1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2/* QLogic qed NIC Driver
3 * Copyright (c) 2015-2017  QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
6
7#include <linux/types.h>
8#include <asm/byteorder.h>
9#include <linux/io.h>
10#include <linux/bitops.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/errno.h>
14#include <linux/interrupt.h>
15#include <linux/kernel.h>
16#include <linux/pci.h>
17#include <linux/slab.h>
18#include <linux/string.h>
19#include "qed.h"
20#include "qed_hsi.h"
21#include "qed_hw.h"
22#include "qed_init_ops.h"
23#include "qed_int.h"
24#include "qed_mcp.h"
25#include "qed_reg_addr.h"
26#include "qed_sp.h"
27#include "qed_sriov.h"
28#include "qed_vf.h"
29
30struct qed_pi_info {
31	qed_int_comp_cb_t	comp_cb;
32	void			*cookie;
33};
34
35struct qed_sb_sp_info {
36	struct qed_sb_info sb_info;
37
38	/* per protocol index data */
39	struct qed_pi_info pi_info_arr[PIS_PER_SB];
40};
41
42enum qed_attention_type {
43	QED_ATTN_TYPE_ATTN,
44	QED_ATTN_TYPE_PARITY,
45};
46
47#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
48	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
49
50struct aeu_invert_reg_bit {
51	char bit_name[30];
52
53#define ATTENTION_PARITY                (1 << 0)
54
55#define ATTENTION_LENGTH_MASK           (0x00000ff0)
56#define ATTENTION_LENGTH_SHIFT          (4)
57#define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
58					 ATTENTION_LENGTH_SHIFT)
59#define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
60#define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
61#define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
62					 ATTENTION_PARITY)
63
64/* Multiple bits start with this offset */
65#define ATTENTION_OFFSET_MASK           (0x000ff000)
66#define ATTENTION_OFFSET_SHIFT          (12)
67
68#define ATTENTION_BB_MASK               (0x00700000)
69#define ATTENTION_BB_SHIFT              (20)
70#define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
71#define ATTENTION_BB_DIFFERENT          BIT(23)
72
73#define ATTENTION_CLEAR_ENABLE          BIT(28)
74	unsigned int flags;
75
76	/* Callback to call if attention will be triggered */
77	int (*cb)(struct qed_hwfn *p_hwfn);
78
79	enum block_id block_index;
80};
81
82struct aeu_invert_reg {
83	struct aeu_invert_reg_bit bits[32];
84};
85
86#define MAX_ATTN_GRPS           (8)
87#define NUM_ATTN_REGS           (9)
88
89/* Specific HW attention callbacks */
90static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
91{
92	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
93
94	/* This might occur on certain instances; Log it once then mask it */
95	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
96		tmp);
97	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
98	       0xffffffff);
99
100	return 0;
101}
102
103#define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
104#define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
105#define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
106#define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
107#define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
108#define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
109#define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
110#define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
111#define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
112#define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
113#define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
114#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
115#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
116static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
117{
118	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
119			 PSWHST_REG_INCORRECT_ACCESS_VALID);
120
121	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
122		u32 addr, data, length;
123
124		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
125			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
126		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
127			      PSWHST_REG_INCORRECT_ACCESS_DATA);
128		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
130
131		DP_INFO(p_hwfn->cdev,
132			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
133			addr, length,
134			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
135			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
136			(u8) GET_FIELD(data,
137				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
138			(u8) GET_FIELD(data,
139				       ATTENTION_INCORRECT_ACCESS_CLIENT),
140			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
141			(u8) GET_FIELD(data,
142				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
143			data);
144	}
145
146	return 0;
147}
148
149#define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
150#define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
151#define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
152#define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
153#define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
154#define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
155#define QED_GRC_ATTENTION_PF_MASK	(0xf)
156#define QED_GRC_ATTENTION_PF_SHIFT	(0)
157#define QED_GRC_ATTENTION_VF_MASK	(0xff)
158#define QED_GRC_ATTENTION_VF_SHIFT	(4)
159#define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
160#define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
161#define QED_GRC_ATTENTION_PRIV_VF	(0)
162static const char *attn_master_to_str(u8 master)
163{
164	switch (master) {
165	case 1: return "PXP";
166	case 2: return "MCP";
167	case 3: return "MSDM";
168	case 4: return "PSDM";
169	case 5: return "YSDM";
170	case 6: return "USDM";
171	case 7: return "TSDM";
172	case 8: return "XSDM";
173	case 9: return "DBU";
174	case 10: return "DMAE";
175	default:
176		return "Unknown";
177	}
178}
179
180static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
181{
182	u32 tmp, tmp2;
183
184	/* We've already cleared the timeout interrupt register, so we learn
185	 * of interrupts via the validity register
186	 */
187	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
188		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
189	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
190		goto out;
191
192	/* Read the GRC timeout information */
193	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
194		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
195	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
196		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
197
198	DP_INFO(p_hwfn->cdev,
199		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
200		tmp2, tmp,
201		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
202		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
203		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
204		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
205		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
206		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
207		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
208
209out:
210	/* Regardles of anything else, clean the validity bit */
211	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
212	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
213	return 0;
214}
215
216#define PGLUE_ATTENTION_VALID			(1 << 29)
217#define PGLUE_ATTENTION_RD_VALID		(1 << 26)
218#define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
219#define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
220#define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
221#define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
222#define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
223#define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
224#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
225#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
226#define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
227#define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
228#define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
229#define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
230#define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
231#define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
232#define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
233
234int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
235				bool hw_init)
236{
237	char msg[256];
238	u32 tmp;
239
240	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
241	if (tmp & PGLUE_ATTENTION_VALID) {
242		u32 addr_lo, addr_hi, details;
243
244		addr_lo = qed_rd(p_hwfn, p_ptt,
245				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
246		addr_hi = qed_rd(p_hwfn, p_ptt,
247				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
248		details = qed_rd(p_hwfn, p_ptt,
249				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
250
251		snprintf(msg, sizeof(msg),
252			 "Illegal write by chip to [%08x:%08x] blocked.\n"
253			 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
254			 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]",
255			 addr_hi, addr_lo, details,
256			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
257			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
258			 !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID),
259			 tmp,
260			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR),
261			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME),
262			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN));
263
264		if (hw_init)
265			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
266		else
267			DP_NOTICE(p_hwfn, "%s\n", msg);
268	}
269
270	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
271	if (tmp & PGLUE_ATTENTION_RD_VALID) {
272		u32 addr_lo, addr_hi, details;
273
274		addr_lo = qed_rd(p_hwfn, p_ptt,
275				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
276		addr_hi = qed_rd(p_hwfn, p_ptt,
277				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
278		details = qed_rd(p_hwfn, p_ptt,
279				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
280
281		DP_NOTICE(p_hwfn,
282			  "Illegal read by chip from [%08x:%08x] blocked.\n"
283			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
284			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
285			  addr_hi, addr_lo, details,
286			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
287			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
288			  GET_FIELD(details,
289				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
290			  tmp,
291			  GET_FIELD(tmp,
292				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
293			  GET_FIELD(tmp,
294				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
295			  GET_FIELD(tmp,
296				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
297	}
298
299	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
300	if (tmp & PGLUE_ATTENTION_ICPL_VALID) {
301		snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp);
302
303		if (hw_init)
304			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
305		else
306			DP_NOTICE(p_hwfn, "%s\n", msg);
307	}
308
309	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
310	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
311		u32 addr_hi, addr_lo;
312
313		addr_lo = qed_rd(p_hwfn, p_ptt,
314				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
315		addr_hi = qed_rd(p_hwfn, p_ptt,
316				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
317
318		DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
319			  tmp, addr_hi, addr_lo);
320	}
321
322	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
323	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
324		u32 addr_hi, addr_lo, details;
325
326		addr_lo = qed_rd(p_hwfn, p_ptt,
327				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
328		addr_hi = qed_rd(p_hwfn, p_ptt,
329				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
330		details = qed_rd(p_hwfn, p_ptt,
331				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
332
333		DP_NOTICE(p_hwfn,
334			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
335			  details, tmp, addr_hi, addr_lo);
336	}
337
338	/* Clear the indications */
339	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
340
341	return 0;
342}
343
344static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
345{
346	return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
347}
348
349static int qed_fw_assertion(struct qed_hwfn *p_hwfn)
350{
351	qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT,
352			  "FW assertion!\n");
353
354	/* Clear assert indications */
355	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_GENERAL_ATTN_32, 0);
356
357	return -EINVAL;
358}
359
360static int qed_general_attention_35(struct qed_hwfn *p_hwfn)
361{
362	DP_INFO(p_hwfn, "General attention 35!\n");
363
364	return 0;
365}
366
367#define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
368#define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
369#define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
370#define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
371#define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
372
373#define QED_DB_REC_COUNT                        1000
374#define QED_DB_REC_INTERVAL                     100
375
376static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
377				  struct qed_ptt *p_ptt)
378{
379	u32 count = QED_DB_REC_COUNT;
380	u32 usage = 1;
381
382	/* Flush any pending (e)dpms as they may never arrive */
383	qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
384
385	/* wait for usage to zero or count to run out. This is necessary since
386	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
387	 * can "split" over the pci. Possibly, the doorbell drop can happen with
388	 * half an EDPM in the queue and other half dropped. Another EDPM
389	 * doorbell to the same address (from doorbell recovery mechanism or
390	 * from the doorbelling entity) could have first half dropped and second
391	 * half interpreted as continuation of the first. To prevent such
392	 * malformed doorbells from reaching the device, flush the queue before
393	 * releasing the overflow sticky indication.
