1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include "net_driver.h"
12#include "efx.h"
13#include "nic_common.h"
14#include "tx_common.h"
15#include <net/gso.h>
16
17static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
18{
19	return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
20			    PAGE_SIZE >> EFX_TX_CB_ORDER);
21}
22
23int efx_siena_probe_tx_queue(struct efx_tx_queue *tx_queue)
24{
25	struct efx_nic *efx = tx_queue->efx;
26	unsigned int entries;
27	int rc;
28
29	/* Create the smallest power-of-two aligned ring */
30	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
31	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
32	tx_queue->ptr_mask = entries - 1;
33
34	netif_dbg(efx, probe, efx->net_dev,
35		  "creating TX queue %d size %#x mask %#x\n",
36		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
37
38	/* Allocate software ring */
39	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
40				   GFP_KERNEL);
41	if (!tx_queue->buffer)
42		return -ENOMEM;
43
44	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
45				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
46	if (!tx_queue->cb_page) {
47		rc = -ENOMEM;
48		goto fail1;
49	}
50
51	/* Allocate hardware ring, determine TXQ type */
52	rc = efx_nic_probe_tx(tx_queue);
53	if (rc)
54		goto fail2;
55
56	tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
57	return 0;
58
59fail2:
60	kfree(tx_queue->cb_page);
61	tx_queue->cb_page = NULL;
62fail1:
63	kfree(tx_queue->buffer);
64	tx_queue->buffer = NULL;
65	return rc;
66}
67
68void efx_siena_init_tx_queue(struct efx_tx_queue *tx_queue)
69{
70	struct efx_nic *efx = tx_queue->efx;
71
72	netif_dbg(efx, drv, efx->net_dev,
73		  "initialising TX queue %d\n", tx_queue->queue);
74
75	tx_queue->insert_count = 0;
76	tx_queue->notify_count = 0;
77	tx_queue->write_count = 0;
78	tx_queue->packet_write_count = 0;
79	tx_queue->old_write_count = 0;
80	tx_queue->read_count = 0;
81	tx_queue->old_read_count = 0;
82	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
83	tx_queue->xmit_pending = false;
84	tx_queue->timestamping = (efx_siena_ptp_use_mac_tx_timestamps(efx) &&
85				  tx_queue->channel == efx_siena_ptp_channel(efx));
86	tx_queue->completed_timestamp_major = 0;
87	tx_queue->completed_timestamp_minor = 0;
88
89	tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
90	tx_queue->tso_version = 0;
91
92	/* Set up TX descriptor ring */
93	efx_nic_init_tx(tx_queue);
94
95	tx_queue->initialised = true;
96}
97
98void efx_siena_remove_tx_queue(struct efx_tx_queue *tx_queue)
99{
100	int i;
101
102	if (!tx_queue->buffer)
103		return;
104
105	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
106		  "destroying TX queue %d\n", tx_queue->queue);
107	efx_nic_remove_tx(tx_queue);
108
109	if (tx_queue->cb_page) {
110		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
111			efx_siena_free_buffer(tx_queue->efx,
112					      &tx_queue->cb_page[i]);
113		kfree(tx_queue->cb_page);
114		tx_queue->cb_page = NULL;
115	}
116
117	kfree(tx_queue->buffer);
118	tx_queue->buffer = NULL;
119	tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
120}
121
122static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
123			       struct efx_tx_buffer *buffer,
124			       unsigned int *pkts_compl,
125			       unsigned int *bytes_compl)
126{
127	if (buffer->unmap_len) {
128		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
129		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
130
131		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
132			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
133					 DMA_TO_DEVICE);
134		else
135			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
136				       DMA_TO_DEVICE);
137		buffer->unmap_len = 0;
138	}
139
140	if (buffer->flags & EFX_TX_BUF_SKB) {
141		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
142
143		EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
144		(*pkts_compl)++;
145		(*bytes_compl) += skb->len;
146		if (tx_queue->timestamping &&
147		    (tx_queue->completed_timestamp_major ||
148		     tx_queue->completed_timestamp_minor)) {
149			struct skb_shared_hwtstamps hwtstamp;
150
151			hwtstamp.hwtstamp =
152				efx_siena_ptp_nic_to_kernel_time(tx_queue);
153			skb_tstamp_tx(skb, &hwtstamp);
154
155			tx_queue->completed_timestamp_major = 0;
156			tx_queue->completed_timestamp_minor = 0;
157		}
158		dev_consume_skb_any((struct sk_buff *)buffer->skb);
159		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
160			   "TX queue %d transmission id %x complete\n",
161			   tx_queue->queue, tx_queue->read_count);
162	} else if (buffer->flags & EFX_TX_BUF_XDP) {
163		xdp_return_frame_rx_napi(buffer->xdpf);
164	}
165
166	buffer->len = 0;
167	buffer->flags = 0;
168}
169
170void efx_siena_fini_tx_queue(struct efx_tx_queue *tx_queue)
171{
172	struct efx_tx_buffer *buffer;
173
174	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
175		  "shutting down TX queue %d\n", tx_queue->queue);
176
177	if (!tx_queue->buffer)
178		return;
179
180	/* Free any buffers left in the ring */
181	while (tx_queue->read_count != tx_queue->write_count) {
182		unsigned int pkts_compl = 0, bytes_compl = 0;
183
184		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
185		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
186
187		++tx_queue->read_count;
188	}
189	tx_queue->xmit_pending = false;
190	netdev_tx_reset_queue(tx_queue->core_txq);
191}
192
193/* Remove packets from the TX queue
194 *
195 * This removes packets from the TX queue, up to and including the
196 * specified index.
