * If we are not using a MII interface, we need to
1478	 * monitor our own carrier signal to detect faults.
1479	 */
1480	if (lp->phy_type == 0)
1481		lp->tcr_cur_mode |= TCR_MON_CSN;
1482
1483	/* reset the hardware */
1484	smc_reset(dev);
1485	smc_enable(dev);
1486
1487	/* Configure the PHY, initialize the link state */
1488	if (lp->phy_type != 0)
1489		smc_phy_configure(&lp->phy_configure);
1490	else {
1491		spin_lock_irq(&lp->lock);
1492		smc_10bt_check_media(dev, 1);
1493		spin_unlock_irq(&lp->lock);
1494	}
1495
1496	netif_start_queue(dev);
1497	return 0;
1498}
1499
1500/*
1501 * smc_close
1502 *
1503 * this makes the board clean up everything that it can
1504 * and not talk to the outside world.   Caused by
1505 * an 'ifconfig ethX down'
1506 */
1507static int smc_close(struct net_device *dev)
1508{
1509	struct smc_local *lp = netdev_priv(dev);
1510
1511	DBG(2, dev, "%s\n", __func__);
1512
1513	netif_stop_queue(dev);
1514	netif_carrier_off(dev);
1515
1516	/* clear everything */
1517	smc_shutdown(dev);
1518	tasklet_kill(&lp->tx_task);
1519	smc_phy_powerdown(dev);
1520	return 0;
1521}
1522
1523/*
1524 * Ethtool support
1525 */
1526static int
1527smc_ethtool_get_link_ksettings(struct net_device *dev,
1528			       struct ethtool_link_ksettings *cmd)
1529{
1530	struct smc_local *lp = netdev_priv(dev);
1531
1532	if (lp->phy_type != 0) {
1533		spin_lock_irq(&lp->lock);
1534		mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1535		spin_unlock_irq(&lp->lock);
1536	} else {
1537		u32 supported = SUPPORTED_10baseT_Half |
1538				 SUPPORTED_10baseT_Full |
1539				 SUPPORTED_TP | SUPPORTED_AUI;
1540
1541		if (lp->ctl_rspeed == 10)
1542			cmd->base.speed = SPEED_10;
1543		else if (lp->ctl_rspeed == 100)
1544			cmd->base.speed = SPEED_100;
1545
1546		cmd->base.autoneg = AUTONEG_DISABLE;
1547		cmd->base.port = 0;
1548		cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1549			DUPLEX_FULL : DUPLEX_HALF;
1550
1551		ethtool_convert_legacy_u32_to_link_mode(
1552			cmd->link_modes.supported, supported);
1553	}
1554
1555	return 0;
1556}
1557
1558static int
1559smc_ethtool_set_link_ksettings(struct net_device *dev,
1560			       const struct ethtool_link_ksettings *cmd)
1561{
1562	struct smc_local *lp = netdev_priv(dev);
1563	int ret;
1564
1565	if (lp->phy_type != 0) {
1566		spin_lock_irq(&lp->lock);
1567		ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1568		spin_unlock_irq(&lp->lock);
1569	} else {
1570		if (cmd->base.autoneg != AUTONEG_DISABLE ||
1571		    cmd->base.speed != SPEED_10 ||
1572		    (cmd->base.duplex != DUPLEX_HALF &&
1573		     cmd->base.duplex != DUPLEX_FULL) ||
1574		    (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1575			return -EINVAL;
1576
1577//		lp->port = cmd->base.port;
1578		lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1579
1580//		if (netif_running(dev))
1581//			smc_set_port(dev);
1582
1583		ret = 0;
1584	}
1585
1586	return ret;
1587}
1588
1589static void
1590smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1591{
1592	strscpy(info->driver, CARDNAME, sizeof(info->driver));
1593	strscpy(info->version, version, sizeof(info->version));
1594	strscpy(info->bus_info, dev_name(dev->dev.parent),
1595		sizeof(info->bus_info));
1596}
1597
1598static int smc_ethtool_nwayreset(struct net_device *dev)
1599{
1600	struct smc_local *lp = netdev_priv(dev);
1601	int ret = -EINVAL;
1602
