1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/pci.h>
9#include <linux/tcp.h>
10#include <linux/ip.h>
11#include <linux/in.h>
12#include <linux/ipv6.h>
13#include <linux/slab.h>
14#include <net/ipv6.h>
15#include <linux/if_ether.h>
16#include <linux/highmem.h>
17#include <linux/cache.h>
18#include "net_driver.h"
19#include "efx.h"
20#include "io.h"
21#include "nic.h"
22#include "tx.h"
23#include "workarounds.h"
24
25static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue,
26					 struct ef4_tx_buffer *buffer)
27{
28	unsigned int index = ef4_tx_queue_get_insert_index(tx_queue);
29	struct ef4_buffer *page_buf =
30		&tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)];
31	unsigned int offset =
32		((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
33
34	if (unlikely(!page_buf->addr) &&
35	    ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
36				 GFP_ATOMIC))
37		return NULL;
38	buffer->dma_addr = page_buf->dma_addr + offset;
39	buffer->unmap_len = 0;
40	return (u8 *)page_buf->addr + offset;
41}
42
43u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue,
44				   struct ef4_tx_buffer *buffer, size_t len)
45{
46	if (len > EF4_TX_CB_SIZE)
47		return NULL;
48	return ef4_tx_get_copy_buffer(tx_queue, buffer);
49}
50
51static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue,
52			       struct ef4_tx_buffer *buffer,
53			       unsigned int *pkts_compl,
54			       unsigned int *bytes_compl)
55{
56	if (buffer->unmap_len) {
57		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
58		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
59		if (buffer->flags & EF4_TX_BUF_MAP_SINGLE)
60			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
61					 DMA_TO_DEVICE);
62		else
63			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
64				       DMA_TO_DEVICE);
65		buffer->unmap_len = 0;
66	}
67
68	if (buffer->flags & EF4_TX_BUF_SKB) {
69		(*pkts_compl)++;
70		(*bytes_compl) += buffer->skb->len;
71		dev_consume_skb_any((struct sk_buff *)buffer->skb);
72		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
73			   "TX queue %d transmission id %x complete\n",
74			   tx_queue->queue, tx_queue->read_count);
75	}
76
77	buffer->len = 0;
78	buffer->flags = 0;
79}
80
81unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx)
82{
83	/* This is probably too much since we don't have any TSO support;
84	 * it's a left-over from when we had Software TSO.  But it's safer
85	 * to leave it as-is than try to determine a new bound.
86	 */
87	/* Header and payload descriptor for each output segment, plus
88	 * one for every input fragment boundary within a segment
89	 */
90	unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
91
92	/* Possibly one more per segment for the alignment workaround,
93	 * or for option descriptors
94	 */
95	if (EF4_WORKAROUND_5391(efx))
96		max_descs += EF4_TSO_MAX_SEGS;
97
98	/* Possibly more for PCIe page boundaries within input fragments */
99	if (PAGE_SIZE > EF4_PAGE_SIZE)
100		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
101				   DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
102						EF4_PAGE_SIZE));
103
104	return max_descs;
105}
106
107static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1)
108{
109	/* We need to consider both queues that the net core sees as one */
110	struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1);
111	struct ef4_nic *efx = txq1->efx;
112	unsigned int fill_level;
113
114	fill_level = max(txq1->insert_count - txq1->old_read_count,
115			 txq2->insert_count - txq2->old_read_count);
116	if (likely(fill_level < efx->txq_stop_thresh))
117		return;
118
119	/* We used the stale old_read_count above, which gives us a
120	 * pessimistic estimate of the fill level (which may even
121	 * validly be >= efx->txq_entries).  Now try again using
122	 * read_count (more likely to be a cache miss).
123	 *
124	 * If we read read_count and then conditionally stop the
125	 * queue, it is possible for the completion path to race with
126	 * us and complete all outstanding descriptors in the middle,
127	 * after which there will be no more completions to wake it.
