1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include "net_driver.h"
12#include <linux/filter.h>
13#include <linux/module.h>
14#include <linux/netdevice.h>
15#include <net/gre.h>
16#include "efx_common.h"
17#include "efx_channels.h"
18#include "efx.h"
19#include "mcdi.h"
20#include "selftest.h"
21#include "rx_common.h"
22#include "tx_common.h"
23#include "nic.h"
24#include "mcdi_port_common.h"
25#include "io.h"
26#include "mcdi_pcol.h"
27#include "ef100_rep.h"
28
29static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
30			     NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
31			     NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
32			     NETIF_MSG_TX_ERR | NETIF_MSG_HW);
33module_param(debug, uint, 0);
34MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
35
36/* This is the time (in jiffies) between invocations of the hardware
37 * monitor.
38 */
39static unsigned int efx_monitor_interval = 1 * HZ;
40
41/* How often and how many times to poll for a reset while waiting for a
42 * BIST that another function started to complete.
43 */
44#define BIST_WAIT_DELAY_MS	100
45#define BIST_WAIT_DELAY_COUNT	100
46
47/* Default stats update time */
48#define STATS_PERIOD_MS_DEFAULT 1000
49
50static const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
51static const char *const efx_reset_type_names[] = {
52	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
53	[RESET_TYPE_ALL]                = "ALL",
54	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
55	[RESET_TYPE_WORLD]              = "WORLD",
56	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
57	[RESET_TYPE_DATAPATH]           = "DATAPATH",
58	[RESET_TYPE_MC_BIST]		= "MC_BIST",
59	[RESET_TYPE_DISABLE]            = "DISABLE",
60	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
61	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
62	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
63	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
64	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
65	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
66};
67
68#define RESET_TYPE(type) \
69	STRING_TABLE_LOOKUP(type, efx_reset_type)
70
71/* Loopback mode names (see LOOPBACK_MODE()) */
72const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
73const char *const efx_loopback_mode_names[] = {
74	[LOOPBACK_NONE]		= "NONE",
75	[LOOPBACK_DATA]		= "DATAPATH",
76	[LOOPBACK_GMAC]		= "GMAC",
77	[LOOPBACK_XGMII]	= "XGMII",
78	[LOOPBACK_XGXS]		= "XGXS",
79	[LOOPBACK_XAUI]		= "XAUI",
80	[LOOPBACK_GMII]		= "GMII",
81	[LOOPBACK_SGMII]	= "SGMII",
82	[LOOPBACK_XGBR]		= "XGBR",
83	[LOOPBACK_XFI]		= "XFI",
84	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
85	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
86	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
87	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
88	[LOOPBACK_GPHY]		= "GPHY",
89	[LOOPBACK_PHYXS]	= "PHYXS",
90	[LOOPBACK_PCS]		= "PCS",
91	[LOOPBACK_PMAPMD]	= "PMA/PMD",
92	[LOOPBACK_XPORT]	= "XPORT",
93	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
94	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
95	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
96	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
97	[LOOPBACK_GMII_WS]	= "GMII_WS",
98	[LOOPBACK_XFI_WS]	= "XFI_WS",
99	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
100	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
101};
102
103/* Reset workqueue. If any NIC has a hardware failure then a reset will be
104 * queued onto this work queue. This is not a per-nic work queue, because
105 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
106 */
107static struct workqueue_struct *reset_workqueue;
108
109int efx_create_reset_workqueue(void)
110{
111	reset_workqueue = create_singlethread_workqueue("sfc_reset");
112	if (!reset_workqueue) {
113		printk(KERN_ERR "Failed to create reset workqueue\n");
114		return -ENOMEM;
115	}
116
117	return 0;
118}
119
120void efx_queue_reset_work(struct efx_nic *efx)
121{
122	queue_work(reset_workqueue, &efx->reset_work);
123}
124
125void efx_flush_reset_workqueue(struct efx_nic *efx)
126{
127	cancel_work_sync(&efx->reset_work);
128}
129
130void efx_destroy_reset_workqueue(void)
131{
132	if (reset_workqueue) {
133		destroy_workqueue(reset_workqueue);
134		reset_workqueue = NULL;
135	}
136}
137
138/* We assume that efx->type->reconfigure_mac will always try to sync RX
139 * filters and therefore needs to read-lock the filter table against freeing
140 */
141void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
142{
143	if (efx->type->reconfigure_mac) {
144		down_read(&efx->filter_sem);
145		efx->type->reconfigure_mac(efx, mtu_only);
146		up_read(&efx->filter_sem);
147	}
148}
149
150/* Asynchronous work item for changing MAC promiscuity and multicast
151 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
152 * MAC directly.
153 */
154static void efx_mac_work(struct work_struct *data)
155{
156	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
157
158	mutex_lock(&efx->mac_lock);
159	if (efx->port_enabled)
160		efx_mac_reconfigure(efx, false);
161	mutex_unlock(&efx->mac_lock);
162}
163
164int efx_set_mac_address(struct net_device *net_dev, void *data)
165{
166	struct efx_nic *efx = efx_netdev_priv(net_dev);
167	struct sockaddr *addr = data;
168	u8 *new_addr = addr->sa_data;
169	u8 old_addr[6];
170	int rc;
171
172	if (!is_valid_ether_addr(new_addr)) {
173		netif_err(efx, drv, efx->net_dev,
174			  "invalid ethernet MAC address requested: %pM\n",
175			  new_addr);
176		return -EADDRNOTAVAIL;
177	}
178
179	/* save old address */
180	ether_addr_copy(old_addr, net_dev->dev_addr);
181	eth_hw_addr_set(net_dev, new_addr);
182	if (efx->type->set_mac_address) {
183		rc = efx->type->set_mac_address(efx);
184		if (rc) {
185			eth_hw_addr_set(net_dev, old_addr);
186			return rc;
187		}
188	}
189
190	/* Reconfigure the MAC */
191	mutex_lock(&efx->mac_lock);
192	efx_mac_reconfigure(efx, false);
193	mutex_unlock(&efx->mac_lock);
194
195	return 0;
196}
197
198/* Context: netif_addr_lock held, BHs disabled. */
199void efx_set_rx_mode(struct net_device *net_dev)
200{
201	struct efx_nic *efx = efx_netdev_priv(net_dev);
202
203	if (efx->port_enabled)
204		queue_work(efx->workqueue, &efx->mac_work);
205	/* Otherwise efx_start_port() will do this */
206}
207
208int efx_set_features(struct net_device *net_dev, netdev_features_t data)
209{
210	struct efx_nic *efx = efx_netdev_priv(net_dev);
211	int rc;
212
213	/* If disabling RX n-tuple filtering, clear existing filters */
214	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
215		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
216		if (rc)
217			return rc;
218	}
219
220	/* If Rx VLAN filter is changed, update filters via mac_reconfigure.