1603	if (lp->phy_type != 0) {
1604		spin_lock_irq(&lp->lock);
1605		ret = mii_nway_restart(&lp->mii);
1606		spin_unlock_irq(&lp->lock);
1607	}
1608
1609	return ret;
1610}
1611
1612static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1613{
1614	struct smc_local *lp = netdev_priv(dev);
1615	return lp->msg_enable;
1616}
1617
1618static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1619{
1620	struct smc_local *lp = netdev_priv(dev);
1621	lp->msg_enable = level;
1622}
1623
1624static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1625{
1626	u16 ctl;
1627	struct smc_local *lp = netdev_priv(dev);
1628	void __iomem *ioaddr = lp->base;
1629
1630	spin_lock_irq(&lp->lock);
1631	/* load word into GP register */
1632	SMC_SELECT_BANK(lp, 1);
1633	SMC_SET_GP(lp, word);
1634	/* set the address to put the data in EEPROM */
1635	SMC_SELECT_BANK(lp, 2);
1636	SMC_SET_PTR(lp, addr);
1637	/* tell it to write */
1638	SMC_SELECT_BANK(lp, 1);
1639	ctl = SMC_GET_CTL(lp);
1640	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1641	/* wait for it to finish */
1642	do {
1643		udelay(1);
1644	} while (SMC_GET_CTL(lp) & CTL_STORE);
1645	/* clean up */
1646	SMC_SET_CTL(lp, ctl);
1647	SMC_SELECT_BANK(lp, 2);
1648	spin_unlock_irq(&lp->lock);
1649	return 0;
1650}
1651
1652static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1653{
1654	u16 ctl;
1655	struct smc_local *lp = netdev_priv(dev);
1656	void __iomem *ioaddr = lp->base;
1657
1658	spin_lock_irq(&lp->lock);
1659	/* set the EEPROM address to get the data from */
1660	SMC_SELECT_BANK(lp, 2);
1661	SMC_SET_PTR(lp, addr | PTR_READ);
1662	/* tell it to load */
1663	SMC_SELECT_BANK(lp, 1);
1664	SMC_SET_GP(lp, 0xffff);	/* init to known */
1665	ctl = SMC_GET_CTL(lp);
1666	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1667	/* wait for it to finish */
1668	do {
1669		udelay(1);
1670	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1671	/* read word from GP register */
1672	*word = SMC_GET_GP(lp);
1673	/* clean up */
1674	SMC_SET_CTL(lp, ctl);
1675	SMC_SELECT_BANK(lp, 2);
1676	spin_unlock_irq(&lp->lock);
1677	return 0;
1678}
1679
1680static int smc_ethtool_geteeprom_len(struct net_device *dev)
1681{
1682	return 0x23 * 2;
1683}
1684
1685static int smc_ethtool_geteeprom(struct net_device *dev,
1686		struct ethtool_eeprom *eeprom, u8 *data)
1687{
1688	int i;
1689	int imax;
1690
1691	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1692		eeprom->len, eeprom->offset, eeprom->offset);
1693	imax = smc_ethtool_geteeprom_len(dev);
1694	for (i = 0; i < eeprom->len; i += 2) {
1695		int ret;
1696		u16 wbuf;
1697		int offset = i + eeprom->offset;
1698		if (offset > imax)
1699			break;
1700		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1701		if (ret != 0)
1702			return ret;
1703		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1704		data[i] = (wbuf >> 8) & 0xff;
1705		data[i+1] = wbuf & 0xff;
1706	}
1707	return 0;
1708}
1709
1710static int smc_ethtool_seteeprom(struct net_device *dev,
1711		struct ethtool_eeprom *eeprom, u8 *data)
1712{
1713	int i;
1714	int imax;
1715
1716	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1717	    eeprom->len, eeprom->offset, eeprom->offset);
1718	imax = smc_ethtool_geteeprom_len(dev);
1719	for (i = 0; i < eeprom->len; i += 2) {
1720		int ret;
1721		u16 wbuf;
1722		int offset = i + eeprom->offset;
1723		if (offset > imax)
1724			break;
