1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2015 Solarflare Communications Inc.
6 */
7
8#include <linux/pci.h>
9#include <linux/tcp.h>
10#include <linux/ip.h>
11#include <linux/in.h>
12#include <linux/ipv6.h>
13#include <linux/slab.h>
14#include <net/ipv6.h>
15#include <linux/if_ether.h>
16#include <linux/highmem.h>
17#include <linux/moduleparam.h>
18#include <linux/cache.h>
19#include "net_driver.h"
20#include "efx.h"
21#include "io.h"
22#include "nic.h"
23#include "tx.h"
24#include "workarounds.h"
25#include "ef10_regs.h"
26
27/* Efx legacy TCP segmentation acceleration.
28 *
29 * Utilises firmware support to go faster than GSO (but not as fast as TSOv2).
30 *
31 * Requires TX checksum offload support.
32 */
33
34#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
35
36/**
37 * struct tso_state - TSO state for an SKB
38 * @out_len: Remaining length in current segment
39 * @seqnum: Current sequence number
40 * @ipv4_id: Current IPv4 ID, host endian
41 * @packet_space: Remaining space in current packet
42 * @dma_addr: DMA address of current position
43 * @in_len: Remaining length in current SKB fragment
44 * @unmap_len: Length of SKB fragment
45 * @unmap_addr: DMA address of SKB fragment
46 * @protocol: Network protocol (after any VLAN header)
47 * @ip_off: Offset of IP header
48 * @tcp_off: Offset of TCP header
49 * @header_len: Number of bytes of header
50 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
51 * @header_dma_addr: Header DMA address
52 * @header_unmap_len: Header DMA mapped length
53 *
54 * The state used during segmentation.  It is put into this data structure
55 * just to make it easy to pass into inline functions.
56 */
57struct tso_state {
58	/* Output position */
59	unsigned int out_len;
60	unsigned int seqnum;
61	u16 ipv4_id;
62	unsigned int packet_space;
63
64	/* Input position */
65	dma_addr_t dma_addr;
66	unsigned int in_len;
67	unsigned int unmap_len;
68	dma_addr_t unmap_addr;
69
70	__be16 protocol;
71	unsigned int ip_off;
72	unsigned int tcp_off;
73	unsigned int header_len;
74	unsigned int ip_base_len;
75	dma_addr_t header_dma_addr;
76	unsigned int header_unmap_len;
77};
78
79static inline void prefetch_ptr(struct efx_tx_queue *tx_queue)
80{
81	unsigned int insert_ptr = efx_tx_queue_get_insert_index(tx_queue);
82	char *ptr;
83
84	ptr = (char *) (tx_queue->buffer + insert_ptr);
85	prefetch(ptr);
86	prefetch(ptr + 0x80);
87
88	ptr = (char *)(((efx_qword_t *)tx_queue->txd.addr) + insert_ptr);
89	prefetch(ptr);
90	prefetch(ptr + 0x80);
91}
92
93/**
94 * efx_tx_queue_insert - push descriptors onto the TX queue
95 * @tx_queue:		Efx TX queue
96 * @dma_addr:		DMA address of fragment
97 * @len:		Length of fragment
98 * @final_buffer:	The final buffer inserted into the queue
99 *
100 * Push descriptors onto the TX queue.
101 */
102static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
103				dma_addr_t dma_addr, unsigned int len,
104				struct efx_tx_buffer **final_buffer)
105{
106	struct efx_tx_buffer *buffer;
107	unsigned int dma_len;
108
109	EFX_WARN_ON_ONCE_PARANOID(len <= 0);
110
111	while (1) {
112		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
113		++tx_queue->insert_count;
114
115		EFX_WARN_ON_ONCE_PARANOID(tx_queue->insert_count -
116					  tx_queue->read_count >=
117					  tx_queue->efx->txq_entries);
118
119		buffer->dma_addr = dma_addr;
120
121		dma_len = tx_queue->efx->type->tx_limit_len(tx_queue,
122				dma_addr, len);
123
124		/* If there's space for everything this is our last buffer. */
125		if (dma_len >= len)
126			break;
127
128		buffer->len = dma_len;
129		buffer->flags = EFX_TX_BUF_CONT;
130		dma_addr += dma_len;
131		len -= dma_len;
132	}
133
134	EFX_WARN_ON_ONCE_PARANOID(!len);
135	buffer->len = len;
136	*final_buffer = buffer;
137}
138
139/*
140 * Verify that our various assumptions about sk_buffs and the conditions
141 * under which TSO will be attempted hold true.  Return the protocol number.