221	 * If rx-fcs is changed, mac_reconfigure updates that too.
222	 */
223	if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
224					  NETIF_F_RXFCS)) {
225		/* efx_set_rx_mode() will schedule MAC work to update filters
226		 * when a new features are finally set in net_dev.
227		 */
228		efx_set_rx_mode(net_dev);
229	}
230
231	return 0;
232}
233
234/* This ensures that the kernel is kept informed (via
235 * netif_carrier_on/off) of the link status, and also maintains the
236 * link status's stop on the port's TX queue.
237 */
238void efx_link_status_changed(struct efx_nic *efx)
239{
240	struct efx_link_state *link_state = &efx->link_state;
241
242	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
243	 * that no events are triggered between unregister_netdev() and the
244	 * driver unloading. A more general condition is that NETDEV_CHANGE
245	 * can only be generated between NETDEV_UP and NETDEV_DOWN
246	 */
247	if (!netif_running(efx->net_dev))
248		return;
249
250	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
251		efx->n_link_state_changes++;
252
253		if (link_state->up)
254			netif_carrier_on(efx->net_dev);
255		else
256			netif_carrier_off(efx->net_dev);
257	}
258
259	/* Status message for kernel log */
260	if (link_state->up)
261		netif_info(efx, link, efx->net_dev,
262			   "link up at %uMbps %s-duplex (MTU %d)\n",
263			   link_state->speed, link_state->fd ? "full" : "half",
264			   efx->net_dev->mtu);
265	else
266		netif_info(efx, link, efx->net_dev, "link down\n");
267}
268
269unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
270{
271	/* The maximum MTU that we can fit in a single page, allowing for
272	 * framing, overhead and XDP headroom + tailroom.
273	 */
274	int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
275		       efx->rx_prefix_size + efx->type->rx_buffer_padding +
276		       efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
277
278	return PAGE_SIZE - overhead;
279}
280
281/* Context: process, rtnl_lock() held. */
282int efx_change_mtu(struct net_device *net_dev, int new_mtu)
283{
284	struct efx_nic *efx = efx_netdev_priv(net_dev);
285	int rc;
286
287	rc = efx_check_disabled(efx);
288	if (rc)
289		return rc;
290
291	if (rtnl_dereference(efx->xdp_prog) &&
292	    new_mtu > efx_xdp_max_mtu(efx)) {
293		netif_err(efx, drv, efx->net_dev,
294			  "Requested MTU of %d too big for XDP (max: %d)\n",
295			  new_mtu, efx_xdp_max_mtu(efx));
296		return -EINVAL;
297	}
298
299	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
300
301	efx_device_detach_sync(efx);
302	efx_stop_all(efx);
303
304	mutex_lock(&efx->mac_lock);
305	net_dev->mtu = new_mtu;
306	efx_mac_reconfigure(efx, true);
307	mutex_unlock(&efx->mac_lock);
308
309	efx_start_all(efx);
310	efx_device_attach_if_not_resetting(efx);
311	return 0;
312}
313
314/**************************************************************************
315 *
316 * Hardware monitor
317 *
318 **************************************************************************/
319
320/* Run periodically off the general workqueue */
321static void efx_monitor(struct work_struct *data)
322{
323	struct efx_nic *efx = container_of(data, struct efx_nic,
324					   monitor_work.work);
325
326	netif_vdbg(efx, timer, efx->net_dev,
327		   "hardware monitor executing on CPU %d\n",
328		   raw_smp_processor_id());
329	BUG_ON(efx->type->monitor == NULL);
330
331	/* If the mac_lock is already held then it is likely a port
332	 * reconfiguration is already in place, which will likely do
333	 * most of the work of monitor() anyway.
334	 */
335	if (mutex_trylock(&efx->mac_lock)) {
336		if (efx->port_enabled && efx->type->monitor)
337			efx->type->monitor(efx);
338		mutex_unlock(&efx->mac_lock);
339	}
340
341	efx_start_monitor(efx);
342}
343
344void efx_start_monitor(struct efx_nic *efx)
345{
346	if (efx->type->monitor)
347		queue_delayed_work(efx->workqueue, &efx->monitor_work,
348				   efx_monitor_interval);
349}
350
351/**************************************************************************
352 *
353 * Event queue processing
354 *
355 *************************************************************************/
356
357/* Channels are shutdown and reinitialised whilst the NIC is running
358 * to propagate configuration changes (mtu, checksum offload), or
359 * to clear hardware error conditions
360 */
361static void efx_start_datapath(struct efx_nic *efx)
362{
363	netdev_features_t old_features = efx->net_dev->features;
364	bool old_rx_scatter = efx->rx_scatter;
365	size_t rx_buf_len;
366
367	/* Calculate the rx buffer allocation parameters required to
368	 * support the current MTU, including padding for header
369	 * alignment and overruns.