1725		wbuf = (data[i] << 8) | data[i + 1];
1726		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1727		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1728		if (ret != 0)
1729			return ret;
1730	}
1731	return 0;
1732}
1733
1734
1735static const struct ethtool_ops smc_ethtool_ops = {
1736	.get_drvinfo	= smc_ethtool_getdrvinfo,
1737
1738	.get_msglevel	= smc_ethtool_getmsglevel,
1739	.set_msglevel	= smc_ethtool_setmsglevel,
1740	.nway_reset	= smc_ethtool_nwayreset,
1741	.get_link	= ethtool_op_get_link,
1742	.get_eeprom_len = smc_ethtool_geteeprom_len,
1743	.get_eeprom	= smc_ethtool_geteeprom,
1744	.set_eeprom	= smc_ethtool_seteeprom,
1745	.get_link_ksettings	= smc_ethtool_get_link_ksettings,
1746	.set_link_ksettings	= smc_ethtool_set_link_ksettings,
1747};
1748
1749static const struct net_device_ops smc_netdev_ops = {
1750	.ndo_open		= smc_open,
1751	.ndo_stop		= smc_close,
1752	.ndo_start_xmit		= smc_hard_start_xmit,
1753	.ndo_tx_timeout		= smc_timeout,
1754	.ndo_set_rx_mode	= smc_set_multicast_list,
1755	.ndo_validate_addr	= eth_validate_addr,
1756	.ndo_set_mac_address 	= eth_mac_addr,
1757#ifdef CONFIG_NET_POLL_CONTROLLER
1758	.ndo_poll_controller	= smc_poll_controller,
1759#endif
1760};
1761
1762/*
1763 * smc_findirq
1764 *
1765 * This routine has a simple purpose -- make the SMC chip generate an
1766 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1767 */
1768/*
1769 * does this still work?
1770 *
1771 * I just deleted auto_irq.c, since it was never built...
1772 *   --jgarzik
1773 */
1774static int smc_findirq(struct smc_local *lp)
1775{
1776	void __iomem *ioaddr = lp->base;
1777	int timeout = 20;
1778	unsigned long cookie;
1779
1780	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1781
1782	cookie = probe_irq_on();
1783
1784	/*
1785	 * What I try to do here is trigger an ALLOC_INT. This is done
1786	 * by allocating a small chunk of memory, which will give an interrupt
1787	 * when done.
1788	 */
1789	/* enable ALLOCation interrupts ONLY */
1790	SMC_SELECT_BANK(lp, 2);
1791	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1792
1793	/*
1794	 * Allocate 512 bytes of memory.  Note that the chip was just
1795	 * reset so all the memory is available
1796	 */
1797	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1798
1799	/*
1800	 * Wait until positive that the interrupt has been generated
1801	 */
1802	do {
1803		int int_status;
1804		udelay(10);
1805		int_status = SMC_GET_INT(lp);
1806		if (int_status & IM_ALLOC_INT)
1807			break;		/* got the interrupt */
1808	} while (--timeout);
1809
1810	/*
1811	 * there is really nothing that I can do here if timeout fails,
1812	 * as autoirq_report will return a 0 anyway, which is what I
1813	 * want in this case.   Plus, the clean up is needed in both
1814	 * cases.
1815	 */
1816
1817	/* and disable all interrupts again */
1818	SMC_SET_INT_MASK(lp, 0);
1819
1820	/* and return what I found */
1821	return probe_irq_off(cookie);
1822}
1823
1824/*
1825 * Function: smc_probe(unsigned long ioaddr)
1826 *
1827 * Purpose:
1828 *	Tests to see if a given ioaddr points to an SMC91x chip.
1829 *	Returns a 0 on success
1830 *
1831 * Algorithm:
1832 *	(1) see if the high byte of BANK_SELECT is 0x33
1833 * 	(2) compare the ioaddr with the base register's address
1834 *	(3) see if I recognize the chip ID in the appropriate register
1835 *
1836 * Here I do typical initialization tasks.