394	 */
395	while (count-- && usage) {
396		usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
397		udelay(QED_DB_REC_INTERVAL);
398	}
399
400	/* should have been depleted by now */
401	if (usage) {
402		DP_NOTICE(p_hwfn->cdev,
403			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
404			  QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
405		return -EBUSY;
406	}
407
408	return 0;
409}
410
411int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
412{
413	u32 attn_ovfl, cur_ovfl;
414	int rc;
415
416	attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
417				       &p_hwfn->db_recovery_info.overflow);
418	cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
419	if (!cur_ovfl && !attn_ovfl)
420		return 0;
421
422	DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
423		  attn_ovfl, cur_ovfl);
424
425	if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
426		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
427		if (rc)
428			return rc;
429	}
430
431	/* Release overflow sticky indication (stop silently dropping everything) */
432	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
433
434	/* Repeat all last doorbells (doorbell drop recovery) */
435	qed_db_recovery_execute(p_hwfn);
436
437	return 0;
438}
439
440static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
441{
442	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
443	u32 overflow;
444	int rc;
445
446	overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
447	if (!overflow)
448		goto out;
449
450	/* Run PF doorbell recovery in next periodic handler */
451	set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
452
453	if (!p_hwfn->db_bar_no_edpm) {
454		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
455		if (rc)
456			goto out;
457	}
458
459	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
460out:
461	/* Schedule the handler even if overflow was not detected */
462	qed_periodic_db_rec_start(p_hwfn);
463}
464
465static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
466{
467	u32 int_sts, first_drop_reason, details, address, all_drops_reason;
468	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
469
470	int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
471	if (int_sts == 0xdeadbeaf) {
472		DP_NOTICE(p_hwfn->cdev,
473			  "DORQ is being reset, skipping int_sts handler\n");
474
475		return 0;
476	}
477
478	/* int_sts may be zero since all PFs were interrupted for doorbell
479	 * overflow but another one already handled it. Can abort here. If
480	 * This PF also requires overflow recovery we will be interrupted again.
481	 * The masked almost full indication may also be set. Ignoring.
482	 */
483	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
484		return 0;
485
486	DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
487
488	/* check if db_drop or overflow happened */
489	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
490		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
491		/* Obtain data about db drop/overflow */
492		first_drop_reason = qed_rd(p_hwfn, p_ptt,
493					   DORQ_REG_DB_DROP_REASON) &
494		    QED_DORQ_ATTENTION_REASON_MASK;
495		details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
496		address = qed_rd(p_hwfn, p_ptt,
497				 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
498		all_drops_reason = qed_rd(p_hwfn, p_ptt,
499					  DORQ_REG_DB_DROP_DETAILS_REASON);
500
501		/* Log info */
502		DP_NOTICE(p_hwfn->cdev,
503			  "Doorbell drop occurred\n"
504			  "Address\t\t0x%08x\t(second BAR address)\n"
505			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
506			  "Size\t\t0x%04x\t\t(in bytes)\n"
507			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
508			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
509			  address,
510			  GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
511			  GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
512			  first_drop_reason, all_drops_reason);
513
514		/* Clear the doorbell drop details and prepare for next drop */
515		qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
516
517		/* Mark interrupt as handled (note: even if drop was due to a different
518		 * reason than overflow we mark as handled)
519		 */
520		qed_wr(p_hwfn,
521		       p_ptt,
522		       DORQ_REG_INT_STS_WR,
523		       DORQ_REG_INT_STS_DB_DROP |
524		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
525
526		/* If there are no indications other than drop indications, success */
527		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
528				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
529				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
530			return 0;
531	}
532
533	/* Some other indication was present - non recoverable */
534	DP_INFO(p_hwfn, "DORQ fatal attention\n");
535
536	return -EINVAL;
537}
538
539static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
540{
541	if (p_hwfn->cdev->recov_in_prog)
542		return 0;
543
544	p_hwfn->db_recovery_info.dorq_attn = true;
545	qed_dorq_attn_overflow(p_hwfn);
546
547	return qed_dorq_attn_int_sts(p_hwfn);
548}
549
550static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
551{
552	if (p_hwfn->db_recovery_info.dorq_attn)
553		goto out;
554
555	/* Call DORQ callback if the attention was missed */
556	qed_dorq_attn_cb(p_hwfn);
557out:
558	p_hwfn->db_recovery_info.dorq_attn = false;
559}
560
561/* Instead of major changes to the data-structure, we have a some 'special'
562 * identifiers for sources that changed meaning between adapters.