370	 */
371	efx->rx_dma_len = (efx->rx_prefix_size +
372			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
373			   efx->type->rx_buffer_padding);
374	rx_buf_len = (sizeof(struct efx_rx_page_state)   + EFX_XDP_HEADROOM +
375		      efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
376
377	if (rx_buf_len <= PAGE_SIZE) {
378		efx->rx_scatter = efx->type->always_rx_scatter;
379		efx->rx_buffer_order = 0;
380	} else if (efx->type->can_rx_scatter) {
381		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
382		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
383			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
384				       EFX_RX_BUF_ALIGNMENT) >
385			     PAGE_SIZE);
386		efx->rx_scatter = true;
387		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
388		efx->rx_buffer_order = 0;
389	} else {
390		efx->rx_scatter = false;
391		efx->rx_buffer_order = get_order(rx_buf_len);
392	}
393
394	efx_rx_config_page_split(efx);
395	if (efx->rx_buffer_order)
396		netif_dbg(efx, drv, efx->net_dev,
397			  "RX buf len=%u; page order=%u batch=%u\n",
398			  efx->rx_dma_len, efx->rx_buffer_order,
399			  efx->rx_pages_per_batch);
400	else
401		netif_dbg(efx, drv, efx->net_dev,
402			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
403			  efx->rx_dma_len, efx->rx_page_buf_step,
404			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
405
406	/* Restore previously fixed features in hw_features and remove
407	 * features which are fixed now
408	 */
409	efx->net_dev->hw_features |= efx->net_dev->features;
410	efx->net_dev->hw_features &= ~efx->fixed_features;
411	efx->net_dev->features |= efx->fixed_features;
412	if (efx->net_dev->features != old_features)
413		netdev_features_change(efx->net_dev);
414
415	/* RX filters may also have scatter-enabled flags */
416	if ((efx->rx_scatter != old_rx_scatter) &&
417	    efx->type->filter_update_rx_scatter)
418		efx->type->filter_update_rx_scatter(efx);
419
420	/* We must keep at least one descriptor in a TX ring empty.
421	 * We could avoid this when the queue size does not exactly
422	 * match the hardware ring size, but it's not that important.
423	 * Therefore we stop the queue when one more skb might fill
424	 * the ring completely.  We wake it when half way back to
425	 * empty.
426	 */
427	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
428	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
429
430	/* Initialise the channels */
431	efx_start_channels(efx);
432
433	efx_ptp_start_datapath(efx);
434
435	if (netif_device_present(efx->net_dev))
436		netif_tx_wake_all_queues(efx->net_dev);
437}
438
439static void efx_stop_datapath(struct efx_nic *efx)
440{
441	EFX_ASSERT_RESET_SERIALISED(efx);
442	BUG_ON(efx->port_enabled);
443
444	efx_ptp_stop_datapath(efx);
445
446	efx_stop_channels(efx);
447}
448
449/**************************************************************************
450 *
451 * Port handling
452 *
453 **************************************************************************/
454
455/* Equivalent to efx_link_set_advertising with all-zeroes, except does not
456 * force the Autoneg bit on.
457 */
458void efx_link_clear_advertising(struct efx_nic *efx)
459{
460	bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
461	efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
462}
463
464void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
465{
466	efx->wanted_fc = wanted_fc;
467	if (efx->link_advertising[0]) {
468		if (wanted_fc & EFX_FC_RX)
469			efx->link_advertising[0] |= (ADVERTISED_Pause |
470						     ADVERTISED_Asym_Pause);
471		else
472			efx->link_advertising[0] &= ~(ADVERTISED_Pause |
473						      ADVERTISED_Asym_Pause);
474		if (wanted_fc & EFX_FC_TX)
475			efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
476	}
477}
478
479static void efx_start_port(struct efx_nic *efx)
480{
481	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
482	BUG_ON(efx->port_enabled);
483
484	mutex_lock(&efx->mac_lock);
485	efx->port_enabled = true;
486
487	/* Ensure MAC ingress/egress is enabled */
488	efx_mac_reconfigure(efx, false);
489
490	mutex_unlock(&efx->mac_lock);
491}
492
493/* Cancel work for MAC reconfiguration, periodic hardware monitoring
494 * and the async self-test, wait for them to finish and prevent them
495 * being scheduled again.  This doesn't cover online resets, which
496 * should only be cancelled when removing the device.
497 */
498static void efx_stop_port(struct efx_nic *efx)
499{
500	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
501
502	EFX_ASSERT_RESET_SERIALISED(efx);
503
504	mutex_lock(&efx->mac_lock);
505	efx->port_enabled = false;
506	mutex_unlock(&efx->mac_lock);
507
508	/* Serialise against efx_set_multicast_list() */
509	netif_addr_lock_bh(efx->net_dev);
510	netif_addr_unlock_bh(efx->net_dev);
511
512	cancel_delayed_work_sync(&efx->monitor_work);
513	efx_selftest_async_cancel(efx);
514	cancel_work_sync(&efx->mac_work);
515}
516
517/* If the interface is supposed to be running but is not, start
518 * the hardware and software data path, regular activity for the port
519 * (MAC statistics, link polling, etc.) and schedule the port to be
520 * reconfigured.  Interrupts must already be enabled.  This function
521 * is safe to call multiple times, so long as the NIC is not disabled.
522 * Requires the RTNL lock.
