1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
5 */
6
7#include <linux/delay.h>
8#include <linux/moduleparam.h>
9#include <linux/atomic.h>
10#include "net_driver.h"
11#include "nic.h"
12#include "io.h"
13#include "farch_regs.h"
14#include "mcdi_pcol.h"
15
16/**************************************************************************
17 *
18 * Management-Controller-to-Driver Interface
19 *
20 **************************************************************************
21 */
22
23#define MCDI_RPC_TIMEOUT       (10 * HZ)
24
25/* A reboot/assertion causes the MCDI status word to be set after the
26 * command word is set or a REBOOT event is sent. If we notice a reboot
27 * via these mechanisms then wait 250ms for the status word to be set.
28 */
29#define MCDI_STATUS_DELAY_US		100
30#define MCDI_STATUS_DELAY_COUNT		2500
31#define MCDI_STATUS_SLEEP_MS						\
32	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
33
34#define SEQ_MASK							\
35	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
36
37struct efx_mcdi_async_param {
38	struct list_head list;
39	unsigned int cmd;
40	size_t inlen;
41	size_t outlen;
42	bool quiet;
43	efx_mcdi_async_completer *complete;
44	unsigned long cookie;
45	/* followed by request/response buffer */
46};
47
48static void efx_mcdi_timeout_async(struct timer_list *t);
49static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
50			       bool *was_attached_out);
51static bool efx_mcdi_poll_once(struct efx_nic *efx);
52static void efx_mcdi_abandon(struct efx_nic *efx);
53
54#ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
55static bool efx_siena_mcdi_logging_default;
56module_param_named(mcdi_logging_default, efx_siena_mcdi_logging_default,
57		   bool, 0644);
58MODULE_PARM_DESC(mcdi_logging_default,
59		 "Enable MCDI logging on newly-probed functions");
60#endif
61
62int efx_siena_mcdi_init(struct efx_nic *efx)
63{
64	struct efx_mcdi_iface *mcdi;
65	bool already_attached;
66	int rc = -ENOMEM;
67
68	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
69	if (!efx->mcdi)
70		goto fail;
71
72	mcdi = efx_mcdi(efx);
73	mcdi->efx = efx;
74#ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
75	/* consuming code assumes buffer is page-sized */
76	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
77	if (!mcdi->logging_buffer)
78		goto fail1;
79	mcdi->logging_enabled = efx_siena_mcdi_logging_default;
80#endif
81	init_waitqueue_head(&mcdi->wq);
82	init_waitqueue_head(&mcdi->proxy_rx_wq);
83	spin_lock_init(&mcdi->iface_lock);
84	mcdi->state = MCDI_STATE_QUIESCENT;
85	mcdi->mode = MCDI_MODE_POLL;
86	spin_lock_init(&mcdi->async_lock);
87	INIT_LIST_HEAD(&mcdi->async_list);
88	timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
89
90	(void)efx_siena_mcdi_poll_reboot(efx);
91	mcdi->new_epoch = true;
92
93	/* Recover from a failed assertion before probing */
94	rc = efx_siena_mcdi_handle_assertion(efx);
95	if (rc)
96		goto fail2;
97
98	/* Let the MC (and BMC, if this is a LOM) know that the driver
99	 * is loaded. We should do this before we reset the NIC.
100	 */
101	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
102	if (rc) {
103		netif_err(efx, probe, efx->net_dev,
104			  "Unable to register driver with MCPU\n");
105		goto fail2;
106	}
107	if (already_attached)
108		/* Not a fatal error */
109		netif_err(efx, probe, efx->net_dev,
110			  "Host already registered with MCPU\n");
111
112	if (efx->mcdi->fn_flags &
113	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
114		efx->primary = efx;
115
116	return 0;
117fail2:
118#ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
119	free_page((unsigned long)mcdi->logging_buffer);
120fail1:
121#endif
122	kfree(efx->mcdi);
123	efx->mcdi = NULL;
124fail:
125	return rc;
126}
127
128void efx_siena_mcdi_detach(struct efx_nic *efx)
129{
130	if (!efx->mcdi)
131		return;
132
133	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
134
135	/* Relinquish the device (back to the BMC, if this is a LOM) */
136	efx_mcdi_drv_attach(efx, false, NULL);
137}
138
139void efx_siena_mcdi_fini(struct efx_nic *efx)
140{
141	if (!efx->mcdi)
142		return;
143
144#ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
145	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
146#endif
147
148	kfree(efx->mcdi);
149}
150
151static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
152				  const efx_dword_t *inbuf, size_t inlen)
153{
154	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
155#ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
156	char *buf = mcdi->logging_buffer; /* page-sized */
157#endif
158	efx_dword_t hdr[2];
159	size_t hdr_len;
160	u32 xflags, seqno;
161
162	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
163
164	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
165	spin_lock_bh(&mcdi->iface_lock);
166	++mcdi->seqno;
167	seqno = mcdi->seqno & SEQ_MASK;
168	spin_unlock_bh(&mcdi->iface_lock);
169
170	xflags = 0;
171	if (mcdi->mode == MCDI_MODE_EVENTS)
172		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
173
174	if (efx->type->mcdi_max_ver == 1) {
175		/* MCDI v1 */
176		EFX_POPULATE_DWORD_7(hdr[0],
177				     MCDI_HEADER_RESPONSE, 0,
178				     MCDI_HEADER_RESYNC, 1,
179				     MCDI_HEADER_CODE, cmd,
180				     MCDI_HEADER_DATALEN, inlen,
181				     MCDI_HEADER_SEQ, seqno,
182				     MCDI_HEADER_XFLAGS, xflags,
183				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
184		hdr_len = 4;
185	} else {
186		/* MCDI v2 */
187		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
188		EFX_POPULATE_DWORD_7(hdr[0],
189				     MCDI_HEADER_RESPONSE, 0,
190				     MCDI_HEADER_RESYNC, 1,
191				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
192				     MCDI_HEADER_DATALEN, 0,
193				     MCDI_HEADER_SEQ, seqno,
194				     MCDI_HEADER_XFLAGS, xflags,
195				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
196		EFX_POPULATE_DWORD_2(hdr[1],
197				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
198				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
199		hdr_len = 8;
200	}
201
202#ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
203	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
204		int bytes = 0;
205		int i;
206		/* Lengths should always be a whole number of dwords, so scream
207		 * if they're not.
208		 */
209		WARN_ON_ONCE(hdr_len % 4);
210		WARN_ON_ONCE(inlen % 4);
211
212		/* We own the logging buffer, as only one MCDI can be in
213		 * progress on a NIC at any one time.  So no need for locking.
214		 */
215		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
216			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
217					   " %08x",
218					   le32_to_cpu(hdr[i].u32[0]));
219
220		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
221			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
222					   " %08x",
223					   le32_to_cpu(inbuf[i].u32[0]));
224
225		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
226	}
227#endif
228
229	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
230
231	mcdi->new_epoch = false;
232}
233
234static int efx_mcdi_errno(unsigned int mcdi_err)
235{
236	switch (mcdi_err) {
237	case 0:
238		return 0;
239#define TRANSLATE_ERROR(name)					\
240	case MC_CMD_ERR_ ## name:				\
241		return -name;
242	TRANSLATE_ERROR(EPERM);
243	TRANSLATE_ERROR(ENOENT);
244	TRANSLATE_ERROR(EINTR);
245	TRANSLATE_ERROR(EAGAIN);
246	TRANSLATE_ERROR(EACCES);
247	TRANSLATE_ERROR(EBUSY);
248	TRANSLATE_ERROR(EINVAL);
249	TRANSLATE_ERROR(EDEADLK);
250	TRANSLATE_ERROR(ENOSYS);
251	TRANSLATE_ERROR(ETIME);
252	TRANSLATE_ERROR(EALREADY);
253	TRANSLATE_ERROR(ENOSPC);
254#undef TRANSLATE_ERROR
255	case MC_CMD_ERR_ENOTSUP:
256		return -EOPNOTSUPP;
257	case MC_CMD_ERR_ALLOC_FAIL:
258		return -ENOBUFS;
259	case MC_CMD_ERR_MAC_EXIST:
260		return -EADDRINUSE;
261	default:
262		return -EPROTO;
263	}
264}
265
266static void efx_mcdi_read_response_header(struct efx_nic *efx)
267{
268	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
269	unsigned int respseq, respcmd, error;
270#ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
271	char *buf = mcdi->logging_buffer; /* page-sized */
272#endif
273	efx_dword_t hdr;
274
275	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
276	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
277	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
278	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
279
280	if (respcmd != MC_CMD_V2_EXTN) {
281		mcdi->resp_hdr_len = 4;
282		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
283	} else {
284		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
285		mcdi->resp_hdr_len = 8;
286		mcdi->resp_data_len =
287			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
288	}
289
290#ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
291	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
292		size_t hdr_len, data_len;
293		int bytes = 0;
294		int i;
295
296		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
297		hdr_len = mcdi->resp_hdr_len / 4;
298		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
299		 * to dword size, and the MCDI buffer is always dword size
300		 */
301		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
302
303		/* We own the logging buffer, as only one MCDI can be in
304		 * progress on a NIC at any one time.  So no need for locking.
