1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2010-2012 Solarflare Communications Inc.
5 */
6#include <linux/pci.h>
7#include <linux/module.h>
8#include "net_driver.h"
9#include "efx.h"
10#include "efx_channels.h"
11#include "nic.h"
12#include "io.h"
13#include "mcdi.h"
14#include "filter.h"
15#include "mcdi_pcol.h"
16#include "farch_regs.h"
17#include "siena_sriov.h"
18#include "vfdi.h"
19
20/* Number of longs required to track all the VIs in a VF */
21#define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
22
23/* Maximum number of RX queues supported */
24#define VF_MAX_RX_QUEUES 63
25
26/**
27 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
28 * @VF_TX_FILTER_OFF: Disabled
29 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
30 *	2 TX queues allowed per VF.
31 * @VF_TX_FILTER_ON: Enabled
32 */
33enum efx_vf_tx_filter_mode {
34	VF_TX_FILTER_OFF,
35	VF_TX_FILTER_AUTO,
36	VF_TX_FILTER_ON,
37};
38
39/**
40 * struct siena_vf - Back-end resource and protocol state for a PCI VF
41 * @efx: The Efx NIC owning this VF
42 * @pci_rid: The PCI requester ID for this VF
43 * @pci_name: The PCI name (formatted address) of this VF
44 * @index: Index of VF within its port and PF.
45 * @req: VFDI incoming request work item. Incoming USR_EV events are received
46 *	by the NAPI handler, but must be handled by executing MCDI requests
47 *	inside a work item.
48 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
49 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
50 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
51 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
52 *	@status_lock
53 * @busy: VFDI request queued to be processed or being processed. Receiving
54 *	a VFDI request when @busy is set is an error condition.
55 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
56 * @buftbl_base: Buffer table entries for this VF start at this index.
57 * @rx_filtering: Receive filtering has been requested by the VF driver.
58 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
59 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
60 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
61 * @tx_filter_mode: Transmit MAC filtering mode.
62 * @tx_filter_id: Transmit MAC filter ID.
63 * @addr: The MAC address and outer vlan tag of the VF.
64 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
65 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
66 *	@peer_page_addrs and @peer_page_count from simultaneous
67 *	updates by the VM and consumption by
68 *	efx_siena_sriov_update_vf_addr()
69 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
70 * @peer_page_count: Number of entries in @peer_page_count.
71 * @evq0_addrs: Array of guest pages backing evq0.
72 * @evq0_count: Number of entries in @evq0_addrs.
73 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
74 *	to wait for flush completions.
75 * @txq_lock: Mutex for TX queue allocation.
76 * @txq_mask: Mask of initialized transmit queues.
77 * @txq_count: Number of initialized transmit queues.
78 * @rxq_mask: Mask of initialized receive queues.
79 * @rxq_count: Number of initialized receive queues.
80 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
81 *	due to flush failure.
82 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
83 * @reset_work: Work item to schedule a VF reset.
84 */
85struct siena_vf {
86	struct efx_nic *efx;
87	unsigned int pci_rid;
88	char pci_name[13]; /* dddd:bb:dd.f */
89	unsigned int index;
90	struct work_struct req;
91	u64 req_addr;
92	int req_type;
93	unsigned req_seqno;
94	unsigned msg_seqno;
95	bool busy;
96	struct efx_buffer buf;
97	unsigned buftbl_base;
98	bool rx_filtering;
99	enum efx_filter_flags rx_filter_flags;
100	unsigned rx_filter_qid;
101	int rx_filter_id;
102	enum efx_vf_tx_filter_mode tx_filter_mode;
103	int tx_filter_id;
104	struct vfdi_endpoint addr;
105	u64 status_addr;
106	struct mutex status_lock;
107	u64 *peer_page_addrs;
108	unsigned peer_page_count;
109	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
110		       EFX_BUF_SIZE];
111	unsigned evq0_count;
112	wait_queue_head_t flush_waitq;
113	struct mutex txq_lock;
114	unsigned long txq_mask[VI_MASK_LENGTH];
115	unsigned txq_count;
116	unsigned long rxq_mask[VI_MASK_LENGTH];
117	unsigned rxq_count;
118	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
119	atomic_t rxq_retry_count;
120	struct work_struct reset_work;
121};
122
123struct efx_memcpy_req {
124	unsigned int from_rid;
125	void *from_buf;
126	u64 from_addr;
127	unsigned int to_rid;
128	u64 to_addr;
129	unsigned length;
130};
131
132/**
133 * struct efx_local_addr - A MAC address on the vswitch without a VF.
134 *
135 * Siena does not have a switch, so VFs can't transmit data to each
136 * other. Instead the VFs must be made aware of the local addresses
137 * on the vswitch, so that they can arrange for an alternative
138 * software datapath to be used.
139 *
140 * @link: List head for insertion into efx->local_addr_list.
141 * @addr: Ethernet address
142 */
143struct efx_local_addr {
144	struct list_head link;
145	u8 addr[ETH_ALEN];
146};
147
148/**
149 * struct efx_endpoint_page - Page of vfdi_endpoint structures
150 *
151 * @link: List head for insertion into efx->local_page_list.
152 * @ptr: Pointer to page.
153 * @addr: DMA address of page.
154 */
155struct efx_endpoint_page {
156	struct list_head link;
157	void *ptr;
158	dma_addr_t addr;
159};
160
161/* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
162#define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
163	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
164#define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
165	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
166	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
167#define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
168	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
169	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
170
171#define EFX_FIELD_MASK(_field)			\
172	((1 << _field ## _WIDTH) - 1)
173
174/* VFs can only use this many transmit channels */
175static unsigned int vf_max_tx_channels = 2;
176module_param(vf_max_tx_channels, uint, 0444);
177MODULE_PARM_DESC(vf_max_tx_channels,
178		 "Limit the number of TX channels VFs can use");
179
180static int max_vfs = -1;
181module_param(max_vfs, int, 0444);
182MODULE_PARM_DESC(max_vfs,
183		 "Reduce the number of VFs initialized by the driver");
184
185/* Workqueue used by VFDI communication.  We can't use the global
186 * workqueue because it may be running the VF driver's probe()
187 * routine, which will be blocked there waiting for a VFDI response.