523 */
524void efx_start_all(struct efx_nic *efx)
525{
526	EFX_ASSERT_RESET_SERIALISED(efx);
527	BUG_ON(efx->state == STATE_DISABLED);
528
529	/* Check that it is appropriate to restart the interface. All
530	 * of these flags are safe to read under just the rtnl lock
531	 */
532	if (efx->port_enabled || !netif_running(efx->net_dev) ||
533	    efx->reset_pending)
534		return;
535
536	efx_start_port(efx);
537	efx_start_datapath(efx);
538
539	/* Start the hardware monitor if there is one */
540	efx_start_monitor(efx);
541
542	efx_selftest_async_start(efx);
543
544	/* Link state detection is normally event-driven; we have
545	 * to poll now because we could have missed a change
546	 */
547	mutex_lock(&efx->mac_lock);
548	if (efx_mcdi_phy_poll(efx))
549		efx_link_status_changed(efx);
550	mutex_unlock(&efx->mac_lock);
551
552	if (efx->type->start_stats) {
553		efx->type->start_stats(efx);
554		efx->type->pull_stats(efx);
555		spin_lock_bh(&efx->stats_lock);
556		efx->type->update_stats(efx, NULL, NULL);
557		spin_unlock_bh(&efx->stats_lock);
558	}
559}
560
561/* Quiesce the hardware and software data path, and regular activity
562 * for the port without bringing the link down.  Safe to call multiple
563 * times with the NIC in almost any state, but interrupts should be
564 * enabled.  Requires the RTNL lock.
565 */
566void efx_stop_all(struct efx_nic *efx)
567{
568	EFX_ASSERT_RESET_SERIALISED(efx);
569
570	/* port_enabled can be read safely under the rtnl lock */
571	if (!efx->port_enabled)
572		return;
573
574	if (efx->type->update_stats) {
575		/* update stats before we go down so we can accurately count
576		 * rx_nodesc_drops
577		 */
578		efx->type->pull_stats(efx);
579		spin_lock_bh(&efx->stats_lock);
580		efx->type->update_stats(efx, NULL, NULL);
581		spin_unlock_bh(&efx->stats_lock);
582		efx->type->stop_stats(efx);
583	}
584
585	efx_stop_port(efx);
586
587	/* Stop the kernel transmit interface.  This is only valid if
588	 * the device is stopped or detached; otherwise the watchdog
589	 * may fire immediately.
590	 */
591	WARN_ON(netif_running(efx->net_dev) &&
592		netif_device_present(efx->net_dev));
593	netif_tx_disable(efx->net_dev);
594
595	efx_stop_datapath(efx);
596}
597
598/* Context: process, rcu_read_lock or RTNL held, non-blocking. */
599void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
600{
601	struct efx_nic *efx = efx_netdev_priv(net_dev);
602
603	spin_lock_bh(&efx->stats_lock);
604	efx_nic_update_stats_atomic(efx, NULL, stats);
605	spin_unlock_bh(&efx->stats_lock);
606}
607
608/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
609 * the MAC appropriately. All other PHY configuration changes are pushed
610 * through phy_op->set_settings(), and pushed asynchronously to the MAC
611 * through efx_monitor().
612 *
613 * Callers must hold the mac_lock
614 */
615int __efx_reconfigure_port(struct efx_nic *efx)
616{
617	enum efx_phy_mode phy_mode;
618	int rc = 0;
619
620	WARN_ON(!mutex_is_locked(&efx->mac_lock));
621
622	/* Disable PHY transmit in mac level loopbacks */
623	phy_mode = efx->phy_mode;
624	if (LOOPBACK_INTERNAL(efx))
625		efx->phy_mode |= PHY_MODE_TX_DISABLED;
626	else
627		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
628
629	if (efx->type->reconfigure_port)
630		rc = efx->type->reconfigure_port(efx);
631
632	if (rc)
633		efx->phy_mode = phy_mode;
634
635	return rc;
636}
637
638/* Reinitialise the MAC to pick up new PHY settings, even if the port is
639 * disabled.
640 */
641int efx_reconfigure_port(struct efx_nic *efx)
642{
643	int rc;
644
645	EFX_ASSERT_RESET_SERIALISED(efx);
646
647	mutex_lock(&efx->mac_lock);
648	rc = __efx_reconfigure_port(efx);
649	mutex_unlock(&efx->mac_lock);
650
651	return rc;
652}
653
654/**************************************************************************
655 *
656 * Device reset and suspend
657 *
658 **************************************************************************/
659
660static void efx_wait_for_bist_end(struct efx_nic *efx)
661{
662	int i;
663
664	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
665		if (efx_mcdi_poll_reboot(efx))
666			goto out;
667		msleep(BIST_WAIT_DELAY_MS);
668	}
669
670	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
671out:
672	/* Either way unset the BIST flag. If we found no reboot we probably
673	 * won't recover, but we should try.
674	 */
675	efx->mc_bist_for_other_fn = false;
676}
677
678/* Try recovery mechanisms.
679 * For now only EEH is supported.
680 * Returns 0 if the recovery mechanisms are unsuccessful.
681 * Returns a non-zero value otherwise.
682 */
683int efx_try_recovery(struct efx_nic *efx)
684{
685#ifdef CONFIG_EEH
686	/* A PCI error can occur and not be seen by EEH because nothing
687	 * happens on the PCI bus. In this case the driver may fail and
688	 * schedule a 'recover or reset', leading to this recovery handler.
689	 * Manually call the eeh failure check function.
690	 */
691	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
692	if (eeh_dev_check_failure(eehdev)) {
693		/* The EEH mechanisms will handle the error and reset the
694		 * device if necessary.
695		 */
696		return 1;
697	}
698#endif
699	return 0;
700}
701
702/* Tears down the entire software state and most of the hardware state
703 * before reset.
704 */
705void efx_reset_down(struct efx_nic *efx, enum reset_type method)
706{
707	EFX_ASSERT_RESET_SERIALISED(efx);
708
709	if (method == RESET_TYPE_MCDI_TIMEOUT)
710		efx->type->prepare_flr(efx);
711
712	efx_stop_all(efx);
713	efx_disable_interrupts(efx);
714
715	mutex_lock(&efx->mac_lock);
716	down_write(&efx->filter_sem);
717	mutex_lock(&efx->rss_lock);
718	efx->type->fini(efx);
719}
720
721/* Context: netif_tx_lock held, BHs disabled. */
722void efx_watchdog(struct net_device *net_dev, unsigned int txqueue)
723{
724	struct efx_nic *efx = efx_netdev_priv(net_dev);
725
726	netif_err(efx, tx_err, efx->net_dev,
727		  "TX stuck with port_enabled=%d: resetting channels\n",
728		  efx->port_enabled);
729
730	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
731}
732
733/* This function will always ensure that the locks acquired in
734 * efx_reset_down() are released. A failure return code indicates
735 * that we were unable to reinitialise the hardware, and the
736 * driver should be disabled. If ok is false, then the rx and tx
737 * engines are not restarted, pending a RESET_DISABLE.