305		 */
306		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
307			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
308			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
309					   " %08x", le32_to_cpu(hdr.u32[0]));
310		}
311
312		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
313			efx->type->mcdi_read_response(efx, &hdr,
314					mcdi->resp_hdr_len + (i * 4), 4);
315			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
316					   " %08x", le32_to_cpu(hdr.u32[0]));
317		}
318
319		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
320	}
321#endif
322
323	mcdi->resprc_raw = 0;
324	if (error && mcdi->resp_data_len == 0) {
325		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
326		mcdi->resprc = -EIO;
327	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
328		netif_err(efx, hw, efx->net_dev,
329			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
330			  respseq, mcdi->seqno);
331		mcdi->resprc = -EIO;
332	} else if (error) {
333		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
334		mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
335		mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
336	} else {
337		mcdi->resprc = 0;
338	}
339}
340
341static bool efx_mcdi_poll_once(struct efx_nic *efx)
342{
343	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
344
345	rmb();
346	if (!efx->type->mcdi_poll_response(efx))
347		return false;
348
349	spin_lock_bh(&mcdi->iface_lock);
350	efx_mcdi_read_response_header(efx);
351	spin_unlock_bh(&mcdi->iface_lock);
352
353	return true;
354}
355
356static int efx_mcdi_poll(struct efx_nic *efx)
357{
358	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
359	unsigned long time, finish;
360	unsigned int spins;
361	int rc;
362
363	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
364	rc = efx_siena_mcdi_poll_reboot(efx);
365	if (rc) {
366		spin_lock_bh(&mcdi->iface_lock);
367		mcdi->resprc = rc;
368		mcdi->resp_hdr_len = 0;
369		mcdi->resp_data_len = 0;
370		spin_unlock_bh(&mcdi->iface_lock);
371		return 0;
372	}
373
374	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
375	 * because generally mcdi responses are fast. After that, back off
376	 * and poll once a jiffy (approximately)
377	 */
378	spins = USER_TICK_USEC;
379	finish = jiffies + MCDI_RPC_TIMEOUT;
380
381	while (1) {
382		if (spins != 0) {
383			--spins;
384			udelay(1);
385		} else {
386			schedule_timeout_uninterruptible(1);
387		}
388
389		time = jiffies;
390
391		if (efx_mcdi_poll_once(efx))
392			break;
393
394		if (time_after(time, finish))
395			return -ETIMEDOUT;
396	}
397
398	/* Return rc=0 like wait_event_timeout() */
399	return 0;
400}
401
402/* Test and clear MC-rebooted flag for this port/function; reset
403 * software state as necessary.
404 */
405int efx_siena_mcdi_poll_reboot(struct efx_nic *efx)
406{
407	if (!efx->mcdi)
408		return 0;
409
410	return efx->type->mcdi_poll_reboot(efx);
411}
412
413static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
414{
415	return cmpxchg(&mcdi->state,
416		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
417		MCDI_STATE_QUIESCENT;
418}
419
420static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
421{
422	/* Wait until the interface becomes QUIESCENT and we win the race
423	 * to mark it RUNNING_SYNC.
424	 */
425	wait_event(mcdi->wq,
426		   cmpxchg(&mcdi->state,
427			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
428		   MCDI_STATE_QUIESCENT);
429}
430
431static int efx_mcdi_await_completion(struct efx_nic *efx)
432{
433	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
434
435	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
436			       MCDI_RPC_TIMEOUT) == 0)
437		return -ETIMEDOUT;
438
439	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
440	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
441	 * completed the request first, then we'll just end up completing the
442	 * request again, which is safe.
443	 *
444	 * We need an smp_rmb() to synchronise with efx_siena_mcdi_mode_poll(), which
445	 * wait_event_timeout() implicitly provides.
446	 */
447	if (mcdi->mode == MCDI_MODE_POLL)
448		return efx_mcdi_poll(efx);
449
450	return 0;
451}
452
453/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
454 * requester.  Return whether this was done.  Does not take any locks.
455 */
456static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
457{
458	if (cmpxchg(&mcdi->state,
459		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
460	    MCDI_STATE_RUNNING_SYNC) {
461		wake_up(&mcdi->wq);
462		return true;
463	}
464
465	return false;
466}
467
468static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
469{
470	if (mcdi->mode == MCDI_MODE_EVENTS) {
471		struct efx_mcdi_async_param *async;
472		struct efx_nic *efx = mcdi->efx;
473
474		/* Process the asynchronous request queue */
475		spin_lock_bh(&mcdi->async_lock);
476		async = list_first_entry_or_null(
477			&mcdi->async_list, struct efx_mcdi_async_param, list);
478		if (async) {
479			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
480			efx_mcdi_send_request(efx, async->cmd,
481					      (const efx_dword_t *)(async + 1),
482					      async->inlen);
483			mod_timer(&mcdi->async_timer,
484				  jiffies + MCDI_RPC_TIMEOUT);
485		}
486		spin_unlock_bh(&mcdi->async_lock);
487
488		if (async)
489			return;
490	}
491
492	mcdi->state = MCDI_STATE_QUIESCENT;
493	wake_up(&mcdi->wq);
494}
495
496/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
497 * asynchronous completion function, and release the interface.
498 * Return whether this was done.  Must be called in bh-disabled
499 * context.  Will take iface_lock and async_lock.
500 */
501static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
502{
503	struct efx_nic *efx = mcdi->efx;
504	struct efx_mcdi_async_param *async;
505	size_t hdr_len, data_len, err_len;
506	efx_dword_t *outbuf;
507	MCDI_DECLARE_BUF_ERR(errbuf);
508	int rc;
509
510	if (cmpxchg(&mcdi->state,
511		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
512	    MCDI_STATE_RUNNING_ASYNC)
513		return false;
514
515	spin_lock(&mcdi->iface_lock);
516	if (timeout) {
517		/* Ensure that if the completion event arrives later,
518		 * the seqno check in efx_mcdi_ev_cpl() will fail
519		 */
520		++mcdi->seqno;
521		++mcdi->credits;
522		rc = -ETIMEDOUT;
523		hdr_len = 0;
524		data_len = 0;
525	} else {
526		rc = mcdi->resprc;
527		hdr_len = mcdi->resp_hdr_len;
528		data_len = mcdi->resp_data_len;
529	}
530	spin_unlock(&mcdi->iface_lock);
531
532	/* Stop the timer.  In case the timer function is running, we
533	 * must wait for it to return so that there is no possibility
534	 * of it aborting the next request.