188 */
189static struct workqueue_struct *vfdi_workqueue;
190
191static unsigned abs_index(struct siena_vf *vf, unsigned index)
192{
193	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
194}
195
196static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable,
197			       unsigned *vi_scale_out, unsigned *vf_total_out)
198{
199	MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
200	MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
201	unsigned vi_scale, vf_total;
202	size_t outlen;
203	int rc;
204
205	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
206	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
207	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
208
209	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_SRIOV, inbuf,
210				      MC_CMD_SRIOV_IN_LEN, outbuf,
211				      MC_CMD_SRIOV_OUT_LEN, &outlen);
212	if (rc)
213		return rc;
214	if (outlen < MC_CMD_SRIOV_OUT_LEN)
215		return -EIO;
216
217	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
218	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
219	if (vi_scale > EFX_VI_SCALE_MAX)
220		return -EOPNOTSUPP;
221
222	if (vi_scale_out)
223		*vi_scale_out = vi_scale;
224	if (vf_total_out)
225		*vf_total_out = vf_total;
226
227	return 0;
228}
229
230static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled)
231{
232	struct siena_nic_data *nic_data = efx->nic_data;
233	efx_oword_t reg;
234
235	EFX_POPULATE_OWORD_2(reg,
236			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
237			     FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
238	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
239}
240
241static int efx_siena_sriov_memcpy(struct efx_nic *efx,
242				  struct efx_memcpy_req *req,
243				  unsigned int count)
244{
245	MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
246	MCDI_DECLARE_STRUCT_PTR(record);
247	unsigned int index, used;
248	u64 from_addr;
249	u32 from_rid;
250	int rc;
251
252	mb();	/* Finish writing source/reading dest before DMA starts */
253
254	if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
255		return -ENOBUFS;
256	used = MC_CMD_MEMCPY_IN_LEN(count);
257
258	for (index = 0; index < count; index++) {
259		record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
260		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
261			       count);
262		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
263			       req->to_rid);
264		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
265			       req->to_addr);
266		if (req->from_buf == NULL) {
267			from_rid = req->from_rid;
268			from_addr = req->from_addr;
269		} else {
270			if (WARN_ON(used + req->length >
271				    MCDI_CTL_SDU_LEN_MAX_V1)) {
272				rc = -ENOBUFS;
273				goto out;
274			}
275
276			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
277			from_addr = used;
278			memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
279			       req->length);
280			used += req->length;
281		}
282
283		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
284		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
285			       from_addr);
286		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
287			       req->length);
288
289		++req;
290	}
291
292	rc = efx_siena_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
293out:
294	mb();	/* Don't write source/read dest before DMA is complete */
295
296	return rc;
297}
298
299/* The TX filter is entirely controlled by this driver, and is modified
300 * underneath the feet of the VF
301 */
302static void efx_siena_sriov_reset_tx_filter(struct siena_vf *vf)
303{
304	struct efx_nic *efx = vf->efx;
305	struct efx_filter_spec filter;
306	u16 vlan;
307	int rc;
308
309	if (vf->tx_filter_id != -1) {
310		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
311					  vf->tx_filter_id);
312		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
313			  vf->pci_name, vf->tx_filter_id);
314		vf->tx_filter_id = -1;
315	}
316
317	if (is_zero_ether_addr(vf->addr.mac_addr))
318		return;
319
320	/* Turn on TX filtering automatically if not explicitly
321	 * enabled or disabled.
322	 */
323	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
324		vf->tx_filter_mode = VF_TX_FILTER_ON;
325
326	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
327	efx_filter_init_tx(&filter, abs_index(vf, 0));
328	rc = efx_filter_set_eth_local(&filter,
329				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
330				      vf->addr.mac_addr);
331	BUG_ON(rc);
332
333	rc = efx_filter_insert_filter(efx, &filter, true);
334	if (rc < 0) {
335		netif_warn(efx, hw, efx->net_dev,
336			   "Unable to migrate tx filter for vf %s\n",
337			   vf->pci_name);
338	} else {
339		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
340			  vf->pci_name, rc);
341		vf->tx_filter_id = rc;
342	}
343}
344
345/* The RX filter is managed here on behalf of the VF driver */
346static void efx_siena_sriov_reset_rx_filter(struct siena_vf *vf)
347{
348	struct efx_nic *efx = vf->efx;
349	struct efx_filter_spec filter;
350	u16 vlan;
351	int rc;
352
353	if (vf->rx_filter_id != -1) {
354		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
355					  vf->rx_filter_id);
356		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
357			  vf->pci_name, vf->rx_filter_id);
358		vf->rx_filter_id = -1;
359	}
360
361	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
362		return;
363
364	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
365	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
366			   vf->rx_filter_flags,
367			   abs_index(vf, vf->rx_filter_qid));
368	rc = efx_filter_set_eth_local(&filter,
369				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
370				      vf->addr.mac_addr);
371	BUG_ON(rc);
372
373	rc = efx_filter_insert_filter(efx, &filter, true);
374	if (rc < 0) {
375		netif_warn(efx, hw, efx->net_dev,
376			   "Unable to insert rx filter for vf %s\n",
377			   vf->pci_name);
378	} else {
379		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
380			  vf->pci_name, rc);
381		vf->rx_filter_id = rc;
382	}
383}
384
385static void __efx_siena_sriov_update_vf_addr(struct siena_vf *vf)
386{
387	struct efx_nic *efx = vf->efx;
388	struct siena_nic_data *nic_data = efx->nic_data;
389
390	efx_siena_sriov_reset_tx_filter(vf);
391	efx_siena_sriov_reset_rx_filter(vf);
392	queue_work(vfdi_workqueue, &nic_data->peer_work);
393}
394
395/* Push the peer list to this VF. The caller must hold status_lock to interlock
396 * with VFDI requests, and they must be serialised against manipulation of
397 * local_page_list, either by acquiring local_lock or by running from
398 * efx_siena_sriov_peer_work()
399 */
400static void __efx_siena_sriov_push_vf_status(struct siena_vf *vf)
401{
402	struct efx_nic *efx = vf->efx;
403	struct siena_nic_data *nic_data = efx->nic_data;
404	struct vfdi_status *status = nic_data->vfdi_status.addr;
405	struct efx_memcpy_req copy[4];
406	struct efx_endpoint_page *epp;
407	unsigned int pos, count;
408	unsigned data_offset;
409	efx_qword_t event;
410
411	WARN_ON(!mutex_is_locked(&vf->status_lock));
412	WARN_ON(!vf->status_addr);
413
414	status->local = vf->addr;
415	status->generation_end = ++status->generation_start;
416
417	memset(copy, '\0', sizeof(copy));
418	/* Write generation_start */
419	copy[0].from_buf = &status->generation_start;
420	copy[0].to_rid = vf->pci_rid;
421	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
422						     generation_start);
423	copy[0].length = sizeof(status->generation_start);
424	/* DMA the rest of the structure (excluding the generations). This
425	 * assumes that the non-generation portion of vfdi_status is in
426	 * one chunk starting at the version member.
427	 */
428	data_offset = offsetof(struct vfdi_status, version);
429	copy[1].from_rid = efx->pci_dev->devfn;
430	copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
431	copy[1].to_rid = vf->pci_rid;
432	copy[1].to_addr = vf->status_addr + data_offset;
433	copy[1].length =  status->length - data_offset;
434
435	/* Copy the peer pages */
436	pos = 2;
437	count = 0;
438	list_for_each_entry(epp, &nic_data->local_page_list, link) {
439		if (count == vf->peer_page_count) {
440			/* The VF driver will know they need to provide more
441			 * pages because peer_addr_count is too large.
