1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
5 */
6
7#include <linux/delay.h>
8#include <linux/moduleparam.h>
9#include <linux/atomic.h>
10#include "net_driver.h"
11#include "nic.h"
12#include "io.h"
13#include "mcdi_pcol.h"
14
15/**************************************************************************
16 *
17 * Management-Controller-to-Driver Interface
18 *
19 **************************************************************************
20 */
21
22#define MCDI_RPC_TIMEOUT       (10 * HZ)
23
24/* A reboot/assertion causes the MCDI status word to be set after the
25 * command word is set or a REBOOT event is sent. If we notice a reboot
26 * via these mechanisms then wait 250ms for the status word to be set.
27 */
28#define MCDI_STATUS_DELAY_US		100
29#define MCDI_STATUS_DELAY_COUNT		2500
30#define MCDI_STATUS_SLEEP_MS						\
31	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
32
33#define SEQ_MASK							\
34	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
35
36struct efx_mcdi_async_param {
37	struct list_head list;
38	unsigned int cmd;
39	size_t inlen;
40	size_t outlen;
41	bool quiet;
42	efx_mcdi_async_completer *complete;
43	unsigned long cookie;
44	/* followed by request/response buffer */
45};
46
47static void efx_mcdi_timeout_async(struct timer_list *t);
48static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
49			       bool *was_attached_out);
50static bool efx_mcdi_poll_once(struct efx_nic *efx);
51static void efx_mcdi_abandon(struct efx_nic *efx);
52
53#ifdef CONFIG_SFC_MCDI_LOGGING
54static bool mcdi_logging_default;
55module_param(mcdi_logging_default, bool, 0644);
56MODULE_PARM_DESC(mcdi_logging_default,
57		 "Enable MCDI logging on newly-probed functions");
58#endif
59
60int efx_mcdi_init(struct efx_nic *efx)
61{
62	struct efx_mcdi_iface *mcdi;
63	bool already_attached;
64	int rc = -ENOMEM;
65
66	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
67	if (!efx->mcdi)
68		goto fail;
69
70	mcdi = efx_mcdi(efx);
71	mcdi->efx = efx;
72#ifdef CONFIG_SFC_MCDI_LOGGING
73	/* consuming code assumes buffer is page-sized */
74	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
75	if (!mcdi->logging_buffer)
76		goto fail1;
77	mcdi->logging_enabled = mcdi_logging_default;
78#endif
79	init_waitqueue_head(&mcdi->wq);
80	init_waitqueue_head(&mcdi->proxy_rx_wq);
81	spin_lock_init(&mcdi->iface_lock);
82	mcdi->state = MCDI_STATE_QUIESCENT;
83	mcdi->mode = MCDI_MODE_POLL;
84	spin_lock_init(&mcdi->async_lock);
85	INIT_LIST_HEAD(&mcdi->async_list);
86	timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
87
88	(void) efx_mcdi_poll_reboot(efx);
89	mcdi->new_epoch = true;
90
91	/* Recover from a failed assertion before probing */
92	rc = efx_mcdi_handle_assertion(efx);
93	if (rc)
94		goto fail2;
95
96	/* Let the MC (and BMC, if this is a LOM) know that the driver
97	 * is loaded. We should do this before we reset the NIC.
98	 */
99	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
100	if (rc) {
101		pci_err(efx->pci_dev, "Unable to register driver with MCPU\n");
102		goto fail2;
103	}
104	if (already_attached)
105		/* Not a fatal error */
106		pci_err(efx->pci_dev, "Host already registered with MCPU\n");
107
108	if (efx->mcdi->fn_flags &
109	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
110		efx->primary = efx;
111
112	return 0;
113fail2:
114#ifdef CONFIG_SFC_MCDI_LOGGING
115	free_page((unsigned long)mcdi->logging_buffer);
116fail1:
117#endif
118	kfree(efx->mcdi);
119	efx->mcdi = NULL;
120fail:
121	return rc;
122}
123
124void efx_mcdi_detach(struct efx_nic *efx)
125{
126	if (!efx->mcdi)
127		return;
128
129	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
130
131	/* Relinquish the device (back to the BMC, if this is a LOM) */
132	efx_mcdi_drv_attach(efx, false, NULL);
133}
134
135void efx_mcdi_fini(struct efx_nic *efx)
136{
137	if (!efx->mcdi)
138		return;
139
140#ifdef CONFIG_SFC_MCDI_LOGGING
141	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
142#endif
143
144	kfree(efx->mcdi);
145}
146
147static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
148				  const efx_dword_t *inbuf, size_t inlen)
149{
150	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
151#ifdef CONFIG_SFC_MCDI_LOGGING
152	char *buf = mcdi->logging_buffer; /* page-sized */
153#endif
154	efx_dword_t hdr[2];
155	size_t hdr_len;
156	u32 xflags, seqno;
157
158	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
159
160	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
161	spin_lock_bh(&mcdi->iface_lock);
162	++mcdi->seqno;
163	seqno = mcdi->seqno & SEQ_MASK;
164	spin_unlock_bh(&mcdi->iface_lock);
165
166	xflags = 0;
167	if (mcdi->mode == MCDI_MODE_EVENTS)
168		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
169
170	if (efx->type->mcdi_max_ver == 1) {
171		/* MCDI v1 */
172		EFX_POPULATE_DWORD_7(hdr[0],
173				     MCDI_HEADER_RESPONSE, 0,
174				     MCDI_HEADER_RESYNC, 1,
175				     MCDI_HEADER_CODE, cmd,
176				     MCDI_HEADER_DATALEN, inlen,
177				     MCDI_HEADER_SEQ, seqno,
178				     MCDI_HEADER_XFLAGS, xflags,
179				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
180		hdr_len = 4;
181	} else {
182		/* MCDI v2 */
183		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
184		EFX_POPULATE_DWORD_7(hdr[0],
185				     MCDI_HEADER_RESPONSE, 0,
186				     MCDI_HEADER_RESYNC, 1,
187				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
188				     MCDI_HEADER_DATALEN, 0,
189				     MCDI_HEADER_SEQ, seqno,
190				     MCDI_HEADER_XFLAGS, xflags,
191				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
192		EFX_POPULATE_DWORD_2(hdr[1],
193				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
194				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
195		hdr_len = 8;
196	}
197
198#ifdef CONFIG_SFC_MCDI_LOGGING
199	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
200		int bytes = 0;
201		int i;
202		/* Lengths should always be a whole number of dwords, so scream
203		 * if they're not.
204		 */
205		WARN_ON_ONCE(hdr_len % 4);
206		WARN_ON_ONCE(inlen % 4);
207
208		/* We own the logging buffer, as only one MCDI can be in
209		 * progress on a NIC at any one time.  So no need for locking.
210		 */
211		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
212			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
213					   " %08x",
214					   le32_to_cpu(hdr[i].u32[0]));
215
216		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
217			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
218					   " %08x",
219					   le32_to_cpu(inbuf[i].u32[0]));
220
221		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
222	}
223#endif
224
225	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
226
227	mcdi->new_epoch = false;
228}
229
230static int efx_mcdi_errno(unsigned int mcdi_err)
231{
232	switch (mcdi_err) {
233	case 0:
234		return 0;
235#define TRANSLATE_ERROR(name)					\
236	case MC_CMD_ERR_ ## name:				\
237		return -name;
238	TRANSLATE_ERROR(EPERM);
239	TRANSLATE_ERROR(ENOENT);
240	TRANSLATE_ERROR(EINTR);
241	TRANSLATE_ERROR(EAGAIN);
242	TRANSLATE_ERROR(EACCES);
243	TRANSLATE_ERROR(EBUSY);
244	TRANSLATE_ERROR(EINVAL);
245	TRANSLATE_ERROR(EDEADLK);
246	TRANSLATE_ERROR(ENOSYS);
247	TRANSLATE_ERROR(ETIME);
248	TRANSLATE_ERROR(EALREADY);
249	TRANSLATE_ERROR(ENOSPC);
250#undef TRANSLATE_ERROR
251	case MC_CMD_ERR_ENOTSUP:
252		return -EOPNOTSUPP;
253	case MC_CMD_ERR_ALLOC_FAIL:
254		return -ENOBUFS;
255	case MC_CMD_ERR_MAC_EXIST:
256		return -EADDRINUSE;
257	default:
258		return -EPROTO;
259	}
260}
261
262static void efx_mcdi_read_response_header(struct efx_nic *efx)
263{
264	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
265	unsigned int respseq, respcmd, error;
266#ifdef CONFIG_SFC_MCDI_LOGGING
267	char *buf = mcdi->logging_buffer; /* page-sized */
268#endif
269	efx_dword_t hdr;
270
271	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
272	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
273	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
274	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
275
276	if (respcmd != MC_CMD_V2_EXTN) {
277		mcdi->resp_hdr_len = 4;
278		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
279	} else {
280		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
281		mcdi->resp_hdr_len = 8;
282		mcdi->resp_data_len =
283			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
284	}
285
286#ifdef CONFIG_SFC_MCDI_LOGGING
287	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
288		size_t hdr_len, data_len;
289		int bytes = 0;
290		int i;
291
292		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
293		hdr_len = mcdi->resp_hdr_len / 4;
294		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
295		 * to dword size, and the MCDI buffer is always dword size
296		 */
297		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
298
299		/* We own the logging buffer, as only one MCDI can be in
300		 * progress on a NIC at any one time.  So no need for locking.