1837 *
1838 * o  Initialize the structure if needed
1839 * o  print out my vanity message if not done so already
1840 * o  print out what type of hardware is detected
1841 * o  print out the ethernet address
1842 * o  find the IRQ
1843 * o  set up my private data
1844 * o  configure the dev structure with my subroutines
1845 * o  actually GRAB the irq.
1846 * o  GRAB the region
1847 */
1848static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1849		     unsigned long irq_flags)
1850{
1851	struct smc_local *lp = netdev_priv(dev);
1852	int retval;
1853	unsigned int val, revision_register;
1854	const char *version_string;
1855	u8 addr[ETH_ALEN];
1856
1857	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1858
1859	/* First, see if the high byte is 0x33 */
1860	val = SMC_CURRENT_BANK(lp);
1861	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1862	    CARDNAME, val);
1863	if ((val & 0xFF00) != 0x3300) {
1864		if ((val & 0xFF) == 0x33) {
1865			netdev_warn(dev,
1866				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1867				    CARDNAME, ioaddr);
1868		}
1869		retval = -ENODEV;
1870		goto err_out;
1871	}
1872
1873	/*
1874	 * The above MIGHT indicate a device, but I need to write to
1875	 * further test this.
1876	 */
1877	SMC_SELECT_BANK(lp, 0);
1878	val = SMC_CURRENT_BANK(lp);
1879	if ((val & 0xFF00) != 0x3300) {
1880		retval = -ENODEV;
1881		goto err_out;
1882	}
1883
1884	/*
1885	 * well, we've already written once, so hopefully another
1886	 * time won't hurt.  This time, I need to switch the bank
1887	 * register to bank 1, so I can access the base address
1888	 * register
1889	 */
1890	SMC_SELECT_BANK(lp, 1);
1891	val = SMC_GET_BASE(lp);
1892	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1893	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1894		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1895			    CARDNAME, ioaddr, val);
1896	}
1897
1898	/*
1899	 * check if the revision register is something that I
1900	 * recognize.  These might need to be added to later,
1901	 * as future revisions could be added.
1902	 */
1903	SMC_SELECT_BANK(lp, 3);
1904	revision_register = SMC_GET_REV(lp);
1905	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1906	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1907	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1908		/* I don't recognize this chip, so... */
1909		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1910			    CARDNAME, ioaddr, revision_register);
1911
1912		retval = -ENODEV;
1913		goto err_out;
1914	}
1915
1916	/* At this point I'll assume that the chip is an SMC91x. */
1917	pr_info_once("%s\n", version);
1918
1919	/* fill in some of the fields */
1920	dev->base_addr = (unsigned long)ioaddr;
1921	lp->base = ioaddr;
1922	lp->version = revision_register & 0xff;
1923	spin_lock_init(&lp->lock);
1924
1925	/* Get the MAC address */
1926	SMC_SELECT_BANK(lp, 1);
1927	SMC_GET_MAC_ADDR(lp, addr);
1928	eth_hw_addr_set(dev, addr);
1929
1930	/* now, reset the chip, and put it into a known state */
1931	smc_reset(dev);
1932
1933	/*
1934	 * If dev->irq is 0, then the device has to be banged on to see
1935	 * what the IRQ is.
1936	 *
1937	 * This banging doesn't always detect the IRQ, for unknown reasons.
1938	 * a workaround is to reset the chip and try again.
1939	 *
1940	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1941	 * be what is requested on the command line.   I don't do that, mostly
1942	 * because the card that I have uses a non-standard method of accessing
1943	 * the IRQs, and because this _should_ work in most configurations.
1944	 *
1945	 * Specifying an IRQ is done with the assumption that the user knows
1946	 * what (s)he is doing.  No checking is done!!!!