442			 */
443			break;
444		}
445		copy[pos].from_buf = NULL;
446		copy[pos].from_rid = efx->pci_dev->devfn;
447		copy[pos].from_addr = epp->addr;
448		copy[pos].to_rid = vf->pci_rid;
449		copy[pos].to_addr = vf->peer_page_addrs[count];
450		copy[pos].length = EFX_PAGE_SIZE;
451
452		if (++pos == ARRAY_SIZE(copy)) {
453			efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
454			pos = 0;
455		}
456		++count;
457	}
458
459	/* Write generation_end */
460	copy[pos].from_buf = &status->generation_end;
461	copy[pos].to_rid = vf->pci_rid;
462	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
463						       generation_end);
464	copy[pos].length = sizeof(status->generation_end);
465	efx_siena_sriov_memcpy(efx, copy, pos + 1);
466
467	/* Notify the guest */
468	EFX_POPULATE_QWORD_3(event,
469			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
470			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
471			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
472	++vf->msg_seqno;
473	efx_farch_generate_event(efx,
474				 EFX_VI_BASE + vf->index * efx_vf_size(efx),
475				 &event);
476}
477
478static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset,
479				 u64 *addr, unsigned count)
480{
481	efx_qword_t buf;
482	unsigned pos;
483
484	for (pos = 0; pos < count; ++pos) {
485		EFX_POPULATE_QWORD_3(buf,
486				     FRF_AZ_BUF_ADR_REGION, 0,
487				     FRF_AZ_BUF_ADR_FBUF,
488				     addr ? addr[pos] >> 12 : 0,
489				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
490		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
491				&buf, offset + pos);
492	}
493}
494
495static bool bad_vf_index(struct efx_nic *efx, unsigned index)
496{
497	return index >= efx_vf_size(efx);
498}
499
500static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
501{
502	unsigned max_buf_count = max_entry_count *
503		sizeof(efx_qword_t) / EFX_BUF_SIZE;
504
505	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
506}
507
508/* Check that VI specified by per-port index belongs to a VF.
509 * Optionally set VF index and VI index within the VF.
510 */
511static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
512			 struct siena_vf **vf_out, unsigned *rel_index_out)
513{
514	struct siena_nic_data *nic_data = efx->nic_data;
515	unsigned vf_i;
516
517	if (abs_index < EFX_VI_BASE)
518		return true;
519	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
520	if (vf_i >= efx->vf_init_count)
521		return true;
522
523	if (vf_out)
524		*vf_out = nic_data->vf + vf_i;
525	if (rel_index_out)
526		*rel_index_out = abs_index % efx_vf_size(efx);
527	return false;
528}
529
530static int efx_vfdi_init_evq(struct siena_vf *vf)
531{
532	struct efx_nic *efx = vf->efx;
533	struct vfdi_req *req = vf->buf.addr;
534	unsigned vf_evq = req->u.init_evq.index;
535	unsigned buf_count = req->u.init_evq.buf_count;
536	unsigned abs_evq = abs_index(vf, vf_evq);
537	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
538	efx_oword_t reg;
539
540	if (bad_vf_index(efx, vf_evq) ||
541	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
542		if (net_ratelimit())
543			netif_err(efx, hw, efx->net_dev,
544				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
545				  vf->pci_name, vf_evq, buf_count);
546		return VFDI_RC_EINVAL;
547	}
548
549	efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
550
551	EFX_POPULATE_OWORD_3(reg,
552			     FRF_CZ_TIMER_Q_EN, 1,
553			     FRF_CZ_HOST_NOTIFY_MODE, 0,
554			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
555	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
556	EFX_POPULATE_OWORD_3(reg,
557			     FRF_AZ_EVQ_EN, 1,
558			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
559			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
560	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
561
562	if (vf_evq == 0) {
563		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
564		       buf_count * sizeof(u64));
565		vf->evq0_count = buf_count;
566	}
567
568	return VFDI_RC_SUCCESS;
569}
570
571static int efx_vfdi_init_rxq(struct siena_vf *vf)
572{
573	struct efx_nic *efx = vf->efx;
574	struct vfdi_req *req = vf->buf.addr;
575	unsigned vf_rxq = req->u.init_rxq.index;
576	unsigned vf_evq = req->u.init_rxq.evq;
577	unsigned buf_count = req->u.init_rxq.buf_count;
578	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
579	unsigned label;
580	efx_oword_t reg;
581
582	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
583	    vf_rxq >= VF_MAX_RX_QUEUES ||
584	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
585		if (net_ratelimit())
586			netif_err(efx, hw, efx->net_dev,
587				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
588				  "buf_count %d\n", vf->pci_name, vf_rxq,
589				  vf_evq, buf_count);
590		return VFDI_RC_EINVAL;
591	}
592	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
593		++vf->rxq_count;
594	efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
595
596	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
597	EFX_POPULATE_OWORD_6(reg,
598			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
599			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
600			     FRF_AZ_RX_DESCQ_LABEL, label,
601			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
602			     FRF_AZ_RX_DESCQ_JUMBO,
603			     !!(req->u.init_rxq.flags &
604				VFDI_RXQ_FLAG_SCATTER_EN),
605			     FRF_AZ_RX_DESCQ_EN, 1);
606	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
607			 abs_index(vf, vf_rxq));
608
609	return VFDI_RC_SUCCESS;
610}
611
612static int efx_vfdi_init_txq(struct siena_vf *vf)
613{
614	struct efx_nic *efx = vf->efx;
615	struct vfdi_req *req = vf->buf.addr;
616	unsigned vf_txq = req->u.init_txq.index;
617	unsigned vf_evq = req->u.init_txq.evq;
618	unsigned buf_count = req->u.init_txq.buf_count;
619	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
620	unsigned label, eth_filt_en;
621	efx_oword_t reg;
622
623	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
624	    vf_txq >= vf_max_tx_channels ||
625	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
626		if (net_ratelimit())
627			netif_err(efx, hw, efx->net_dev,
628				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
629				  "buf_count %d\n", vf->pci_name, vf_txq,
630				  vf_evq, buf_count);
631		return VFDI_RC_EINVAL;
632	}
633
634	mutex_lock(&vf->txq_lock);
635	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
636		++vf->txq_count;
637	mutex_unlock(&vf->txq_lock);
638	efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
639
640	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
641
642	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
643	EFX_POPULATE_OWORD_8(reg,
644			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
645			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
646			     FRF_AZ_TX_DESCQ_EN, 1,
647			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
648			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