301		 */
302		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
303			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
304			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
305					   " %08x", le32_to_cpu(hdr.u32[0]));
306		}
307
308		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
309			efx->type->mcdi_read_response(efx, &hdr,
310					mcdi->resp_hdr_len + (i * 4), 4);
311			bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
312					   " %08x", le32_to_cpu(hdr.u32[0]));
313		}
314
315		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
316	}
317#endif
318
319	mcdi->resprc_raw = 0;
320	if (error && mcdi->resp_data_len == 0) {
321		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
322		mcdi->resprc = -EIO;
323	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
324		netif_err(efx, hw, efx->net_dev,
325			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
326			  respseq, mcdi->seqno);
327		mcdi->resprc = -EIO;
328	} else if (error) {
329		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
330		mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
331		mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
332	} else {
333		mcdi->resprc = 0;
334	}
335}
336
337static bool efx_mcdi_poll_once(struct efx_nic *efx)
338{
339	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
340
341	rmb();
342	if (!efx->type->mcdi_poll_response(efx))
343		return false;
344
345	spin_lock_bh(&mcdi->iface_lock);
346	efx_mcdi_read_response_header(efx);
347	spin_unlock_bh(&mcdi->iface_lock);
348
349	return true;
350}
351
352static int efx_mcdi_poll(struct efx_nic *efx)
353{
354	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
355	unsigned long time, finish;
356	unsigned int spins;
357	int rc;
358
359	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
360	rc = efx_mcdi_poll_reboot(efx);
361	if (rc) {
362		spin_lock_bh(&mcdi->iface_lock);
363		mcdi->resprc = rc;
364		mcdi->resp_hdr_len = 0;
365		mcdi->resp_data_len = 0;
366		spin_unlock_bh(&mcdi->iface_lock);
367		return 0;
368	}
369
370	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
371	 * because generally mcdi responses are fast. After that, back off
372	 * and poll once a jiffy (approximately)
373	 */
374	spins = USER_TICK_USEC;
375	finish = jiffies + MCDI_RPC_TIMEOUT;
376
377	while (1) {
378		if (spins != 0) {
379			--spins;
380			udelay(1);
381		} else {
382			schedule_timeout_uninterruptible(1);
383		}
384
385		time = jiffies;
386
387		if (efx_mcdi_poll_once(efx))
388			break;
389
390		if (time_after(time, finish))
391			return -ETIMEDOUT;
392	}
393
394	/* Return rc=0 like wait_event_timeout() */
395	return 0;
396}
397
398/* Test and clear MC-rebooted flag for this port/function; reset
399 * software state as necessary.
400 */
401int efx_mcdi_poll_reboot(struct efx_nic *efx)
402{
403	if (!efx->mcdi)
404		return 0;
405
406	return efx->type->mcdi_poll_reboot(efx);
407}
408
409static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
410{
411	return cmpxchg(&mcdi->state,
412		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
413		MCDI_STATE_QUIESCENT;
414}
415
416static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
417{
418	/* Wait until the interface becomes QUIESCENT and we win the race
419	 * to mark it RUNNING_SYNC.
420	 */
421	wait_event(mcdi->wq,
422		   cmpxchg(&mcdi->state,
423			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
424		   MCDI_STATE_QUIESCENT);
425}
426
427static int efx_mcdi_await_completion(struct efx_nic *efx)
428{
429	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
430
431	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
432			       MCDI_RPC_TIMEOUT) == 0)
433		return -ETIMEDOUT;
434
435	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
436	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
437	 * completed the request first, then we'll just end up completing the
438	 * request again, which is safe.
439	 *
440	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
441	 * wait_event_timeout() implicitly provides.
442	 */
443	if (mcdi->mode == MCDI_MODE_POLL)
444		return efx_mcdi_poll(efx);
445
446	return 0;
447}
448
449/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
450 * requester.  Return whether this was done.  Does not take any locks.
451 */
452static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
453{
454	if (cmpxchg(&mcdi->state,
455		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
456	    MCDI_STATE_RUNNING_SYNC) {
457		wake_up(&mcdi->wq);
458		return true;
459	}
460
461	return false;
462}
463
464static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
465{
466	if (mcdi->mode == MCDI_MODE_EVENTS) {
467		struct efx_mcdi_async_param *async;
468		struct efx_nic *efx = mcdi->efx;
469
470		/* Process the asynchronous request queue */
471		spin_lock_bh(&mcdi->async_lock);
472		async = list_first_entry_or_null(
473			&mcdi->async_list, struct efx_mcdi_async_param, list);
474		if (async) {
475			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
476			efx_mcdi_send_request(efx, async->cmd,
477					      (const efx_dword_t *)(async + 1),
478					      async->inlen);
479			mod_timer(&mcdi->async_timer,
480				  jiffies + MCDI_RPC_TIMEOUT);
481		}
482		spin_unlock_bh(&mcdi->async_lock);
483
484		if (async)
485			return;
486	}
487
488	mcdi->state = MCDI_STATE_QUIESCENT;
489	wake_up(&mcdi->wq);
490}
491
492/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
493 * asynchronous completion function, and release the interface.
494 * Return whether this was done.  Must be called in bh-disabled
495 * context.  Will take iface_lock and async_lock.
496 */
497static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
498{
499	struct efx_nic *efx = mcdi->efx;
500	struct efx_mcdi_async_param *async;
501	size_t hdr_len, data_len, err_len;
502	efx_dword_t *outbuf;
503	MCDI_DECLARE_BUF_ERR(errbuf);
504	int rc;
505
506	if (cmpxchg(&mcdi->state,
507		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
508	    MCDI_STATE_RUNNING_ASYNC)
509		return false;
510
511	spin_lock(&mcdi->iface_lock);
512	if (timeout) {
513		/* Ensure that if the completion event arrives later,
514		 * the seqno check in efx_mcdi_ev_cpl() will fail
515		 */
516		++mcdi->seqno;
517		++mcdi->credits;
518		rc = -ETIMEDOUT;
519		hdr_len = 0;
520		data_len = 0;
521	} else {
522		rc = mcdi->resprc;
523		hdr_len = mcdi->resp_hdr_len;
524		data_len = mcdi->resp_data_len;
525	}
526	spin_unlock(&mcdi->iface_lock);
527
528	/* Stop the timer.  In case the timer function is running, we
529	 * must wait for it to return so that there is no possibility
530	 * of it aborting the next request.
531	 */
532	if (!timeout)
533		del_timer_sync(&mcdi->async_timer);
534
535	spin_lock(&mcdi->async_lock);
536	async = list_first_entry(&mcdi->async_list,
537				 struct efx_mcdi_async_param, list);
538	list_del(&async->list);
539	spin_unlock(&mcdi->async_lock);
540
541	outbuf = (efx_dword_t *)(async + 1);
542	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
543				      min(async->outlen, data_len));
544	if (!timeout && rc && !async->quiet) {
545		err_len = min(sizeof(errbuf), data_len);
546		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
547					      sizeof(errbuf));
548		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
549				       err_len, rc);
550	}
551
552	if (async->complete)
553		async->complete(efx, async->cookie, rc, outbuf,
554				min(async->outlen, data_len));
555	kfree(async);
556
557	efx_mcdi_release(mcdi);
558
559	return true;
560}
561
562static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
563			    unsigned int datalen, unsigned int mcdi_err)
564{
565	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
566	bool wake = false;
567
568	spin_lock(&mcdi->iface_lock);
569
570	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
571		if (mcdi->credits)
572			/* The request has been cancelled */
573			--mcdi->credits;
574		else
575			netif_err(efx, hw, efx->net_dev,
576				  "MC response mismatch tx seq 0x%x rx "
577				  "seq 0x%x\n", seqno, mcdi->seqno);
578	} else {
579		if (efx->type->mcdi_max_ver >= 2) {
580			/* MCDI v2 responses don't fit in an event */
581			efx_mcdi_read_response_header(efx);
582		} else {
583			mcdi->resprc = efx_mcdi_errno(mcdi_err);
584			mcdi->resp_hdr_len = 4;
585			mcdi->resp_data_len = datalen;
586		}
587
588		wake = true;
589	}
590
591	spin_unlock(&mcdi->iface_lock);
592
593	if (wake) {
594		if (!efx_mcdi_complete_async(mcdi, false))
595			(void) efx_mcdi_complete_sync(mcdi);
596
597		/* If the interface isn't RUNNING_ASYNC or
598		 * RUNNING_SYNC then we've received a duplicate
599		 * completion after we've already transitioned back to
600		 * QUIESCENT. [A subsequent invocation would increment
601		 * seqno, so would have failed the seqno check].