1947	 */
1948	if (dev->irq < 1) {
1949		int trials;
1950
1951		trials = 3;
1952		while (trials--) {
1953			dev->irq = smc_findirq(lp);
1954			if (dev->irq)
1955				break;
1956			/* kick the card and try again */
1957			smc_reset(dev);
1958		}
1959	}
1960	if (dev->irq == 0) {
1961		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1962		retval = -ENODEV;
1963		goto err_out;
1964	}
1965	dev->irq = irq_canonicalize(dev->irq);
1966
1967	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1968	dev->netdev_ops = &smc_netdev_ops;
1969	dev->ethtool_ops = &smc_ethtool_ops;
1970
1971	tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
1972	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1973	lp->dev = dev;
1974	lp->mii.phy_id_mask = 0x1f;
1975	lp->mii.reg_num_mask = 0x1f;
1976	lp->mii.force_media = 0;
1977	lp->mii.full_duplex = 0;
1978	lp->mii.dev = dev;
1979	lp->mii.mdio_read = smc_phy_read;
1980	lp->mii.mdio_write = smc_phy_write;
1981
1982	/*
1983	 * Locate the phy, if any.
1984	 */
1985	if (lp->version >= (CHIP_91100 << 4))
1986		smc_phy_detect(dev);
1987
1988	/* then shut everything down to save power */
1989	smc_shutdown(dev);
1990	smc_phy_powerdown(dev);
1991
1992	/* Set default parameters */
1993	lp->msg_enable = NETIF_MSG_LINK;
1994	lp->ctl_rfduplx = 0;
1995	lp->ctl_rspeed = 10;
1996
1997	if (lp->version >= (CHIP_91100 << 4)) {
1998		lp->ctl_rfduplx = 1;
1999		lp->ctl_rspeed = 100;
2000	}
2001
2002	/* Grab the IRQ */
2003	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2004	if (retval)
2005		goto err_out;
2006
2007#ifdef CONFIG_ARCH_PXA
2008#  ifdef SMC_USE_PXA_DMA
2009	lp->cfg.flags |= SMC91X_USE_DMA;
2010#  endif
2011	if (lp->cfg.flags & SMC91X_USE_DMA) {
2012		dma_cap_mask_t mask;
2013
2014		dma_cap_zero(mask);
2015		dma_cap_set(DMA_SLAVE, mask);
2016		lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2017	}
2018#endif
2019
2020	retval = register_netdev(dev);
2021	if (retval == 0) {
2022		/* now, print out the card info, in a short format.. */
2023		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2024			    version_string, revision_register & 0x0f,
2025			    lp->base, dev->irq);
2026
2027		if (lp->dma_chan)
2028			pr_cont(" DMA %p", lp->dma_chan);
2029
2030		pr_cont("%s%s\n",
2031			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2032			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2033
2034		if (!is_valid_ether_addr(dev->dev_addr)) {
2035			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2036		} else {
2037			/* Print the Ethernet address */
2038			netdev_info(dev, "Ethernet addr: %pM\n",
2039				    dev->dev_addr);
2040		}
2041
2042		if (lp->phy_type == 0) {
2043			PRINTK(dev, "No PHY found\n");
2044		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2045			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2046		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2047			PRINTK(dev, "PHY LAN83C180\n");
2048		}
2049	}
2050
2051err_out:
2052#ifdef CONFIG_ARCH_PXA
2053	if (retval && lp->dma_chan)
2054		dma_release_channel(lp->dma_chan);
2055#endif
2056	return retval;
2057}
2058
2059static int smc_enable_device(struct platform_device *pdev)
2060{
2061	struct net_device *ndev = platform_get_drvdata(pdev);
2062	struct smc_local *lp = netdev_priv(ndev);
2063	unsigned long flags;
2064	unsigned char ecor, ecsr;
2065	void __iomem *addr;
2066	struct resource * res;
2067
2068	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2069	if (!res)
2070		return 0;
2071
2072	/*
2073	 * Map the attribute space.  This is overkill, but clean.
2074	 */
2075	addr = ioremap(res->start, ATTRIB_SIZE);
2076	if (!addr)
2077		return -ENOMEM;
2078
2079	/*
2080	 * Reset the device.  We must disable IRQs around this
2081	 * since a reset causes the IRQ line become active.
