1/* SPDX-License-Identifier: GPL-2.0-only */
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
7
8#ifndef EF4_NIC_H
9#define EF4_NIC_H
10
11#include <linux/net_tstamp.h>
12#include <linux/i2c-algo-bit.h>
13#include "net_driver.h"
14#include "efx.h"
15
16enum {
17	EF4_REV_FALCON_A0 = 0,
18	EF4_REV_FALCON_A1 = 1,
19	EF4_REV_FALCON_B0 = 2,
20};
21
22static inline int ef4_nic_rev(struct ef4_nic *efx)
23{
24	return efx->type->revision;
25}
26
27u32 ef4_farch_fpga_ver(struct ef4_nic *efx);
28
29/* NIC has two interlinked PCI functions for the same port. */
30static inline bool ef4_nic_is_dual_func(struct ef4_nic *efx)
31{
32	return ef4_nic_rev(efx) < EF4_REV_FALCON_B0;
33}
34
35/* Read the current event from the event queue */
36static inline ef4_qword_t *ef4_event(struct ef4_channel *channel,
37				     unsigned int index)
38{
39	return ((ef4_qword_t *) (channel->eventq.buf.addr)) +
40		(index & channel->eventq_mask);
41}
42
43/* See if an event is present
44 *
45 * We check both the high and low dword of the event for all ones.  We
46 * wrote all ones when we cleared the event, and no valid event can
47 * have all ones in either its high or low dwords.  This approach is
48 * robust against reordering.
49 *
50 * Note that using a single 64-bit comparison is incorrect; even
51 * though the CPU read will be atomic, the DMA write may not be.
52 */
53static inline int ef4_event_present(ef4_qword_t *event)
54{
55	return !(EF4_DWORD_IS_ALL_ONES(event->dword[0]) |
56		  EF4_DWORD_IS_ALL_ONES(event->dword[1]));
57}
58
59/* Returns a pointer to the specified transmit descriptor in the TX
60 * descriptor queue belonging to the specified channel.
61 */
62static inline ef4_qword_t *
63ef4_tx_desc(struct ef4_tx_queue *tx_queue, unsigned int index)
64{
65	return ((ef4_qword_t *) (tx_queue->txd.buf.addr)) + index;
66}
67
68/* Get partner of a TX queue, seen as part of the same net core queue */
69static inline struct ef4_tx_queue *ef4_tx_queue_partner(struct ef4_tx_queue *tx_queue)
70{
71	if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
72		return tx_queue - EF4_TXQ_TYPE_OFFLOAD;
73	else
74		return tx_queue + EF4_TXQ_TYPE_OFFLOAD;
75}
76
77/* Report whether this TX queue would be empty for the given write_count.
78 * May return false negative.
79 */
80static inline bool __ef4_nic_tx_is_empty(struct ef4_tx_queue *tx_queue,
81					 unsigned int write_count)
82{
83	unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
84
85	if (empty_read_count == 0)
86		return false;
87
88	return ((empty_read_count ^ write_count) & ~EF4_EMPTY_COUNT_VALID) == 0;
89}
90
91/* Decide whether to push a TX descriptor to the NIC vs merely writing
92 * the doorbell.  This can reduce latency when we are adding a single
93 * descriptor to an empty queue, but is otherwise pointless.  Further,
94 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
95 * triggered if we don't check this.
96 * We use the write_count used for the last doorbell push, to get the
97 * NIC's view of the tx queue.