535	 */
536	if (!timeout)
537		del_timer_sync(&mcdi->async_timer);
538
539	spin_lock(&mcdi->async_lock);
540	async = list_first_entry(&mcdi->async_list,
541				 struct efx_mcdi_async_param, list);
542	list_del(&async->list);
543	spin_unlock(&mcdi->async_lock);
544
545	outbuf = (efx_dword_t *)(async + 1);
546	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
547				      min(async->outlen, data_len));
548	if (!timeout && rc && !async->quiet) {
549		err_len = min(sizeof(errbuf), data_len);
550		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
551					      sizeof(errbuf));
552		efx_siena_mcdi_display_error(efx, async->cmd, async->inlen,
553					     errbuf, err_len, rc);
554	}
555
556	if (async->complete)
557		async->complete(efx, async->cookie, rc, outbuf,
558				min(async->outlen, data_len));
559	kfree(async);
560
561	efx_mcdi_release(mcdi);
562
563	return true;
564}
565
566static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
567			    unsigned int datalen, unsigned int mcdi_err)
568{
569	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
570	bool wake = false;
571
572	spin_lock(&mcdi->iface_lock);
573
574	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
575		if (mcdi->credits)
576			/* The request has been cancelled */
577			--mcdi->credits;
578		else
579			netif_err(efx, hw, efx->net_dev,
580				  "MC response mismatch tx seq 0x%x rx "
581				  "seq 0x%x\n", seqno, mcdi->seqno);
582	} else {
583		if (efx->type->mcdi_max_ver >= 2) {
584			/* MCDI v2 responses don't fit in an event */
585			efx_mcdi_read_response_header(efx);
586		} else {
587			mcdi->resprc = efx_mcdi_errno(mcdi_err);
588			mcdi->resp_hdr_len = 4;
589			mcdi->resp_data_len = datalen;
590		}
591
592		wake = true;
593	}
594
595	spin_unlock(&mcdi->iface_lock);
596
597	if (wake) {
598		if (!efx_mcdi_complete_async(mcdi, false))
599			(void) efx_mcdi_complete_sync(mcdi);
600
601		/* If the interface isn't RUNNING_ASYNC or
602		 * RUNNING_SYNC then we've received a duplicate
603		 * completion after we've already transitioned back to
604		 * QUIESCENT. [A subsequent invocation would increment
605		 * seqno, so would have failed the seqno check].
606		 */
607	}
608}
609
610static void efx_mcdi_timeout_async(struct timer_list *t)
611{
612	struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
613
614	efx_mcdi_complete_async(mcdi, true);
615}
616
617static int
618efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
619{
620	if (efx->type->mcdi_max_ver < 0 ||
621	     (efx->type->mcdi_max_ver < 2 &&
622	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
623		return -EINVAL;
624
625	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
626	    (efx->type->mcdi_max_ver < 2 &&
627	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
628		return -EMSGSIZE;
629
630	return 0;
631}
632
633static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
634				      size_t hdr_len, size_t data_len,
635				      u32 *proxy_handle)
636{
637	MCDI_DECLARE_BUF_ERR(testbuf);
638	const size_t buflen = sizeof(testbuf);
639
640	if (!proxy_handle || data_len < buflen)
641		return false;
642
643	efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
644	if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
645		*proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
646		return true;
647	}
648
649	return false;
650}
651
652static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
653				size_t inlen,
654				efx_dword_t *outbuf, size_t outlen,
655				size_t *outlen_actual, bool quiet,
656				u32 *proxy_handle, int *raw_rc)
657{
658	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
659	MCDI_DECLARE_BUF_ERR(errbuf);
660	int rc;
661
662	if (mcdi->mode == MCDI_MODE_POLL)
663		rc = efx_mcdi_poll(efx);
664	else
665		rc = efx_mcdi_await_completion(efx);
666
667	if (rc != 0) {
668		netif_err(efx, hw, efx->net_dev,
669			  "MC command 0x%x inlen %d mode %d timed out\n",
670			  cmd, (int)inlen, mcdi->mode);
671
672		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
673			netif_err(efx, hw, efx->net_dev,
674				  "MCDI request was completed without an event\n");
675			rc = 0;
676		}
677
678		efx_mcdi_abandon(efx);
679
680		/* Close the race with efx_mcdi_ev_cpl() executing just too late
681		 * and completing a request we've just cancelled, by ensuring
682		 * that the seqno check therein fails.
683		 */
684		spin_lock_bh(&mcdi->iface_lock);
685		++mcdi->seqno;
686		++mcdi->credits;
687		spin_unlock_bh(&mcdi->iface_lock);
688	}
689
690	if (proxy_handle)
691		*proxy_handle = 0;
692
693	if (rc != 0) {
694		if (outlen_actual)
695			*outlen_actual = 0;
696	} else {
697		size_t hdr_len, data_len, err_len;
698
699		/* At the very least we need a memory barrier here to ensure
700		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
701		 * a spurious efx_mcdi_ev_cpl() running concurrently by
702		 * acquiring the iface_lock. */
703		spin_lock_bh(&mcdi->iface_lock);
704		rc = mcdi->resprc;
705		if (raw_rc)
706			*raw_rc = mcdi->resprc_raw;
707		hdr_len = mcdi->resp_hdr_len;
708		data_len = mcdi->resp_data_len;
709		err_len = min(sizeof(errbuf), data_len);
710		spin_unlock_bh(&mcdi->iface_lock);
711
712		BUG_ON(rc > 0);
713
714		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
715					      min(outlen, data_len));
716		if (outlen_actual)
717			*outlen_actual = data_len;
718
719		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
720
721		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
722			/* Don't reset if MC_CMD_REBOOT returns EIO */
723		} else if (rc == -EIO || rc == -EINTR) {
724			netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
725			netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
726				  cmd, -rc);
727			if (efx->type->mcdi_reboot_detected)
728				efx->type->mcdi_reboot_detected(efx);
729			efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
730		} else if (proxy_handle && (rc == -EPROTO) &&
731			   efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
732						     proxy_handle)) {
733			mcdi->proxy_rx_status = 0;
734			mcdi->proxy_rx_handle = 0;
735			mcdi->state = MCDI_STATE_PROXY_WAIT;
736		} else if (rc && !quiet) {
737			efx_siena_mcdi_display_error(efx, cmd, inlen, errbuf,
738						     err_len, rc);
739		}
740
741		if (rc == -EIO || rc == -EINTR) {
742			msleep(MCDI_STATUS_SLEEP_MS);
743			efx_siena_mcdi_poll_reboot(efx);
744			mcdi->new_epoch = true;
745		}
746	}
747
748	if (!proxy_handle || !*proxy_handle)
749		efx_mcdi_release(mcdi);
750	return rc;
751}
752
753static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
754{
755	if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
756		/* Interrupt the proxy wait. */
757		mcdi->proxy_rx_status = -EINTR;
758		wake_up(&mcdi->proxy_rx_wq);
759	}
760}
761
762static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
763				       u32 handle, int status)
764{
765	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
766
767	WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
768
769	mcdi->proxy_rx_status = efx_mcdi_errno(status);
770	/* Ensure the status is written before we update the handle, since the
771	 * latter is used to check if we've finished.
772	 */
773	wmb();
774	mcdi->proxy_rx_handle = handle;
775	wake_up(&mcdi->proxy_rx_wq);
776}
777
778static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
779{
780	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
781	int rc;
782
783	/* Wait for a proxy event, or timeout. */
784	rc = wait_event_timeout(mcdi->proxy_rx_wq,
785				mcdi->proxy_rx_handle != 0 ||
786				mcdi->proxy_rx_status == -EINTR,
787				MCDI_RPC_TIMEOUT);
788
789	if (rc <= 0) {
790		netif_dbg(efx, hw, efx->net_dev,
791			  "MCDI proxy timeout %d\n", handle);
792		return -ETIMEDOUT;
793	} else if (mcdi->proxy_rx_handle != handle) {
794		netif_warn(efx, hw, efx->net_dev,
795			   "MCDI proxy unexpected handle %d (expected %d)\n",
796			   mcdi->proxy_rx_handle, handle);
797		return -EINVAL;
798	}
799
800	return mcdi->proxy_rx_status;
801}
802
803static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
804			 const efx_dword_t *inbuf, size_t inlen,
805			 efx_dword_t *outbuf, size_t outlen,
806			 size_t *outlen_actual, bool quiet, int *raw_rc)
807{
808	u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
809	int rc;
810
811	if (inbuf && inlen && (inbuf == outbuf)) {
812		/* The input buffer can't be aliased with the output. */
813		WARN_ON(1);
814		return -EINVAL;
815	}
816
817	rc = efx_siena_mcdi_rpc_start(efx, cmd, inbuf, inlen);
818	if (rc)
819		return rc;
820
821	rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
822				  outlen_actual, quiet, &proxy_handle, raw_rc);
823
824	if (proxy_handle) {
825		/* Handle proxy authorisation. This allows approval of MCDI
826		 * operations to be delegated to the admin function, allowing
827		 * fine control over (eg) multicast subscriptions.