128	 * Therefore we stop the queue first, then read read_count
129	 * (with a memory barrier to ensure the ordering), then
130	 * restart the queue if the fill level turns out to be low
131	 * enough.
132	 */
133	netif_tx_stop_queue(txq1->core_txq);
134	smp_mb();
135	txq1->old_read_count = READ_ONCE(txq1->read_count);
136	txq2->old_read_count = READ_ONCE(txq2->read_count);
137
138	fill_level = max(txq1->insert_count - txq1->old_read_count,
139			 txq2->insert_count - txq2->old_read_count);
140	EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
141	if (likely(fill_level < efx->txq_stop_thresh)) {
142		smp_mb();
143		if (likely(!efx->loopback_selftest))
144			netif_tx_start_queue(txq1->core_txq);
145	}
146}
147
148static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue,
149				struct sk_buff *skb)
150{
151	unsigned int min_len = tx_queue->tx_min_size;
152	unsigned int copy_len = skb->len;
153	struct ef4_tx_buffer *buffer;
154	u8 *copy_buffer;
155	int rc;
156
157	EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE);
158
159	buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
160
161	copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer);
162	if (unlikely(!copy_buffer))
163		return -ENOMEM;
164
165	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
166	EF4_WARN_ON_PARANOID(rc);
167	if (unlikely(copy_len < min_len)) {
168		memset(copy_buffer + copy_len, 0, min_len - copy_len);
169		buffer->len = min_len;
170	} else {
171		buffer->len = copy_len;
172	}
173
174	buffer->skb = skb;
175	buffer->flags = EF4_TX_BUF_SKB;
176
177	++tx_queue->insert_count;
178	return rc;
179}
180
181static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue,
182					      dma_addr_t dma_addr,
183					      size_t len)
184{
185	const struct ef4_nic_type *nic_type = tx_queue->efx->type;
186	struct ef4_tx_buffer *buffer;
187	unsigned int dma_len;
188
189	/* Map the fragment taking account of NIC-dependent DMA limits. */
190	do {
191		buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
192		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
193
194		buffer->len = dma_len;
195		buffer->dma_addr = dma_addr;
196		buffer->flags = EF4_TX_BUF_CONT;
197		len -= dma_len;
198		dma_addr += dma_len;
199		++tx_queue->insert_count;
200	} while (len);
201
202	return buffer;
203}
204
205/* Map all data from an SKB for DMA and create descriptors on the queue.
206 */
207static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
208{
209	struct ef4_nic *efx = tx_queue->efx;
210	struct device *dma_dev = &efx->pci_dev->dev;
211	unsigned int frag_index, nr_frags;
212	dma_addr_t dma_addr, unmap_addr;
213	unsigned short dma_flags;
214	size_t len, unmap_len;
215
216	nr_frags = skb_shinfo(skb)->nr_frags;
217	frag_index = 0;
218
219	/* Map header data. */
220	len = skb_headlen(skb);
221	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
222	dma_flags = EF4_TX_BUF_MAP_SINGLE;
223	unmap_len = len;
224	unmap_addr = dma_addr;
225
226	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
227		return -EIO;
228
229	/* Add descriptors for each fragment. */
230	do {
231		struct ef4_tx_buffer *buffer;
232		skb_frag_t *fragment;
233
234		buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len);
235
236		/* The final descriptor for a fragment is responsible for
237		 * unmapping the whole fragment.
238		 */
239		buffer->flags = EF4_TX_BUF_CONT | dma_flags;
240		buffer->unmap_len = unmap_len;
241		buffer->dma_offset = buffer->dma_addr - unmap_addr;
242
243		if (frag_index >= nr_frags) {
244			/* Store SKB details with the final buffer for
245			 * the completion.