563 */
564enum aeu_invert_reg_special_type {
565	AEU_INVERT_REG_SPECIAL_CNIG_0,
566	AEU_INVERT_REG_SPECIAL_CNIG_1,
567	AEU_INVERT_REG_SPECIAL_CNIG_2,
568	AEU_INVERT_REG_SPECIAL_CNIG_3,
569	AEU_INVERT_REG_SPECIAL_MAX,
570};
571
572static struct aeu_invert_reg_bit
573aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
574	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
575	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
576	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
577	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
578};
579
580/* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
581static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
582	{
583		{       /* After Invert 1 */
584			{"GPIO0 function%d",
585			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
586		}
587	},
588
589	{
590		{       /* After Invert 2 */
591			{"PGLUE config_space", ATTENTION_SINGLE,
592			 NULL, MAX_BLOCK_ID},
593			{"PGLUE misc_flr", ATTENTION_SINGLE,
594			 NULL, MAX_BLOCK_ID},
595			{"PGLUE B RBC", ATTENTION_PAR_INT,
596			 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
597			{"PGLUE misc_mctp", ATTENTION_SINGLE,
598			 NULL, MAX_BLOCK_ID},
599			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
600			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
601			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
602			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
603					  (1 << ATTENTION_OFFSET_SHIFT),
604			 NULL, MAX_BLOCK_ID},
605			{"PCIE glue/PXP VPD %d",
606			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
607		}
608	},
609
610	{
611		{       /* After Invert 3 */
612			{"General Attention %d",
613			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
614		}
615	},
616
617	{
618		{       /* After Invert 4 */
619			{"General Attention 32", ATTENTION_SINGLE |
620			 ATTENTION_CLEAR_ENABLE, qed_fw_assertion,
621			 MAX_BLOCK_ID},
622			{"General Attention %d",
623			 (2 << ATTENTION_LENGTH_SHIFT) |
624			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
625			{"General Attention 35", ATTENTION_SINGLE |
626			 ATTENTION_CLEAR_ENABLE, qed_general_attention_35,
627			 MAX_BLOCK_ID},
628			{"NWS Parity",
629			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
630			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
631			 NULL, BLOCK_NWS},
632			{"NWS Interrupt",
633			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
634			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
635			 NULL, BLOCK_NWS},
636			{"NWM Parity",
637			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
638			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
639			 NULL, BLOCK_NWM},
640			{"NWM Interrupt",
641			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
642			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
643			 NULL, BLOCK_NWM},
644			{"MCP CPU", ATTENTION_SINGLE,
645			 qed_mcp_attn_cb, MAX_BLOCK_ID},
646			{"MCP Watchdog timer", ATTENTION_SINGLE,
647			 NULL, MAX_BLOCK_ID},
648			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
649			{"AVS stop status ready", ATTENTION_SINGLE,
650			 NULL, MAX_BLOCK_ID},
651			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
652			{"MSTAT per-path", ATTENTION_PAR_INT,
653			 NULL, MAX_BLOCK_ID},
654			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
655			 NULL, MAX_BLOCK_ID},
656			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
657			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
658			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
659			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
660			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
661		}
662	},
663
664	{
665		{       /* After Invert 5 */
666			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
667			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
668			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
669			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
670			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
671			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
672			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
673			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
674			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
675			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
676			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
677			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
678			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
679			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
680			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
681			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
682		}
683	},
684
685	{
686		{       /* After Invert 6 */
687			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
688			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
689			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
690			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
691			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
692			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
693			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
694			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
695			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
696			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
697			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
698			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
699			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
700			{"DORQ", ATTENTION_PAR_INT,
701			 qed_dorq_attn_cb, BLOCK_DORQ},
702			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
703			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
704		}
705	},
706
707	{
708		{       /* After Invert 7 */
709			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
710			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
711			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
712			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
713			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
714			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
715			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
716			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
717			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
718			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
719			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
720			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
721			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
722			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
723			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
724			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
725			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
726		}
727	},
728
729	{
730		{       /* After Invert 8 */
731			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
732			 NULL, BLOCK_PSWRQ2},
733			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
734			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
735			 NULL, BLOCK_PSWWR2},
736			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
737			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
738			 NULL, BLOCK_PSWRD2},
739			{"PSWHST", ATTENTION_PAR_INT,
740			 qed_pswhst_attn_cb, BLOCK_PSWHST},
741			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
742			 NULL, BLOCK_PSWHST2},
743			{"GRC",	ATTENTION_PAR_INT,
744			 qed_grc_attn_cb, BLOCK_GRC},
745			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
746			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
747			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
748			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
749			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
750			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
751			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
752			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
753			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
754			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
755			 NULL, BLOCK_PGLCS},
756			{"PERST_B assertion", ATTENTION_SINGLE,
757			 NULL, MAX_BLOCK_ID},
758			{"PERST_B deassertion", ATTENTION_SINGLE,
759			 NULL, MAX_BLOCK_ID},
760			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
761			 NULL, MAX_BLOCK_ID},
762		}
763	},
764
765	{
766		{       /* After Invert 9 */
767			{"MCP Latched memory", ATTENTION_PAR,
768			 NULL, MAX_BLOCK_ID},
769			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
770			 NULL, MAX_BLOCK_ID},
771			{"MCP Latched ump_tx", ATTENTION_PAR,
772			 NULL, MAX_BLOCK_ID},
773			{"MCP Latched scratchpad", ATTENTION_PAR,
774			 NULL, MAX_BLOCK_ID},
775			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
776			 NULL, MAX_BLOCK_ID},
777		}
778	},
779};
780
781static struct aeu_invert_reg_bit *
782qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
783		      struct aeu_invert_reg_bit *p_bit)
784{
785	if (!QED_IS_BB(p_hwfn->cdev))
786		return p_bit;
787
788	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
789		return p_bit;
790
791	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
792				  ATTENTION_BB_SHIFT];
793}
794
795static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
796				   struct aeu_invert_reg_bit *p_bit)
797{
798	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
799		   ATTENTION_PARITY);
800}
801
802#define ATTN_STATE_BITS         (0xfff)
803#define ATTN_BITS_MASKABLE      (0x3ff)
804struct qed_sb_attn_info {
805	/* Virtual & Physical address of the SB */
806	struct atten_status_block       *sb_attn;
807	dma_addr_t			sb_phys;
808
809	/* Last seen running index */
810	u16				index;
811
812	/* A mask of the AEU bits resulting in a parity error */
813	u32				parity_mask[NUM_ATTN_REGS];
814
815	/* A pointer to the attention description structure */
816	struct aeu_invert_reg		*p_aeu_desc;
817
818	/* Previously asserted attentions, which are still unasserted */
819	u16				known_attn;
820
821	/* Cleanup address for the link's general hw attention */
822	u32				mfw_attn_addr;
823};
824
825static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
826				      struct qed_sb_attn_info *p_sb_desc)
827{
828	u16 rc = 0, index;
829
830	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
831	if (p_sb_desc->index != index) {
832		p_sb_desc->index	= index;
833		rc		      = QED_SB_ATT_IDX;
834	}
835
836	return rc;
837}
838
839/**
840 * qed_int_assertion() - Handle asserted attention bits.
841 *
842 * @p_hwfn: HW device data.
843 * @asserted_bits: Newly asserted bits.
844 *
845 * Return: Zero value.
846 */
847static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
848{
849	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
850	u32 igu_mask;
851
852	/* Mask the source of the attention in the IGU */
853	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
854	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
855		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
856	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
857	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
858
859	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
860		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
861		   sb_attn_sw->known_attn,
862		   sb_attn_sw->known_attn | asserted_bits);
863	sb_attn_sw->known_attn |= asserted_bits;
864
865	/* Handle MCP events */
866	if (asserted_bits & 0x100) {
867		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
868		/* Clean the MCP attention */
869		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
870		       sb_attn_sw->mfw_attn_addr, 0);
871	}
872
873	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
874		      GTT_BAR0_MAP_REG_IGU_CMD +
875		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
876			IGU_CMD_INT_ACK_BASE) << 3),
877		      (u32)asserted_bits);
878
879	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
880		   asserted_bits);
881
882	return 0;
883}
884
885static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
886			       enum block_id id,
887			       enum dbg_attn_type type, bool b_clear)
888{
889	struct dbg_attn_block_result attn_results;
890	enum dbg_status status;
891
892	memset(&attn_results, 0, sizeof(attn_results));
893
894	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
895				   b_clear, &attn_results);
896	if (status != DBG_STATUS_OK)
897		DP_NOTICE(p_hwfn,
898			  "Failed to parse attention information [status: %s]\n",
899			  qed_dbg_get_status_str(status));
900	else
901		qed_dbg_parse_attn(p_hwfn, &attn_results);
902}
903
904/**
905 * qed_int_deassertion_aeu_bit() - Handles the effects of a single
906 * cause of the attention.
907 *
908 * @p_hwfn: HW device data.
909 * @p_aeu: Descriptor of an AEU bit which caused the attention.
910 * @aeu_en_reg: Register offset of the AEU enable reg. which configured
911 *              this bit to this group.
912 * @p_bit_name: AEU bit description for logging purposes.
913 * @bitmask: Index of this bit in the aeu_en_reg.
914 *
915 * Return: Zero on success, negative errno otherwise.
916 */
917static int
918qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
919			    struct aeu_invert_reg_bit *p_aeu,
920			    u32 aeu_en_reg,
921			    const char *p_bit_name, u32 bitmask)
922{
923	bool b_fatal = false;
924	int rc = -EINVAL;
925	u32 val;
926
927	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
928		p_bit_name, bitmask);
929
930	/* Call callback before clearing the interrupt status */
931	if (p_aeu->cb) {
932		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
933			p_bit_name);
934		rc = p_aeu->cb(p_hwfn);
935	}
936
937	if (rc)
938		b_fatal = true;
939
940	/* Print HW block interrupt registers */
941	if (p_aeu->block_index != MAX_BLOCK_ID)
942		qed_int_attn_print(p_hwfn, p_aeu->block_index,
943				   ATTN_TYPE_INTERRUPT, !b_fatal);
944
945	/* Reach assertion if attention is fatal */
946	if (b_fatal)
947		qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN,
948				  "`%s': Fatal attention\n",
949				  p_bit_name);
950	else /* If the attention is benign, no need to prevent it */
951		goto out;
952
953	/* Prevent this Attention from being asserted in the future */
954	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
955	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
956	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
957		p_bit_name);
958
959	/* Re-enable FW aassertion (Gen 32) interrupts */
960	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
961		     MISC_REG_AEU_ENABLE4_IGU_OUT_0);
962	val |= MISC_REG_AEU_ENABLE4_IGU_OUT_0_GENERAL_ATTN32;
963	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
964	       MISC_REG_AEU_ENABLE4_IGU_OUT_0, val);
965
966out:
967	return rc;
968}
969
970/**
971 * qed_int_deassertion_parity() - Handle a single parity AEU source.