649			     FRF_AZ_TX_DESCQ_LABEL, label,
650			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
651			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
652	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
653			 abs_index(vf, vf_txq));
654
655	return VFDI_RC_SUCCESS;
656}
657
658/* Returns true when efx_vfdi_fini_all_queues should wake */
659static bool efx_vfdi_flush_wake(struct siena_vf *vf)
660{
661	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
662	smp_mb();
663
664	return (!vf->txq_count && !vf->rxq_count) ||
665		atomic_read(&vf->rxq_retry_count);
666}
667
668static void efx_vfdi_flush_clear(struct siena_vf *vf)
669{
670	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
671	vf->txq_count = 0;
672	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
673	vf->rxq_count = 0;
674	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
675	atomic_set(&vf->rxq_retry_count, 0);
676}
677
678static int efx_vfdi_fini_all_queues(struct siena_vf *vf)
679{
680	struct efx_nic *efx = vf->efx;
681	efx_oword_t reg;
682	unsigned count = efx_vf_size(efx);
683	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
684	unsigned timeout = HZ;
685	unsigned index, rxqs_count;
686	MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
687	int rc;
688
689	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
690		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
691
692	rtnl_lock();
693	efx_siena_prepare_flush(efx);
694	rtnl_unlock();
695
696	/* Flush all the initialized queues */
697	rxqs_count = 0;
698	for (index = 0; index < count; ++index) {
699		if (test_bit(index, vf->txq_mask)) {
700			EFX_POPULATE_OWORD_2(reg,
701					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
702					     FRF_AZ_TX_FLUSH_DESCQ,
703					     vf_offset + index);
704			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
705		}
706		if (test_bit(index, vf->rxq_mask)) {
707			MCDI_SET_ARRAY_DWORD(
708				inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
709				rxqs_count, vf_offset + index);
710			rxqs_count++;
711		}
712	}
713
714	atomic_set(&vf->rxq_retry_count, 0);
715	while (timeout && (vf->rxq_count || vf->txq_count)) {
716		rc = efx_siena_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
717				  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
718				  NULL, 0, NULL);
719		WARN_ON(rc < 0);
720
721		timeout = wait_event_timeout(vf->flush_waitq,
722					     efx_vfdi_flush_wake(vf),
723					     timeout);
724		rxqs_count = 0;
725		for (index = 0; index < count; ++index) {
726			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
727				atomic_dec(&vf->rxq_retry_count);
728				MCDI_SET_ARRAY_DWORD(
729					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
730					rxqs_count, vf_offset + index);
731				rxqs_count++;
732			}
733		}
734	}
735
736	rtnl_lock();
737	siena_finish_flush(efx);
738	rtnl_unlock();
739
740	/* Irrespective of success/failure, fini the queues */
741	EFX_ZERO_OWORD(reg);
742	for (index = 0; index < count; ++index) {
743		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
744				 vf_offset + index);
745		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
746				 vf_offset + index);
747		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
748				 vf_offset + index);
749		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
750				 vf_offset + index);
751	}
752	efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL,
753			     EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
754	efx_vfdi_flush_clear(vf);
755
756	vf->evq0_count = 0;
757
758	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
759}
760
761static int efx_vfdi_insert_filter(struct siena_vf *vf)
762{
763	struct efx_nic *efx = vf->efx;
764	struct siena_nic_data *nic_data = efx->nic_data;
765	struct vfdi_req *req = vf->buf.addr;
766	unsigned vf_rxq = req->u.mac_filter.rxq;
767	unsigned flags;
768
769	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
770		if (net_ratelimit())
771			netif_err(efx, hw, efx->net_dev,
772				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
773				  "flags 0x%x\n", vf->pci_name, vf_rxq,
774				  req->u.mac_filter.flags);
775		return VFDI_RC_EINVAL;
776	}
777
778	flags = 0;
779	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
780		flags |= EFX_FILTER_FLAG_RX_RSS;
781	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
782		flags |= EFX_FILTER_FLAG_RX_SCATTER;
783	vf->rx_filter_flags = flags;
784	vf->rx_filter_qid = vf_rxq;
785	vf->rx_filtering = true;
786
787	efx_siena_sriov_reset_rx_filter(vf);
788	queue_work(vfdi_workqueue, &nic_data->peer_work);
789
790	return VFDI_RC_SUCCESS;
791}
792
793static int efx_vfdi_remove_all_filters(struct siena_vf *vf)
794{
795	struct efx_nic *efx = vf->efx;
796	struct siena_nic_data *nic_data = efx->nic_data;
797
798	vf->rx_filtering = false;
799	efx_siena_sriov_reset_rx_filter(vf);
800	queue_work(vfdi_workqueue, &nic_data->peer_work);
801
802	return VFDI_RC_SUCCESS;
803}
804
805static int efx_vfdi_set_status_page(struct siena_vf *vf)
806{
807	struct efx_nic *efx = vf->efx;
808	struct siena_nic_data *nic_data = efx->nic_data;
809	struct vfdi_req *req = vf->buf.addr;
810	u64 page_count = req->u.set_status_page.peer_page_count;
811	u64 max_page_count =
812		(EFX_PAGE_SIZE -
813		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
814		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
815
816	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
817		if (net_ratelimit())
818			netif_err(efx, hw, efx->net_dev,
819				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
820				  vf->pci_name);
821		return VFDI_RC_EINVAL;
822	}
823
824	mutex_lock(&nic_data->local_lock);
825	mutex_lock(&vf->status_lock);
826	vf->status_addr = req->u.set_status_page.dma_addr;
827
828	kfree(vf->peer_page_addrs);
829	vf->peer_page_addrs = NULL;
830	vf->peer_page_count = 0;
831
832	if (page_count) {
833		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
834					      GFP_KERNEL);
835		if (vf->peer_page_addrs) {
836			memcpy(vf->peer_page_addrs,
837			       req->u.set_status_page.peer_page_addr,
838			       page_count * sizeof(u64));
839			vf->peer_page_count = page_count;
840		}
841	}
842
843	__efx_siena_sriov_push_vf_status(vf);
844	mutex_unlock(&vf->status_lock);
845	mutex_unlock(&nic_data->local_lock);
846
847	return VFDI_RC_SUCCESS;
848}
849
850static int efx_vfdi_clear_status_page(struct siena_vf *vf)
851{
852	mutex_lock(&vf->status_lock);
853	vf->status_addr = 0;
854	mutex_unlock(&vf->status_lock);
855
856	return VFDI_RC_SUCCESS;
857}
858
859typedef int (*efx_vfdi_op_t)(struct siena_vf *vf);
860
861static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
862	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
863	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
864	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
865	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
866	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