828		 */
829		struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
830
831		netif_dbg(efx, hw, efx->net_dev,
832			  "MCDI waiting for proxy auth %d\n",
833			  proxy_handle);
834		rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
835
836		if (rc == 0) {
837			netif_dbg(efx, hw, efx->net_dev,
838				  "MCDI proxy retry %d\n", proxy_handle);
839
840			/* We now retry the original request. */
841			mcdi->state = MCDI_STATE_RUNNING_SYNC;
842			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
843
844			rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
845						  outbuf, outlen, outlen_actual,
846						  quiet, NULL, raw_rc);
847		} else {
848			netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
849				       "MC command 0x%x failed after proxy auth rc=%d\n",
850				       cmd, rc);
851
852			if (rc == -EINTR || rc == -EIO)
853				efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
854			efx_mcdi_release(mcdi);
855		}
856	}
857
858	return rc;
859}
860
861static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
862				   const efx_dword_t *inbuf, size_t inlen,
863				   efx_dword_t *outbuf, size_t outlen,
864				   size_t *outlen_actual, bool quiet)
865{
866	int raw_rc = 0;
867	int rc;
868
869	rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
870			   outbuf, outlen, outlen_actual, true, &raw_rc);
871
872	if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
873	    efx->type->is_vf) {
874		/* If the EVB port isn't available within a VF this may
875		 * mean the PF is still bringing the switch up. We should
876		 * retry our request shortly.
877		 */
878		unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
879		unsigned int delay_us = 10000;
880
881		netif_dbg(efx, hw, efx->net_dev,
882			  "%s: NO_EVB_PORT; will retry request\n",
883			  __func__);
884
885		do {
886			usleep_range(delay_us, delay_us + 10000);
887			rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
888					   outbuf, outlen, outlen_actual,
889					   true, &raw_rc);
890			if (delay_us < 100000)
891				delay_us <<= 1;
892		} while ((rc == -EPROTO) &&
893			 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
894			 time_before(jiffies, abort_time));
895	}
896
897	if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
898		efx_siena_mcdi_display_error(efx, cmd, inlen,
899					     outbuf, outlen, rc);
900
901	return rc;
902}
903
904/**
905 * efx_siena_mcdi_rpc - Issue an MCDI command and wait for completion
906 * @efx: NIC through which to issue the command
907 * @cmd: Command type number
908 * @inbuf: Command parameters
909 * @inlen: Length of command parameters, in bytes.  Must be a multiple
910 *	of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
911 * @outbuf: Response buffer.  May be %NULL if @outlen is 0.
912 * @outlen: Length of response buffer, in bytes.  If the actual
913 *	response is longer than @outlen & ~3, it will be truncated
914 *	to that length.
915 * @outlen_actual: Pointer through which to return the actual response
916 *	length.  May be %NULL if this is not needed.
917 *
918 * This function may sleep and therefore must be called in an appropriate
919 * context.
920 *
921 * Return: A negative error code, or zero if successful.  The error
922 *	code may come from the MCDI response or may indicate a failure
923 *	to communicate with the MC.  In the former case, the response
924 *	will still be copied to @outbuf and *@outlen_actual will be
925 *	set accordingly.  In the latter case, *@outlen_actual will be
926 *	set to zero.
927 */
928int efx_siena_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
929		       const efx_dword_t *inbuf, size_t inlen,
930		       efx_dword_t *outbuf, size_t outlen,
931		       size_t *outlen_actual)
932{
933	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
934				       outlen_actual, false);
935}
936
937/* Normally, on receiving an error code in the MCDI response,
938 * efx_siena_mcdi_rpc will log an error message containing (among other
939 * things) the raw error code, by means of efx_siena_mcdi_display_error.
940 * This _quiet version suppresses that; if the caller wishes to log
941 * the error conditionally on the return code, it should call this
942 * function and is then responsible for calling efx_siena_mcdi_display_error
943 * as needed.
944 */
945int efx_siena_mcdi_rpc_quiet(struct efx_nic *efx, unsigned int cmd,
946			     const efx_dword_t *inbuf, size_t inlen,
947			     efx_dword_t *outbuf, size_t outlen,
948			     size_t *outlen_actual)
949{
950	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
951				       outlen_actual, true);
952}
953
954int efx_siena_mcdi_rpc_start(struct efx_nic *efx, unsigned int cmd,
955			     const efx_dword_t *inbuf, size_t inlen)
956{
957	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
958	int rc;
959
960	rc = efx_mcdi_check_supported(efx, cmd, inlen);
961	if (rc)
962		return rc;
963
964	if (efx->mc_bist_for_other_fn)
965		return -ENETDOWN;
966
967	if (mcdi->mode == MCDI_MODE_FAIL)
968		return -ENETDOWN;
969
970	efx_mcdi_acquire_sync(mcdi);
971	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
972	return 0;
973}
974
975static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
976			       const efx_dword_t *inbuf, size_t inlen,
977			       size_t outlen,
978			       efx_mcdi_async_completer *complete,
979			       unsigned long cookie, bool quiet)
980{
981	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
982	struct efx_mcdi_async_param *async;
983	int rc;
984
985	rc = efx_mcdi_check_supported(efx, cmd, inlen);
986	if (rc)
987		return rc;
988
989	if (efx->mc_bist_for_other_fn)
990		return -ENETDOWN;
991
992	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
993			GFP_ATOMIC);
994	if (!async)
995		return -ENOMEM;
996
997	async->cmd = cmd;
998	async->inlen = inlen;
999	async->outlen = outlen;
1000	async->quiet = quiet;
1001	async->complete = complete;
1002	async->cookie = cookie;
1003	memcpy(async + 1, inbuf, inlen);
1004
1005	spin_lock_bh(&mcdi->async_lock);
1006
1007	if (mcdi->mode == MCDI_MODE_EVENTS) {
1008		list_add_tail(&async->list, &mcdi->async_list);
1009
1010		/* If this is at the front of the queue, try to start it
1011		 * immediately
1012		 */
1013		if (mcdi->async_list.next == &async->list &&
1014		    efx_mcdi_acquire_async(mcdi)) {
1015			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1016			mod_timer(&mcdi->async_timer,
1017				  jiffies + MCDI_RPC_TIMEOUT);
1018		}
1019	} else {
1020		kfree(async);
1021		rc = -ENETDOWN;
1022	}
1023
1024	spin_unlock_bh(&mcdi->async_lock);
1025
1026	return rc;
1027}
1028
1029/**
1030 * efx_siena_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1031 * @efx: NIC through which to issue the command
1032 * @cmd: Command type number
1033 * @inbuf: Command parameters
1034 * @inlen: Length of command parameters, in bytes
1035 * @outlen: Length to allocate for response buffer, in bytes
1036 * @complete: Function to be called on completion or cancellation.
1037 * @cookie: Arbitrary value to be passed to @complete.
1038 *
1039 * This function does not sleep and therefore may be called in atomic
1040 * context.  It will fail if event queues are disabled or if MCDI
1041 * event completions have been disabled due to an error.