972 *
973 * @p_hwfn: HW device data.
974 * @p_aeu: Descriptor of an AEU bit which caused the parity.
975 * @aeu_en_reg: Address of the AEU enable register.
976 * @bit_index: Index (0-31) of an AEU bit.
977 */
978static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
979				       struct aeu_invert_reg_bit *p_aeu,
980				       u32 aeu_en_reg, u8 bit_index)
981{
982	u32 block_id = p_aeu->block_index, mask, val;
983
984	DP_NOTICE(p_hwfn->cdev,
985		  "%s parity attention is set [address 0x%08x, bit %d]\n",
986		  p_aeu->bit_name, aeu_en_reg, bit_index);
987
988	if (block_id != MAX_BLOCK_ID) {
989		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
990
991		/* In BB, there's a single parity bit for several blocks */
992		if (block_id == BLOCK_BTB) {
993			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
994					   ATTN_TYPE_PARITY, false);
995			qed_int_attn_print(p_hwfn, BLOCK_MCP,
996					   ATTN_TYPE_PARITY, false);
997		}
998	}
999
1000	/* Prevent this parity error from being re-asserted */
1001	mask = ~BIT(bit_index);
1002	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
1003	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
1004	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
1005		p_aeu->bit_name);
1006}
1007
1008/**
1009 * qed_int_deassertion() - Handle deassertion of previously asserted
1010 * attentions.
1011 *
1012 * @p_hwfn: HW device data.
1013 * @deasserted_bits: newly deasserted bits.
1014 *
1015 * Return: Zero value.
1016 */
1017static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
1018			       u16 deasserted_bits)
1019{
1020	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1021	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1022	u8 i, j, k, bit_idx;
1023	int rc = 0;
1024
1025	/* Read the attention registers in the AEU */
1026	for (i = 0; i < NUM_ATTN_REGS; i++) {
1027		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1028					MISC_REG_AEU_AFTER_INVERT_1_IGU +
1029					i * 0x4);
1030		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1031			   "Deasserted bits [%d]: %08x\n",
1032			   i, aeu_inv_arr[i]);
1033	}
1034
1035	/* Find parity attentions first */
1036	for (i = 0; i < NUM_ATTN_REGS; i++) {
1037		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1038		u32 parities;
1039
1040		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1041		en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1042
1043		/* Skip register in which no parity bit is currently set */
1044		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1045		if (!parities)
1046			continue;
1047
1048		for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) {
1049			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1050
1051			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1052			    !!(parities & BIT(bit_idx)))
1053				qed_int_deassertion_parity(p_hwfn, p_bit,
1054							   aeu_en, bit_idx);
1055
1056			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1057		}
1058	}
1059
1060	/* Find non-parity cause for attention and act */
1061	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1062		struct aeu_invert_reg_bit *p_aeu;
1063
1064		/* Handle only groups whose attention is currently deasserted */
1065		if (!(deasserted_bits & (1 << k)))
1066			continue;
1067
1068		for (i = 0; i < NUM_ATTN_REGS; i++) {
1069			u32 bits;
1070
1071			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1072				 i * sizeof(u32) +
1073				 k * sizeof(u32) * NUM_ATTN_REGS;
1074
1075			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1076			bits = aeu_inv_arr[i] & en;
1077
1078			/* Skip if no bit from this group is currently set */
1079			if (!bits)
1080				continue;
1081
1082			/* Find all set bits from current register which belong
1083			 * to current group, making them responsible for the
1084			 * previous assertion.
1085			 */
1086			for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) {
1087				long unsigned int bitmask;
1088				u8 bit, bit_len;
1089
1090				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1091				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1092
1093				bit = bit_idx;
1094				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1095				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1096					/* Skip Parity */
1097					bit++;
1098					bit_len--;
1099				}
1100
1101				bitmask = bits & (((1 << bit_len) - 1) << bit);
1102				bitmask >>= bit;
1103
1104				if (bitmask) {
1105					u32 flags = p_aeu->flags;
1106					char bit_name[30];
1107					u8 num;
1108
1109					num = (u8)find_first_bit(&bitmask,
1110								 bit_len);
1111
1112					/* Some bits represent more than a
1113					 * single interrupt. Correctly print
1114					 * their name.
1115					 */
1116					if (ATTENTION_LENGTH(flags) > 2 ||
1117					    ((flags & ATTENTION_PAR_INT) &&
1118					     ATTENTION_LENGTH(flags) > 1))
1119						snprintf(bit_name, 30,
1120							 p_aeu->bit_name, num);
1121					else
1122						strscpy(bit_name,
1123							p_aeu->bit_name, 30);
1124
1125					/* We now need to pass bitmask in its
1126					 * correct position.
1127					 */
1128					bitmask <<= bit;
1129
1130					/* Handle source of the attention */
1131					qed_int_deassertion_aeu_bit(p_hwfn,
1132								    p_aeu,
1133								    aeu_en,
1134								    bit_name,
1135								    bitmask);
1136				}
1137
1138				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1139			}
1140		}
1141	}
1142
1143	/* Handle missed DORQ attention */
1144	qed_dorq_attn_handler(p_hwfn);
1145
1146	/* Clear IGU indication for the deasserted bits */
1147	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1148				    GTT_BAR0_MAP_REG_IGU_CMD +
1149				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1150				      IGU_CMD_INT_ACK_BASE) << 3),
1151				    ~((u32)deasserted_bits));
1152
1153	/* Unmask deasserted attentions in IGU */
1154	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1155	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1156	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1157
1158	/* Clear deassertion from inner state */
1159	sb_attn_sw->known_attn &= ~deasserted_bits;
1160
1161	return rc;
1162}
1163
1164static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1165{
1166	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1167	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1168	u32 attn_bits = 0, attn_acks = 0;
1169	u16 asserted_bits, deasserted_bits;
1170	__le16 index;
1171	int rc = 0;
1172
1173	/* Read current attention bits/acks - safeguard against attentions
1174	 * by guaranting work on a synchronized timeframe
1175	 */
1176	do {
1177		index = p_sb_attn->sb_index;
1178		/* finish reading index before the loop condition */
1179		dma_rmb();
1180		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1181		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1182	} while (index != p_sb_attn->sb_index);
1183	p_sb_attn->sb_index = index;
1184
1185	/* Attention / Deassertion are meaningful (and in correct state)
1186	 * only when they differ and consistent with known state - deassertion
1187	 * when previous attention & current ack, and assertion when current
1188	 * attention with no previous attention
1189	 */
1190	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1191		~p_sb_attn_sw->known_attn;
1192	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1193		p_sb_attn_sw->known_attn;
1194
1195	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1196		DP_INFO(p_hwfn,
1197			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1198			index, attn_bits, attn_acks, asserted_bits,
1199			deasserted_bits, p_sb_attn_sw->known_attn);
1200	} else if (asserted_bits == 0x100) {
1201		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1202			   "MFW indication via attention\n");
1203	} else {
1204		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1205			   "MFW indication [deassertion]\n");
1206	}
1207
1208	if (asserted_bits) {
1209		rc = qed_int_assertion(p_hwfn, asserted_bits);
1210		if (rc)
1211			return rc;
1212	}
1213
1214	if (deasserted_bits)
1215		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1216
1217	return rc;
1218}
1219
1220static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1221			    void __iomem *igu_addr, u32 ack_cons)
1222{
1223	u32 igu_ack;
1224
1225	igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1226		   (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1227		   (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1228		   (IGU_SEG_ACCESS_ATTN <<
1229		    IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1230
1231	DIRECT_REG_WR(igu_addr, igu_ack);
1232
1233	/* Both segments (interrupts & acks) are written to same place address;
1234	 * Need to guarantee all commands will be received (in-order) by HW.