602		 */
603	}
604}
605
606static void efx_mcdi_timeout_async(struct timer_list *t)
607{
608	struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
609
610	efx_mcdi_complete_async(mcdi, true);
611}
612
613static int
614efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
615{
616	if (efx->type->mcdi_max_ver < 0 ||
617	     (efx->type->mcdi_max_ver < 2 &&
618	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
619		return -EINVAL;
620
621	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
622	    (efx->type->mcdi_max_ver < 2 &&
623	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
624		return -EMSGSIZE;
625
626	return 0;
627}
628
629static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
630				      size_t hdr_len, size_t data_len,
631				      u32 *proxy_handle)
632{
633	MCDI_DECLARE_BUF_ERR(testbuf);
634	const size_t buflen = sizeof(testbuf);
635
636	if (!proxy_handle || data_len < buflen)
637		return false;
638
639	efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
640	if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
641		*proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
642		return true;
643	}
644
645	return false;
646}
647
648static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
649				size_t inlen,
650				efx_dword_t *outbuf, size_t outlen,
651				size_t *outlen_actual, bool quiet,
652				u32 *proxy_handle, int *raw_rc)
653{
654	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
655	MCDI_DECLARE_BUF_ERR(errbuf);
656	int rc;
657
658	if (mcdi->mode == MCDI_MODE_POLL)
659		rc = efx_mcdi_poll(efx);
660	else
661		rc = efx_mcdi_await_completion(efx);
662
663	if (rc != 0) {
664		netif_err(efx, hw, efx->net_dev,
665			  "MC command 0x%x inlen %d mode %d timed out\n",
666			  cmd, (int)inlen, mcdi->mode);
667
668		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
669			netif_err(efx, hw, efx->net_dev,
670				  "MCDI request was completed without an event\n");
671			rc = 0;
672		}
673
674		efx_mcdi_abandon(efx);
675
676		/* Close the race with efx_mcdi_ev_cpl() executing just too late
677		 * and completing a request we've just cancelled, by ensuring
678		 * that the seqno check therein fails.
679		 */
680		spin_lock_bh(&mcdi->iface_lock);
681		++mcdi->seqno;
682		++mcdi->credits;
683		spin_unlock_bh(&mcdi->iface_lock);
684	}
685
686	if (proxy_handle)
687		*proxy_handle = 0;
688
689	if (rc != 0) {
690		if (outlen_actual)
691			*outlen_actual = 0;
692	} else {
693		size_t hdr_len, data_len, err_len;
694
695		/* At the very least we need a memory barrier here to ensure
696		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
697		 * a spurious efx_mcdi_ev_cpl() running concurrently by
698		 * acquiring the iface_lock. */
699		spin_lock_bh(&mcdi->iface_lock);
700		rc = mcdi->resprc;
701		if (raw_rc)
702			*raw_rc = mcdi->resprc_raw;
703		hdr_len = mcdi->resp_hdr_len;
704		data_len = mcdi->resp_data_len;
705		err_len = min(sizeof(errbuf), data_len);
706		spin_unlock_bh(&mcdi->iface_lock);
707
708		BUG_ON(rc > 0);
709
710		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
711					      min(outlen, data_len));
712		if (outlen_actual)
713			*outlen_actual = data_len;
714
715		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
716
717		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
718			/* Don't reset if MC_CMD_REBOOT returns EIO */
719		} else if (rc == -EIO || rc == -EINTR) {
720			netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
721			netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
722				  cmd, -rc);
723			if (efx->type->mcdi_reboot_detected)
724				efx->type->mcdi_reboot_detected(efx);
725			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
726		} else if (proxy_handle && (rc == -EPROTO) &&
727			   efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
728						     proxy_handle)) {
729			mcdi->proxy_rx_status = 0;
730			mcdi->proxy_rx_handle = 0;
731			mcdi->state = MCDI_STATE_PROXY_WAIT;
732		} else if (rc && !quiet) {
733			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
734					       rc);
735		}
736
737		if (rc == -EIO || rc == -EINTR) {
738			msleep(MCDI_STATUS_SLEEP_MS);
739			efx_mcdi_poll_reboot(efx);
740			mcdi->new_epoch = true;
741		}
742	}
743
744	if (!proxy_handle || !*proxy_handle)
745		efx_mcdi_release(mcdi);
746	return rc;
747}
748
749static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
750{
751	if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
752		/* Interrupt the proxy wait. */
753		mcdi->proxy_rx_status = -EINTR;
754		wake_up(&mcdi->proxy_rx_wq);
755	}
756}
757
758static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
759				       u32 handle, int status)
760{
761	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
762
763	WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
764
765	mcdi->proxy_rx_status = efx_mcdi_errno(status);
766	/* Ensure the status is written before we update the handle, since the
767	 * latter is used to check if we've finished.
768	 */
769	wmb();
770	mcdi->proxy_rx_handle = handle;
771	wake_up(&mcdi->proxy_rx_wq);
772}
773
774static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
775{
776	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
777	int rc;
778
779	/* Wait for a proxy event, or timeout. */
780	rc = wait_event_timeout(mcdi->proxy_rx_wq,
781				mcdi->proxy_rx_handle != 0 ||
782				mcdi->proxy_rx_status == -EINTR,
783				MCDI_RPC_TIMEOUT);
784
785	if (rc <= 0) {
786		netif_dbg(efx, hw, efx->net_dev,
787			  "MCDI proxy timeout %d\n", handle);
788		return -ETIMEDOUT;
789	} else if (mcdi->proxy_rx_handle != handle) {
790		netif_warn(efx, hw, efx->net_dev,
791			   "MCDI proxy unexpected handle %d (expected %d)\n",
792			   mcdi->proxy_rx_handle, handle);
793		return -EINVAL;
794	}
795
796	return mcdi->proxy_rx_status;
797}
798
799static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
800			 const efx_dword_t *inbuf, size_t inlen,
801			 efx_dword_t *outbuf, size_t outlen,
802			 size_t *outlen_actual, bool quiet, int *raw_rc)
803{
804	u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
805	int rc;
806
807	if (inbuf && inlen && (inbuf == outbuf)) {
808		/* The input buffer can't be aliased with the output. */
809		WARN_ON(1);
810		return -EINVAL;
811	}
812
813	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
814	if (rc)
815		return rc;
816
817	rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
818				  outlen_actual, quiet, &proxy_handle, raw_rc);
819
820	if (proxy_handle) {
821		/* Handle proxy authorisation. This allows approval of MCDI
822		 * operations to be delegated to the admin function, allowing
823		 * fine control over (eg) multicast subscriptions.
824		 */
825		struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
826
827		netif_dbg(efx, hw, efx->net_dev,
828			  "MCDI waiting for proxy auth %d\n",
829			  proxy_handle);
830		rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
831
832		if (rc == 0) {
833			netif_dbg(efx, hw, efx->net_dev,
834				  "MCDI proxy retry %d\n", proxy_handle);
835
836			/* We now retry the original request. */
837			mcdi->state = MCDI_STATE_RUNNING_SYNC;
838			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
839
840			rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
841						  outbuf, outlen, outlen_actual,
842						  quiet, NULL, raw_rc);
843		} else {
844			netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
845				       "MC command 0x%x failed after proxy auth rc=%d\n",
846				       cmd, rc);
847
848			if (rc == -EINTR || rc == -EIO)
849				efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
850			efx_mcdi_release(mcdi);
851		}
852	}
853
854	return rc;
855}
856
857static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
858				   const efx_dword_t *inbuf, size_t inlen,
859				   efx_dword_t *outbuf, size_t outlen,
860				   size_t *outlen_actual, bool quiet)
861{
862	int raw_rc = 0;
863	int rc;
864
865	rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
866			   outbuf, outlen, outlen_actual, true, &raw_rc);
867
868	if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
869	    efx->type->is_vf) {
870		/* If the EVB port isn't available within a VF this may
871		 * mean the PF is still bringing the switch up. We should
872		 * retry our request shortly.