1042 *
1043 * If it succeeds, the @complete function will be called exactly once
1044 * in atomic context, when one of the following occurs:
1045 * (a) the completion event is received (in NAPI context)
1046 * (b) event queues are disabled (in the process that disables them)
1047 * (c) the request times-out (in timer context)
1048 */
1049int
1050efx_siena_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1051			 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1052			 efx_mcdi_async_completer *complete,
1053			 unsigned long cookie)
1054{
1055	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1056				   cookie, false);
1057}
1058
1059int efx_siena_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1060				   const efx_dword_t *inbuf, size_t inlen,
1061				   size_t outlen,
1062				   efx_mcdi_async_completer *complete,
1063				   unsigned long cookie)
1064{
1065	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1066				   cookie, true);
1067}
1068
1069int efx_siena_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
1070			      size_t inlen, efx_dword_t *outbuf, size_t outlen,
1071			      size_t *outlen_actual)
1072{
1073	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1074				    outlen_actual, false, NULL, NULL);
1075}
1076
1077int efx_siena_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned int cmd,
1078				    size_t inlen, efx_dword_t *outbuf,
1079				    size_t outlen, size_t *outlen_actual)
1080{
1081	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1082				    outlen_actual, true, NULL, NULL);
1083}
1084
1085void efx_siena_mcdi_display_error(struct efx_nic *efx, unsigned int cmd,
1086				  size_t inlen, efx_dword_t *outbuf,
1087				  size_t outlen, int rc)
1088{
1089	int code = 0, err_arg = 0;
1090
1091	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1092		code = MCDI_DWORD(outbuf, ERR_CODE);
1093	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1094		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1095	netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1096		       "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1097		       cmd, inlen, rc, code, err_arg);
1098}
1099
1100/* Switch to polled MCDI completions.  This can be called in various
1101 * error conditions with various locks held, so it must be lockless.
1102 * Caller is responsible for flushing asynchronous requests later.
1103 */
1104void efx_siena_mcdi_mode_poll(struct efx_nic *efx)
1105{
1106	struct efx_mcdi_iface *mcdi;
1107
1108	if (!efx->mcdi)
1109		return;
1110
1111	mcdi = efx_mcdi(efx);
1112	/* If already in polling mode, nothing to do.
1113	 * If in fail-fast state, don't switch to polled completion.
1114	 * FLR recovery will do that later.
1115	 */
1116	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1117		return;
1118
1119	/* We can switch from event completion to polled completion, because
1120	 * mcdi requests are always completed in shared memory. We do this by
1121	 * switching the mode to POLL'd then completing the request.
1122	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1123	 *
1124	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1125	 * which efx_mcdi_complete_sync() provides for us.
1126	 */
1127	mcdi->mode = MCDI_MODE_POLL;
1128
1129	efx_mcdi_complete_sync(mcdi);
1130}
1131
1132/* Flush any running or queued asynchronous requests, after event processing
1133 * is stopped
1134 */
1135void efx_siena_mcdi_flush_async(struct efx_nic *efx)
1136{
1137	struct efx_mcdi_async_param *async, *next;
1138	struct efx_mcdi_iface *mcdi;
1139
1140	if (!efx->mcdi)
1141		return;
1142
1143	mcdi = efx_mcdi(efx);
1144
1145	/* We must be in poll or fail mode so no more requests can be queued */
1146	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1147
1148	del_timer_sync(&mcdi->async_timer);
1149
1150	/* If a request is still running, make sure we give the MC
1151	 * time to complete it so that the response won't overwrite our
1152	 * next request.
1153	 */
1154	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1155		efx_mcdi_poll(efx);
1156		mcdi->state = MCDI_STATE_QUIESCENT;
1157	}
1158
1159	/* Nothing else will access the async list now, so it is safe
1160	 * to walk it without holding async_lock.  If we hold it while
1161	 * calling a completer then lockdep may warn that we have
1162	 * acquired locks in the wrong order.
1163	 */
1164	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1165		if (async->complete)
1166			async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1167		list_del(&async->list);
1168		kfree(async);
1169	}
1170}
1171
1172void efx_siena_mcdi_mode_event(struct efx_nic *efx)
1173{
1174	struct efx_mcdi_iface *mcdi;
1175
1176	if (!efx->mcdi)
1177		return;
1178
1179	mcdi = efx_mcdi(efx);
1180	/* If already in event completion mode, nothing to do.
1181	 * If in fail-fast state, don't switch to event completion.  FLR
1182	 * recovery will do that later.
1183	 */
1184	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1185		return;
1186
1187	/* We can't switch from polled to event completion in the middle of a
1188	 * request, because the completion method is specified in the request.
1189	 * So acquire the interface to serialise the requestors. We don't need
1190	 * to acquire the iface_lock to change the mode here, but we do need a
1191	 * write memory barrier ensure that efx_siena_mcdi_rpc() sees it, which
1192	 * efx_mcdi_acquire() provides.
1193	 */
1194	efx_mcdi_acquire_sync(mcdi);
1195	mcdi->mode = MCDI_MODE_EVENTS;
1196	efx_mcdi_release(mcdi);
1197}
1198
1199static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1200{
1201	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1202
1203	/* If there is an outstanding MCDI request, it has been terminated
1204	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1205	 * in polled mode, then do nothing because the MC reboot handler will
1206	 * set the header correctly. However, if the mcdi interface is waiting
1207	 * for a CMDDONE event it won't receive it [and since all MCDI events
1208	 * are sent to the same queue, we can't be racing with
1209	 * efx_mcdi_ev_cpl()]
1210	 *
1211	 * If there is an outstanding asynchronous request, we can't
1212	 * complete it now (efx_mcdi_complete() would deadlock).  The
1213	 * reset process will take care of this.
1214	 *
1215	 * There's a race here with efx_mcdi_send_request(), because
1216	 * we might receive a REBOOT event *before* the request has
1217	 * been copied out. In polled mode (during startup) this is
1218	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1219	 * event mode, this condition is just an edge-case of
1220	 * receiving a REBOOT event after posting the MCDI
1221	 * request. Did the mc reboot before or after the copyout? The
1222	 * best we can do always is just return failure.
1223	 *
1224	 * If there is an outstanding proxy response expected it is not going
1225	 * to arrive. We should thus abort it.
1226	 */
1227	spin_lock(&mcdi->iface_lock);
1228	efx_mcdi_proxy_abort(mcdi);
1229
1230	if (efx_mcdi_complete_sync(mcdi)) {
1231		if (mcdi->mode == MCDI_MODE_EVENTS) {
1232			mcdi->resprc = rc;
1233			mcdi->resp_hdr_len = 0;
1234			mcdi->resp_data_len = 0;
1235			++mcdi->credits;
1236		}
1237	} else {
1238		int count;
1239
1240		/* Consume the status word since efx_siena_mcdi_rpc_finish() won't */
1241		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1242			rc = efx_siena_mcdi_poll_reboot(efx);
1243			if (rc)
1244				break;
1245			udelay(MCDI_STATUS_DELAY_US);
1246		}
1247
1248		/* On EF10, a CODE_MC_REBOOT event can be received without the
1249		 * reboot detection in efx_siena_mcdi_poll_reboot() being triggered.
1250		 * If zero was returned from the final call to
1251		 * efx_siena_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1252		 * MC has definitely rebooted so prepare for the reset.
1253		 */
1254		if (!rc && efx->type->mcdi_reboot_detected)
1255			efx->type->mcdi_reboot_detected(efx);
1256
1257		mcdi->new_epoch = true;
1258
1259		/* Nobody was waiting for an MCDI request, so trigger a reset */
1260		efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1261	}
1262
1263	spin_unlock(&mcdi->iface_lock);
1264}
1265
1266/* The MC is going down in to BIST mode. set the BIST flag to block
1267 * new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset
1268 * (which doesn't actually execute a reset, it waits for the controlling
1269 * function to reset it).