2082	 */
2083	local_irq_save(flags);
2084	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2085	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2086	readb(addr + (ECOR << SMC_IO_SHIFT));
2087
2088	/*
2089	 * Wait 100us for the chip to reset.
2090	 */
2091	udelay(100);
2092
2093	/*
2094	 * The device will ignore all writes to the enable bit while
2095	 * reset is asserted, even if the reset bit is cleared in the
2096	 * same write.  Must clear reset first, then enable the device.
2097	 */
2098	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2099	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2100
2101	/*
2102	 * Set the appropriate byte/word mode.
2103	 */
2104	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2105	if (!SMC_16BIT(lp))
2106		ecsr |= ECSR_IOIS8;
2107	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2108	local_irq_restore(flags);
2109
2110	iounmap(addr);
2111
2112	/*
2113	 * Wait for the chip to wake up.  We could poll the control
2114	 * register in the main register space, but that isn't mapped
2115	 * yet.  We know this is going to take 750us.
2116	 */
2117	msleep(1);
2118
2119	return 0;
2120}
2121
2122static int smc_request_attrib(struct platform_device *pdev,
2123			      struct net_device *ndev)
2124{
2125	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2126	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2127
2128	if (!res)
2129		return 0;
2130
2131	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2132		return -EBUSY;
2133
2134	return 0;
2135}
2136
2137static void smc_release_attrib(struct platform_device *pdev,
2138			       struct net_device *ndev)
2139{
2140	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2141	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2142
2143	if (res)
2144		release_mem_region(res->start, ATTRIB_SIZE);
2145}
2146
2147static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2148{
2149	if (SMC_CAN_USE_DATACS) {
2150		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2151		struct smc_local *lp = netdev_priv(ndev);
2152
2153		if (!res)
2154			return;
2155
2156		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2157			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2158				    CARDNAME);
2159			return;
2160		}
2161
2162		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2163	}
2164}
2165
2166static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2167{
2168	if (SMC_CAN_USE_DATACS) {
2169		struct smc_local *lp = netdev_priv(ndev);
2170		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2171
2172		if (lp->datacs)
2173			iounmap(lp->datacs);
2174
2175		lp->datacs = NULL;
2176
2177		if (res)
2178			release_mem_region(res->start, SMC_DATA_EXTENT);
2179	}
2180}
2181
2182static const struct acpi_device_id smc91x_acpi_match[] = {
2183	{ "LNRO0003", 0 },
2184	{ }
2185};
2186MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2187
2188#if IS_BUILTIN(CONFIG_OF)
2189static const struct of_device_id smc91x_match[] = {
2190	{ .compatible = "smsc,lan91c94", },
2191	{ .compatible = "smsc,lan91c111", },
2192	{},
2193};
2194MODULE_DEVICE_TABLE(of, smc91x_match);
2195
2196/**
2197 * try_toggle_control_gpio - configure a gpio if it exists
2198 * @dev: net device
2199 * @desc: where to store the GPIO descriptor, if it exists
2200 * @name: name of the GPIO in DT
2201 * @index: index of the GPIO in DT
2202 * @value: set the GPIO to this value
2203 * @nsdelay: delay before setting the GPIO
2204 */
2205static int try_toggle_control_gpio(struct device *dev,
2206				   struct gpio_desc **desc,
2207				   const char *name, int index,
2208				   int value, unsigned int nsdelay)
2209{
2210	struct gpio_desc *gpio;
2211	enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2212
2213	gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2214	if (IS_ERR(gpio))
2215		return PTR_ERR(gpio);
2216
2217	if (gpio) {
2218		if (nsdelay)
2219			usleep_range(nsdelay, 2 * nsdelay);
2220		gpiod_set_value_cansleep(gpio, value);
2221	}
2222	*desc = gpio;
2223