873		 */
874		unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
875		unsigned int delay_us = 10000;
876
877		netif_dbg(efx, hw, efx->net_dev,
878			  "%s: NO_EVB_PORT; will retry request\n",
879			  __func__);
880
881		do {
882			usleep_range(delay_us, delay_us + 10000);
883			rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
884					   outbuf, outlen, outlen_actual,
885					   true, &raw_rc);
886			if (delay_us < 100000)
887				delay_us <<= 1;
888		} while ((rc == -EPROTO) &&
889			 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
890			 time_before(jiffies, abort_time));
891	}
892
893	if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
894		efx_mcdi_display_error(efx, cmd, inlen,
895				       outbuf, outlen, rc);
896
897	return rc;
898}
899
900/**
901 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
902 * @efx: NIC through which to issue the command
903 * @cmd: Command type number
904 * @inbuf: Command parameters
905 * @inlen: Length of command parameters, in bytes.  Must be a multiple
906 *	of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
907 * @outbuf: Response buffer.  May be %NULL if @outlen is 0.
908 * @outlen: Length of response buffer, in bytes.  If the actual
909 *	response is longer than @outlen & ~3, it will be truncated
910 *	to that length.
911 * @outlen_actual: Pointer through which to return the actual response
912 *	length.  May be %NULL if this is not needed.
913 *
914 * This function may sleep and therefore must be called in an appropriate
915 * context.
916 *
917 * Return: A negative error code, or zero if successful.  The error
918 *	code may come from the MCDI response or may indicate a failure
919 *	to communicate with the MC.  In the former case, the response
920 *	will still be copied to @outbuf and *@outlen_actual will be
921 *	set accordingly.  In the latter case, *@outlen_actual will be
922 *	set to zero.
923 */
924int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
925		 const efx_dword_t *inbuf, size_t inlen,
926		 efx_dword_t *outbuf, size_t outlen,
927		 size_t *outlen_actual)
928{
929	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
930				       outlen_actual, false);
931}
932
933/* Normally, on receiving an error code in the MCDI response,
934 * efx_mcdi_rpc will log an error message containing (among other
935 * things) the raw error code, by means of efx_mcdi_display_error.
936 * This _quiet version suppresses that; if the caller wishes to log
937 * the error conditionally on the return code, it should call this
938 * function and is then responsible for calling efx_mcdi_display_error
939 * as needed.
940 */
941int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
942		       const efx_dword_t *inbuf, size_t inlen,
943		       efx_dword_t *outbuf, size_t outlen,
944		       size_t *outlen_actual)
945{
946	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
947				       outlen_actual, true);
948}
949
950int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
951		       const efx_dword_t *inbuf, size_t inlen)
952{
953	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
954	int rc;
955
956	rc = efx_mcdi_check_supported(efx, cmd, inlen);
957	if (rc)
958		return rc;
959
960	if (efx->mc_bist_for_other_fn)
961		return -ENETDOWN;
962
963	if (mcdi->mode == MCDI_MODE_FAIL)
964		return -ENETDOWN;
965
966	efx_mcdi_acquire_sync(mcdi);
967	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
968	return 0;
969}
970
971static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
972			       const efx_dword_t *inbuf, size_t inlen,
973			       size_t outlen,
974			       efx_mcdi_async_completer *complete,
975			       unsigned long cookie, bool quiet)
976{
977	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
978	struct efx_mcdi_async_param *async;
979	int rc;
980
981	rc = efx_mcdi_check_supported(efx, cmd, inlen);
982	if (rc)
983		return rc;
984
985	if (efx->mc_bist_for_other_fn)
986		return -ENETDOWN;
987
988	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
989			GFP_ATOMIC);
990	if (!async)
991		return -ENOMEM;
992
993	async->cmd = cmd;
994	async->inlen = inlen;
995	async->outlen = outlen;
996	async->quiet = quiet;
997	async->complete = complete;
998	async->cookie = cookie;
999	memcpy(async + 1, inbuf, inlen);
1000
1001	spin_lock_bh(&mcdi->async_lock);
1002
1003	if (mcdi->mode == MCDI_MODE_EVENTS) {
1004		list_add_tail(&async->list, &mcdi->async_list);
1005
1006		/* If this is at the front of the queue, try to start it
1007		 * immediately
1008		 */
1009		if (mcdi->async_list.next == &async->list &&
1010		    efx_mcdi_acquire_async(mcdi)) {
1011			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1012			mod_timer(&mcdi->async_timer,
1013				  jiffies + MCDI_RPC_TIMEOUT);
1014		}
1015	} else {
1016		kfree(async);
1017		rc = -ENETDOWN;
1018	}
1019
1020	spin_unlock_bh(&mcdi->async_lock);
1021
1022	return rc;
1023}
1024
1025/**
1026 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1027 * @efx: NIC through which to issue the command
1028 * @cmd: Command type number
1029 * @inbuf: Command parameters
1030 * @inlen: Length of command parameters, in bytes
1031 * @outlen: Length to allocate for response buffer, in bytes
1032 * @complete: Function to be called on completion or cancellation.
1033 * @cookie: Arbitrary value to be passed to @complete.
1034 *
1035 * This function does not sleep and therefore may be called in atomic
1036 * context.  It will fail if event queues are disabled or if MCDI
1037 * event completions have been disabled due to an error.
1038 *
1039 * If it succeeds, the @complete function will be called exactly once
1040 * in atomic context, when one of the following occurs:
1041 * (a) the completion event is received (in NAPI context)
1042 * (b) event queues are disabled (in the process that disables them)
1043 * (c) the request times-out (in timer context)
1044 */
1045int
1046efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1047		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1048		   efx_mcdi_async_completer *complete, unsigned long cookie)
1049{
1050	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1051				   cookie, false);
1052}
1053
1054int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1055			     const efx_dword_t *inbuf, size_t inlen,
1056			     size_t outlen, efx_mcdi_async_completer *complete,
1057			     unsigned long cookie)
1058{
1059	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1060				   cookie, true);
1061}
1062
1063int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1064			efx_dword_t *outbuf, size_t outlen,
1065			size_t *outlen_actual)
1066{
1067	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1068				    outlen_actual, false, NULL, NULL);
1069}
1070
1071int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1072			      efx_dword_t *outbuf, size_t outlen,
1073			      size_t *outlen_actual)
1074{
1075	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1076				    outlen_actual, true, NULL, NULL);
1077}
1078
1079void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1080			    size_t inlen, efx_dword_t *outbuf,
1081			    size_t outlen, int rc)
1082{
1083	int code = 0, err_arg = 0;
1084
1085	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1086		code = MCDI_DWORD(outbuf, ERR_CODE);
1087	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1088		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1089	netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1090		       "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1091		       cmd, inlen, rc, code, err_arg);
1092}
1093
1094/* Switch to polled MCDI completions.  This can be called in various
1095 * error conditions with various locks held, so it must be lockless.
1096 * Caller is responsible for flushing asynchronous requests later.
1097 */
1098void efx_mcdi_mode_poll(struct efx_nic *efx)
1099{
1100	struct efx_mcdi_iface *mcdi;
1101
1102	if (!efx->mcdi)
1103		return;
1104
1105	mcdi = efx_mcdi(efx);
1106	/* If already in polling mode, nothing to do.
1107	 * If in fail-fast state, don't switch to polled completion.
1108	 * FLR recovery will do that later.
1109	 */
1110	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1111		return;
1112
1113	/* We can switch from event completion to polled completion, because
1114	 * mcdi requests are always completed in shared memory. We do this by
1115	 * switching the mode to POLL'd then completing the request.
1116	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1117	 *
1118	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1119	 * which efx_mcdi_complete_sync() provides for us.