98 */
99static inline bool ef4_nic_may_push_tx_desc(struct ef4_tx_queue *tx_queue,
100					    unsigned int write_count)
101{
102	bool was_empty = __ef4_nic_tx_is_empty(tx_queue, write_count);
103
104	tx_queue->empty_read_count = 0;
105	return was_empty && tx_queue->write_count - write_count == 1;
106}
107
108/* Returns a pointer to the specified descriptor in the RX descriptor queue */
109static inline ef4_qword_t *
110ef4_rx_desc(struct ef4_rx_queue *rx_queue, unsigned int index)
111{
112	return ((ef4_qword_t *) (rx_queue->rxd.buf.addr)) + index;
113}
114
115enum {
116	PHY_TYPE_NONE = 0,
117	PHY_TYPE_TXC43128 = 1,
118	PHY_TYPE_88E1111 = 2,
119	PHY_TYPE_SFX7101 = 3,
120	PHY_TYPE_QT2022C2 = 4,
121	PHY_TYPE_PM8358 = 6,
122	PHY_TYPE_SFT9001A = 8,
123	PHY_TYPE_QT2025C = 9,
124	PHY_TYPE_SFT9001B = 10,
125};
126
127#define FALCON_XMAC_LOOPBACKS			\
128	((1 << LOOPBACK_XGMII) |		\
129	 (1 << LOOPBACK_XGXS) |			\
130	 (1 << LOOPBACK_XAUI))
131
132/* Alignment of PCIe DMA boundaries (4KB) */
133#define EF4_PAGE_SIZE	4096
134/* Size and alignment of buffer table entries (same) */
135#define EF4_BUF_SIZE	EF4_PAGE_SIZE
136
137/* NIC-generic software stats */
138enum {
139	GENERIC_STAT_rx_noskb_drops,
140	GENERIC_STAT_rx_nodesc_trunc,
141	GENERIC_STAT_COUNT
142};
143
144/**
145 * struct falcon_board_type - board operations and type information
146 * @id: Board type id, as found in NVRAM
147 * @init: Allocate resources and initialise peripheral hardware
148 * @init_phy: Do board-specific PHY initialisation
149 * @fini: Shut down hardware and free resources
150 * @set_id_led: Set state of identifying LED or revert to automatic function
151 * @monitor: Board-specific health check function
152 */
153struct falcon_board_type {
154	u8 id;
155	int (*init) (struct ef4_nic *nic);
156	void (*init_phy) (struct ef4_nic *efx);
157	void (*fini) (struct ef4_nic *nic);
158	void (*set_id_led) (struct ef4_nic *efx, enum ef4_led_mode mode);
159	int (*monitor) (struct ef4_nic *nic);
160};
161
162/**
163 * struct falcon_board - board information
164 * @type: Type of board
165 * @major: Major rev. ('A', 'B' ...)
166 * @minor: Minor rev. (0, 1, ...)
167 * @i2c_adap: I2C adapter for on-board peripherals
168 * @i2c_data: Data for bit-banging algorithm
169 * @hwmon_client: I2C client for hardware monitor
170 * @ioexp_client: I2C client for power/port control
171 */
172struct falcon_board {
173	const struct falcon_board_type *type;
174	int major;
175	int minor;
176	struct i2c_adapter i2c_adap;
177	struct i2c_algo_bit_data i2c_data;
178	struct i2c_client *hwmon_client, *ioexp_client;
179};
180
181/**
182 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
183 * @device_id:		Controller's id for the device
184 * @size:		Size (in bytes)
185 * @addr_len:		Number of address bytes in read/write commands
186 * @munge_address:	Flag whether addresses should be munged.
187 *	Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
188 *	use bit 3 of the command byte as address bit A8, rather
189 *	than having a two-byte address.  If this flag is set, then
190 *	commands should be munged in this way.
191 * @erase_command:	Erase command (or 0 if sector erase not needed).
192 * @erase_size:		Erase sector size (in bytes)
193 *	Erase commands affect sectors with this size and alignment.
194 *	This must be a power of two.
195 * @block_size:		Write block size (in bytes).
196 *	Write commands are limited to blocks with this size and alignment.