738 */
739int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
740{
741	int rc;
742
743	EFX_ASSERT_RESET_SERIALISED(efx);
744
745	if (method == RESET_TYPE_MCDI_TIMEOUT)
746		efx->type->finish_flr(efx);
747
748	/* Ensure that SRAM is initialised even if we're disabling the device */
749	rc = efx->type->init(efx);
750	if (rc) {
751		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
752		goto fail;
753	}
754
755	if (!ok)
756		goto fail;
757
758	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
759	    method != RESET_TYPE_DATAPATH) {
760		rc = efx_mcdi_port_reconfigure(efx);
761		if (rc && rc != -EPERM)
762			netif_err(efx, drv, efx->net_dev,
763				  "could not restore PHY settings\n");
764	}
765
766	rc = efx_enable_interrupts(efx);
767	if (rc)
768		goto fail;
769
770#ifdef CONFIG_SFC_SRIOV
771	rc = efx->type->vswitching_restore(efx);
772	if (rc) /* not fatal; the PF will still work fine */
773		netif_warn(efx, probe, efx->net_dev,
774			   "failed to restore vswitching rc=%d;"
775			   " VFs may not function\n", rc);
776#endif
777
778	if (efx->type->rx_restore_rss_contexts)
779		efx->type->rx_restore_rss_contexts(efx);
780	mutex_unlock(&efx->rss_lock);
781	efx->type->filter_table_restore(efx);
782	up_write(&efx->filter_sem);
783
784	mutex_unlock(&efx->mac_lock);
785
786	efx_start_all(efx);
787
788	if (efx->type->udp_tnl_push_ports)
789		efx->type->udp_tnl_push_ports(efx);
790
791	return 0;
792
793fail:
794	efx->port_initialized = false;
795
796	mutex_unlock(&efx->rss_lock);
797	up_write(&efx->filter_sem);
798	mutex_unlock(&efx->mac_lock);
799
800	return rc;
801}
802
803/* Reset the NIC using the specified method.  Note that the reset may
804 * fail, in which case the card will be left in an unusable state.
805 *
806 * Caller must hold the rtnl_lock.
807 */
808int efx_reset(struct efx_nic *efx, enum reset_type method)
809{
810	int rc, rc2 = 0;
811	bool disabled;
812
813	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
814		   RESET_TYPE(method));
815
816	efx_device_detach_sync(efx);
817	/* efx_reset_down() grabs locks that prevent recovery on EF100.
818	 * EF100 reset is handled in the efx_nic_type callback below.
819	 */
820	if (efx_nic_rev(efx) != EFX_REV_EF100)
821		efx_reset_down(efx, method);
822
823	rc = efx->type->reset(efx, method);
824	if (rc) {
825		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
826		goto out;
827	}
828
829	/* Clear flags for the scopes we covered.  We assume the NIC and
830	 * driver are now quiescent so that there is no race here.
831	 */
832	if (method < RESET_TYPE_MAX_METHOD)
833		efx->reset_pending &= -(1 << (method + 1));
834	else /* it doesn't fit into the well-ordered scope hierarchy */
835		__clear_bit(method, &efx->reset_pending);
836
837	/* Reinitialise bus-mastering, which may have been turned off before
838	 * the reset was scheduled. This is still appropriate, even in the
839	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
840	 * can respond to requests.
841	 */
842	pci_set_master(efx->pci_dev);
843
844out:
845	/* Leave device stopped if necessary */
846	disabled = rc ||
847		method == RESET_TYPE_DISABLE ||
848		method == RESET_TYPE_RECOVER_OR_DISABLE;
849	if (efx_nic_rev(efx) != EFX_REV_EF100)
850		rc2 = efx_reset_up(efx, method, !disabled);
851	if (rc2) {
852		disabled = true;
853		if (!rc)
854			rc = rc2;
855	}
856
857	if (disabled) {
858		dev_close(efx->net_dev);
859		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
860		efx->state = STATE_DISABLED;
861	} else {
862		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
863		efx_device_attach_if_not_resetting(efx);
864	}
865	return rc;
866}
867
868/* The worker thread exists so that code that cannot sleep can
869 * schedule a reset for later.
870 */
871static void efx_reset_work(struct work_struct *data)
872{
873	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
874	unsigned long pending;
875	enum reset_type method;
876
877	pending = READ_ONCE(efx->reset_pending);
878	method = fls(pending) - 1;
879
880	if (method == RESET_TYPE_MC_BIST)
881		efx_wait_for_bist_end(efx);
882
883	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
884	     method == RESET_TYPE_RECOVER_OR_ALL) &&
885	    efx_try_recovery(efx))
886		return;
887
888	if (!pending)
889		return;
890
891	rtnl_lock();
892
893	/* We checked the state in efx_schedule_reset() but it may
894	 * have changed by now.  Now that we have the RTNL lock,
895	 * it cannot change again.