867	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
868	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
869	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
870};
871
872static void efx_siena_sriov_vfdi(struct work_struct *work)
873{
874	struct siena_vf *vf = container_of(work, struct siena_vf, req);
875	struct efx_nic *efx = vf->efx;
876	struct vfdi_req *req = vf->buf.addr;
877	struct efx_memcpy_req copy[2];
878	int rc;
879
880	/* Copy this page into the local address space */
881	memset(copy, '\0', sizeof(copy));
882	copy[0].from_rid = vf->pci_rid;
883	copy[0].from_addr = vf->req_addr;
884	copy[0].to_rid = efx->pci_dev->devfn;
885	copy[0].to_addr = vf->buf.dma_addr;
886	copy[0].length = EFX_PAGE_SIZE;
887	rc = efx_siena_sriov_memcpy(efx, copy, 1);
888	if (rc) {
889		/* If we can't get the request, we can't reply to the caller */
890		if (net_ratelimit())
891			netif_err(efx, hw, efx->net_dev,
892				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
893				  vf->pci_name, -rc);
894		vf->busy = false;
895		return;
896	}
897
898	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
899		rc = vfdi_ops[req->op](vf);
900		if (rc == 0) {
901			netif_dbg(efx, hw, efx->net_dev,
902				  "vfdi request %d from %s ok\n",
903				  req->op, vf->pci_name);
904		}
905	} else {
906		netif_dbg(efx, hw, efx->net_dev,
907			  "ERROR: Unrecognised request %d from VF %s addr "
908			  "%llx\n", req->op, vf->pci_name,
909			  (unsigned long long)vf->req_addr);
910		rc = VFDI_RC_EOPNOTSUPP;
911	}
912
913	/* Allow subsequent VF requests */
914	vf->busy = false;
915	smp_wmb();
916
917	/* Respond to the request */
918	req->rc = rc;
919	req->op = VFDI_OP_RESPONSE;
920
921	memset(copy, '\0', sizeof(copy));
922	copy[0].from_buf = &req->rc;
923	copy[0].to_rid = vf->pci_rid;
924	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
925	copy[0].length = sizeof(req->rc);
926	copy[1].from_buf = &req->op;
927	copy[1].to_rid = vf->pci_rid;
928	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
929	copy[1].length = sizeof(req->op);
930
931	(void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
932}
933
934
935
936/* After a reset the event queues inside the guests no longer exist. Fill the
937 * event ring in guest memory with VFDI reset events, then (re-initialise) the
938 * event queue to raise an interrupt. The guest driver will then recover.
939 */
940
941static void efx_siena_sriov_reset_vf(struct siena_vf *vf,
942				     struct efx_buffer *buffer)
943{
944	struct efx_nic *efx = vf->efx;
945	struct efx_memcpy_req copy_req[4];
946	efx_qword_t event;
947	unsigned int pos, count, k, buftbl, abs_evq;
948	efx_oword_t reg;
949	efx_dword_t ptr;
950	int rc;
951
952	BUG_ON(buffer->len != EFX_PAGE_SIZE);
953
954	if (!vf->evq0_count)
955		return;
956	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
957
958	mutex_lock(&vf->status_lock);
959	EFX_POPULATE_QWORD_3(event,
960			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
961			     VFDI_EV_SEQ, vf->msg_seqno,
962			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
963	vf->msg_seqno++;
964	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
965		memcpy(buffer->addr + pos, &event, sizeof(event));
966
967	for (pos = 0; pos < vf->evq0_count; pos += count) {
968		count = min_t(unsigned, vf->evq0_count - pos,
969			      ARRAY_SIZE(copy_req));
970		for (k = 0; k < count; k++) {
971			copy_req[k].from_buf = NULL;
972			copy_req[k].from_rid = efx->pci_dev->devfn;
973			copy_req[k].from_addr = buffer->dma_addr;
974			copy_req[k].to_rid = vf->pci_rid;
975			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
976			copy_req[k].length = EFX_PAGE_SIZE;
977		}
978		rc = efx_siena_sriov_memcpy(efx, copy_req, count);
979		if (rc) {
980			if (net_ratelimit())
981				netif_err(efx, hw, efx->net_dev,
982					  "ERROR: Unable to notify %s of reset"
983					  ": %d\n", vf->pci_name, -rc);
984			break;
985		}
986	}
987
988	/* Reinitialise, arm and trigger evq0 */
989	abs_evq = abs_index(vf, 0);
990	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
991	efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
992
993	EFX_POPULATE_OWORD_3(reg,
994			     FRF_CZ_TIMER_Q_EN, 1,
995			     FRF_CZ_HOST_NOTIFY_MODE, 0,
996			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
997	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
998	EFX_POPULATE_OWORD_3(reg,
999			     FRF_AZ_EVQ_EN, 1,
1000			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
1001			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
1002	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
1003	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
1004	efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
1005
1006	mutex_unlock(&vf->status_lock);
1007}
1008
1009static void efx_siena_sriov_reset_vf_work(struct work_struct *work)
1010{
1011	struct siena_vf *vf = container_of(work, struct siena_vf, req);
1012	struct efx_nic *efx = vf->efx;
1013	struct efx_buffer buf;
1014
1015	if (!efx_siena_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1016		efx_siena_sriov_reset_vf(vf, &buf);
1017		efx_siena_free_buffer(efx, &buf);
1018	}
1019}
1020
1021static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx)
1022{
1023	netif_err(efx, drv, efx->net_dev,
1024		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
1025		  "vector. IOV disabled\n");
1026	efx->vf_count = 0;
1027}
1028
1029static int efx_siena_sriov_probe_channel(struct efx_channel *channel)
1030{
1031	struct siena_nic_data *nic_data = channel->efx->nic_data;
1032	nic_data->vfdi_channel = channel;
1033
1034	return 0;
1035}
1036
1037static void
1038efx_siena_sriov_get_channel_name(struct efx_channel *channel,
1039				 char *buf, size_t len)
1040{
1041	snprintf(buf, len, "%s-iov", channel->efx->name);
1042}
1043
1044static const struct efx_channel_type efx_siena_sriov_channel_type = {
1045	.handle_no_channel	= efx_siena_sriov_handle_no_channel,
1046	.pre_probe		= efx_siena_sriov_probe_channel,
1047	.post_remove		= efx_siena_channel_dummy_op_void,
1048	.get_name		= efx_siena_sriov_get_channel_name,
1049	/* no copy operation; channel must not be reallocated */
1050	.keep_eventq		= true,
1051};
1052
1053void efx_siena_sriov_probe(struct efx_nic *efx)
1054{
1055	unsigned count;
1056
1057	if (!max_vfs)
1058		return;
1059
1060	if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count)) {
1061		pci_info(efx->pci_dev, "no SR-IOV VFs probed\n");
1062		return;
1063	}
1064	if (count > 0 && count > max_vfs)
1065		count = max_vfs;
1066
1067	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1068	efx->vf_count = count;
1069
1070	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type;
1071}
1072
1073/* Copy the list of individual addresses into the vfdi_status.peers
1074 * array and auxiliary pages, protected by %local_lock. Drop that lock
1075 * and then broadcast the address list to every VF.