1120	 */
1121	mcdi->mode = MCDI_MODE_POLL;
1122
1123	efx_mcdi_complete_sync(mcdi);
1124}
1125
1126/* Flush any running or queued asynchronous requests, after event processing
1127 * is stopped
1128 */
1129void efx_mcdi_flush_async(struct efx_nic *efx)
1130{
1131	struct efx_mcdi_async_param *async, *next;
1132	struct efx_mcdi_iface *mcdi;
1133
1134	if (!efx->mcdi)
1135		return;
1136
1137	mcdi = efx_mcdi(efx);
1138
1139	/* We must be in poll or fail mode so no more requests can be queued */
1140	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1141
1142	del_timer_sync(&mcdi->async_timer);
1143
1144	/* If a request is still running, make sure we give the MC
1145	 * time to complete it so that the response won't overwrite our
1146	 * next request.
1147	 */
1148	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1149		efx_mcdi_poll(efx);
1150		mcdi->state = MCDI_STATE_QUIESCENT;
1151	}
1152
1153	/* Nothing else will access the async list now, so it is safe
1154	 * to walk it without holding async_lock.  If we hold it while
1155	 * calling a completer then lockdep may warn that we have
1156	 * acquired locks in the wrong order.
1157	 */
1158	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1159		if (async->complete)
1160			async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1161		list_del(&async->list);
1162		kfree(async);
1163	}
1164}
1165
1166void efx_mcdi_mode_event(struct efx_nic *efx)
1167{
1168	struct efx_mcdi_iface *mcdi;
1169
1170	if (!efx->mcdi)
1171		return;
1172
1173	mcdi = efx_mcdi(efx);
1174	/* If already in event completion mode, nothing to do.
1175	 * If in fail-fast state, don't switch to event completion.  FLR
1176	 * recovery will do that later.
1177	 */
1178	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1179		return;
1180
1181	/* We can't switch from polled to event completion in the middle of a
1182	 * request, because the completion method is specified in the request.
1183	 * So acquire the interface to serialise the requestors. We don't need
1184	 * to acquire the iface_lock to change the mode here, but we do need a
1185	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1186	 * efx_mcdi_acquire() provides.
1187	 */
1188	efx_mcdi_acquire_sync(mcdi);
1189	mcdi->mode = MCDI_MODE_EVENTS;
1190	efx_mcdi_release(mcdi);
1191}
1192
1193static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1194{
1195	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1196
1197	/* If there is an outstanding MCDI request, it has been terminated
1198	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1199	 * in polled mode, then do nothing because the MC reboot handler will
1200	 * set the header correctly. However, if the mcdi interface is waiting
1201	 * for a CMDDONE event it won't receive it [and since all MCDI events
1202	 * are sent to the same queue, we can't be racing with
1203	 * efx_mcdi_ev_cpl()]
1204	 *
1205	 * If there is an outstanding asynchronous request, we can't
1206	 * complete it now (efx_mcdi_complete() would deadlock).  The
1207	 * reset process will take care of this.
1208	 *
1209	 * There's a race here with efx_mcdi_send_request(), because
1210	 * we might receive a REBOOT event *before* the request has
1211	 * been copied out. In polled mode (during startup) this is
1212	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1213	 * event mode, this condition is just an edge-case of
1214	 * receiving a REBOOT event after posting the MCDI
1215	 * request. Did the mc reboot before or after the copyout? The
1216	 * best we can do always is just return failure.
1217	 *
1218	 * If there is an outstanding proxy response expected it is not going
1219	 * to arrive. We should thus abort it.
1220	 */
1221	spin_lock(&mcdi->iface_lock);
1222	efx_mcdi_proxy_abort(mcdi);
1223
1224	if (efx_mcdi_complete_sync(mcdi)) {
1225		if (mcdi->mode == MCDI_MODE_EVENTS) {
1226			mcdi->resprc = rc;
1227			mcdi->resp_hdr_len = 0;
1228			mcdi->resp_data_len = 0;
1229			++mcdi->credits;
1230		}
1231	} else {
1232		int count;
1233
1234		/* Consume the status word since efx_mcdi_rpc_finish() won't */
1235		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1236			rc = efx_mcdi_poll_reboot(efx);
1237			if (rc)
1238				break;
1239			udelay(MCDI_STATUS_DELAY_US);
1240		}
1241
1242		/* On EF10, a CODE_MC_REBOOT event can be received without the
1243		 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1244		 * If zero was returned from the final call to
1245		 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1246		 * MC has definitely rebooted so prepare for the reset.
1247		 */
1248		if (!rc && efx->type->mcdi_reboot_detected)
1249			efx->type->mcdi_reboot_detected(efx);
1250
1251		mcdi->new_epoch = true;
1252
1253		/* Nobody was waiting for an MCDI request, so trigger a reset */
1254		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1255	}
1256
1257	spin_unlock(&mcdi->iface_lock);
1258}
1259
1260/* The MC is going down in to BIST mode. set the BIST flag to block
1261 * new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset
1262 * (which doesn't actually execute a reset, it waits for the controlling
1263 * function to reset it).
1264 */
1265static void efx_mcdi_ev_bist(struct efx_nic *efx)
1266{
1267	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1268
1269	spin_lock(&mcdi->iface_lock);
1270	efx->mc_bist_for_other_fn = true;
1271	efx_mcdi_proxy_abort(mcdi);
1272
1273	if (efx_mcdi_complete_sync(mcdi)) {
1274		if (mcdi->mode == MCDI_MODE_EVENTS) {
1275			mcdi->resprc = -EIO;
1276			mcdi->resp_hdr_len = 0;
1277			mcdi->resp_data_len = 0;
1278			++mcdi->credits;
1279		}
1280	}
1281	mcdi->new_epoch = true;
1282	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1283	spin_unlock(&mcdi->iface_lock);
1284}
1285
1286/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1287 * to recover.
1288 */
1289static void efx_mcdi_abandon(struct efx_nic *efx)
1290{
1291	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1292
1293	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1294		return; /* it had already been done */
1295	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1296	efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1297}
1298
1299static void efx_handle_drain_event(struct efx_nic *efx)
1300{
1301	if (atomic_dec_and_test(&efx->active_queues))
1302		wake_up(&efx->flush_wq);
1303
1304	WARN_ON(atomic_read(&efx->active_queues) < 0);
1305}
1306
1307/* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1308void efx_mcdi_process_event(struct efx_channel *channel,
1309			    efx_qword_t *event)
1310{
1311	struct efx_nic *efx = channel->efx;
1312	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1313	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1314
1315	switch (code) {
1316	case MCDI_EVENT_CODE_BADSSERT:
1317		netif_err(efx, hw, efx->net_dev,
1318			  "MC watchdog or assertion failure at 0x%x\n", data);
1319		efx_mcdi_ev_death(efx, -EINTR);
1320		break;
1321
1322	case MCDI_EVENT_CODE_PMNOTICE:
1323		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1324		break;
1325
1326	case MCDI_EVENT_CODE_CMDDONE:
1327		efx_mcdi_ev_cpl(efx,
1328				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1329				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1330				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1331		break;
1332
1333	case MCDI_EVENT_CODE_LINKCHANGE:
1334		efx_mcdi_process_link_change(efx, event);
1335		break;
1336	case MCDI_EVENT_CODE_SENSOREVT:
1337		efx_sensor_event(efx, event);
1338		break;
1339	case MCDI_EVENT_CODE_SCHEDERR:
1340		netif_dbg(efx, hw, efx->net_dev,
1341			  "MC Scheduler alert (0x%x)\n", data);
1342		break;
1343	case MCDI_EVENT_CODE_REBOOT:
1344	case MCDI_EVENT_CODE_MC_REBOOT:
1345		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1346		efx_mcdi_ev_death(efx, -EIO);
1347		break;
1348	case MCDI_EVENT_CODE_MC_BIST:
1349		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1350		efx_mcdi_ev_bist(efx);
1351		break;
1352	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1353		/* MAC stats are gather lazily.  We can ignore this. */
1354		break;
1355	case MCDI_EVENT_CODE_PTP_FAULT:
1356	case MCDI_EVENT_CODE_PTP_PPS:
1357		efx_ptp_event(efx, event);
1358		break;
1359	case MCDI_EVENT_CODE_PTP_TIME:
1360		efx_time_sync_event(channel, event);
1361		break;
1362	case MCDI_EVENT_CODE_TX_FLUSH:
1363	case MCDI_EVENT_CODE_RX_FLUSH:
1364		/* Two flush events will be sent: one to the same event
1365		 * queue as completions, and one to event queue 0.
1366		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1367		 * flag will be set, and we should ignore the event
1368		 * because we want to wait for all completions.