197 */
198struct falcon_spi_device {
199	int device_id;
200	unsigned int size;
201	unsigned int addr_len;
202	unsigned int munge_address:1;
203	u8 erase_command;
204	unsigned int erase_size;
205	unsigned int block_size;
206};
207
208static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
209{
210	return spi->size != 0;
211}
212
213enum {
214	FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
215	FALCON_STAT_tx_packets,
216	FALCON_STAT_tx_pause,
217	FALCON_STAT_tx_control,
218	FALCON_STAT_tx_unicast,
219	FALCON_STAT_tx_multicast,
220	FALCON_STAT_tx_broadcast,
221	FALCON_STAT_tx_lt64,
222	FALCON_STAT_tx_64,
223	FALCON_STAT_tx_65_to_127,
224	FALCON_STAT_tx_128_to_255,
225	FALCON_STAT_tx_256_to_511,
226	FALCON_STAT_tx_512_to_1023,
227	FALCON_STAT_tx_1024_to_15xx,
228	FALCON_STAT_tx_15xx_to_jumbo,
229	FALCON_STAT_tx_gtjumbo,
230	FALCON_STAT_tx_non_tcpudp,
231	FALCON_STAT_tx_mac_src_error,
232	FALCON_STAT_tx_ip_src_error,
233	FALCON_STAT_rx_bytes,
234	FALCON_STAT_rx_good_bytes,
235	FALCON_STAT_rx_bad_bytes,
236	FALCON_STAT_rx_packets,
237	FALCON_STAT_rx_good,
238	FALCON_STAT_rx_bad,
239	FALCON_STAT_rx_pause,
240	FALCON_STAT_rx_control,
241	FALCON_STAT_rx_unicast,
242	FALCON_STAT_rx_multicast,
243	FALCON_STAT_rx_broadcast,
244	FALCON_STAT_rx_lt64,
245	FALCON_STAT_rx_64,
246	FALCON_STAT_rx_65_to_127,
247	FALCON_STAT_rx_128_to_255,
248	FALCON_STAT_rx_256_to_511,
249	FALCON_STAT_rx_512_to_1023,
250	FALCON_STAT_rx_1024_to_15xx,
251	FALCON_STAT_rx_15xx_to_jumbo,
252	FALCON_STAT_rx_gtjumbo,
253	FALCON_STAT_rx_bad_lt64,
254	FALCON_STAT_rx_bad_gtjumbo,
255	FALCON_STAT_rx_overflow,
256	FALCON_STAT_rx_symbol_error,
257	FALCON_STAT_rx_align_error,
258	FALCON_STAT_rx_length_error,
259	FALCON_STAT_rx_internal_error,
260	FALCON_STAT_rx_nodesc_drop_cnt,
261	FALCON_STAT_COUNT
262};
263
264/**
265 * struct falcon_nic_data - Falcon NIC state
266 * @pci_dev2: Secondary function of Falcon A
267 * @efx: ef4_nic pointer
268 * @board: Board state and functions
269 * @stats: Hardware statistics
270 * @stats_disable_count: Nest count for disabling statistics fetches
271 * @stats_pending: Is there a pending DMA of MAC statistics.
272 * @stats_timer: A timer for regularly fetching MAC statistics.
273 * @spi_flash: SPI flash device
274 * @spi_eeprom: SPI EEPROM device
275 * @spi_lock: SPI bus lock
276 * @mdio_lock: MDIO bus lock
277 * @xmac_poll_required: XMAC link state needs polling
278 */
279struct falcon_nic_data {
280	struct pci_dev *pci_dev2;
281	struct ef4_nic *efx;
282	struct falcon_board board;
283	u64 stats[FALCON_STAT_COUNT];
284	unsigned int stats_disable_count;
285	bool stats_pending;
286	struct timer_list stats_timer;
287	struct falcon_spi_device spi_flash;
288	struct falcon_spi_device spi_eeprom;
289	struct mutex spi_lock;
290	struct mutex mdio_lock;
291	bool xmac_poll_required;
292};
293
294static inline struct falcon_board *falcon_board(struct ef4_nic *efx)
295{
296	struct falcon_nic_data *data = efx->nic_data;
297	return &data->board;
298}
299
300struct ethtool_ts_info;
301
302extern const struct ef4_nic_type falcon_a1_nic_type;
303extern const struct ef4_nic_type falcon_b0_nic_type;
304
305/**************************************************************************
306 *
307 * Externs
308 *
309 **************************************************************************
310 */
311
312int falcon_probe_board(struct ef4_nic *efx, u16 revision_info);
313
314/* TX data path */
315static inline int ef4_nic_probe_tx(struct ef4_tx_queue *tx_queue)
316{
317	return tx_queue->efx->type->tx_probe(tx_queue);
318}
319static inline void ef4_nic_init_tx(struct ef4_tx_queue *tx_queue)
320{
321	tx_queue->efx->type->tx_init(tx_queue);
322}
323static inline void ef4_nic_remove_tx(struct ef4_tx_queue *tx_queue)
324{
325	tx_queue->efx->type->tx_remove(tx_queue);
326}
327static inline void ef4_nic_push_buffers(struct ef4_tx_queue *tx_queue)
328{
329	tx_queue->efx->type->tx_write(tx_queue);
330}
331
332/* RX data path */
333static inline int ef4_nic_probe_rx(struct ef4_rx_queue *rx_queue)
334{
335	return rx_queue->efx->type->rx_probe(rx_queue);
336}
337static inline void ef4_nic_init_rx(struct ef4_rx_queue *rx_queue)
338{
339	rx_queue->efx->type->rx_init(rx_queue);
340}
341static inline void ef4_nic_remove_rx(struct ef4_rx_queue *rx_queue)
342{