1076 */
1077static void efx_siena_sriov_peer_work(struct work_struct *data)
1078{
1079	struct siena_nic_data *nic_data = container_of(data,
1080						       struct siena_nic_data,
1081						       peer_work);
1082	struct efx_nic *efx = nic_data->efx;
1083	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1084	struct siena_vf *vf;
1085	struct efx_local_addr *local_addr;
1086	struct vfdi_endpoint *peer;
1087	struct efx_endpoint_page *epp;
1088	struct list_head pages;
1089	unsigned int peer_space;
1090	unsigned int peer_count;
1091	unsigned int pos;
1092
1093	mutex_lock(&nic_data->local_lock);
1094
1095	/* Move the existing peer pages off %local_page_list */
1096	INIT_LIST_HEAD(&pages);
1097	list_splice_tail_init(&nic_data->local_page_list, &pages);
1098
1099	/* Populate the VF addresses starting from entry 1 (entry 0 is
1100	 * the PF address)
1101	 */
1102	peer = vfdi_status->peers + 1;
1103	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1104	peer_count = 1;
1105	for (pos = 0; pos < efx->vf_count; ++pos) {
1106		vf = nic_data->vf + pos;
1107
1108		mutex_lock(&vf->status_lock);
1109		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1110			*peer++ = vf->addr;
1111			++peer_count;
1112			--peer_space;
1113			BUG_ON(peer_space == 0);
1114		}
1115		mutex_unlock(&vf->status_lock);
1116	}
1117
1118	/* Fill the remaining addresses */
1119	list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
1120		ether_addr_copy(peer->mac_addr, local_addr->addr);
1121		peer->tci = 0;
1122		++peer;
1123		++peer_count;
1124		if (--peer_space == 0) {
1125			if (list_empty(&pages)) {
1126				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1127				if (!epp)
1128					break;
1129				epp->ptr = dma_alloc_coherent(
1130					&efx->pci_dev->dev, EFX_PAGE_SIZE,
1131					&epp->addr, GFP_KERNEL);
1132				if (!epp->ptr) {
1133					kfree(epp);
1134					break;
1135				}
1136			} else {
1137				epp = list_first_entry(
1138					&pages, struct efx_endpoint_page, link);
1139				list_del(&epp->link);
1140			}
1141
1142			list_add_tail(&epp->link, &nic_data->local_page_list);
1143			peer = (struct vfdi_endpoint *)epp->ptr;
1144			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1145		}
1146	}
1147	vfdi_status->peer_count = peer_count;
1148	mutex_unlock(&nic_data->local_lock);
1149
1150	/* Free any now unused endpoint pages */
1151	while (!list_empty(&pages)) {
1152		epp = list_first_entry(
1153			&pages, struct efx_endpoint_page, link);
1154		list_del(&epp->link);
1155		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1156				  epp->ptr, epp->addr);
1157		kfree(epp);
1158	}
1159
1160	/* Finally, push the pages */
1161	for (pos = 0; pos < efx->vf_count; ++pos) {
1162		vf = nic_data->vf + pos;
1163
1164		mutex_lock(&vf->status_lock);
1165		if (vf->status_addr)
1166			__efx_siena_sriov_push_vf_status(vf);
1167		mutex_unlock(&vf->status_lock);
1168	}
1169}
1170
1171static void efx_siena_sriov_free_local(struct efx_nic *efx)
1172{
1173	struct siena_nic_data *nic_data = efx->nic_data;
1174	struct efx_local_addr *local_addr;
1175	struct efx_endpoint_page *epp;
1176
1177	while (!list_empty(&nic_data->local_addr_list)) {
1178		local_addr = list_first_entry(&nic_data->local_addr_list,
1179					      struct efx_local_addr, link);
1180		list_del(&local_addr->link);
1181		kfree(local_addr);
1182	}
1183
1184	while (!list_empty(&nic_data->local_page_list)) {
1185		epp = list_first_entry(&nic_data->local_page_list,
1186				       struct efx_endpoint_page, link);
1187		list_del(&epp->link);
1188		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1189				  epp->ptr, epp->addr);
1190		kfree(epp);
1191	}
1192}
1193
1194static int efx_siena_sriov_vf_alloc(struct efx_nic *efx)
1195{
1196	unsigned index;
1197	struct siena_vf *vf;
1198	struct siena_nic_data *nic_data = efx->nic_data;
1199
1200	nic_data->vf = kcalloc(efx->vf_count, sizeof(*nic_data->vf),
1201			       GFP_KERNEL);
1202	if (!nic_data->vf)
1203		return -ENOMEM;
1204
1205	for (index = 0; index < efx->vf_count; ++index) {
1206		vf = nic_data->vf + index;
1207
1208		vf->efx = efx;
1209		vf->index = index;
1210		vf->rx_filter_id = -1;
1211		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1212		vf->tx_filter_id = -1;
1213		INIT_WORK(&vf->req, efx_siena_sriov_vfdi);
1214		INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work);
1215		init_waitqueue_head(&vf->flush_waitq);
1216		mutex_init(&vf->status_lock);
1217		mutex_init(&vf->txq_lock);
1218	}
1219
1220	return 0;
1221}
1222
1223static void efx_siena_sriov_vfs_fini(struct efx_nic *efx)
1224{
1225	struct siena_nic_data *nic_data = efx->nic_data;
1226	struct siena_vf *vf;
1227	unsigned int pos;
1228
1229	for (pos = 0; pos < efx->vf_count; ++pos) {
1230		vf = nic_data->vf + pos;
1231
1232		efx_siena_free_buffer(efx, &vf->buf);
1233		kfree(vf->peer_page_addrs);
1234		vf->peer_page_addrs = NULL;
1235		vf->peer_page_count = 0;
1236
1237		vf->evq0_count = 0;
1238	}
1239}
1240
1241static int efx_siena_sriov_vfs_init(struct efx_nic *efx)
1242{
1243	struct pci_dev *pci_dev = efx->pci_dev;
1244	struct siena_nic_data *nic_data = efx->nic_data;
1245	unsigned index, devfn, sriov, buftbl_base;
1246	u16 offset, stride;
1247	struct siena_vf *vf;
1248	int rc;
1249
1250	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1251	if (!sriov)
1252		return -ENOENT;
1253
1254	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1255	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1256
1257	buftbl_base = nic_data->vf_buftbl_base;
1258	devfn = pci_dev->devfn + offset;
1259	for (index = 0; index < efx->vf_count; ++index) {
1260		vf = nic_data->vf + index;
1261
1262		/* Reserve buffer entries */
1263		vf->buftbl_base = buftbl_base;
1264		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1265
1266		vf->pci_rid = devfn;
1267		snprintf(vf->pci_name, sizeof(vf->pci_name),
1268			 "%04x:%02x:%02x.%d",