142 */
143static __be16 efx_tso_check_protocol(struct sk_buff *skb)
144{
145	__be16 protocol = skb->protocol;
146
147	EFX_WARN_ON_ONCE_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
148				  protocol);
149	if (protocol == htons(ETH_P_8021Q)) {
150		struct vlan_ethhdr *veh = skb_vlan_eth_hdr(skb);
151
152		protocol = veh->h_vlan_encapsulated_proto;
153	}
154
155	if (protocol == htons(ETH_P_IP)) {
156		EFX_WARN_ON_ONCE_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
157	} else {
158		EFX_WARN_ON_ONCE_PARANOID(protocol != htons(ETH_P_IPV6));
159		EFX_WARN_ON_ONCE_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
160	}
161	EFX_WARN_ON_ONCE_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) +
162				   (tcp_hdr(skb)->doff << 2u)) >
163				  skb_headlen(skb));
164
165	return protocol;
166}
167
168/* Parse the SKB header and initialise state. */
169static int tso_start(struct tso_state *st, struct efx_nic *efx,
170		     struct efx_tx_queue *tx_queue,
171		     const struct sk_buff *skb)
172{
173	struct device *dma_dev = &efx->pci_dev->dev;
174	unsigned int header_len, in_len;
175	dma_addr_t dma_addr;
176
177	st->ip_off = skb_network_offset(skb);
178	st->tcp_off = skb_transport_offset(skb);
179	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
180	in_len = skb_headlen(skb) - header_len;
181	st->header_len = header_len;
182	st->in_len = in_len;
183	if (st->protocol == htons(ETH_P_IP)) {
184		st->ip_base_len = st->header_len - st->ip_off;
185		st->ipv4_id = ntohs(ip_hdr(skb)->id);
186	} else {
187		st->ip_base_len = st->header_len - st->tcp_off;
188		st->ipv4_id = 0;
189	}
190	st->seqnum = ntohl(tcp_hdr(skb)->seq);
191
192	EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->urg);
193	EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->syn);
194	EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->rst);
195
196	st->out_len = skb->len - header_len;
197
198	dma_addr = dma_map_single(dma_dev, skb->data,
199				  skb_headlen(skb), DMA_TO_DEVICE);
200	st->header_dma_addr = dma_addr;
201	st->header_unmap_len = skb_headlen(skb);
202	st->dma_addr = dma_addr + header_len;
203	st->unmap_len = 0;
204
205	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
206}
207
208static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
209			    skb_frag_t *frag)
210{
211	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
212					  skb_frag_size(frag), DMA_TO_DEVICE);
213	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
214		st->unmap_len = skb_frag_size(frag);
215		st->in_len = skb_frag_size(frag);
216		st->dma_addr = st->unmap_addr;
217		return 0;
218	}
219	return -ENOMEM;
220}
221
222
223/**
224 * tso_fill_packet_with_fragment - form descriptors for the current fragment
225 * @tx_queue:		Efx TX queue
226 * @skb:		Socket buffer
227 * @st:			TSO state
228 *
229 * Form descriptors for the current fragment, until we reach the end
230 * of fragment or end-of-packet.
231 */
232static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
233					  const struct sk_buff *skb,
234					  struct tso_state *st)
235{
236	struct efx_tx_buffer *buffer;
237	int n;
238
239	if (st->in_len == 0)
240		return;
241	if (st->packet_space == 0)
242		return;
243
244	EFX_WARN_ON_ONCE_PARANOID(st->in_len <= 0);
245	EFX_WARN_ON_ONCE_PARANOID(st->packet_space <= 0);
246
247	n = min(st->in_len, st->packet_space);
248
249	st->packet_space -= n;
250	st->out_len -= n;
251	st->in_len -= n;
252
253	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
254
255	if (st->out_len == 0) {
256		/* Transfer ownership of the skb */
257		buffer->skb = skb;
258		buffer->flags = EFX_TX_BUF_SKB;
259	} else if (st->packet_space != 0) {
260		buffer->flags = EFX_TX_BUF_CONT;
261	}
262
263	if (st->in_len == 0) {
264		/* Transfer ownership of the DMA mapping */
265		buffer->unmap_len = st->unmap_len;
266		buffer->dma_offset = buffer->unmap_len - buffer->len;
267		st->unmap_len = 0;
268	}
269
270	st->dma_addr += n;
271}
272
273
274#define TCP_FLAGS_OFFSET 13
275
276/**
277 * tso_start_new_packet - generate a new header and prepare for the new packet
278 * @tx_queue:		Efx TX queue
279 * @skb:		Socket buffer
280 * @st:			TSO state
281 *
282 * Generate a new header and prepare for the new packet.  Return 0 on
283 * success, or -%ENOMEM if failed to alloc header, or other negative error.