343	rx_queue->efx->type->rx_remove(rx_queue);
344}
345static inline void ef4_nic_notify_rx_desc(struct ef4_rx_queue *rx_queue)
346{
347	rx_queue->efx->type->rx_write(rx_queue);
348}
349static inline void ef4_nic_generate_fill_event(struct ef4_rx_queue *rx_queue)
350{
351	rx_queue->efx->type->rx_defer_refill(rx_queue);
352}
353
354/* Event data path */
355static inline int ef4_nic_probe_eventq(struct ef4_channel *channel)
356{
357	return channel->efx->type->ev_probe(channel);
358}
359static inline int ef4_nic_init_eventq(struct ef4_channel *channel)
360{
361	return channel->efx->type->ev_init(channel);
362}
363static inline void ef4_nic_fini_eventq(struct ef4_channel *channel)
364{
365	channel->efx->type->ev_fini(channel);
366}
367static inline void ef4_nic_remove_eventq(struct ef4_channel *channel)
368{
369	channel->efx->type->ev_remove(channel);
370}
371static inline int
372ef4_nic_process_eventq(struct ef4_channel *channel, int quota)
373{
374	return channel->efx->type->ev_process(channel, quota);
375}
376static inline void ef4_nic_eventq_read_ack(struct ef4_channel *channel)
377{
378	channel->efx->type->ev_read_ack(channel);
379}
380void ef4_nic_event_test_start(struct ef4_channel *channel);
381
382/* queue operations */
383int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue);
384void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue);
385void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue);
386void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue);
387void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue);
388unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
389				    dma_addr_t dma_addr, unsigned int len);
390int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue);
391void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue);
392void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue);
393void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue);
394void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue);
395void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue);
396int ef4_farch_ev_probe(struct ef4_channel *channel);
397int ef4_farch_ev_init(struct ef4_channel *channel);
398void ef4_farch_ev_fini(struct ef4_channel *channel);
399void ef4_farch_ev_remove(struct ef4_channel *channel);
400int ef4_farch_ev_process(struct ef4_channel *channel, int quota);
401void ef4_farch_ev_read_ack(struct ef4_channel *channel);
402void ef4_farch_ev_test_generate(struct ef4_channel *channel);
403
404/* filter operations */
405int ef4_farch_filter_table_probe(struct ef4_nic *efx);
406void ef4_farch_filter_table_restore(struct ef4_nic *efx);
407void ef4_farch_filter_table_remove(struct ef4_nic *efx);
408void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx);
409s32 ef4_farch_filter_insert(struct ef4_nic *efx, struct ef4_filter_spec *spec,
410			    bool replace);
411int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
412				 enum ef4_filter_priority priority,
413				 u32 filter_id);
414int ef4_farch_filter_get_safe(struct ef4_nic *efx,
415			      enum ef4_filter_priority priority, u32 filter_id,
416			      struct ef4_filter_spec *);
417int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
418			      enum ef4_filter_priority priority);
419u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
420				   enum ef4_filter_priority priority);
421u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx);
422s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
423				enum ef4_filter_priority priority, u32 *buf,
424				u32 size);
425#ifdef CONFIG_RFS_ACCEL
426s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
427				struct ef4_filter_spec *spec);
428bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
429				     unsigned int index);
430#endif
431void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx);
432
433bool ef4_nic_event_present(struct ef4_channel *channel);
434
435/* Some statistics are computed as A - B where A and B each increase
436 * linearly with some hardware counter(s) and the counters are read
437 * asynchronously.  If the counters contributing to B are always read
438 * after those contributing to A, the computed value may be lower than
439 * the true value by some variable amount, and may decrease between
440 * subsequent computations.