1269			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1270			 PCI_SLOT(devfn), PCI_FUNC(devfn));
1271
1272		rc = efx_siena_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
1273					    GFP_KERNEL);
1274		if (rc)
1275			goto fail;
1276
1277		devfn += stride;
1278	}
1279
1280	return 0;
1281
1282fail:
1283	efx_siena_sriov_vfs_fini(efx);
1284	return rc;
1285}
1286
1287int efx_siena_sriov_init(struct efx_nic *efx)
1288{
1289	struct net_device *net_dev = efx->net_dev;
1290	struct siena_nic_data *nic_data = efx->nic_data;
1291	struct vfdi_status *vfdi_status;
1292	int rc;
1293
1294	/* Ensure there's room for vf_channel */
1295	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1296	/* Ensure that VI_BASE is aligned on VI_SCALE */
1297	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1298
1299	if (efx->vf_count == 0)
1300		return 0;
1301
1302	rc = efx_siena_sriov_cmd(efx, true, NULL, NULL);
1303	if (rc)
1304		goto fail_cmd;
1305
1306	rc = efx_siena_alloc_buffer(efx, &nic_data->vfdi_status,
1307				    sizeof(*vfdi_status), GFP_KERNEL);
1308	if (rc)
1309		goto fail_status;
1310	vfdi_status = nic_data->vfdi_status.addr;
1311	memset(vfdi_status, 0, sizeof(*vfdi_status));
1312	vfdi_status->version = 1;
1313	vfdi_status->length = sizeof(*vfdi_status);
1314	vfdi_status->max_tx_channels = vf_max_tx_channels;
1315	vfdi_status->vi_scale = efx->vi_scale;
1316	vfdi_status->rss_rxq_count = efx->rss_spread;
1317	vfdi_status->peer_count = 1 + efx->vf_count;
1318	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1319
1320	rc = efx_siena_sriov_vf_alloc(efx);
1321	if (rc)
1322		goto fail_alloc;
1323
1324	mutex_init(&nic_data->local_lock);
1325	INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work);
1326	INIT_LIST_HEAD(&nic_data->local_addr_list);
1327	INIT_LIST_HEAD(&nic_data->local_page_list);
1328
1329	rc = efx_siena_sriov_vfs_init(efx);
1330	if (rc)
1331		goto fail_vfs;
1332
1333	rtnl_lock();
1334	ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
1335	efx->vf_init_count = efx->vf_count;
1336	rtnl_unlock();
1337
1338	efx_siena_sriov_usrev(efx, true);
1339
1340	/* At this point we must be ready to accept VFDI requests */
1341
1342	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1343	if (rc)
1344		goto fail_pci;
1345
1346	netif_info(efx, probe, net_dev,
1347		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
1348		   efx->vf_count, efx_vf_size(efx));
1349	return 0;
1350
1351fail_pci:
1352	efx_siena_sriov_usrev(efx, false);
1353	rtnl_lock();
1354	efx->vf_init_count = 0;
1355	rtnl_unlock();
1356	efx_siena_sriov_vfs_fini(efx);
1357fail_vfs:
1358	cancel_work_sync(&nic_data->peer_work);
1359	efx_siena_sriov_free_local(efx);
1360	kfree(nic_data->vf);
1361fail_alloc:
1362	efx_siena_free_buffer(efx, &nic_data->vfdi_status);
1363fail_status:
1364	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1365fail_cmd:
1366	return rc;
1367}
1368
1369void efx_siena_sriov_fini(struct efx_nic *efx)
1370{
1371	struct siena_vf *vf;
1372	unsigned int pos;
1373	struct siena_nic_data *nic_data = efx->nic_data;
1374
1375	if (efx->vf_init_count == 0)
1376		return;
1377
1378	/* Disable all interfaces to reconfiguration */
1379	BUG_ON(nic_data->vfdi_channel->enabled);
1380	efx_siena_sriov_usrev(efx, false);
1381	rtnl_lock();
1382	efx->vf_init_count = 0;
1383	rtnl_unlock();
1384
1385	/* Flush all reconfiguration work */
1386	for (pos = 0; pos < efx->vf_count; ++pos) {
1387		vf = nic_data->vf + pos;
1388		cancel_work_sync(&vf->req);
1389		cancel_work_sync(&vf->reset_work);
1390	}
1391	cancel_work_sync(&nic_data->peer_work);
1392
1393	pci_disable_sriov(efx->pci_dev);
1394
1395	/* Tear down back-end state */
1396	efx_siena_sriov_vfs_fini(efx);
1397	efx_siena_sriov_free_local(efx);
1398	kfree(nic_data->vf);
1399	efx_siena_free_buffer(efx, &nic_data->vfdi_status);
1400	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1401}
1402
1403void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1404{
1405	struct efx_nic *efx = channel->efx;
1406	struct siena_vf *vf;
1407	unsigned qid, seq, type, data;
1408
1409	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1410
1411	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1412	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1413	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1414	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1415	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1416
1417	netif_vdbg(efx, hw, efx->net_dev,
1418		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1419		   qid, seq, type, data);
1420
1421	if (map_vi_index(efx, qid, &vf, NULL))
1422		return;
1423	if (vf->busy)
1424		goto error;
1425
1426	if (type == VFDI_EV_TYPE_REQ_WORD0) {
1427		/* Resynchronise */
1428		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1429		vf->req_seqno = seq + 1;
1430		vf->req_addr = 0;
1431	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1432		goto error;
1433
1434	switch (vf->req_type) {
1435	case VFDI_EV_TYPE_REQ_WORD0:
1436	case VFDI_EV_TYPE_REQ_WORD1:
1437	case VFDI_EV_TYPE_REQ_WORD2:
1438		vf->req_addr |= (u64)data << (vf->req_type << 4);
1439		++vf->req_type;
1440		return;
1441
1442	case VFDI_EV_TYPE_REQ_WORD3:
1443		vf->req_addr |= (u64)data << 48;
1444		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1445		vf->busy = true;
1446		queue_work(vfdi_workqueue, &vf->req);
1447		return;
1448	}
1449
1450error:
1451	if (net_ratelimit())
1452		netif_err(efx, hw, efx->net_dev,
1453			  "ERROR: Screaming VFDI request from %s\n",
1454			  vf->pci_name);
1455	/* Reset the request and sequence number */
1456	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1457	vf->req_seqno = seq + 1;
1458}
1459
1460void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1461{
1462	struct siena_nic_data *nic_data = efx->nic_data;
1463	struct siena_vf *vf;
1464
1465	if (vf_i > efx->vf_init_count)
1466		return;