1235	 */
1236	barrier();
1237}
1238
1239void qed_int_sp_dpc(struct tasklet_struct *t)
1240{
1241	struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc);
1242	struct qed_pi_info *pi_info = NULL;
1243	struct qed_sb_attn_info *sb_attn;
1244	struct qed_sb_info *sb_info;
1245	int arr_size;
1246	u16 rc = 0;
1247
1248	if (!p_hwfn->p_sp_sb) {
1249		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1250		return;
1251	}
1252
1253	sb_info = &p_hwfn->p_sp_sb->sb_info;
1254	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1255	if (!sb_info) {
1256		DP_ERR(p_hwfn->cdev,
1257		       "Status block is NULL - cannot ack interrupts\n");
1258		return;
1259	}
1260
1261	if (!p_hwfn->p_sb_attn) {
1262		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1263		return;
1264	}
1265	sb_attn = p_hwfn->p_sb_attn;
1266
1267	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1268		   p_hwfn, p_hwfn->my_id);
1269
1270	/* Disable ack for def status block. Required both for msix +
1271	 * inta in non-mask mode, in inta does no harm.
1272	 */
1273	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1274
1275	/* Gather Interrupts/Attentions information */
1276	if (!sb_info->sb_virt) {
1277		DP_ERR(p_hwfn->cdev,
1278		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1279	} else {
1280		u32 tmp_index = sb_info->sb_ack;
1281
1282		rc = qed_sb_update_sb_idx(sb_info);
1283		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1284			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1285			   tmp_index, sb_info->sb_ack);
1286	}
1287
1288	if (!sb_attn || !sb_attn->sb_attn) {
1289		DP_ERR(p_hwfn->cdev,
1290		       "Attentions Status block is NULL - cannot check for new attentions!\n");
1291	} else {
1292		u16 tmp_index = sb_attn->index;
1293
1294		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1295		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1296			   "Attention indices: 0x%08x --> 0x%08x\n",
1297			   tmp_index, sb_attn->index);
1298	}
1299
1300	/* Check if we expect interrupts at this time. if not just ack them */
1301	if (!(rc & QED_SB_EVENT_MASK)) {
1302		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1303		return;
1304	}
1305
1306	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1307	if (!p_hwfn->p_dpc_ptt) {
1308		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1309		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1310		return;
1311	}
1312
1313	if (rc & QED_SB_ATT_IDX)
1314		qed_int_attentions(p_hwfn);
1315
1316	if (rc & QED_SB_IDX) {
1317		int pi;
1318
1319		/* Look for a free index */
1320		for (pi = 0; pi < arr_size; pi++) {
1321			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1322			if (pi_info->comp_cb)
1323				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1324		}
1325	}
1326
1327	if (sb_attn && (rc & QED_SB_ATT_IDX))
1328		/* This should be done before the interrupts are enabled,
1329		 * since otherwise a new attention will be generated.
1330		 */
1331		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1332
1333	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1334}
1335
1336static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1337{
1338	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1339
1340	if (!p_sb)
1341		return;
1342
1343	if (p_sb->sb_attn)
1344		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1345				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
1346				  p_sb->sb_attn, p_sb->sb_phys);
1347	kfree(p_sb);
1348	p_hwfn->p_sb_attn = NULL;
1349}
1350
1351static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1352				  struct qed_ptt *p_ptt)
1353{
1354	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1355
1356	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1357
1358	sb_info->index = 0;
1359	sb_info->known_attn = 0;
1360
1361	/* Configure Attention Status Block in IGU */
1362	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1363	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1364	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1365	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1366}
1367
1368static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1369				 struct qed_ptt *p_ptt,
1370				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1371{
1372	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1373	int i, j, k;
1374
1375	sb_info->sb_attn = sb_virt_addr;
1376	sb_info->sb_phys = sb_phy_addr;
1377
1378	/* Set the pointer to the AEU descriptors */
1379	sb_info->p_aeu_desc = aeu_descs;
1380
1381	/* Calculate Parity Masks */
1382	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1383	for (i = 0; i < NUM_ATTN_REGS; i++) {
1384		/* j is array index, k is bit index */
1385		for (j = 0, k = 0; k < 32 && j < 32; j++) {
1386			struct aeu_invert_reg_bit *p_aeu;
1387
1388			p_aeu = &aeu_descs[i].bits[j];
1389			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1390				sb_info->parity_mask[i] |= 1 << k;
1391
1392			k += ATTENTION_LENGTH(p_aeu->flags);
1393		}
1394		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1395			   "Attn Mask [Reg %d]: 0x%08x\n",
1396			   i, sb_info->parity_mask[i]);
1397	}
1398
1399	/* Set the address of cleanup for the mcp attention */
1400	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1401				 MISC_REG_AEU_GENERAL_ATTN_0;
1402
1403	qed_int_sb_attn_setup(p_hwfn, p_ptt);
1404}
1405
1406static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1407				 struct qed_ptt *p_ptt)
1408{
1409	struct qed_dev *cdev = p_hwfn->cdev;
1410	struct qed_sb_attn_info *p_sb;
1411	dma_addr_t p_phys = 0;
1412	void *p_virt;
1413
1414	/* SB struct */
1415	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1416	if (!p_sb)
1417		return -ENOMEM;
1418
1419	/* SB ring  */
1420	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1421				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
1422				    &p_phys, GFP_KERNEL);
1423
1424	if (!p_virt) {
1425		kfree(p_sb);
1426		return -ENOMEM;
1427	}
1428
1429	/* Attention setup */
1430	p_hwfn->p_sb_attn = p_sb;
1431	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1432
1433	return 0;
1434}
1435
1436/* coalescing timeout = timeset << (timer_res + 1) */
1437#define QED_CAU_DEF_RX_USECS 24
1438#define QED_CAU_DEF_TX_USECS 48
1439
1440void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1441			   struct cau_sb_entry *p_sb_entry,
1442			   u8 pf_id, u16 vf_number, u8 vf_valid)
1443{
1444	struct qed_dev *cdev = p_hwfn->cdev;
1445	u32 cau_state, params = 0, data = 0;
1446	u8 timer_res;
1447
1448	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1449
1450	SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1451	SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1452	SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1453	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1454	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1455
1456	cau_state = CAU_HC_DISABLE_STATE;
1457
1458	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1459		cau_state = CAU_HC_ENABLE_STATE;
1460		if (!cdev->rx_coalesce_usecs)
1461			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1462		if (!cdev->tx_coalesce_usecs)
1463			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1464	}
1465
1466	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1467	if (cdev->rx_coalesce_usecs <= 0x7F)
1468		timer_res = 0;
1469	else if (cdev->rx_coalesce_usecs <= 0xFF)
1470		timer_res = 1;
1471	else
1472		timer_res = 2;
1473
1474	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1475
1476	if (cdev->tx_coalesce_usecs <= 0x7F)
1477		timer_res = 0;
1478	else if (cdev->tx_coalesce_usecs <= 0xFF)
1479		timer_res = 1;
1480	else
1481		timer_res = 2;
1482
1483	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1484	p_sb_entry->params = cpu_to_le32(params);
1485
1486	SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state);
1487	SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state);
1488	p_sb_entry->data = cpu_to_le32(data);
1489}
1490
1491static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1492				struct qed_ptt *p_ptt,
1493				u16 igu_sb_id,
1494				u32 pi_index,
1495				enum qed_coalescing_fsm coalescing_fsm,
1496				u8 timeset)
1497{
1498	u32 sb_offset, pi_offset;
1499	u32 prod = 0;
1500
1501	if (IS_VF(p_hwfn->cdev))
1502		return;
1503
1504	SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1505	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1506		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0);
1507	else
1508		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1);
1509
1510	sb_offset = igu_sb_id * PIS_PER_SB;
1511	pi_offset = sb_offset + pi_index;
1512
1513	if (p_hwfn->hw_init_done)
1514		qed_wr(p_hwfn, p_ptt,
1515		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod);
1516	else