896	 */
897	if (efx_net_active(efx->state))
898		(void)efx_reset(efx, method);
899
900	rtnl_unlock();
901}
902
903void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
904{
905	enum reset_type method;
906
907	if (efx_recovering(efx->state)) {
908		netif_dbg(efx, drv, efx->net_dev,
909			  "recovering: skip scheduling %s reset\n",
910			  RESET_TYPE(type));
911		return;
912	}
913
914	switch (type) {
915	case RESET_TYPE_INVISIBLE:
916	case RESET_TYPE_ALL:
917	case RESET_TYPE_RECOVER_OR_ALL:
918	case RESET_TYPE_WORLD:
919	case RESET_TYPE_DISABLE:
920	case RESET_TYPE_RECOVER_OR_DISABLE:
921	case RESET_TYPE_DATAPATH:
922	case RESET_TYPE_MC_BIST:
923	case RESET_TYPE_MCDI_TIMEOUT:
924		method = type;
925		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
926			  RESET_TYPE(method));
927		break;
928	default:
929		method = efx->type->map_reset_reason(type);
930		netif_dbg(efx, drv, efx->net_dev,
931			  "scheduling %s reset for %s\n",
932			  RESET_TYPE(method), RESET_TYPE(type));
933		break;
934	}
935
936	set_bit(method, &efx->reset_pending);
937	smp_mb(); /* ensure we change reset_pending before checking state */
938
939	/* If we're not READY then just leave the flags set as the cue
940	 * to abort probing or reschedule the reset later.
941	 */
942	if (!efx_net_active(READ_ONCE(efx->state)))
943		return;
944
945	/* efx_process_channel() will no longer read events once a
946	 * reset is scheduled. So switch back to poll'd MCDI completions.
947	 */
948	efx_mcdi_mode_poll(efx);
949
950	efx_queue_reset_work(efx);
951}
952
953/**************************************************************************
954 *
955 * Dummy NIC operations
956 *
957 * Can be used for some unimplemented operations
958 * Needed so all function pointers are valid and do not have to be tested
959 * before use
960 *
961 **************************************************************************/
962int efx_port_dummy_op_int(struct efx_nic *efx)
963{
964	return 0;
965}
966void efx_port_dummy_op_void(struct efx_nic *efx) {}
967
968/**************************************************************************
969 *
970 * Data housekeeping
971 *
972 **************************************************************************/
973
974/* This zeroes out and then fills in the invariants in a struct
975 * efx_nic (including all sub-structures).
976 */
977int efx_init_struct(struct efx_nic *efx, struct pci_dev *pci_dev)
978{
979	int rc = -ENOMEM;
980
981	/* Initialise common structures */
982	INIT_LIST_HEAD(&efx->node);
983	INIT_LIST_HEAD(&efx->secondary_list);
984	spin_lock_init(&efx->biu_lock);
985#ifdef CONFIG_SFC_MTD
986	INIT_LIST_HEAD(&efx->mtd_list);
987#endif
988	INIT_WORK(&efx->reset_work, efx_reset_work);
989	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
990	efx_selftest_async_init(efx);
991	efx->pci_dev = pci_dev;
992	efx->msg_enable = debug;
993	efx->state = STATE_UNINIT;
994	strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
995
996	efx->rx_prefix_size = efx->type->rx_prefix_size;
997	efx->rx_ip_align =
998		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
999	efx->rx_packet_hash_offset =
1000		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
1001	efx->rx_packet_ts_offset =
1002		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
1003	INIT_LIST_HEAD(&efx->rss_context.list);
1004	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1005	mutex_init(&efx->rss_lock);
1006	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1007	spin_lock_init(&efx->stats_lock);
1008	efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
1009	efx->num_mac_stats = MC_CMD_MAC_NSTATS;
1010	BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
1011	mutex_init(&efx->mac_lock);
1012	init_rwsem(&efx->filter_sem);
1013#ifdef CONFIG_RFS_ACCEL
1014	mutex_init(&efx->rps_mutex);
1015	spin_lock_init(&efx->rps_hash_lock);
1016	/* Failure to allocate is not fatal, but may degrade ARFS performance */
1017	efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
1018				      sizeof(*efx->rps_hash_table), GFP_KERNEL);
1019#endif
1020	spin_lock_init(&efx->vf_reps_lock);
1021	INIT_LIST_HEAD(&efx->vf_reps);
1022	INIT_WORK(&efx->mac_work, efx_mac_work);
1023	init_waitqueue_head(&efx->flush_wq);
1024
1025	efx->tx_queues_per_channel = 1;
1026	efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
1027	efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1028
1029	efx->mem_bar = UINT_MAX;
1030
1031	rc = efx_init_channels(efx);
1032	if (rc)
1033		goto fail;
1034
1035	/* Would be good to use the net_dev name, but we're too early */
1036	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1037		 pci_name(pci_dev));
1038	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1039	if (!efx->workqueue) {
1040		rc = -ENOMEM;
1041		goto fail;
1042	}
1043
1044	return 0;
1045
1046fail:
1047	efx_fini_struct(efx);
1048	return rc;
1049}
1050
1051void efx_fini_struct(struct efx_nic *efx)
1052{
1053#ifdef CONFIG_RFS_ACCEL
1054	kfree(efx->rps_hash_table);
1055#endif
1056
1057	efx_fini_channels(efx);
1058
1059	kfree(efx->vpd_sn);
1060
1061	if (efx->workqueue) {
1062		destroy_workqueue(efx->workqueue);
1063		efx->workqueue = NULL;
1064	}
1065}
1066
1067/* This configures the PCI device to enable I/O and DMA. */
1068int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
1069		unsigned int mem_map_size)
1070{
1071	struct pci_dev *pci_dev = efx->pci_dev;
1072	int rc;
1073
1074	efx->mem_bar = UINT_MAX;
1075	pci_dbg(pci_dev, "initialising I/O bar=%d\n", bar);
1076
1077	rc = pci_enable_device(pci_dev);
1078	if (rc) {