246			 */
247			buffer->skb = skb;
248			buffer->flags = EF4_TX_BUF_SKB | dma_flags;
249			return 0;
250		}
251
252		/* Move on to the next fragment. */
253		fragment = &skb_shinfo(skb)->frags[frag_index++];
254		len = skb_frag_size(fragment);
255		dma_addr = skb_frag_dma_map(dma_dev, fragment,
256				0, len, DMA_TO_DEVICE);
257		dma_flags = 0;
258		unmap_len = len;
259		unmap_addr = dma_addr;
260
261		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
262			return -EIO;
263	} while (1);
264}
265
266/* Remove buffers put into a tx_queue.  None of the buffers must have
267 * an skb attached.
268 */
269static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue)
270{
271	struct ef4_tx_buffer *buffer;
272
273	/* Work backwards until we hit the original insert pointer value */
274	while (tx_queue->insert_count != tx_queue->write_count) {
275		--tx_queue->insert_count;
276		buffer = __ef4_tx_queue_get_insert_buffer(tx_queue);
277		ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL);
278	}
279}
280
281/*
282 * Add a socket buffer to a TX queue
283 *
284 * This maps all fragments of a socket buffer for DMA and adds them to
285 * the TX queue.  The queue's insert pointer will be incremented by
286 * the number of fragments in the socket buffer.
287 *
288 * If any DMA mapping fails, any mapped fragments will be unmapped,
289 * the queue's insert pointer will be restored to its original value.
290 *
291 * This function is split out from ef4_hard_start_xmit to allow the
292 * loopback test to direct packets via specific TX queues.
293 *
294 * Returns NETDEV_TX_OK.
295 * You must hold netif_tx_lock() to call this function.
296 */
297netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
298{
299	bool data_mapped = false;
300	unsigned int skb_len;
301
302	skb_len = skb->len;
303	EF4_WARN_ON_PARANOID(skb_is_gso(skb));
304
305	if (skb_len < tx_queue->tx_min_size ||
306			(skb->data_len && skb_len <= EF4_TX_CB_SIZE)) {
307		/* Pad short packets or coalesce short fragmented packets. */
308		if (ef4_enqueue_skb_copy(tx_queue, skb))
309			goto err;
310		tx_queue->cb_packets++;
311		data_mapped = true;
312	}
313
314	/* Map for DMA and create descriptors if we haven't done so already. */
315	if (!data_mapped && (ef4_tx_map_data(tx_queue, skb)))
316		goto err;
317
318	/* Update BQL */
319	netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
320
321	/* Pass off to hardware */
322	if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) {
323		struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue);
324
325		/* There could be packets left on the partner queue if those
326		 * SKBs had skb->xmit_more set. If we do not push those they
327		 * could be left for a long time and cause a netdev watchdog.
328		 */
329		if (txq2->xmit_more_available)
330			ef4_nic_push_buffers(txq2);
331
332		ef4_nic_push_buffers(tx_queue);
333	} else {
334		tx_queue->xmit_more_available = netdev_xmit_more();
335	}
336
337	tx_queue->tx_packets++;
338
339	ef4_tx_maybe_stop_queue(tx_queue);
340
341	return NETDEV_TX_OK;
342
343
344err:
345	ef4_enqueue_unwind(tx_queue);
346	dev_kfree_skb_any(skb);
347	return NETDEV_TX_OK;
348}
349
350/* Remove packets from the TX queue
351 *
352 * This removes packets from the TX queue, up to and including the
353 * specified index.
354 */
355static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue,
356				unsigned int index,
357				unsigned int *pkts_compl,
358				unsigned int *bytes_compl)
359{
360	struct ef4_nic *efx = tx_queue->efx;
361	unsigned int stop_index, read_ptr;
362
363	stop_index = (index + 1) & tx_queue->ptr_mask;
364	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
365
366	while (read_ptr != stop_index) {
367		struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
368
369		if (!(buffer->flags & EF4_TX_BUF_OPTION) &&
370		    unlikely(buffer->len == 0)) {
371			netif_err(efx, tx_err, efx->net_dev,
372				  "TX queue %d spurious TX completion id %x\n",
373				  tx_queue->queue, read_ptr);
374			ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP);
375			return;
376		}
377
378		ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
379
380		++tx_queue->read_count;
381		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
382	}
383}
384
385/* Initiate a packet transmission.  We use one channel per CPU
386 * (sharing when we have more CPUs than channels).  On Falcon, the TX
387 * completion events will be directed back to the CPU that transmitted
388 * the packet, which should be cache-efficient.