1369		 */
1370		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1371			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1372		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1373			efx_handle_drain_event(efx);
1374		break;
1375	case MCDI_EVENT_CODE_TX_ERR:
1376	case MCDI_EVENT_CODE_RX_ERR:
1377		netif_err(efx, hw, efx->net_dev,
1378			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1379			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1380			  EFX_QWORD_VAL(*event));
1381		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1382		break;
1383	case MCDI_EVENT_CODE_PROXY_RESPONSE:
1384		efx_mcdi_ev_proxy_response(efx,
1385				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1386				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1387		break;
1388	default:
1389		netif_err(efx, hw, efx->net_dev,
1390			  "Unknown MCDI event " EFX_QWORD_FMT "\n",
1391			  EFX_QWORD_VAL(*event));
1392	}
1393}
1394
1395/**************************************************************************
1396 *
1397 * Specific request functions
1398 *
1399 **************************************************************************
1400 */
1401
1402void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1403{
1404	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1405	size_t outlength;
1406	const __le16 *ver_words;
1407	size_t offset;
1408	int rc;
1409
1410	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1411	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1412			  outbuf, sizeof(outbuf), &outlength);
1413	if (rc)
1414		goto fail;
1415	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1416		rc = -EIO;
1417		goto fail;
1418	}
1419
1420	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1421	offset = scnprintf(buf, len, "%u.%u.%u.%u",
1422			   le16_to_cpu(ver_words[0]),
1423			   le16_to_cpu(ver_words[1]),
1424			   le16_to_cpu(ver_words[2]),
1425			   le16_to_cpu(ver_words[3]));
1426
1427	if (efx->type->print_additional_fwver)
1428		offset += efx->type->print_additional_fwver(efx, buf + offset,
1429							    len - offset);
1430
1431	/* It's theoretically possible for the string to exceed 31
1432	 * characters, though in practice the first three version
1433	 * components are short enough that this doesn't happen.
1434	 */
1435	if (WARN_ON(offset >= len))
1436		buf[0] = 0;
1437
1438	return;
1439
1440fail:
1441	pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
1442	buf[0] = 0;
1443}
1444
1445static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1446			       bool *was_attached)
1447{
1448	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1449	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1450	size_t outlen;
1451	int rc;
1452
1453	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1454		       driver_operating ? 1 : 0);
1455	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1456	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1457
1458	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1459				outbuf, sizeof(outbuf), &outlen);
1460	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1461	 * specified will fail with EPERM, and we have to tell the MC we don't
1462	 * care what firmware we get.
1463	 */
1464	if (rc == -EPERM) {
1465		pci_dbg(efx->pci_dev,
1466			"%s with fw-variant setting failed EPERM, trying without it\n",
1467			__func__);
1468		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1469			       MC_CMD_FW_DONT_CARE);
1470		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1471					sizeof(inbuf), outbuf, sizeof(outbuf),
1472					&outlen);
1473	}
1474	if (rc) {
1475		efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1476				       outbuf, outlen, rc);
1477		goto fail;
1478	}
1479	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1480		rc = -EIO;
1481		goto fail;
1482	}
1483
1484	if (driver_operating) {
1485		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1486			efx->mcdi->fn_flags =
1487				MCDI_DWORD(outbuf,
1488					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1489		} else {
1490			/* Synthesise flags for Siena */
1491			efx->mcdi->fn_flags =
1492				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1493				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1494				(efx_port_num(efx) == 0) <<
1495				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1496		}
1497	}
1498
1499	/* We currently assume we have control of the external link
1500	 * and are completely trusted by firmware.  Abort probing
1501	 * if that's not true for this function.
1502	 */
1503
1504	if (was_attached != NULL)
1505		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1506	return 0;
1507
1508fail:
1509	pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
1510	return rc;
1511}
1512
1513int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1514			   u16 *fw_subtype_list, u32 *capabilities)
1515{
1516	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1517	size_t outlen, i;
1518	int port_num = efx_port_num(efx);
1519	int rc;
1520
1521	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1522	/* we need __aligned(2) for ether_addr_copy */
1523	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1524	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1525
1526	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1527			  outbuf, sizeof(outbuf), &outlen);
1528	if (rc)
1529		goto fail;
1530
1531	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1532		rc = -EIO;
1533		goto fail;
1534	}
1535
1536	if (mac_address)
1537		ether_addr_copy(mac_address,
1538				port_num ?
1539				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1540				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1541	if (fw_subtype_list) {
1542		for (i = 0;
1543		     i < MCDI_VAR_ARRAY_LEN(outlen,
1544					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1545		     i++)
1546			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1547				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1548		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1549			fw_subtype_list[i] = 0;
1550	}
1551	if (capabilities) {
1552		if (port_num)
1553			*capabilities = MCDI_DWORD(outbuf,
1554					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1555		else
1556			*capabilities = MCDI_DWORD(outbuf,
1557					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1558	}
1559
1560	return 0;
1561
1562fail:
1563	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1564		  __func__, rc, (int)outlen);
1565
1566	return rc;
1567}
1568
1569int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1570{
1571	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1572	u32 dest = 0;
1573	int rc;
1574
1575	if (uart)
1576		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1577	if (evq)
1578		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1579
1580	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1581	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1582
1583	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1584
1585	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1586			  NULL, 0, NULL);
1587	return rc;
1588}
1589
1590int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1591{
1592	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1593	size_t outlen;
1594	int rc;
1595
1596	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1597
1598	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1599			  outbuf, sizeof(outbuf), &outlen);
1600	if (rc)
1601		goto fail;
1602	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1603		rc = -EIO;
1604		goto fail;
1605	}
1606
1607	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1608	return 0;
1609
1610fail:
1611	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1612		  __func__, rc);
1613	return rc;
1614}
1615
1616/* This function finds types using the new NVRAM_PARTITIONS mcdi. */
1617static int efx_new_mcdi_nvram_types(struct efx_nic *efx, u32 *number,
1618				    u32 *nvram_types)
1619{
1620	efx_dword_t *outbuf = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1621				      GFP_KERNEL);
1622	size_t outlen;
1623	int rc;
1624
1625	if (!outbuf)
1626		return -ENOMEM;
1627
1628	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
1629
1630	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
1631			  outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, &outlen);
1632	if (rc)
1633		goto fail;
1634
1635	*number = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
1636
1637	memcpy(nvram_types, MCDI_PTR(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID),
1638	       *number * sizeof(u32));
1639
1640fail:
1641	kfree(outbuf);
1642	return rc;
1643}
1644
1645int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1646			size_t *size_out, size_t *erase_size_out,
1647			bool *protected_out)
1648{
1649	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1650	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1651	size_t outlen;
1652	int rc;
1653
1654	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1655
1656	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1657			  outbuf, sizeof(outbuf), &outlen);
1658	if (rc)
1659		goto fail;
1660	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1661		rc = -EIO;
1662		goto fail;
1663	}
1664
1665	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1666	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1667	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1668				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1669	return 0;
1670
1671fail:
1672	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1673	return rc;
1674}
1675
1676static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1677{
1678	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1679	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1680	int rc;
1681
1682	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1683
1684	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1685			  outbuf, sizeof(outbuf), NULL);
1686	if (rc)
1687		return rc;
1688
1689	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1690	case MC_CMD_NVRAM_TEST_PASS:
1691	case MC_CMD_NVRAM_TEST_NOTSUPP:
1692		return 0;
1693	default:
1694		return -EIO;
1695	}
1696}
1697
1698/* This function tests nvram partitions using the new mcdi partition lookup scheme */
1699int efx_new_mcdi_nvram_test_all(struct efx_nic *efx)
1700{
1701	u32 *nvram_types = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1702				   GFP_KERNEL);
1703	unsigned int number;
1704	int rc, i;
1705
1706	if (!nvram_types)
1707		return -ENOMEM;
1708
1709	rc = efx_new_mcdi_nvram_types(efx, &number, nvram_types);
1710	if (rc)
1711		goto fail;
1712
1713	/* Require at least one check */
1714	rc = -EAGAIN;
1715
1716	for (i = 0; i < number; i++) {
1717		if (nvram_types[i] == NVRAM_PARTITION_TYPE_PARTITION_MAP ||
1718		    nvram_types[i] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG)
1719			continue;
1720
1721		rc = efx_mcdi_nvram_test(efx, nvram_types[i]);
1722		if (rc)
1723			goto fail;
1724	}
1725
1726fail:
1727	kfree(nvram_types);
1728	return rc;
1729}
1730
1731int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1732{
1733	u32 nvram_types;
1734	unsigned int type;
1735	int rc;
1736
1737	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1738	if (rc)
1739		goto fail1;
1740
1741	type = 0;
1742	while (nvram_types != 0) {
1743		if (nvram_types & 1) {
1744			rc = efx_mcdi_nvram_test(efx, type);
1745			if (rc)
1746				goto fail2;
1747		}
1748		type++;
1749		nvram_types >>= 1;
1750	}
1751
1752	return 0;
1753
1754fail2:
1755	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1756		  __func__, type);
1757fail1:
1758	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1759	return rc;
1760}
1761
1762/* Returns 1 if an assertion was read, 0 if no assertion had fired,
1763 * negative on error.