284 */
285static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
286				const struct sk_buff *skb,
287				struct tso_state *st)
288{
289	struct efx_tx_buffer *buffer =
290		efx_tx_queue_get_insert_buffer(tx_queue);
291	bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
292	u8 tcp_flags_mask, tcp_flags;
293
294	if (!is_last) {
295		st->packet_space = skb_shinfo(skb)->gso_size;
296		tcp_flags_mask = 0x09; /* mask out FIN and PSH */
297	} else {
298		st->packet_space = st->out_len;
299		tcp_flags_mask = 0x00;
300	}
301
302	if (WARN_ON(!st->header_unmap_len))
303		return -EINVAL;
304	/* Send the original headers with a TSO option descriptor
305	 * in front
306	 */
307	tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] & ~tcp_flags_mask;
308
309	buffer->flags = EFX_TX_BUF_OPTION;
310	buffer->len = 0;
311	buffer->unmap_len = 0;
312	EFX_POPULATE_QWORD_5(buffer->option,
313			     ESF_DZ_TX_DESC_IS_OPT, 1,
314			     ESF_DZ_TX_OPTION_TYPE,
315			     ESE_DZ_TX_OPTION_DESC_TSO,
316			     ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
317			     ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
318			     ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
319	++tx_queue->insert_count;
320
321	/* We mapped the headers in tso_start().  Unmap them
322	 * when the last segment is completed.
323	 */
324	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
325	buffer->dma_addr = st->header_dma_addr;
326	buffer->len = st->header_len;
327	if (is_last) {
328		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
329		buffer->unmap_len = st->header_unmap_len;
330		buffer->dma_offset = 0;
331		/* Ensure we only unmap them once in case of a
332		 * later DMA mapping error and rollback
333		 */
334		st->header_unmap_len = 0;
335	} else {
336		buffer->flags = EFX_TX_BUF_CONT;
337		buffer->unmap_len = 0;
338	}
339	++tx_queue->insert_count;
340
341	st->seqnum += skb_shinfo(skb)->gso_size;
342
343	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
344	++st->ipv4_id;
345
346	return 0;
347}
348
349/**
350 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
351 * @tx_queue:		Efx TX queue
352 * @skb:		Socket buffer
353 * @data_mapped:        Did we map the data? Always set to true
354 *                      by this on success.
355 *
356 * Context: You must hold netif_tx_lock() to call this function.
357 *
358 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
359 * @skb was not enqueued.  @skb is consumed unless return value is
360 * %EINVAL.
361 */
362int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
363			struct sk_buff *skb,
364			bool *data_mapped)
365{
366	struct efx_nic *efx = tx_queue->efx;
367	int frag_i, rc;
368	struct tso_state state;
369
370	if (tx_queue->tso_version != 1)
371		return -EINVAL;
372
373	prefetch(skb->data);
374
375	/* Find the packet protocol and sanity-check it */
376	state.protocol = efx_tso_check_protocol(skb);
377
378	EFX_WARN_ON_ONCE_PARANOID(tx_queue->write_count != tx_queue->insert_count);
379
380	rc = tso_start(&state, efx, tx_queue, skb);
381	if (rc)
382		goto fail;
383
384	if (likely(state.in_len == 0)) {
385		/* Grab the first payload fragment. */
386		EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->nr_frags < 1);
387		frag_i = 0;
388		rc = tso_get_fragment(&state, efx,
389				      skb_shinfo(skb)->frags + frag_i);
390		if (rc)
391			goto fail;
392	} else {
393		/* Payload starts in the header area. */
394		frag_i = -1;
395	}
396
397	rc = tso_start_new_packet(tx_queue, skb, &state);
398	if (rc)
399		goto fail;
400
401	prefetch_ptr(tx_queue);
402
403	while (1) {
404		tso_fill_packet_with_fragment(tx_queue, skb, &state);
405
406		/* Move onto the next fragment? */
407		if (state.in_len == 0) {
408			if (++frag_i >= skb_shinfo(skb)->nr_frags)
409				/* End of payload reached. */
410				break;
411			rc = tso_get_fragment(&state, efx,
412					      skb_shinfo(skb)->frags + frag_i);
413			if (rc)
414				goto fail;
415		}
416
417		/* Start at new packet? */
418		if (state.packet_space == 0) {
419			rc = tso_start_new_packet(tx_queue, skb, &state);
420			if (rc)
421				goto fail;
422		}
423	}
424
425	*data_mapped = true;
426
427	return 0;
428
429fail:
430	if (rc == -ENOMEM)
431		netif_err(efx, tx_err, efx->net_dev,
432			  "Out of memory for TSO headers, or DMA mapping error\n");
433	else
434		netif_err(efx, tx_err, efx->net_dev, "TSO failed, rc = %d\n", rc);
435
436	/* Free the DMA mapping we were in the process of writing out */
437	if (state.unmap_len) {
438		dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
439			       state.unmap_len, DMA_TO_DEVICE);
440	}
441
442	/* Free the header DMA mapping */
443	if (state.header_unmap_len)
444		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
445				 state.header_unmap_len, DMA_TO_DEVICE);
446
447	return rc;
448}
449