197 */
198static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
199				unsigned int index,
200				unsigned int *pkts_compl,
201				unsigned int *bytes_compl)
202{
203	struct efx_nic *efx = tx_queue->efx;
204	unsigned int stop_index, read_ptr;
205
206	stop_index = (index + 1) & tx_queue->ptr_mask;
207	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
208
209	while (read_ptr != stop_index) {
210		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
211
212		if (!efx_tx_buffer_in_use(buffer)) {
213			netif_err(efx, tx_err, efx->net_dev,
214				  "TX queue %d spurious TX completion id %d\n",
215				  tx_queue->queue, read_ptr);
216			efx_siena_schedule_reset(efx, RESET_TYPE_TX_SKIP);
217			return;
218		}
219
220		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
221
222		++tx_queue->read_count;
223		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
224	}
225}
226
227void efx_siena_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
228{
229	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
230		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
231		if (tx_queue->read_count == tx_queue->old_write_count) {
232			/* Ensure that read_count is flushed. */
233			smp_mb();
234			tx_queue->empty_read_count =
235				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
236		}
237	}
238}
239
240void efx_siena_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
241{
242	unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
243	struct efx_nic *efx = tx_queue->efx;
244
245	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
246
247	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
248	tx_queue->pkts_compl += pkts_compl;
249	tx_queue->bytes_compl += bytes_compl;
250
251	if (pkts_compl > 1)
252		++tx_queue->merge_events;
253
254	/* See if we need to restart the netif queue.  This memory
255	 * barrier ensures that we write read_count (inside
256	 * efx_dequeue_buffers()) before reading the queue status.
257	 */
258	smp_mb();
259	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
260	    likely(efx->port_enabled) &&
261	    likely(netif_device_present(efx->net_dev))) {
262		fill_level = efx_channel_tx_fill_level(tx_queue->channel);
263		if (fill_level <= efx->txq_wake_thresh)
264			netif_tx_wake_queue(tx_queue->core_txq);
265	}
266
267	efx_siena_xmit_done_check_empty(tx_queue);
268}
269
270/* Remove buffers put into a tx_queue for the current packet.
271 * None of the buffers must have an skb attached.