1079		pci_err(pci_dev, "failed to enable PCI device\n");
1080		goto fail1;
1081	}
1082
1083	pci_set_master(pci_dev);
1084
1085	rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1086	if (rc) {
1087		pci_err(efx->pci_dev, "could not find a suitable DMA mask\n");
1088		goto fail2;
1089	}
1090	pci_dbg(efx->pci_dev, "using DMA mask %llx\n", (unsigned long long)dma_mask);
1091
1092	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1093	if (!efx->membase_phys) {
1094		pci_err(efx->pci_dev,
1095			"ERROR: No BAR%d mapping from the BIOS. Try pci=realloc on the kernel command line\n",
1096			bar);
1097		rc = -ENODEV;
1098		goto fail3;
1099	}
1100
1101	rc = pci_request_region(pci_dev, bar, "sfc");
1102	if (rc) {
1103		pci_err(efx->pci_dev,
1104			"request for memory BAR[%d] failed\n", bar);
1105		rc = -EIO;
1106		goto fail3;
1107	}
1108	efx->mem_bar = bar;
1109	efx->membase = ioremap(efx->membase_phys, mem_map_size);
1110	if (!efx->membase) {
1111		pci_err(efx->pci_dev,
1112			"could not map memory BAR[%d] at %llx+%x\n", bar,
1113			(unsigned long long)efx->membase_phys, mem_map_size);
1114		rc = -ENOMEM;
1115		goto fail4;
1116	}
1117	pci_dbg(efx->pci_dev,
1118		"memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
1119		(unsigned long long)efx->membase_phys, mem_map_size,
1120		efx->membase);
1121
1122	return 0;
1123
1124fail4:
1125	pci_release_region(efx->pci_dev, bar);
1126fail3:
1127	efx->membase_phys = 0;
1128fail2:
1129	pci_disable_device(efx->pci_dev);
1130fail1:
1131	return rc;
1132}
1133
1134void efx_fini_io(struct efx_nic *efx)
1135{
1136	pci_dbg(efx->pci_dev, "shutting down I/O\n");
1137
1138	if (efx->membase) {
1139		iounmap(efx->membase);
1140		efx->membase = NULL;
1141	}
1142
1143	if (efx->membase_phys) {
1144		pci_release_region(efx->pci_dev, efx->mem_bar);
1145		efx->membase_phys = 0;
1146		efx->mem_bar = UINT_MAX;
1147	}
1148
1149	/* Don't disable bus-mastering if VFs are assigned */
1150	if (!pci_vfs_assigned(efx->pci_dev))
1151		pci_disable_device(efx->pci_dev);
1152}
1153
1154#ifdef CONFIG_SFC_MCDI_LOGGING
1155static ssize_t mcdi_logging_show(struct device *dev,
1156				 struct device_attribute *attr,
1157				 char *buf)
1158{
1159	struct efx_nic *efx = dev_get_drvdata(dev);
1160	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1161
1162	return sysfs_emit(buf, "%d\n", mcdi->logging_enabled);
1163}
1164
1165static ssize_t mcdi_logging_store(struct device *dev,
1166				  struct device_attribute *attr,
1167				  const char *buf, size_t count)
1168{
1169	struct efx_nic *efx = dev_get_drvdata(dev);
1170	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1171	bool enable = count > 0 && *buf != '0';
1172
1173	mcdi->logging_enabled = enable;
1174	return count;
1175}
1176
1177static DEVICE_ATTR_RW(mcdi_logging);
1178
1179void efx_init_mcdi_logging(struct efx_nic *efx)
1180{
1181	int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1182
1183	if (rc) {
1184		netif_warn(efx, drv, efx->net_dev,
1185			   "failed to init net dev attributes\n");
1186	}
1187}
1188
1189void efx_fini_mcdi_logging(struct efx_nic *efx)
1190{
1191	device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1192}
1193#endif
1194
1195/* A PCI error affecting this device was detected.
1196 * At this point MMIO and DMA may be disabled.
1197 * Stop the software path and request a slot reset.
1198 */
1199static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
1200					      pci_channel_state_t state)
1201{
1202	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1203	struct efx_nic *efx = pci_get_drvdata(pdev);
1204
1205	if (state == pci_channel_io_perm_failure)
1206		return PCI_ERS_RESULT_DISCONNECT;
1207
1208	rtnl_lock();
1209
1210	if (efx->state != STATE_DISABLED) {
1211		efx->state = efx_recover(efx->state);
1212		efx->reset_pending = 0;
1213
1214		efx_device_detach_sync(efx);
1215
1216		if (efx_net_active(efx->state)) {
1217			efx_stop_all(efx);
1218			efx_disable_interrupts(efx);
1219		}
1220
1221		status = PCI_ERS_RESULT_NEED_RESET;
1222	} else {
1223		/* If the interface is disabled we don't want to do anything
1224		 * with it.
1225		 */
1226		status = PCI_ERS_RESULT_RECOVERED;
1227	}
1228
1229	rtnl_unlock();
1230
1231	pci_disable_device(pdev);
1232
1233	return status;
1234}
1235
1236/* Fake a successful reset, which will be performed later in efx_io_resume. */
1237static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
1238{
1239	struct efx_nic *efx = pci_get_drvdata(pdev);
1240	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1241
1242	if (pci_enable_device(pdev)) {
1243		netif_err(efx, hw, efx->net_dev,
1244			  "Cannot re-enable PCI device after reset.\n");
1245		status =  PCI_ERS_RESULT_DISCONNECT;
1246	}
1247
1248	return status;
1249}
1250
1251/* Perform the actual reset and resume I/O operations. */
1252static void efx_io_resume(struct pci_dev *pdev)
1253{
1254	struct efx_nic *efx = pci_get_drvdata(pdev);
1255	int rc;
1256
1257	rtnl_lock();
1258
1259	if (efx->state == STATE_DISABLED)
1260		goto out;
1261
1262	rc = efx_reset(efx, RESET_TYPE_ALL);
1263	if (rc) {
1264		netif_err(efx, hw, efx->net_dev,
1265			  "efx_reset failed after PCI error (%d)\n", rc);
1266	} else {
1267		efx->state = efx_recovered(efx->state);
1268		netif_dbg(efx, hw, efx->net_dev,
1269			  "Done resetting and resuming IO after PCI error.\n");
1270	}
1271
1272out:
1273	rtnl_unlock();
1274}
1275
1276/* For simplicity and reliability, we always require a slot reset and try to
1277 * reset the hardware when a pci error affecting the device is detected.