389 *
390 * Context: non-blocking.
391 * Note that returning anything other than NETDEV_TX_OK will cause the
392 * OS to free the skb.
393 */
394netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb,
395				struct net_device *net_dev)
396{
397	struct ef4_nic *efx = netdev_priv(net_dev);
398	struct ef4_tx_queue *tx_queue;
399	unsigned index, type;
400
401	EF4_WARN_ON_PARANOID(!netif_device_present(net_dev));
402
403	index = skb_get_queue_mapping(skb);
404	type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0;
405	if (index >= efx->n_tx_channels) {
406		index -= efx->n_tx_channels;
407		type |= EF4_TXQ_TYPE_HIGHPRI;
408	}
409	tx_queue = ef4_get_tx_queue(efx, index, type);
410
411	return ef4_enqueue_skb(tx_queue, skb);
412}
413
414void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue)
415{
416	struct ef4_nic *efx = tx_queue->efx;
417
418	/* Must be inverse of queue lookup in ef4_hard_start_xmit() */
419	tx_queue->core_txq =
420		netdev_get_tx_queue(efx->net_dev,
421				    tx_queue->queue / EF4_TXQ_TYPES +
422				    ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
423				     efx->n_tx_channels : 0));
424}
425
426int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
427		 void *type_data)
428{
429	struct ef4_nic *efx = netdev_priv(net_dev);
430	struct tc_mqprio_qopt *mqprio = type_data;
431	struct ef4_channel *channel;
432	struct ef4_tx_queue *tx_queue;
433	unsigned tc, num_tc;
434	int rc;
435
436	if (type != TC_SETUP_QDISC_MQPRIO)
437		return -EOPNOTSUPP;
438
439	num_tc = mqprio->num_tc;
440
441	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC)
442		return -EINVAL;
443
444	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
445
446	if (num_tc == net_dev->num_tc)
447		return 0;
448
449	for (tc = 0; tc < num_tc; tc++) {
450		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
451		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
452	}
453
454	if (num_tc > net_dev->num_tc) {
455		/* Initialise high-priority queues as necessary */
456		ef4_for_each_channel(channel, efx) {
457			ef4_for_each_possible_channel_tx_queue(tx_queue,
458							       channel) {
459				if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI))
460					continue;
461				if (!tx_queue->buffer) {
462					rc = ef4_probe_tx_queue(tx_queue);
463					if (rc)
464						return rc;
465				}
466				if (!tx_queue->initialised)
467					ef4_init_tx_queue(tx_queue);
468				ef4_init_tx_queue_core_txq(tx_queue);
469			}
470		}
471	} else {
472		/* Reduce number of classes before number of queues */
473		net_dev->num_tc = num_tc;
474	}
475
476	rc = netif_set_real_num_tx_queues(net_dev,
477					  max_t(int, num_tc, 1) *
478					  efx->n_tx_channels);
479	if (rc)
480		return rc;
481
482	/* Do not destroy high-priority queues when they become
483	 * unused.  We would have to flush them first, and it is
484	 * fairly difficult to flush a subset of TX queues.  Leave
485	 * it to ef4_fini_channels().
486	 */
487
488	net_dev->num_tc = num_tc;
489	return 0;
490}
491
492void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index)
493{
494	unsigned fill_level;
495	struct ef4_nic *efx = tx_queue->efx;
496	struct ef4_tx_queue *txq2;
497	unsigned int pkts_compl = 0, bytes_compl = 0;
498
499	EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
500
501	ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
502	tx_queue->pkts_compl += pkts_compl;
503	tx_queue->bytes_compl += bytes_compl;
504
505	if (pkts_compl > 1)
506		++tx_queue->merge_events;
507
508	/* See if we need to restart the netif queue.  This memory
509	 * barrier ensures that we write read_count (inside
510	 * ef4_dequeue_buffers()) before reading the queue status.