441 *
442 * We should never allow statistics to decrease or to exceed the true
443 * value.  Since the computed value will never be greater than the
444 * true value, we can achieve this by only storing the computed value
445 * when it increases.
446 */
447static inline void ef4_update_diff_stat(u64 *stat, u64 diff)
448{
449	if ((s64)(diff - *stat) > 0)
450		*stat = diff;
451}
452
453/* Interrupts */
454int ef4_nic_init_interrupt(struct ef4_nic *efx);
455int ef4_nic_irq_test_start(struct ef4_nic *efx);
456void ef4_nic_fini_interrupt(struct ef4_nic *efx);
457void ef4_farch_irq_enable_master(struct ef4_nic *efx);
458int ef4_farch_irq_test_generate(struct ef4_nic *efx);
459void ef4_farch_irq_disable_master(struct ef4_nic *efx);
460irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id);
461irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id);
462irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx);
463
464static inline int ef4_nic_event_test_irq_cpu(struct ef4_channel *channel)
465{
466	return READ_ONCE(channel->event_test_cpu);
467}
468static inline int ef4_nic_irq_test_irq_cpu(struct ef4_nic *efx)
469{
470	return READ_ONCE(efx->last_irq_cpu);
471}
472
473/* Global Resources */
474int ef4_nic_flush_queues(struct ef4_nic *efx);
475int ef4_farch_fini_dmaq(struct ef4_nic *efx);
476void ef4_farch_finish_flr(struct ef4_nic *efx);
477void falcon_start_nic_stats(struct ef4_nic *efx);
478void falcon_stop_nic_stats(struct ef4_nic *efx);
479int falcon_reset_xaui(struct ef4_nic *efx);
480void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw);
481void ef4_farch_init_common(struct ef4_nic *efx);
482void ef4_farch_rx_push_indir_table(struct ef4_nic *efx);
483
484int ef4_nic_alloc_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer,
485			 unsigned int len, gfp_t gfp_flags);
486void ef4_nic_free_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer);
487
488/* Tests */
489struct ef4_farch_register_test {
490	unsigned address;
491	ef4_oword_t mask;
492};
493int ef4_farch_test_registers(struct ef4_nic *efx,
494			     const struct ef4_farch_register_test *regs,
495			     size_t n_regs);
496
497size_t ef4_nic_get_regs_len(struct ef4_nic *efx);
498void ef4_nic_get_regs(struct ef4_nic *efx, void *buf);
499
500size_t ef4_nic_describe_stats(const struct ef4_hw_stat_desc *desc, size_t count,
501			      const unsigned long *mask, u8 *names);
502void ef4_nic_update_stats(const struct ef4_hw_stat_desc *desc, size_t count,
503			  const unsigned long *mask, u64 *stats,
504			  const void *dma_buf, bool accumulate);
505void ef4_nic_fix_nodesc_drop_stat(struct ef4_nic *efx, u64 *stat);
506
507#define EF4_MAX_FLUSH_TIME 5000
508
509void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
510			      ef4_qword_t *event);
511
512#endif /* EF4_NIC_H */
513