1270 */
1271static void efx_mcdi_ev_bist(struct efx_nic *efx)
1272{
1273	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1274
1275	spin_lock(&mcdi->iface_lock);
1276	efx->mc_bist_for_other_fn = true;
1277	efx_mcdi_proxy_abort(mcdi);
1278
1279	if (efx_mcdi_complete_sync(mcdi)) {
1280		if (mcdi->mode == MCDI_MODE_EVENTS) {
1281			mcdi->resprc = -EIO;
1282			mcdi->resp_hdr_len = 0;
1283			mcdi->resp_data_len = 0;
1284			++mcdi->credits;
1285		}
1286	}
1287	mcdi->new_epoch = true;
1288	efx_siena_schedule_reset(efx, RESET_TYPE_MC_BIST);
1289	spin_unlock(&mcdi->iface_lock);
1290}
1291
1292/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1293 * to recover.
1294 */
1295static void efx_mcdi_abandon(struct efx_nic *efx)
1296{
1297	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1298
1299	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1300		return; /* it had already been done */
1301	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1302	efx_siena_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1303}
1304
1305static void efx_handle_drain_event(struct efx_nic *efx)
1306{
1307	if (atomic_dec_and_test(&efx->active_queues))
1308		wake_up(&efx->flush_wq);
1309
1310	WARN_ON(atomic_read(&efx->active_queues) < 0);
1311}
1312
1313/* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1314void efx_siena_mcdi_process_event(struct efx_channel *channel,
1315				  efx_qword_t *event)
1316{
1317	struct efx_nic *efx = channel->efx;
1318	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1319	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1320
1321	switch (code) {
1322	case MCDI_EVENT_CODE_BADSSERT:
1323		netif_err(efx, hw, efx->net_dev,
1324			  "MC watchdog or assertion failure at 0x%x\n", data);
1325		efx_mcdi_ev_death(efx, -EINTR);
1326		break;
1327
1328	case MCDI_EVENT_CODE_PMNOTICE:
1329		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1330		break;
1331
1332	case MCDI_EVENT_CODE_CMDDONE:
1333		efx_mcdi_ev_cpl(efx,
1334				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1335				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1336				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1337		break;
1338
1339	case MCDI_EVENT_CODE_LINKCHANGE:
1340		efx_siena_mcdi_process_link_change(efx, event);
1341		break;
1342	case MCDI_EVENT_CODE_SENSOREVT:
1343		efx_sensor_event(efx, event);
1344		break;
1345	case MCDI_EVENT_CODE_SCHEDERR:
1346		netif_dbg(efx, hw, efx->net_dev,
1347			  "MC Scheduler alert (0x%x)\n", data);
1348		break;
1349	case MCDI_EVENT_CODE_REBOOT:
1350	case MCDI_EVENT_CODE_MC_REBOOT:
1351		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1352		efx_mcdi_ev_death(efx, -EIO);
1353		break;
1354	case MCDI_EVENT_CODE_MC_BIST:
1355		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1356		efx_mcdi_ev_bist(efx);
1357		break;
1358	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1359		/* MAC stats are gather lazily.  We can ignore this. */
1360		break;
1361	case MCDI_EVENT_CODE_FLR:
1362		if (efx->type->sriov_flr)
1363			efx->type->sriov_flr(efx,
1364					     MCDI_EVENT_FIELD(*event, FLR_VF));
1365		break;
1366	case MCDI_EVENT_CODE_PTP_RX:
1367	case MCDI_EVENT_CODE_PTP_FAULT:
1368	case MCDI_EVENT_CODE_PTP_PPS:
1369		efx_siena_ptp_event(efx, event);
1370		break;
1371	case MCDI_EVENT_CODE_PTP_TIME:
1372		efx_siena_time_sync_event(channel, event);
1373		break;
1374	case MCDI_EVENT_CODE_TX_FLUSH:
1375	case MCDI_EVENT_CODE_RX_FLUSH:
1376		/* Two flush events will be sent: one to the same event
1377		 * queue as completions, and one to event queue 0.
1378		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1379		 * flag will be set, and we should ignore the event
1380		 * because we want to wait for all completions.
1381		 */
1382		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1383			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1384		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1385			efx_handle_drain_event(efx);
1386		break;
1387	case MCDI_EVENT_CODE_TX_ERR:
1388	case MCDI_EVENT_CODE_RX_ERR:
1389		netif_err(efx, hw, efx->net_dev,
1390			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1391			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1392			  EFX_QWORD_VAL(*event));
1393		efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1394		break;
1395	case MCDI_EVENT_CODE_PROXY_RESPONSE:
1396		efx_mcdi_ev_proxy_response(efx,
1397				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1398				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1399		break;
1400	default:
1401		netif_err(efx, hw, efx->net_dev,
1402			  "Unknown MCDI event " EFX_QWORD_FMT "\n",
1403			  EFX_QWORD_VAL(*event));
1404	}
1405}
1406
1407/**************************************************************************
1408 *
1409 * Specific request functions
1410 *
1411 **************************************************************************
1412 */
1413
1414void efx_siena_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1415{
1416	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1417	size_t outlength;
1418	const __le16 *ver_words;
1419	size_t offset;
1420	int rc;
1421
1422	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1423	rc = efx_siena_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1424				outbuf, sizeof(outbuf), &outlength);
1425	if (rc)
1426		goto fail;
1427	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1428		rc = -EIO;
1429		goto fail;
1430	}
1431
1432	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1433	offset = scnprintf(buf, len, "%u.%u.%u.%u",
1434			   le16_to_cpu(ver_words[0]),
1435			   le16_to_cpu(ver_words[1]),
1436			   le16_to_cpu(ver_words[2]),
1437			   le16_to_cpu(ver_words[3]));
1438
1439	if (efx->type->print_additional_fwver)
1440		offset += efx->type->print_additional_fwver(efx, buf + offset,
1441							    len - offset);
1442
1443	/* It's theoretically possible for the string to exceed 31
1444	 * characters, though in practice the first three version
1445	 * components are short enough that this doesn't happen.
1446	 */
1447	if (WARN_ON(offset >= len))
1448		buf[0] = 0;
1449
1450	return;
1451
1452fail:
1453	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1454	buf[0] = 0;
1455}
1456
1457static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1458			       bool *was_attached)
1459{
1460	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1461	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1462	size_t outlen;
1463	int rc;
1464
1465	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1466		       driver_operating ? 1 : 0);
1467	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1468	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1469
1470	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1471				      sizeof(inbuf), outbuf, sizeof(outbuf),
1472				      &outlen);
1473	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1474	 * specified will fail with EPERM, and we have to tell the MC we don't
1475	 * care what firmware we get.
1476	 */
1477	if (rc == -EPERM) {
1478		netif_dbg(efx, probe, efx->net_dev,
1479			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1480		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1481			       MC_CMD_FW_DONT_CARE);
1482		rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1483					      sizeof(inbuf), outbuf,
1484					      sizeof(outbuf), &outlen);
1485	}
1486	if (rc) {
1487		efx_siena_mcdi_display_error(efx, MC_CMD_DRV_ATTACH,
1488					     sizeof(inbuf), outbuf, outlen, rc);
1489		goto fail;
1490	}
1491	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1492		rc = -EIO;
1493		goto fail;
1494	}
1495
1496	if (driver_operating) {
1497		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1498			efx->mcdi->fn_flags =
1499				MCDI_DWORD(outbuf,
1500					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1501		} else {
1502			/* Synthesise flags for Siena */
1503			efx->mcdi->fn_flags =
1504				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1505				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1506				(efx_port_num(efx) == 0) <<
1507				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1508		}
1509	}
1510
1511	/* We currently assume we have control of the external link
1512	 * and are completely trusted by firmware.  Abort probing
1513	 * if that's not true for this function.
1514	 */
1515
1516	if (was_attached != NULL)
1517		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1518	return 0;
1519
1520fail:
1521	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1522	return rc;
1523}
1524
1525int efx_siena_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1526				 u16 *fw_subtype_list, u32 *capabilities)
1527{
1528	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1529	size_t outlen, i;
1530	int port_num = efx_port_num(efx);
1531	int rc;
1532
1533	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1534	/* we need __aligned(2) for ether_addr_copy */
1535	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1536	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1537
1538	rc = efx_siena_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1539				outbuf, sizeof(outbuf), &outlen);
1540	if (rc)
1541		goto fail;
1542
1543	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1544		rc = -EIO;
1545		goto fail;
1546	}
1547
1548	if (mac_address)
1549		ether_addr_copy(mac_address,
1550				port_num ?