2224	return 0;
2225}
2226#endif
2227
2228/*
2229 * smc_init(void)
2230 *   Input parameters:
2231 *	dev->base_addr == 0, try to find all possible locations
2232 *	dev->base_addr > 0x1ff, this is the address to check
2233 *	dev->base_addr == <anything else>, return failure code
2234 *
2235 *   Output:
2236 *	0 --> there is a device
2237 *	anything else, error
2238 */
2239static int smc_drv_probe(struct platform_device *pdev)
2240{
2241	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2242	const struct of_device_id *match = NULL;
2243	struct smc_local *lp;
2244	struct net_device *ndev;
2245	struct resource *res;
2246	unsigned int __iomem *addr;
2247	unsigned long irq_flags = SMC_IRQ_FLAGS;
2248	unsigned long irq_resflags;
2249	int ret;
2250
2251	ndev = alloc_etherdev(sizeof(struct smc_local));
2252	if (!ndev) {
2253		ret = -ENOMEM;
2254		goto out;
2255	}
2256	SET_NETDEV_DEV(ndev, &pdev->dev);
2257
2258	/* get configuration from platform data, only allow use of
2259	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2260	 */
2261
2262	lp = netdev_priv(ndev);
2263	lp->cfg.flags = 0;
2264
2265	if (pd) {
2266		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2267		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2268
2269		if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2270			dev_err(&pdev->dev,
2271				"at least one of 8-bit or 16-bit access support is required.\n");
2272			ret = -ENXIO;
2273			goto out_free_netdev;
2274		}
2275	}
2276
2277#if IS_BUILTIN(CONFIG_OF)
2278	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2279	if (match) {
2280		u32 val;
2281
2282		/* Optional pwrdwn GPIO configured? */
2283		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2284					      "power", 0, 0, 100);
2285		if (ret)
2286			goto out_free_netdev;
2287
2288		/*
2289		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2290		 * according to LAN91C96 datasheet page 14.
2291		 */
2292		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2293					      "reset", 0, 0, 100);
2294		if (ret)
2295			goto out_free_netdev;
2296
2297		/*
2298		 * Need to wait for optional EEPROM to load, max 750 us according
2299		 * to LAN91C96 datasheet page 55.
2300		 */
2301		if (lp->reset_gpio)
2302			usleep_range(750, 1000);
2303
2304		/* Combination of IO widths supported, default to 16-bit */
2305		if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2306					      &val)) {
2307			if (val & 1)
2308				lp->cfg.flags |= SMC91X_USE_8BIT;
2309			if ((val == 0) || (val & 2))
2310				lp->cfg.flags |= SMC91X_USE_16BIT;
2311			if (val & 4)
2312				lp->cfg.flags |= SMC91X_USE_32BIT;
2313		} else {
2314			lp->cfg.flags |= SMC91X_USE_16BIT;
2315		}
2316		if (!device_property_read_u32(&pdev->dev, "reg-shift",
2317					      &val))
2318			lp->io_shift = val;
2319		lp->cfg.pxa_u16_align4 =
2320			device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2321	}
2322#endif
2323
2324	if (!pd && !match) {
2325		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2326		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2327		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2328		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2329	}
2330
2331	if (!lp->cfg.leda && !lp->cfg.ledb) {
2332		lp->cfg.leda = RPC_LSA_DEFAULT;
2333		lp->cfg.ledb = RPC_LSB_DEFAULT;
2334	}
2335
2336	ndev->dma = (unsigned char)-1;
2337
2338	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2339	if (!res)
2340		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2341	if (!res) {
2342		ret = -ENODEV;
2343		goto out_free_netdev;
2344	}
2345
2346
2347	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2348		ret = -EBUSY;
2349		goto out_free_netdev;
2350	}
2351
2352	ndev->irq = platform_get_irq(pdev, 0);
2353	if (ndev->irq < 0) {
2354		ret = ndev->irq;
2355		goto out_release_io;
2356	}
2357	/*
2358	 * If this platform does not specify any special irqflags, or if
2359	 * the resource supplies a trigger, override the irqflags with
2360	 * the trigger flags from the resource.