1517		STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1518			     prod);
1519}
1520
1521void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1522			 struct qed_ptt *p_ptt,
1523			 dma_addr_t sb_phys,
1524			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1525{
1526	struct cau_sb_entry sb_entry;
1527
1528	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1529			      vf_number, vf_valid);
1530
1531	if (p_hwfn->hw_init_done) {
1532		/* Wide-bus, initialize via DMAE */
1533		u64 phys_addr = (u64)sb_phys;
1534
1535		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1536				  CAU_REG_SB_ADDR_MEMORY +
1537				  igu_sb_id * sizeof(u64), 2, NULL);
1538		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1539				  CAU_REG_SB_VAR_MEMORY +
1540				  igu_sb_id * sizeof(u64), 2, NULL);
1541	} else {
1542		/* Initialize Status Block Address */
1543		STORE_RT_REG_AGG(p_hwfn,
1544				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1545				 igu_sb_id * 2,
1546				 sb_phys);
1547
1548		STORE_RT_REG_AGG(p_hwfn,
1549				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1550				 igu_sb_id * 2,
1551				 sb_entry);
1552	}
1553
1554	/* Configure pi coalescing if set */
1555	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1556		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1557		u8 timeset, timer_res;
1558		u8 i;
1559
1560		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1561		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1562			timer_res = 0;
1563		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1564			timer_res = 1;
1565		else
1566			timer_res = 2;
1567		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1568		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1569				    QED_COAL_RX_STATE_MACHINE, timeset);
1570
1571		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1572			timer_res = 0;
1573		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1574			timer_res = 1;
1575		else
1576			timer_res = 2;
1577		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1578		for (i = 0; i < num_tc; i++) {
1579			qed_int_cau_conf_pi(p_hwfn, p_ptt,
1580					    igu_sb_id, TX_PI(i),
1581					    QED_COAL_TX_STATE_MACHINE,
1582					    timeset);
1583		}
1584	}
1585}
1586
1587void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1588		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1589{
1590	/* zero status block and ack counter */
1591	sb_info->sb_ack = 0;
1592	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1593
1594	if (IS_PF(p_hwfn->cdev))
1595		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1596				    sb_info->igu_sb_id, 0, 0);
1597}
1598
1599struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1600{
1601	struct qed_igu_block *p_block;
1602	u16 igu_id;
1603
1604	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1605	     igu_id++) {
1606		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1607
1608		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1609		    !(p_block->status & QED_IGU_STATUS_FREE))
1610			continue;
1611
1612		if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1613			return p_block;
1614	}
1615
1616	return NULL;
1617}
1618
1619static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1620{
1621	struct qed_igu_block *p_block;
1622	u16 igu_id;
1623
1624	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1625	     igu_id++) {
1626		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1627
1628		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1629		    !p_block->is_pf ||
1630		    p_block->vector_number != vector_id)
1631			continue;
1632
1633		return igu_id;
1634	}
1635
1636	return QED_SB_INVALID_IDX;
1637}
1638
1639u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1640{
1641	u16 igu_sb_id;
1642
1643	/* Assuming continuous set of IGU SBs dedicated for given PF */
1644	if (sb_id == QED_SP_SB_ID)
1645		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1646	else if (IS_PF(p_hwfn->cdev))
1647		igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1648	else
1649		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1650
1651	if (sb_id == QED_SP_SB_ID)
1652		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1653			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1654	else
1655		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1656			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1657
1658	return igu_sb_id;
1659}
1660
1661int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1662		    struct qed_ptt *p_ptt,
1663		    struct qed_sb_info *sb_info,
1664		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1665{
1666	sb_info->sb_virt = sb_virt_addr;
1667	sb_info->sb_phys = sb_phy_addr;
1668
1669	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1670
1671	if (sb_id != QED_SP_SB_ID) {
1672		if (IS_PF(p_hwfn->cdev)) {
1673			struct qed_igu_info *p_info;
1674			struct qed_igu_block *p_block;
1675
1676			p_info = p_hwfn->hw_info.p_igu_info;
1677			p_block = &p_info->entry[sb_info->igu_sb_id];
1678
1679			p_block->sb_info = sb_info;
1680			p_block->status &= ~QED_IGU_STATUS_FREE;
1681			p_info->usage.free_cnt--;
1682		} else {
1683			qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1684		}
1685	}
1686
1687	sb_info->cdev = p_hwfn->cdev;
1688
1689	/* The igu address will hold the absolute address that needs to be
1690	 * written to for a specific status block
1691	 */
1692	if (IS_PF(p_hwfn->cdev)) {
1693		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1694						  GTT_BAR0_MAP_REG_IGU_CMD +
1695						  (sb_info->igu_sb_id << 3);
1696	} else {
1697		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1698						  PXP_VF_BAR0_START_IGU +
1699						  ((IGU_CMD_INT_ACK_BASE +
1700						    sb_info->igu_sb_id) << 3);
1701	}
1702
1703	sb_info->flags |= QED_SB_INFO_INIT;
1704
1705	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1706
1707	return 0;
1708}
1709
1710int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1711		       struct qed_sb_info *sb_info, u16 sb_id)
1712{
1713	struct qed_igu_block *p_block;
1714	struct qed_igu_info *p_info;
1715
1716	if (!sb_info)
1717		return 0;
1718
1719	/* zero status block and ack counter */
1720	sb_info->sb_ack = 0;
1721	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1722
1723	if (IS_VF(p_hwfn->cdev)) {
1724		qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1725		return 0;
1726	}
1727
1728	p_info = p_hwfn->hw_info.p_igu_info;
1729	p_block = &p_info->entry[sb_info->igu_sb_id];
1730
1731	/* Vector 0 is reserved to Default SB */
1732	if (!p_block->vector_number) {
1733		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1734		return -EINVAL;
1735	}
1736
1737	/* Lose reference to client's SB info, and fix counters */
1738	p_block->sb_info = NULL;
1739	p_block->status |= QED_IGU_STATUS_FREE;
1740	p_info->usage.free_cnt++;
1741
1742	return 0;
1743}
1744
1745static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1746{
1747	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1748
1749	if (!p_sb)
1750		return;
1751
1752	if (p_sb->sb_info.sb_virt)
1753		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1754				  SB_ALIGNED_SIZE(p_hwfn),
1755				  p_sb->sb_info.sb_virt,
1756				  p_sb->sb_info.sb_phys);
1757	kfree(p_sb);
1758	p_hwfn->p_sp_sb = NULL;
1759}
1760
1761static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1762{
1763	struct qed_sb_sp_info *p_sb;
1764	dma_addr_t p_phys = 0;
1765	void *p_virt;
1766
1767	/* SB struct */
1768	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1769	if (!p_sb)
1770		return -ENOMEM;
1771
1772	/* SB ring  */
1773	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1774				    SB_ALIGNED_SIZE(p_hwfn),
1775				    &p_phys, GFP_KERNEL);
1776	if (!p_virt) {
1777		kfree(p_sb);
1778		return -ENOMEM;
1779	}
1780
1781	/* Status Block setup */
1782	p_hwfn->p_sp_sb = p_sb;
1783	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1784			p_phys, QED_SP_SB_ID);
1785
1786	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1787
1788	return 0;
1789}
1790
1791int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1792			qed_int_comp_cb_t comp_cb,
1793			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1794{
1795	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1796	int rc = -ENOMEM;
1797	u8 pi;
1798
1799	/* Look for a free index */
1800	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1801		if (p_sp_sb->pi_info_arr[pi].comp_cb)
1802			continue;
1803
1804		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1805		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1806		*sb_idx = pi;
1807		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1808		rc = 0;
1809		break;
1810	}
1811
1812	return rc;
1813}
1814
1815int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1816{
1817	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1818