1551				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1552				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1553	if (fw_subtype_list) {
1554		for (i = 0;
1555		     i < MCDI_VAR_ARRAY_LEN(outlen,
1556					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1557		     i++)
1558			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1559				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1560		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1561			fw_subtype_list[i] = 0;
1562	}
1563	if (capabilities) {
1564		if (port_num)
1565			*capabilities = MCDI_DWORD(outbuf,
1566					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1567		else
1568			*capabilities = MCDI_DWORD(outbuf,
1569					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1570	}
1571
1572	return 0;
1573
1574fail:
1575	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1576		  __func__, rc, (int)outlen);
1577
1578	return rc;
1579}
1580
1581int efx_siena_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart,
1582			    u32 dest_evq)
1583{
1584	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1585	u32 dest = 0;
1586	int rc;
1587
1588	if (uart)
1589		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1590	if (evq)
1591		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1592
1593	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1594	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1595
1596	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1597
1598	rc = efx_siena_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1599				NULL, 0, NULL);
1600	return rc;
1601}
1602
1603int efx_siena_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1604{
1605	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1606	size_t outlen;
1607	int rc;
1608
1609	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1610
1611	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1612				outbuf, sizeof(outbuf), &outlen);
1613	if (rc)
1614		goto fail;
1615	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1616		rc = -EIO;
1617		goto fail;
1618	}
1619
1620	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1621	return 0;
1622
1623fail:
1624	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1625		  __func__, rc);
1626	return rc;
1627}
1628
1629int efx_siena_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1630			      size_t *size_out, size_t *erase_size_out,
1631			      bool *protected_out)
1632{
1633	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1634	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1635	size_t outlen;
1636	int rc;
1637
1638	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1639
1640	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1641				outbuf, sizeof(outbuf), &outlen);
1642	if (rc)
1643		goto fail;
1644	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1645		rc = -EIO;
1646		goto fail;
1647	}
1648
1649	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1650	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1651	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1652				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1653	return 0;
1654
1655fail:
1656	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1657	return rc;
1658}
1659
1660static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1661{
1662	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1663	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1664	int rc;
1665
1666	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1667
1668	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1669				outbuf, sizeof(outbuf), NULL);
1670	if (rc)
1671		return rc;
1672
1673	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1674	case MC_CMD_NVRAM_TEST_PASS:
1675	case MC_CMD_NVRAM_TEST_NOTSUPP:
1676		return 0;
1677	default:
1678		return -EIO;
1679	}
1680}
1681
1682int efx_siena_mcdi_nvram_test_all(struct efx_nic *efx)
1683{
1684	u32 nvram_types;
1685	unsigned int type;
1686	int rc;
1687
1688	rc = efx_siena_mcdi_nvram_types(efx, &nvram_types);
1689	if (rc)
1690		goto fail1;
1691
1692	type = 0;
1693	while (nvram_types != 0) {
1694		if (nvram_types & 1) {
1695			rc = efx_mcdi_nvram_test(efx, type);
1696			if (rc)
1697				goto fail2;
1698		}
1699		type++;
1700		nvram_types >>= 1;
1701	}
1702
1703	return 0;
1704
1705fail2:
1706	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1707		  __func__, type);
1708fail1:
1709	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1710	return rc;
1711}
1712
1713/* Returns 1 if an assertion was read, 0 if no assertion had fired,
1714 * negative on error.
1715 */
1716static int efx_mcdi_read_assertion(struct efx_nic *efx)
1717{
1718	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1719	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1720	unsigned int flags, index;
1721	const char *reason;
1722	size_t outlen;
1723	int retry;
1724	int rc;
1725
1726	/* Attempt to read any stored assertion state before we reboot
1727	 * the mcfw out of the assertion handler. Retry twice, once
1728	 * because a boot-time assertion might cause this command to fail
1729	 * with EINTR. And once again because GET_ASSERTS can race with
1730	 * MC_CMD_REBOOT running on the other port. */
1731	retry = 2;
1732	do {
1733		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1734		rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1735					      inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1736					      outbuf, sizeof(outbuf), &outlen);
1737		if (rc == -EPERM)
1738			return 0;
1739	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1740
1741	if (rc) {
1742		efx_siena_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1743					     MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1744					     outlen, rc);
1745		return rc;
1746	}
1747	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1748		return -EIO;
1749
1750	/* Print out any recorded assertion state */
1751	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1752	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1753		return 0;
1754
1755	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1756		? "system-level assertion"
1757		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1758		? "thread-level assertion"
1759		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1760		? "watchdog reset"
1761		: "unknown assertion";
1762	netif_err(efx, hw, efx->net_dev,
1763		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1764		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1765		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1766
1767	/* Print out the registers */
1768	for (index = 0;
1769	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1770	     index++)
1771		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1772			  1 + index,
1773			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1774					   index));
1775
1776	return 1;
1777}
1778
1779static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1780{
1781	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1782	int rc;
1783
1784	/* If the MC is running debug firmware, it might now be
1785	 * waiting for a debugger to attach, but we just want it to
1786	 * reboot.  We set a flag that makes the command a no-op if it
1787	 * has already done so.
1788	 * The MCDI will thus return either 0 or -EIO.
1789	 */
1790	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1791	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1792		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1793	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf,
1794				      MC_CMD_REBOOT_IN_LEN, NULL, 0, NULL);
1795	if (rc == -EIO)
1796		rc = 0;
1797	if (rc)
1798		efx_siena_mcdi_display_error(efx, MC_CMD_REBOOT,
1799					     MC_CMD_REBOOT_IN_LEN, NULL, 0, rc);
1800	return rc;
1801}
1802
1803int efx_siena_mcdi_handle_assertion(struct efx_nic *efx)
1804{
1805	int rc;
1806
1807	rc = efx_mcdi_read_assertion(efx);
1808	if (rc <= 0)
1809		return rc;
1810
1811	return efx_mcdi_exit_assertion(efx);
1812}
1813
1814int efx_siena_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1815{
1816	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1817
1818	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1819	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1820	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1821
1822	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1823
1824	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1825
1826	return efx_siena_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1827				  NULL, 0, NULL);
1828}
1829
1830static int efx_mcdi_reset_func(struct efx_nic *efx)
1831{
1832	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1833	int rc;
1834
1835	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1836	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1837			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1838	rc = efx_siena_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1839				NULL, 0, NULL);
1840	return rc;
1841}
1842
1843static int efx_mcdi_reset_mc(struct efx_nic *efx)
1844{
1845	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1846	int rc;
1847
1848	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1849	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1850	rc = efx_siena_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1851				NULL, 0, NULL);
1852	/* White is black, and up is down */
1853	if (rc == -EIO)
1854		return 0;
1855	if (rc == 0)
1856		rc = -EIO;
1857	return rc;
1858}
1859
1860enum reset_type efx_siena_mcdi_map_reset_reason(enum reset_type reason)
1861{
1862	return RESET_TYPE_RECOVER_OR_ALL;
1863}
1864
1865int efx_siena_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1866{
1867	int rc;
1868
1869	/* If MCDI is down, we can't handle_assertion */
1870	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1871		rc = pci_reset_function(efx->pci_dev);
1872		if (rc)
1873			return rc;
1874		/* Re-enable polled MCDI completion */
1875		if (efx->mcdi) {
1876			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1877			mcdi->mode = MCDI_MODE_POLL;
1878		}
1879		return 0;
1880	}
1881
1882	/* Recover from a failed assertion pre-reset */
1883	rc = efx_siena_mcdi_handle_assertion(efx);
1884	if (rc)
1885		return rc;
1886
1887	if (method == RESET_TYPE_DATAPATH)
1888		return 0;
1889	else if (method == RESET_TYPE_WORLD)
1890		return efx_mcdi_reset_mc(efx);
1891	else
1892		return efx_mcdi_reset_func(efx);
1893}
1894
1895static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1896				   const u8 *mac, int *id_out)
1897{
1898	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1899	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1900	size_t outlen;
1901	int rc;
1902