511	 */
512	smp_mb();
513	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
514	    likely(efx->port_enabled) &&
515	    likely(netif_device_present(efx->net_dev))) {
516		txq2 = ef4_tx_queue_partner(tx_queue);
517		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
518				 txq2->insert_count - txq2->read_count);
519		if (fill_level <= efx->txq_wake_thresh)
520			netif_tx_wake_queue(tx_queue->core_txq);
521	}
522
523	/* Check whether the hardware queue is now empty */
524	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
525		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
526		if (tx_queue->read_count == tx_queue->old_write_count) {
527			smp_mb();
528			tx_queue->empty_read_count =
529				tx_queue->read_count | EF4_EMPTY_COUNT_VALID;
530		}
531	}
532}
533
534static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue)
535{
536	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER);
537}
538
539int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue)
540{
541	struct ef4_nic *efx = tx_queue->efx;
542	unsigned int entries;
543	int rc;
544
545	/* Create the smallest power-of-two aligned ring */
546	entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE);
547	EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
548	tx_queue->ptr_mask = entries - 1;
549
550	netif_dbg(efx, probe, efx->net_dev,
551		  "creating TX queue %d size %#x mask %#x\n",
552		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
553
554	/* Allocate software ring */
555	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
556				   GFP_KERNEL);
557	if (!tx_queue->buffer)
558		return -ENOMEM;
559
560	tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue),
561				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
562	if (!tx_queue->cb_page) {
563		rc = -ENOMEM;
564		goto fail1;
565	}
566
567	/* Allocate hardware ring */
568	rc = ef4_nic_probe_tx(tx_queue);
569	if (rc)
570		goto fail2;
571
572	return 0;
573
574fail2:
575	kfree(tx_queue->cb_page);
576	tx_queue->cb_page = NULL;
577fail1:
578	kfree(tx_queue->buffer);
579	tx_queue->buffer = NULL;
580	return rc;
581}
582
583void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue)
584{
585	struct ef4_nic *efx = tx_queue->efx;
586
587	netif_dbg(efx, drv, efx->net_dev,
588		  "initialising TX queue %d\n", tx_queue->queue);
589
590	tx_queue->insert_count = 0;
591	tx_queue->write_count = 0;
592	tx_queue->old_write_count = 0;
593	tx_queue->read_count = 0;
594	tx_queue->old_read_count = 0;
595	tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID;
596	tx_queue->xmit_more_available = false;
597
598	/* Some older hardware requires Tx writes larger than 32. */
599	tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0;
600
601	/* Set up TX descriptor ring */
602	ef4_nic_init_tx(tx_queue);
603
604	tx_queue->initialised = true;
605}
606
607void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue)
608{
609	struct ef4_tx_buffer *buffer;
610
611	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
612		  "shutting down TX queue %d\n", tx_queue->queue);
613
614	if (!tx_queue->buffer)
615		return;
616
617	/* Free any buffers left in the ring */
618	while (tx_queue->read_count != tx_queue->write_count) {
619		unsigned int pkts_compl = 0, bytes_compl = 0;
620		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
621		ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
622
623		++tx_queue->read_count;
624	}
625	tx_queue->xmit_more_available = false;
626	netdev_tx_reset_queue(tx_queue->core_txq);
627}
628
629void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue)
630{
631	int i;
632
633	if (!tx_queue->buffer)
634		return;
635
636	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
637		  "destroying TX queue %d\n", tx_queue->queue);
638	ef4_nic_remove_tx(tx_queue);
639
640	if (tx_queue->cb_page) {
641		for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++)
642			ef4_nic_free_buffer(tx_queue->efx,
643					    &tx_queue->cb_page[i]);
644		kfree(tx_queue->cb_page);
645		tx_queue->cb_page = NULL;
646	}
647
648	kfree(tx_queue->buffer);
649	tx_queue->buffer = NULL;
650}
651