272 */
273void efx_siena_enqueue_unwind(struct efx_tx_queue *tx_queue,
274			      unsigned int insert_count)
275{
276	struct efx_tx_buffer *buffer;
277	unsigned int bytes_compl = 0;
278	unsigned int pkts_compl = 0;
279
280	/* Work backwards until we hit the original insert pointer value */
281	while (tx_queue->insert_count != insert_count) {
282		--tx_queue->insert_count;
283		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
284		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
285	}
286}
287
288struct efx_tx_buffer *efx_siena_tx_map_chunk(struct efx_tx_queue *tx_queue,
289					     dma_addr_t dma_addr, size_t len)
290{
291	const struct efx_nic_type *nic_type = tx_queue->efx->type;
292	struct efx_tx_buffer *buffer;
293	unsigned int dma_len;
294
295	/* Map the fragment taking account of NIC-dependent DMA limits. */
296	do {
297		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
298
299		if (nic_type->tx_limit_len)
300			dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
301		else
302			dma_len = len;
303
304		buffer->len = dma_len;
305		buffer->dma_addr = dma_addr;
306		buffer->flags = EFX_TX_BUF_CONT;
307		len -= dma_len;
308		dma_addr += dma_len;
309		++tx_queue->insert_count;
310	} while (len);
311
312	return buffer;
313}
314
315static int efx_tx_tso_header_length(struct sk_buff *skb)
316{
317	size_t header_len;
318
319	if (skb->encapsulation)
320		header_len = skb_inner_transport_offset(skb) +
321				(inner_tcp_hdr(skb)->doff << 2u);
322	else
323		header_len = skb_transport_offset(skb) +
324				(tcp_hdr(skb)->doff << 2u);
325	return header_len;
326}
327
328/* Map all data from an SKB for DMA and create descriptors on the queue. */
329int efx_siena_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
330			  unsigned int segment_count)
331{
332	struct efx_nic *efx = tx_queue->efx;
333	struct device *dma_dev = &efx->pci_dev->dev;
334	unsigned int frag_index, nr_frags;
335	dma_addr_t dma_addr, unmap_addr;
336	unsigned short dma_flags;
337	size_t len, unmap_len;
338
339	nr_frags = skb_shinfo(skb)->nr_frags;
340	frag_index = 0;
341
342	/* Map header data. */
343	len = skb_headlen(skb);
344	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
345	dma_flags = EFX_TX_BUF_MAP_SINGLE;
346	unmap_len = len;
347	unmap_addr = dma_addr;
348
349	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
350		return -EIO;
351
352	if (segment_count) {
353		/* For TSO we need to put the header in to a separate
354		 * descriptor. Map this separately if necessary.
355		 */
356		size_t header_len = efx_tx_tso_header_length(skb);
357
358		if (header_len != len) {
359			tx_queue->tso_long_headers++;
360			efx_siena_tx_map_chunk(tx_queue, dma_addr, header_len);
361			len -= header_len;
362			dma_addr += header_len;
363		}
364	}
365
366	/* Add descriptors for each fragment. */
367	do {
368		struct efx_tx_buffer *buffer;
369		skb_frag_t *fragment;
370
371		buffer = efx_siena_tx_map_chunk(tx_queue, dma_addr, len);
372
373		/* The final descriptor for a fragment is responsible for
374		 * unmapping the whole fragment.
375		 */
376		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
377		buffer->unmap_len = unmap_len;
378		buffer->dma_offset = buffer->dma_addr - unmap_addr;
379
380		if (frag_index >= nr_frags) {
381			/* Store SKB details with the final buffer for
382			 * the completion.
383			 */
384			buffer->skb = skb;
385			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
386			return 0;
387		}
388
389		/* Move on to the next fragment. */
390		fragment = &skb_shinfo(skb)->frags[frag_index++];
391		len = skb_frag_size(fragment);
392		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
393					    DMA_TO_DEVICE);
394		dma_flags = 0;
395		unmap_len = len;
396		unmap_addr = dma_addr;
397
398		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
399			return -EIO;
400	} while (1);
401}
402
403unsigned int efx_siena_tx_max_skb_descs(struct efx_nic *efx)
404{
405	/* Header and payload descriptor for each output segment, plus
406	 * one for every input fragment boundary within a segment
407	 */
408	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
409
410	/* Possibly one more per segment for option descriptors */
411	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
412		max_descs += EFX_TSO_MAX_SEGS;
413
414	/* Possibly more for PCIe page boundaries within input fragments */
415	if (PAGE_SIZE > EFX_PAGE_SIZE)
416		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
417				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
418
419	return max_descs;
420}
421
422/*
423 * Fallback to software TSO.
424 *
425 * This is used if we are unable to send a GSO packet through hardware TSO.
426 * This should only ever happen due to per-queue restrictions - unsupported
427 * packets should first be filtered by the feature flags.
428 *
429 * Returns 0 on success, error code otherwise.
430 */
431int efx_siena_tx_tso_fallback(struct efx_tx_queue *tx_queue,
432			      struct sk_buff *skb)
433{
434	struct sk_buff *segments, *next;
435
436	segments = skb_gso_segment(skb, 0);
437	if (IS_ERR(segments))
438		return PTR_ERR(segments);
439
440	dev_consume_skb_any(skb);
441
442	skb_list_walk_safe(segments, skb, next) {
443		skb_mark_not_on_list(skb);
444		efx_enqueue_skb(tx_queue, skb);
445	}
446
447	return 0;
448}
449