1819	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1820		return -ENOMEM;
1821
1822	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1823	p_sp_sb->pi_info_arr[pi].cookie = NULL;
1824
1825	return 0;
1826}
1827
1828u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1829{
1830	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1831}
1832
1833void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1834			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1835{
1836	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1837
1838	p_hwfn->cdev->int_mode = int_mode;
1839	switch (p_hwfn->cdev->int_mode) {
1840	case QED_INT_MODE_INTA:
1841		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1842		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1843		break;
1844
1845	case QED_INT_MODE_MSI:
1846		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1847		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1848		break;
1849
1850	case QED_INT_MODE_MSIX:
1851		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1852		break;
1853	case QED_INT_MODE_POLL:
1854		break;
1855	}
1856
1857	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1858}
1859
1860static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1861				    struct qed_ptt *p_ptt)
1862{
1863
1864	/* Configure AEU signal change to produce attentions */
1865	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1866	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1867	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1868	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1869
1870	/* Unmask AEU signals toward IGU */
1871	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1872}
1873
1874int
1875qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1876		   struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1877{
1878	int rc = 0;
1879
1880	qed_int_igu_enable_attn(p_hwfn, p_ptt);
1881
1882	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1883		rc = qed_slowpath_irq_req(p_hwfn);
1884		if (rc) {
1885			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1886			return -EINVAL;
1887		}
1888		p_hwfn->b_int_requested = true;
1889	}
1890	/* Enable interrupt Generation */
1891	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1892	p_hwfn->b_int_enabled = 1;
1893
1894	return rc;
1895}
1896
1897void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1898{
1899	p_hwfn->b_int_enabled = 0;
1900
1901	if (IS_VF(p_hwfn->cdev))
1902		return;
1903
1904	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1905}
1906
1907#define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1908static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1909				   struct qed_ptt *p_ptt,
1910				   u16 igu_sb_id,
1911				   bool cleanup_set, u16 opaque_fid)
1912{
1913	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1914	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1915	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1916
1917	/* Set the data field */
1918	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1919	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1920	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1921
1922	/* Set the control register */
1923	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1924	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1925	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1926
1927	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1928
1929	barrier();
1930
1931	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1932
1933	/* calculate where to read the status bit from */
1934	sb_bit = 1 << (igu_sb_id % 32);
1935	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1936
1937	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1938
1939	/* Now wait for the command to complete */
1940	do {
1941		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1942
1943		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1944			break;
1945
1946		usleep_range(5000, 10000);
1947	} while (--sleep_cnt);
1948
1949	if (!sleep_cnt)
1950		DP_NOTICE(p_hwfn,
1951			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1952			  val, igu_sb_id);
1953}
1954
1955void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1956				     struct qed_ptt *p_ptt,
1957				     u16 igu_sb_id, u16 opaque, bool b_set)
1958{
1959	struct qed_igu_block *p_block;
1960	int pi, i;
1961
1962	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1963	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1964		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1965		   igu_sb_id,
1966		   p_block->function_id,
1967		   p_block->is_pf, p_block->vector_number);
1968
1969	/* Set */
1970	if (b_set)
1971		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1972
1973	/* Clear */
1974	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1975
1976	/* Wait for the IGU SB to cleanup */
1977	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1978		u32 val;
1979
1980		val = qed_rd(p_hwfn, p_ptt,
1981			     IGU_REG_WRITE_DONE_PENDING +
1982			     ((igu_sb_id / 32) * 4));
1983		if (val & BIT((igu_sb_id % 32)))
1984			usleep_range(10, 20);
1985		else
1986			break;
1987	}
1988	if (i == IGU_CLEANUP_SLEEP_LENGTH)
1989		DP_NOTICE(p_hwfn,
1990			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1991			  igu_sb_id);
1992
1993	/* Clear the CAU for the SB */
1994	for (pi = 0; pi < 12; pi++)
1995		qed_wr(p_hwfn, p_ptt,
1996		       CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1997}
1998
1999void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
2000			      struct qed_ptt *p_ptt,
2001			      bool b_set, bool b_slowpath)
2002{
2003	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2004	struct qed_igu_block *p_block;
2005	u16 igu_sb_id = 0;
2006	u32 val = 0;
2007
2008	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2009	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2010	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2011	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2012
2013	for (igu_sb_id = 0;
2014	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2015		p_block = &p_info->entry[igu_sb_id];
2016
2017		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
2018		    !p_block->is_pf ||
2019		    (p_block->status & QED_IGU_STATUS_DSB))
2020			continue;
2021
2022		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2023						p_hwfn->hw_info.opaque_fid,
2024						b_set);
2025	}
2026
2027	if (b_slowpath)
2028		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2029						p_info->igu_dsb_id,
2030						p_hwfn->hw_info.opaque_fid,
2031						b_set);
2032}
2033
2034int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2035{
2036	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2037	struct qed_igu_block *p_block;
2038	int pf_sbs, vf_sbs;
2039	u16 igu_sb_id;
2040	u32 val, rval;
2041
2042	if (!RESC_NUM(p_hwfn, QED_SB)) {
2043		p_info->b_allow_pf_vf_change = false;
2044	} else {
2045		/* Use the numbers the MFW have provided -
2046		 * don't forget MFW accounts for the default SB as well.
2047		 */
2048		p_info->b_allow_pf_vf_change = true;
2049
2050		if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
2051			DP_INFO(p_hwfn,
2052				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2053				RESC_NUM(p_hwfn, QED_SB) - 1,
2054				p_info->usage.cnt);
2055			p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2056		}
2057
2058		if (IS_PF_SRIOV(p_hwfn)) {
2059			u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2060
2061			if (vfs != p_info->usage.iov_cnt)
2062				DP_VERBOSE(p_hwfn,
2063					   NETIF_MSG_INTR,
2064					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2065					   p_info->usage.iov_cnt, vfs);
2066
2067			/* At this point we know how many SBs we have totally
2068			 * in IGU + number of PF SBs. So we can validate that
2069			 * we'd have sufficient for VF.
2070			 */
2071			if (vfs > p_info->usage.free_cnt +
2072			    p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2073				DP_NOTICE(p_hwfn,
2074					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2075					  p_info->usage.free_cnt +
2076					  p_info->usage.free_cnt_iov,
2077					  p_info->usage.cnt, vfs);
2078				return -EINVAL;
2079			}
2080
2081			/* Currently cap the number of VFs SBs by the
2082			 * number of VFs.
2083			 */
2084			p_info->usage.iov_cnt = vfs;
2085		}
2086	}
2087
2088	/* Mark all SBs as free, now in the right PF/VFs division */
2089	p_info->usage.free_cnt = p_info->usage.cnt;
2090	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2091	p_info->usage.orig = p_info->usage.cnt;
2092	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2093
2094	/* We now proceed to re-configure the IGU cam to reflect the initial
2095	 * configuration. We can start with the Default SB.