2361	 */
2362	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2363	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2364		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2365
2366	ret = smc_request_attrib(pdev, ndev);
2367	if (ret)
2368		goto out_release_io;
2369#if defined(CONFIG_ASSABET_NEPONSET)
2370	if (machine_is_assabet() && machine_has_neponset())
2371		neponset_ncr_set(NCR_ENET_OSC_EN);
2372#endif
2373	platform_set_drvdata(pdev, ndev);
2374	ret = smc_enable_device(pdev);
2375	if (ret)
2376		goto out_release_attrib;
2377
2378	addr = ioremap(res->start, SMC_IO_EXTENT);
2379	if (!addr) {
2380		ret = -ENOMEM;
2381		goto out_release_attrib;
2382	}
2383
2384#ifdef CONFIG_ARCH_PXA
2385	{
2386		struct smc_local *lp = netdev_priv(ndev);
2387		lp->device = &pdev->dev;
2388		lp->physaddr = res->start;
2389
2390	}
2391#endif
2392
2393	ret = smc_probe(ndev, addr, irq_flags);
2394	if (ret != 0)
2395		goto out_iounmap;
2396
2397	smc_request_datacs(pdev, ndev);
2398
2399	return 0;
2400
2401 out_iounmap:
2402	iounmap(addr);
2403 out_release_attrib:
2404	smc_release_attrib(pdev, ndev);
2405 out_release_io:
2406	release_mem_region(res->start, SMC_IO_EXTENT);
2407 out_free_netdev:
2408	free_netdev(ndev);
2409 out:
2410	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2411
2412	return ret;
2413}
2414
2415static void smc_drv_remove(struct platform_device *pdev)
2416{
2417	struct net_device *ndev = platform_get_drvdata(pdev);
2418	struct smc_local *lp = netdev_priv(ndev);
2419	struct resource *res;
2420
2421	unregister_netdev(ndev);
2422
2423	free_irq(ndev->irq, ndev);
2424
2425#ifdef CONFIG_ARCH_PXA
2426	if (lp->dma_chan)
2427		dma_release_channel(lp->dma_chan);
2428#endif
2429	iounmap(lp->base);
2430
2431	smc_release_datacs(pdev,ndev);
2432	smc_release_attrib(pdev,ndev);
2433
2434	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2435	if (!res)
2436		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2437	release_mem_region(res->start, SMC_IO_EXTENT);
2438
2439	free_netdev(ndev);
2440}
2441
2442static int smc_drv_suspend(struct device *dev)
2443{
2444	struct net_device *ndev = dev_get_drvdata(dev);
2445
2446	if (ndev) {
2447		if (netif_running(ndev)) {
2448			netif_device_detach(ndev);
2449			smc_shutdown(ndev);
2450			smc_phy_powerdown(ndev);
2451		}
2452	}
2453	return 0;
2454}
2455
2456static int smc_drv_resume(struct device *dev)
2457{
2458	struct platform_device *pdev = to_platform_device(dev);
2459	struct net_device *ndev = platform_get_drvdata(pdev);
2460
2461	if (ndev) {
2462		struct smc_local *lp = netdev_priv(ndev);
2463		smc_enable_device(pdev);
2464		if (netif_running(ndev)) {
2465			smc_reset(ndev);
2466			smc_enable(ndev);
2467			if (lp->phy_type != 0)
2468				smc_phy_configure(&lp->phy_configure);
2469			netif_device_attach(ndev);
2470		}
2471	}
2472	return 0;
2473}
2474
2475static const struct dev_pm_ops smc_drv_pm_ops = {
2476	.suspend	= smc_drv_suspend,
2477	.resume		= smc_drv_resume,
2478};
2479
2480static struct platform_driver smc_driver = {
2481	.probe		= smc_drv_probe,
2482	.remove_new	= smc_drv_remove,
2483	.driver		= {
2484		.name	= CARDNAME,
2485		.pm	= &smc_drv_pm_ops,
2486		.of_match_table   = of_match_ptr(smc91x_match),
2487		.acpi_match_table = smc91x_acpi_match,
2488	},
2489};
2490
2491module_platform_driver(smc_driver);
2492