1764 */
1765static int efx_mcdi_read_assertion(struct efx_nic *efx)
1766{
1767	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1768	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1769	unsigned int flags, index;
1770	const char *reason;
1771	size_t outlen;
1772	int retry;
1773	int rc;
1774
1775	/* Attempt to read any stored assertion state before we reboot
1776	 * the mcfw out of the assertion handler. Retry twice, once
1777	 * because a boot-time assertion might cause this command to fail
1778	 * with EINTR. And once again because GET_ASSERTS can race with
1779	 * MC_CMD_REBOOT running on the other port. */
1780	retry = 2;
1781	do {
1782		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1783		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1784					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1785					outbuf, sizeof(outbuf), &outlen);
1786		if (rc == -EPERM)
1787			return 0;
1788	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1789
1790	if (rc) {
1791		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1792				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1793				       outlen, rc);
1794		return rc;
1795	}
1796	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1797		return -EIO;
1798
1799	/* Print out any recorded assertion state */
1800	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1801	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1802		return 0;
1803
1804	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1805		? "system-level assertion"
1806		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1807		? "thread-level assertion"
1808		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1809		? "watchdog reset"
1810		: "unknown assertion";
1811	netif_err(efx, hw, efx->net_dev,
1812		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1813		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1814		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1815
1816	/* Print out the registers */
1817	for (index = 0;
1818	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1819	     index++)
1820		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1821			  1 + index,
1822			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1823					   index));
1824
1825	return 1;
1826}
1827
1828static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1829{
1830	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1831	int rc;
1832
1833	/* If the MC is running debug firmware, it might now be
1834	 * waiting for a debugger to attach, but we just want it to
1835	 * reboot.  We set a flag that makes the command a no-op if it
1836	 * has already done so.
1837	 * The MCDI will thus return either 0 or -EIO.
1838	 */
1839	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1840	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1841		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1842	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1843				NULL, 0, NULL);
1844	if (rc == -EIO)
1845		rc = 0;
1846	if (rc)
1847		efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1848				       NULL, 0, rc);
1849	return rc;
1850}
1851
1852int efx_mcdi_handle_assertion(struct efx_nic *efx)
1853{
1854	int rc;
1855
1856	rc = efx_mcdi_read_assertion(efx);
1857	if (rc <= 0)
1858		return rc;
1859
1860	return efx_mcdi_exit_assertion(efx);
1861}
1862
1863int efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1864{
1865	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1866
1867	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1868	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1869	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1870
1871	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1872
1873	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1874
1875	return efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), NULL, 0, NULL);
1876}
1877
1878static int efx_mcdi_reset_func(struct efx_nic *efx)
1879{
1880	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1881	int rc;
1882
1883	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1884	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1885			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1886	rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1887			  NULL, 0, NULL);
1888	return rc;
1889}
1890
1891static int efx_mcdi_reset_mc(struct efx_nic *efx)
1892{
1893	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1894	int rc;
1895
1896	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1897	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1898	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1899			  NULL, 0, NULL);
1900	/* White is black, and up is down */
1901	if (rc == -EIO)
1902		return 0;
1903	if (rc == 0)
1904		rc = -EIO;
1905	return rc;
1906}
1907
1908enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1909{
1910	return RESET_TYPE_RECOVER_OR_ALL;
1911}
1912
1913int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1914{
1915	int rc;
1916
1917	/* If MCDI is down, we can't handle_assertion */
1918	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1919		rc = pci_reset_function(efx->pci_dev);
1920		if (rc)
1921			return rc;
1922		/* Re-enable polled MCDI completion */
1923		if (efx->mcdi) {
1924			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1925			mcdi->mode = MCDI_MODE_POLL;
1926		}
1927		return 0;
1928	}
1929
1930	/* Recover from a failed assertion pre-reset */
1931	rc = efx_mcdi_handle_assertion(efx);
1932	if (rc)
1933		return rc;
1934
1935	if (method == RESET_TYPE_DATAPATH)
1936		return 0;
1937	else if (method == RESET_TYPE_WORLD)
1938		return efx_mcdi_reset_mc(efx);
1939	else
1940		return efx_mcdi_reset_func(efx);
1941}
1942
1943static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1944				   const u8 *mac, int *id_out)
1945{
1946	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1947	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1948	size_t outlen;
1949	int rc;
1950
1951	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1952	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1953		       MC_CMD_FILTER_MODE_SIMPLE);
1954	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1955
1956	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1957			  outbuf, sizeof(outbuf), &outlen);
1958	if (rc)
1959		goto fail;
1960
1961	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1962		rc = -EIO;
1963		goto fail;
1964	}
1965
1966	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1967
1968	return 0;
1969
1970fail:
1971	*id_out = -1;
1972	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1973	return rc;
1974
1975}
1976
1977
1978int
1979efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1980{
1981	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1982}
1983
1984
1985int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1986{
1987	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1988	size_t outlen;
1989	int rc;
1990
1991	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1992			  outbuf, sizeof(outbuf), &outlen);
1993	if (rc)
1994		goto fail;
1995
1996	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1997		rc = -EIO;
1998		goto fail;
1999	}
2000
2001	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
2002
2003	return 0;
2004
2005fail:
2006	*id_out = -1;
2007	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2008	return rc;
2009}
2010
2011
2012int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
2013{
2014	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
2015	int rc;
2016
2017	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
2018
2019	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
2020			  NULL, 0, NULL);
2021	return rc;
2022}
2023
2024int efx_mcdi_flush_rxqs(struct efx_nic *efx)
2025{
2026	struct efx_channel *channel;
2027	struct efx_rx_queue *rx_queue;
2028	MCDI_DECLARE_BUF(inbuf,
2029			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
2030	int rc, count;
2031
2032	BUILD_BUG_ON(EFX_MAX_CHANNELS >
2033		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
2034
2035	count = 0;
2036	efx_for_each_channel(channel, efx) {
2037		efx_for_each_channel_rx_queue(rx_queue, channel) {
2038			if (rx_queue->flush_pending) {
2039				rx_queue->flush_pending = false;
2040				atomic_dec(&efx->rxq_flush_pending);
2041				MCDI_SET_ARRAY_DWORD(
2042					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
2043					count, efx_rx_queue_index(rx_queue));
2044				count++;
2045			}
2046		}
2047	}
2048
2049	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
2050			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
2051	WARN_ON(rc < 0);
2052
2053	return rc;
2054}
2055
2056int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2057{
2058	int rc;
2059
2060	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2061	return rc;
2062}
2063
2064int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2065			    unsigned int *flags)
2066{
2067	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2068	MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2069	size_t outlen;
2070	int rc;
2071
2072	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2073	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2074	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2075	rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2076			  outbuf, sizeof(outbuf), &outlen);
2077	if (rc)
2078		return rc;
2079
2080	if (!flags)
2081		return 0;
2082
2083	if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2084		*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2085	else
2086		*flags = 0;
2087
2088	return 0;
2089}
2090
2091int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2092			     unsigned int *enabled_out)
2093{
2094	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2095	size_t outlen;
2096	int rc;
2097
2098	rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2099			  outbuf, sizeof(outbuf), &outlen);
2100	if (rc)
2101		goto fail;
2102
2103	if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2104		rc = -EIO;
2105		goto fail;
2106	}
2107
2108	if (impl_out)
2109		*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2110
2111	if (enabled_out)
2112		*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2113
2114	return 0;
2115
2116fail:
2117	/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2118	 * terrifying.  The call site will have to deal with it though.
2119	 */
2120	netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2121		       "%s: failed rc=%d\n", __func__, rc);
2122	return rc;
2123}
2124
2125/* Failure to read a privilege mask is never fatal, because we can always
2126 * carry on as though we didn't have the privilege we were interested in.
2127 * So use efx_mcdi_rpc_quiet().