1903	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1904	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1905		       MC_CMD_FILTER_MODE_SIMPLE);
1906	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1907
1908	rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf,
1909				sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
1910	if (rc)
1911		goto fail;
1912
1913	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1914		rc = -EIO;
1915		goto fail;
1916	}
1917
1918	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1919
1920	return 0;
1921
1922fail:
1923	*id_out = -1;
1924	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1925	return rc;
1926
1927}
1928
1929
1930int efx_siena_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac,
1931					int *id_out)
1932{
1933	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1934}
1935
1936
1937int efx_siena_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1938{
1939	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1940	size_t outlen;
1941	int rc;
1942
1943	rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1944				outbuf, sizeof(outbuf), &outlen);
1945	if (rc)
1946		goto fail;
1947
1948	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1949		rc = -EIO;
1950		goto fail;
1951	}
1952
1953	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1954
1955	return 0;
1956
1957fail:
1958	*id_out = -1;
1959	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1960	return rc;
1961}
1962
1963
1964int efx_siena_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1965{
1966	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1967	int rc;
1968
1969	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1970
1971	rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf,
1972				sizeof(inbuf), NULL, 0, NULL);
1973	return rc;
1974}
1975
1976int efx_siena_mcdi_flush_rxqs(struct efx_nic *efx)
1977{
1978	struct efx_channel *channel;
1979	struct efx_rx_queue *rx_queue;
1980	MCDI_DECLARE_BUF(inbuf,
1981			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1982	int rc, count;
1983
1984	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1985		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1986
1987	count = 0;
1988	efx_for_each_channel(channel, efx) {
1989		efx_for_each_channel_rx_queue(rx_queue, channel) {
1990			if (rx_queue->flush_pending) {
1991				rx_queue->flush_pending = false;
1992				atomic_dec(&efx->rxq_flush_pending);
1993				MCDI_SET_ARRAY_DWORD(
1994					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1995					count, efx_rx_queue_index(rx_queue));
1996				count++;
1997			}
1998		}
1999	}
2000
2001	rc = efx_siena_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
2002				MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count),
2003				NULL, 0, NULL);
2004	WARN_ON(rc < 0);
2005
2006	return rc;
2007}
2008
2009int efx_siena_mcdi_wol_filter_reset(struct efx_nic *efx)
2010{
2011	int rc;
2012
2013	rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0,
2014				NULL, 0, NULL);
2015	return rc;
2016}
2017
2018#ifdef CONFIG_SFC_SIENA_MTD
2019
2020#define EFX_MCDI_NVRAM_LEN_MAX 128
2021
2022static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2023{
2024	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2025	int rc;
2026
2027	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2028	MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2029			      NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2030			      1);
2031
2032	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2033
2034	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf,
2035				sizeof(inbuf), NULL, 0, NULL);
2036
2037	return rc;
2038}
2039
2040static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2041			       loff_t offset, u8 *buffer, size_t length)
2042{
2043	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2044	MCDI_DECLARE_BUF(outbuf,
2045			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2046	size_t outlen;
2047	int rc;
2048
2049	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2050	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2051	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2052	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2053		       MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2054
2055	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2056				outbuf, sizeof(outbuf), &outlen);
2057	if (rc)
2058		return rc;
2059
2060	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2061	return 0;
2062}
2063
2064static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2065				loff_t offset, const u8 *buffer, size_t length)
2066{
2067	MCDI_DECLARE_BUF(inbuf,
2068			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2069	int rc;
2070
2071	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2072	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2073	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2074	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2075
2076	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2077
2078	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2079				ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2080				NULL, 0, NULL);
2081	return rc;
2082}
2083
2084static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2085				loff_t offset, size_t length)
2086{
2087	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2088	int rc;
2089
2090	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2091	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2092	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2093
2094	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2095
2096	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2097				NULL, 0, NULL);
2098	return rc;
2099}
2100
2101static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2102{
2103	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2104	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2105	size_t outlen;
2106	int rc, rc2;
2107
2108	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2109	/* Always set this flag. Old firmware ignores it */
2110	MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2111			      NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2112			      1);
2113
2114	rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf,
2115				sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2116	if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2117		rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2118		if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2119			netif_err(efx, drv, efx->net_dev,
2120				  "NVRAM update failed verification with code 0x%x\n",
2121				  rc2);
2122		switch (rc2) {
2123		case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2124			break;
2125		case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2126		case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2127		case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2128		case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2129		case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2130			rc = -EIO;
2131			break;
2132		case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2133		case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2134			rc = -EINVAL;
2135			break;
2136		case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2137		case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2138		case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2139			rc = -EPERM;
2140			break;
2141		default:
2142			netif_err(efx, drv, efx->net_dev,
2143				  "Unknown response to NVRAM_UPDATE_FINISH\n");
2144			rc = -EIO;
2145		}
2146	}
2147
2148	return rc;
2149}
2150
2151int efx_siena_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2152			    size_t len, size_t *retlen, u8 *buffer)
2153{
2154	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2155	struct efx_nic *efx = mtd->priv;
2156	loff_t offset = start;
2157	loff_t end = min_t(loff_t, start + len, mtd->size);
2158	size_t chunk;
2159	int rc = 0;
2160
2161	while (offset < end) {
2162		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2163		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2164					 buffer, chunk);
2165		if (rc)
2166			goto out;
2167		offset += chunk;
2168		buffer += chunk;
2169	}
2170out:
2171	*retlen = offset - start;
2172	return rc;
2173}
2174
2175int efx_siena_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2176{
2177	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2178	struct efx_nic *efx = mtd->priv;
2179	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2180	loff_t end = min_t(loff_t, start + len, mtd->size);
2181	size_t chunk = part->common.mtd.erasesize;
2182	int rc = 0;
2183
2184	if (!part->updating) {
2185		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2186		if (rc)
2187			goto out;
2188		part->updating = true;
2189	}
2190
2191	/* The MCDI interface can in fact do multiple erase blocks at once;
2192	 * but erasing may be slow, so we make multiple calls here to avoid
2193	 * tripping the MCDI RPC timeout. */
2194	while (offset < end) {
2195		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2196					  chunk);
2197		if (rc)
2198			goto out;
2199		offset += chunk;
2200	}
2201out:
2202	return rc;
2203}
2204
2205int efx_siena_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2206			     size_t len, size_t *retlen, const u8 *buffer)
2207{
2208	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2209	struct efx_nic *efx = mtd->priv;
2210	loff_t offset = start;
2211	loff_t end = min_t(loff_t, start + len, mtd->size);
2212	size_t chunk;
2213	int rc = 0;
2214
2215	if (!part->updating) {
2216		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2217		if (rc)
2218			goto out;
2219		part->updating = true;
2220	}
2221
2222	while (offset < end) {
2223		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2224		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2225					  buffer, chunk);
2226		if (rc)
2227			goto out;
2228		offset += chunk;
2229		buffer += chunk;
2230	}
2231out:
2232	*retlen = offset - start;
2233	return rc;
2234}
2235
2236int efx_siena_mcdi_mtd_sync(struct mtd_info *mtd)
2237{
2238	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2239	struct efx_nic *efx = mtd->priv;
2240	int rc = 0;
2241
2242	if (part->updating) {
2243		part->updating = false;
2244		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2245	}
2246
2247	return rc;
2248}
2249
2250void efx_siena_mcdi_mtd_rename(struct efx_mtd_partition *part)
2251{
2252	struct efx_mcdi_mtd_partition *mcdi_part =
2253		container_of(part, struct efx_mcdi_mtd_partition, common);
2254	struct efx_nic *efx = part->mtd.priv;
2255
2256	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2257		 efx->name, part->type_name, mcdi_part->fw_subtype);
2258}
2259
2260#endif /* CONFIG_SFC_SIENA_MTD */
2261