2096	 */
2097	pf_sbs = p_info->usage.cnt;
2098	vf_sbs = p_info->usage.iov_cnt;
2099
2100	for (igu_sb_id = p_info->igu_dsb_id;
2101	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2102		p_block = &p_info->entry[igu_sb_id];
2103		val = 0;
2104
2105		if (!(p_block->status & QED_IGU_STATUS_VALID))
2106			continue;
2107
2108		if (p_block->status & QED_IGU_STATUS_DSB) {
2109			p_block->function_id = p_hwfn->rel_pf_id;
2110			p_block->is_pf = 1;
2111			p_block->vector_number = 0;
2112			p_block->status = QED_IGU_STATUS_VALID |
2113					  QED_IGU_STATUS_PF |
2114					  QED_IGU_STATUS_DSB;
2115		} else if (pf_sbs) {
2116			pf_sbs--;
2117			p_block->function_id = p_hwfn->rel_pf_id;
2118			p_block->is_pf = 1;
2119			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2120			p_block->status = QED_IGU_STATUS_VALID |
2121					  QED_IGU_STATUS_PF |
2122					  QED_IGU_STATUS_FREE;
2123		} else if (vf_sbs) {
2124			p_block->function_id =
2125			    p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2126			    p_info->usage.iov_cnt - vf_sbs;
2127			p_block->is_pf = 0;
2128			p_block->vector_number = 0;
2129			p_block->status = QED_IGU_STATUS_VALID |
2130					  QED_IGU_STATUS_FREE;
2131			vf_sbs--;
2132		} else {
2133			p_block->function_id = 0;
2134			p_block->is_pf = 0;
2135			p_block->vector_number = 0;
2136		}
2137
2138		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2139			  p_block->function_id);
2140		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2141		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2142			  p_block->vector_number);
2143
2144		/* VF entries would be enabled when VF is initializaed */
2145		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2146
2147		rval = qed_rd(p_hwfn, p_ptt,
2148			      IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2149
2150		if (rval != val) {
2151			qed_wr(p_hwfn, p_ptt,
2152			       IGU_REG_MAPPING_MEMORY +
2153			       sizeof(u32) * igu_sb_id, val);
2154
2155			DP_VERBOSE(p_hwfn,
2156				   NETIF_MSG_INTR,
2157				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2158				   igu_sb_id,
2159				   p_block->function_id,
2160				   p_block->is_pf,
2161				   p_block->vector_number, rval, val);
2162		}
2163	}
2164
2165	return 0;
2166}
2167
2168static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2169				       struct qed_ptt *p_ptt, u16 igu_sb_id)
2170{
2171	u32 val = qed_rd(p_hwfn, p_ptt,
2172			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2173	struct qed_igu_block *p_block;
2174
2175	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2176
2177	/* Fill the block information */
2178	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2179	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2180	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2181	p_block->igu_sb_id = igu_sb_id;
2182}
2183
2184int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2185{
2186	struct qed_igu_info *p_igu_info;
2187	struct qed_igu_block *p_block;
2188	u32 min_vf = 0, max_vf = 0;
2189	u16 igu_sb_id;
2190
2191	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2192	if (!p_hwfn->hw_info.p_igu_info)
2193		return -ENOMEM;
2194
2195	p_igu_info = p_hwfn->hw_info.p_igu_info;
2196
2197	/* Distinguish between existent and non-existent default SB */
2198	p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2199
2200	/* Find the range of VF ids whose SB belong to this PF */
2201	if (p_hwfn->cdev->p_iov_info) {
2202		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2203
2204		min_vf	= p_iov->first_vf_in_pf;
2205		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
2206	}
2207
2208	for (igu_sb_id = 0;
2209	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2210		/* Read current entry; Notice it might not belong to this PF */
2211		qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2212		p_block = &p_igu_info->entry[igu_sb_id];
2213
2214		if ((p_block->is_pf) &&
2215		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2216			p_block->status = QED_IGU_STATUS_PF |
2217					  QED_IGU_STATUS_VALID |
2218					  QED_IGU_STATUS_FREE;
2219
2220			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2221				p_igu_info->usage.cnt++;
2222		} else if (!(p_block->is_pf) &&
2223			   (p_block->function_id >= min_vf) &&
2224			   (p_block->function_id < max_vf)) {
2225			/* Available for VFs of this PF */
2226			p_block->status = QED_IGU_STATUS_VALID |
2227					  QED_IGU_STATUS_FREE;
2228
2229			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2230				p_igu_info->usage.iov_cnt++;
2231		}
2232
2233		/* Mark the First entry belonging to the PF or its VFs
2234		 * as the default SB [we'll reset IGU prior to first usage].
2235		 */
2236		if ((p_block->status & QED_IGU_STATUS_VALID) &&
2237		    (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2238			p_igu_info->igu_dsb_id = igu_sb_id;
2239			p_block->status |= QED_IGU_STATUS_DSB;
2240		}
2241
2242		/* limit number of prints by having each PF print only its
2243		 * entries with the exception of PF0 which would print
2244		 * everything.
2245		 */
2246		if ((p_block->status & QED_IGU_STATUS_VALID) ||
2247		    (p_hwfn->abs_pf_id == 0)) {
2248			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2249				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2250				   igu_sb_id, p_block->function_id,
2251				   p_block->is_pf, p_block->vector_number);
2252		}
2253	}
2254
2255	if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2256		DP_NOTICE(p_hwfn,
2257			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2258			  p_igu_info->igu_dsb_id);
2259		return -EINVAL;
2260	}
2261
2262	/* All non default SB are considered free at this point */
2263	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2264	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2265
2266	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2267		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2268		   p_igu_info->igu_dsb_id,
2269		   p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2270
2271	return 0;
2272}
2273
2274/**
2275 * qed_int_igu_init_rt() - Initialize IGU runtime registers.
2276 *
2277 * @p_hwfn: HW device data.
2278 */
2279void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2280{
2281	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2282
2283	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2284}
2285
2286u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2287{
2288	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2289			       IGU_CMD_INT_ACK_BASE;
2290	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2291			       IGU_CMD_INT_ACK_BASE;
2292	u32 intr_status_hi = 0, intr_status_lo = 0;
2293	u64 intr_status = 0;
2294
2295	intr_status_lo = REG_RD(p_hwfn,
2296				GTT_BAR0_MAP_REG_IGU_CMD +
2297				lsb_igu_cmd_addr * 8);
2298	intr_status_hi = REG_RD(p_hwfn,
2299				GTT_BAR0_MAP_REG_IGU_CMD +
2300				msb_igu_cmd_addr * 8);
2301	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2302
2303	return intr_status;
2304}
2305
2306static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2307{
2308	tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc);
2309	p_hwfn->b_sp_dpc_enabled = true;
2310}
2311
2312int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2313{
2314	int rc = 0;
2315
2316	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2317	if (rc)
2318		return rc;
2319
2320	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2321
2322	return rc;
2323}
2324
2325void qed_int_free(struct qed_hwfn *p_hwfn)
2326{
2327	qed_int_sp_sb_free(p_hwfn);
2328	qed_int_sb_attn_free(p_hwfn);
2329}
2330
2331void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2332{
2333	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2334	qed_int_sb_attn_setup(p_hwfn, p_ptt);
2335	qed_int_sp_dpc_setup(p_hwfn);
2336}
2337
2338void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
2339			 struct qed_sb_cnt_info *p_sb_cnt_info)
2340{
2341	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2342
2343	if (!info || !p_sb_cnt_info)
2344		return;
2345
2346	memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2347}
2348
2349void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2350{
2351	int i;
2352
2353	for_each_hwfn(cdev, i)
2354		cdev->hwfns[i].b_int_requested = false;
2355}
2356
2357void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable)
2358{
2359	cdev->attn_clr_en = clr_enable;
2360}
2361
2362int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2363			  u8 timer_res, u16 sb_id, bool tx)
2364{
2365	struct cau_sb_entry sb_entry;
2366	u32 params;
2367	int rc;
2368
2369	if (!p_hwfn->hw_init_done) {
2370		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2371		return -EINVAL;
2372	}
2373
2374	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2375			       sb_id * sizeof(u64),
2376			       (u64)(uintptr_t)&sb_entry, 2, NULL);
2377	if (rc) {
2378		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2379		return rc;
2380	}
2381
2382	params = le32_to_cpu(sb_entry.params);
2383
2384	if (tx)
2385		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2386	else
2387		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2388
2389	sb_entry.params = cpu_to_le32(params);
2390
2391	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2392			       (u64)(uintptr_t)&sb_entry,
2393			       CAU_REG_SB_VAR_MEMORY +
2394			       sb_id * sizeof(u64), 2, NULL);
2395	if (rc) {
2396		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2397		return rc;
2398	}
2399
2400	return rc;
2401}
2402
2403int qed_int_get_sb_dbg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2404		       struct qed_sb_info *p_sb, struct qed_sb_info_dbg *p_info)
2405{
2406	u16 sbid = p_sb->igu_sb_id;
2407	u32 i;
2408
2409	if (IS_VF(p_hwfn->cdev))
2410		return -EINVAL;
2411
2412	if (sbid >= NUM_OF_SBS(p_hwfn->cdev))
2413		return -EINVAL;
2414
2415	p_info->igu_prod = qed_rd(p_hwfn, p_ptt, IGU_REG_PRODUCER_MEMORY + sbid * 4);
2416	p_info->igu_cons = qed_rd(p_hwfn, p_ptt, IGU_REG_CONSUMER_MEM + sbid * 4);
2417
2418	for (i = 0; i < PIS_PER_SB; i++)
2419		p_info->pi[i] = (u16)qed_rd(p_hwfn, p_ptt,
2420					    CAU_REG_PI_MEMORY + sbid * 4 * PIS_PER_SB + i * 4);
2421
2422	return 0;
2423}
2424