2128 */
2129int efx_mcdi_get_privilege_mask(struct efx_nic *efx, u32 *mask)
2130{
2131	MCDI_DECLARE_BUF(fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
2132	MCDI_DECLARE_BUF(pm_inbuf, MC_CMD_PRIVILEGE_MASK_IN_LEN);
2133	MCDI_DECLARE_BUF(pm_outbuf, MC_CMD_PRIVILEGE_MASK_OUT_LEN);
2134	size_t outlen;
2135	u16 pf, vf;
2136	int rc;
2137
2138	if (!efx || !mask)
2139		return -EINVAL;
2140
2141	/* Get our function number */
2142	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0,
2143				fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN,
2144				&outlen);
2145	if (rc != 0)
2146		return rc;
2147	if (outlen < MC_CMD_GET_FUNCTION_INFO_OUT_LEN)
2148		return -EIO;
2149
2150	pf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_PF);
2151	vf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_VF);
2152
2153	MCDI_POPULATE_DWORD_2(pm_inbuf, PRIVILEGE_MASK_IN_FUNCTION,
2154			      PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
2155			      PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
2156
2157	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PRIVILEGE_MASK,
2158				pm_inbuf, sizeof(pm_inbuf),
2159				pm_outbuf, sizeof(pm_outbuf), &outlen);
2160
2161	if (rc != 0)
2162		return rc;
2163	if (outlen < MC_CMD_PRIVILEGE_MASK_OUT_LEN)
2164		return -EIO;
2165
2166	*mask = MCDI_DWORD(pm_outbuf, PRIVILEGE_MASK_OUT_OLD_MASK);
2167
2168	return 0;
2169}
2170
2171int efx_mcdi_nvram_metadata(struct efx_nic *efx, unsigned int type,
2172			    u32 *subtype, u16 version[4], char *desc,
2173			    size_t descsize)
2174{
2175	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
2176	efx_dword_t *outbuf;
2177	size_t outlen;
2178	u32 flags;
2179	int rc;
2180
2181	outbuf = kzalloc(MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2, GFP_KERNEL);
2182	if (!outbuf)
2183		return -ENOMEM;
2184
2185	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
2186
2187	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_NVRAM_METADATA, inbuf,
2188				sizeof(inbuf), outbuf,
2189				MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2,
2190				&outlen);
2191	if (rc)
2192		goto out_free;
2193	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) {
2194		rc = -EIO;
2195		goto out_free;
2196	}
2197
2198	flags = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS);
2199
2200	if (desc && descsize > 0) {
2201		if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_VALID_LBN)) {
2202			if (descsize <=
2203			    MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen)) {
2204				rc = -E2BIG;
2205				goto out_free;
2206			}
2207
2208			strscpy(desc,
2209				MCDI_PTR(outbuf, NVRAM_METADATA_OUT_DESCRIPTION),
2210				MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen));
2211		} else {
2212			desc[0] = '\0';
2213		}
2214	}
2215
2216	if (subtype) {
2217		if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
2218			*subtype = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_SUBTYPE);
2219		else
2220			*subtype = 0;
2221	}
2222
2223	if (version) {
2224		if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_VERSION_VALID_LBN)) {
2225			version[0] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_W);
2226			version[1] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_X);
2227			version[2] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Y);
2228			version[3] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Z);
2229		} else {
2230			version[0] = 0;
2231			version[1] = 0;
2232			version[2] = 0;
2233			version[3] = 0;
2234		}
2235	}
2236
2237out_free:
2238	kfree(outbuf);
2239	return rc;
2240}
2241
2242#ifdef CONFIG_SFC_MTD
2243
2244#define EFX_MCDI_NVRAM_LEN_MAX 128
2245
2246static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2247{
2248	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2249	int rc;
2250
2251	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2252	MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2253			      NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2254			      1);
2255
2256	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2257
2258	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2259			  NULL, 0, NULL);
2260
2261	return rc;
2262}
2263
2264static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2265			       loff_t offset, u8 *buffer, size_t length)
2266{
2267	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2268	MCDI_DECLARE_BUF(outbuf,
2269			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2270	size_t outlen;
2271	int rc;
2272
2273	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2274	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2275	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2276	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2277		       MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2278
2279	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2280			  outbuf, sizeof(outbuf), &outlen);
2281	if (rc)
2282		return rc;
2283
2284	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2285	return 0;
2286}
2287
2288static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2289				loff_t offset, const u8 *buffer, size_t length)
2290{
2291	MCDI_DECLARE_BUF(inbuf,
2292			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2293	int rc;
2294
2295	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2296	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2297	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2298	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2299
2300	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2301
2302	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2303			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2304			  NULL, 0, NULL);
2305	return rc;
2306}
2307
2308static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2309				loff_t offset, size_t length)
2310{
2311	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2312	int rc;
2313
2314	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2315	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2316	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2317
2318	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2319
2320	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2321			  NULL, 0, NULL);
2322	return rc;
2323}
2324
2325static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2326{
2327	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2328	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2329	size_t outlen;
2330	int rc, rc2;
2331
2332	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2333	/* Always set this flag. Old firmware ignores it */
2334	MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2335			      NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2336			      1);
2337
2338	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2339			  outbuf, sizeof(outbuf), &outlen);
2340	if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2341		rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2342		if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2343			netif_err(efx, drv, efx->net_dev,
2344				  "NVRAM update failed verification with code 0x%x\n",
2345				  rc2);
2346		switch (rc2) {
2347		case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2348			break;
2349		case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2350		case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2351		case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2352		case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2353		case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2354			rc = -EIO;
2355			break;
2356		case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2357		case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2358			rc = -EINVAL;
2359			break;
2360		case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2361		case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2362		case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2363			rc = -EPERM;
2364			break;
2365		default:
2366			netif_err(efx, drv, efx->net_dev,
2367				  "Unknown response to NVRAM_UPDATE_FINISH\n");
2368			rc = -EIO;
2369		}
2370	}
2371
2372	return rc;
2373}
2374
2375int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2376		      size_t len, size_t *retlen, u8 *buffer)
2377{
2378	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2379	struct efx_nic *efx = mtd->priv;
2380	loff_t offset = start;
2381	loff_t end = min_t(loff_t, start + len, mtd->size);
2382	size_t chunk;
2383	int rc = 0;
2384
2385	while (offset < end) {
2386		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2387		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2388					 buffer, chunk);
2389		if (rc)
2390			goto out;
2391		offset += chunk;
2392		buffer += chunk;
2393	}
2394out:
2395	*retlen = offset - start;
2396	return rc;
2397}
2398
2399int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2400{
2401	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2402	struct efx_nic *efx = mtd->priv;
2403	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2404	loff_t end = min_t(loff_t, start + len, mtd->size);
2405	size_t chunk = part->common.mtd.erasesize;
2406	int rc = 0;
2407
2408	if (!part->updating) {
2409		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2410		if (rc)
2411			goto out;
2412		part->updating = true;
2413	}
2414
2415	/* The MCDI interface can in fact do multiple erase blocks at once;
2416	 * but erasing may be slow, so we make multiple calls here to avoid
2417	 * tripping the MCDI RPC timeout. */
2418	while (offset < end) {
2419		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2420					  chunk);
2421		if (rc)
2422			goto out;
2423		offset += chunk;
2424	}
2425out:
2426	return rc;
2427}
2428
2429int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2430		       size_t len, size_t *retlen, const u8 *buffer)
2431{
2432	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2433	struct efx_nic *efx = mtd->priv;
2434	loff_t offset = start;
2435	loff_t end = min_t(loff_t, start + len, mtd->size);
2436	size_t chunk;
2437	int rc = 0;
2438
2439	if (!part->updating) {
2440		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2441		if (rc)
2442			goto out;
2443		part->updating = true;
2444	}
2445
2446	while (offset < end) {
2447		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2448		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2449					  buffer, chunk);
2450		if (rc)
2451			goto out;
2452		offset += chunk;
2453		buffer += chunk;
2454	}
2455out:
2456	*retlen = offset - start;
2457	return rc;
2458}
2459
2460int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2461{
2462	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2463	struct efx_nic *efx = mtd->priv;
2464	int rc = 0;
2465
2466	if (part->updating) {
2467		part->updating = false;
2468		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2469	}
2470
2471	return rc;
2472}
2473
2474void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2475{
2476	struct efx_mcdi_mtd_partition *mcdi_part =
2477		container_of(part, struct efx_mcdi_mtd_partition, common);
2478	struct efx_nic *efx = part->mtd.priv;
2479
2480	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2481		 efx->name, part->type_name, mcdi_part->fw_subtype);
2482}
2483
2484#endif /* CONFIG_SFC_MTD */
2485