1278 * We leave both the link_reset and mmio_enabled callback unimplemented:
1279 * with our request for slot reset the mmio_enabled callback will never be
1280 * called, and the link_reset callback is not used by AER or EEH mechanisms.
1281 */
1282const struct pci_error_handlers efx_err_handlers = {
1283	.error_detected = efx_io_error_detected,
1284	.slot_reset	= efx_io_slot_reset,
1285	.resume		= efx_io_resume,
1286};
1287
1288/* Determine whether the NIC will be able to handle TX offloads for a given
1289 * encapsulated packet.
1290 */
1291static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
1292{
1293	struct gre_base_hdr *greh;
1294	__be16 dst_port;
1295	u8 ipproto;
1296
1297	/* Does the NIC support encap offloads?
1298	 * If not, we should never get here, because we shouldn't have
1299	 * advertised encap offload feature flags in the first place.
1300	 */
1301	if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
1302		return false;
1303
1304	/* Determine encapsulation protocol in use */
1305	switch (skb->protocol) {
1306	case htons(ETH_P_IP):
1307		ipproto = ip_hdr(skb)->protocol;
1308		break;
1309	case htons(ETH_P_IPV6):
1310		/* If there are extension headers, this will cause us to
1311		 * think we can't offload something that we maybe could have.
1312		 */
1313		ipproto = ipv6_hdr(skb)->nexthdr;
1314		break;
1315	default:
1316		/* Not IP, so can't offload it */
1317		return false;
1318	}
1319	switch (ipproto) {
1320	case IPPROTO_GRE:
1321		/* We support NVGRE but not IP over GRE or random gretaps.
1322		 * Specifically, the NIC will accept GRE as encapsulated if
1323		 * the inner protocol is Ethernet, but only handle it
1324		 * correctly if the GRE header is 8 bytes long.  Moreover,
1325		 * it will not update the Checksum or Sequence Number fields
1326		 * if they are present.  (The Routing Present flag,
1327		 * GRE_ROUTING, cannot be set else the header would be more
1328		 * than 8 bytes long; so we don't have to worry about it.)
1329		 */
1330		if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
1331			return false;
1332		if (ntohs(skb->inner_protocol) != ETH_P_TEB)
1333			return false;
1334		if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
1335			return false;
1336		greh = (struct gre_base_hdr *)skb_transport_header(skb);
1337		return !(greh->flags & (GRE_CSUM | GRE_SEQ));
1338	case IPPROTO_UDP:
1339		/* If the port is registered for a UDP tunnel, we assume the
1340		 * packet is for that tunnel, and the NIC will handle it as
1341		 * such.  If not, the NIC won't know what to do with it.
1342		 */
1343		dst_port = udp_hdr(skb)->dest;
1344		return efx->type->udp_tnl_has_port(efx, dst_port);
1345	default:
1346		return false;
1347	}
1348}
1349
1350netdev_features_t efx_features_check(struct sk_buff *skb, struct net_device *dev,
1351				     netdev_features_t features)
1352{
1353	struct efx_nic *efx = efx_netdev_priv(dev);
1354
1355	if (skb->encapsulation) {
1356		if (features & NETIF_F_GSO_MASK)
1357			/* Hardware can only do TSO with at most 208 bytes
1358			 * of headers.
1359			 */
1360			if (skb_inner_transport_offset(skb) >
1361			    EFX_TSO2_MAX_HDRLEN)
1362				features &= ~(NETIF_F_GSO_MASK);
1363		if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
1364			if (!efx_can_encap_offloads(efx, skb))
1365				features &= ~(NETIF_F_GSO_MASK |
1366					      NETIF_F_CSUM_MASK);
1367	}
1368	return features;
1369}
1370
1371int efx_get_phys_port_id(struct net_device *net_dev,
1372			 struct netdev_phys_item_id *ppid)
1373{
1374	struct efx_nic *efx = efx_netdev_priv(net_dev);
1375
1376	if (efx->type->get_phys_port_id)
1377		return efx->type->get_phys_port_id(efx, ppid);
1378	else
1379		return -EOPNOTSUPP;
1380}
1381
1382int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len)
1383{
1384	struct efx_nic *efx = efx_netdev_priv(net_dev);
1385
1386	if (snprintf(name, len, "p%u", efx->port_num) >= len)
1387		return -EINVAL;
1388	return 0;
1389}
1390
1391void efx_detach_reps(struct efx_nic *efx)
1392{
1393	struct net_device *rep_dev;
1394	struct efx_rep *efv;
1395
1396	ASSERT_RTNL();
1397	netif_dbg(efx, drv, efx->net_dev, "Detaching VF representors\n");
1398	list_for_each_entry(efv, &efx->vf_reps, list) {
1399		rep_dev = efv->net_dev;
1400		if (!rep_dev)
1401			continue;
1402		netif_carrier_off(rep_dev);
1403		/* See efx_device_detach_sync() */
1404		netif_tx_lock_bh(rep_dev);
1405		netif_tx_stop_all_queues(rep_dev);
1406		netif_tx_unlock_bh(rep_dev);
1407	}
1408}
1409
1410void efx_attach_reps(struct efx_nic *efx)
1411{
1412	struct net_device *rep_dev;
1413	struct efx_rep *efv;
1414
1415	ASSERT_RTNL();
1416	netif_dbg(efx, drv, efx->net_dev, "Attaching VF representors\n");
1417	list_for_each_entry(efv, &efx->vf_reps, list) {
1418		rep_dev = efv->net_dev;
1419		if (!rep_dev)
1420			continue;
1421		netif_tx_wake_all_queues(rep_dev);
1422		netif_carrier_on(rep_dev);
1423	}
1424}
1425