1467	vf = nic_data->vf + vf_i;
1468	netif_info(efx, hw, efx->net_dev,
1469		   "FLR on VF %s\n", vf->pci_name);
1470
1471	vf->status_addr = 0;
1472	efx_vfdi_remove_all_filters(vf);
1473	efx_vfdi_flush_clear(vf);
1474
1475	vf->evq0_count = 0;
1476}
1477
1478int efx_siena_sriov_mac_address_changed(struct efx_nic *efx)
1479{
1480	struct siena_nic_data *nic_data = efx->nic_data;
1481	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1482
1483	if (!efx->vf_init_count)
1484		return 0;
1485	ether_addr_copy(vfdi_status->peers[0].mac_addr,
1486			efx->net_dev->dev_addr);
1487	queue_work(vfdi_workqueue, &nic_data->peer_work);
1488
1489	return 0;
1490}
1491
1492void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1493{
1494	struct siena_vf *vf;
1495	unsigned queue, qid;
1496
1497	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
1498	if (map_vi_index(efx, queue, &vf, &qid))
1499		return;
1500	/* Ignore flush completions triggered by an FLR */
1501	if (!test_bit(qid, vf->txq_mask))
1502		return;
1503
1504	__clear_bit(qid, vf->txq_mask);
1505	--vf->txq_count;
1506
1507	if (efx_vfdi_flush_wake(vf))
1508		wake_up(&vf->flush_waitq);
1509}
1510
1511void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1512{
1513	struct siena_vf *vf;
1514	unsigned ev_failed, queue, qid;
1515
1516	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1517	ev_failed = EFX_QWORD_FIELD(*event,
1518				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1519	if (map_vi_index(efx, queue, &vf, &qid))
1520		return;
1521	if (!test_bit(qid, vf->rxq_mask))
1522		return;
1523
1524	if (ev_failed) {
1525		set_bit(qid, vf->rxq_retry_mask);
1526		atomic_inc(&vf->rxq_retry_count);
1527	} else {
1528		__clear_bit(qid, vf->rxq_mask);
1529		--vf->rxq_count;
1530	}
1531	if (efx_vfdi_flush_wake(vf))
1532		wake_up(&vf->flush_waitq);
1533}
1534
1535/* Called from napi. Schedule the reset work item */
1536void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1537{
1538	struct siena_vf *vf;
1539	unsigned int rel;
1540
1541	if (map_vi_index(efx, dmaq, &vf, &rel))
1542		return;
1543
1544	if (net_ratelimit())
1545		netif_err(efx, hw, efx->net_dev,
1546			  "VF %d DMA Q %d reports descriptor fetch error.\n",
1547			  vf->index, rel);
1548	queue_work(vfdi_workqueue, &vf->reset_work);
1549}
1550
1551/* Reset all VFs */
1552void efx_siena_sriov_reset(struct efx_nic *efx)
1553{
1554	struct siena_nic_data *nic_data = efx->nic_data;
1555	unsigned int vf_i;
1556	struct efx_buffer buf;
1557	struct siena_vf *vf;
1558
1559	ASSERT_RTNL();
1560
1561	if (efx->vf_init_count == 0)
1562		return;
1563
1564	efx_siena_sriov_usrev(efx, true);
1565	(void)efx_siena_sriov_cmd(efx, true, NULL, NULL);
1566
1567	if (efx_siena_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1568		return;
1569
1570	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1571		vf = nic_data->vf + vf_i;
1572		efx_siena_sriov_reset_vf(vf, &buf);
1573	}
1574
1575	efx_siena_free_buffer(efx, &buf);
1576}
1577
1578int efx_init_sriov(void)
1579{
1580	/* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and
1581	 * efx_siena_sriov_peer_work() spend almost all their time sleeping for
1582	 * MCDI to complete anyway
1583	 */
1584	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1585	if (!vfdi_workqueue)
1586		return -ENOMEM;
1587	return 0;
1588}
1589
1590void efx_fini_sriov(void)
1591{
1592	destroy_workqueue(vfdi_workqueue);
1593}
1594
1595int efx_siena_sriov_set_vf_mac(struct efx_nic *efx, int vf_i, const u8 *mac)
1596{
1597	struct siena_nic_data *nic_data = efx->nic_data;
1598	struct siena_vf *vf;
1599
1600	if (vf_i >= efx->vf_init_count)
1601		return -EINVAL;
1602	vf = nic_data->vf + vf_i;
1603
1604	mutex_lock(&vf->status_lock);
1605	ether_addr_copy(vf->addr.mac_addr, mac);
1606	__efx_siena_sriov_update_vf_addr(vf);
1607	mutex_unlock(&vf->status_lock);
1608
1609	return 0;
1610}
1611
1612int efx_siena_sriov_set_vf_vlan(struct efx_nic *efx, int vf_i,
1613				u16 vlan, u8 qos)
1614{
1615	struct siena_nic_data *nic_data = efx->nic_data;
1616	struct siena_vf *vf;
1617	u16 tci;
1618
1619	if (vf_i >= efx->vf_init_count)
1620		return -EINVAL;
1621	vf = nic_data->vf + vf_i;
1622
1623	mutex_lock(&vf->status_lock);
1624	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1625	vf->addr.tci = htons(tci);
1626	__efx_siena_sriov_update_vf_addr(vf);
1627	mutex_unlock(&vf->status_lock);
1628
1629	return 0;
1630}
1631
1632int efx_siena_sriov_set_vf_spoofchk(struct efx_nic *efx, int vf_i,
1633				    bool spoofchk)
1634{
1635	struct siena_nic_data *nic_data = efx->nic_data;
1636	struct siena_vf *vf;
1637	int rc;
1638
1639	if (vf_i >= efx->vf_init_count)
1640		return -EINVAL;
1641	vf = nic_data->vf + vf_i;
1642
1643	mutex_lock(&vf->txq_lock);
1644	if (vf->txq_count == 0) {
1645		vf->tx_filter_mode =
1646			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1647		rc = 0;
1648	} else {
1649		/* This cannot be changed while TX queues are running */
1650		rc = -EBUSY;
1651	}
1652	mutex_unlock(&vf->txq_lock);
1653	return rc;
1654}
1655
1656int efx_siena_sriov_get_vf_config(struct efx_nic *efx, int vf_i,
1657				  struct ifla_vf_info *ivi)
1658{
1659	struct siena_nic_data *nic_data = efx->nic_data;
1660	struct siena_vf *vf;
1661	u16 tci;
1662
1663	if (vf_i >= efx->vf_init_count)
1664		return -EINVAL;
1665	vf = nic_data->vf + vf_i;
1666
1667	ivi->vf = vf_i;
1668	ether_addr_copy(ivi->mac, vf->addr.mac_addr);
1669	ivi->max_tx_rate = 0;
1670	ivi->min_tx_rate = 0;
1671	tci = ntohs(vf->addr.tci);
1672	ivi->vlan = tci & VLAN_VID_MASK;
1673	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1674	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1675
1676	return 0;
1677}
1678
1679bool efx_siena_sriov_wanted(struct efx_nic *efx)
1680{
1681	return efx->vf_count != 0;
1682}
1683
1684int efx_siena_sriov_configure(struct efx_nic *efx, int num_vfs)
1685{
1686	return 0;
1687}
1688