1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2/* QLogic qed NIC Driver
3 * Copyright (c) 2015-2017  QLogic Corporation
4 * Copyright (c) 2019-2021 Marvell International Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/crc8.h>
9#include <linux/delay.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/string.h>
13#include "qed_hsi.h"
14#include "qed_hw.h"
15#include "qed_init_ops.h"
16#include "qed_iro_hsi.h"
17#include "qed_reg_addr.h"
18
19#define CDU_VALIDATION_DEFAULT_CFG CDU_CONTEXT_VALIDATION_DEFAULT_CFG
20
21static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES] = {
22	{400, 336, 352, 368, 304, 384, 416, 352},	/* region 3 offsets */
23	{528, 496, 416, 512, 448, 512, 544, 480},	/* region 4 offsets */
24	{608, 544, 496, 576, 576, 592, 624, 560}	/* region 5 offsets */
25};
26
27static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES] = {
28	{240, 240, 112, 0, 0, 0, 0, 96}	/* region 1 offsets */
29};
30
31/* General constants */
32#define QM_PQ_MEM_4KB(pq_size)	(pq_size ? DIV_ROUND_UP((pq_size + 1) *	\
33							QM_PQ_ELEMENT_SIZE, \
34							0x1000) : 0)
35#define QM_PQ_SIZE_256B(pq_size)	(pq_size ? DIV_ROUND_UP(pq_size, \
36								0x100) - 1 : 0)
37#define QM_INVALID_PQ_ID		0xffff
38
39/* Max link speed (in Mbps) */
40#define QM_MAX_LINK_SPEED               100000
41
42/* Feature enable */
43#define QM_BYPASS_EN	1
44#define QM_BYTE_CRD_EN	1
45
46/* Initial VOQ byte credit */
47#define QM_INITIAL_VOQ_BYTE_CRD         98304
48/* Other PQ constants */
49#define QM_OTHER_PQS_PER_PF	4
50
51/* VOQ constants */
52#define MAX_NUM_VOQS	(MAX_NUM_PORTS_K2 * NUM_TCS_4PORT_K2)
53#define VOQS_BIT_MASK	(BIT(MAX_NUM_VOQS) - 1)
54
55/* WFQ constants */
56
57/* PF WFQ increment value, 0x9000 = 4*9*1024 */
58#define QM_PF_WFQ_INC_VAL(weight)       ((weight) * 0x9000)
59
60/* PF WFQ Upper bound, in MB, 10 * burst size of 1ms in 50Gbps */
61#define QM_PF_WFQ_UPPER_BOUND           62500000
62
63/* PF WFQ max increment value, 0.7 * upper bound */
64#define QM_PF_WFQ_MAX_INC_VAL           ((QM_PF_WFQ_UPPER_BOUND * 7) / 10)
65
66/* Number of VOQs in E5 PF WFQ credit register (QmWfqCrd) */
67#define QM_PF_WFQ_CRD_E5_NUM_VOQS       16
68
69/* VP WFQ increment value */
70#define QM_VP_WFQ_INC_VAL(weight)       ((weight) * QM_VP_WFQ_MIN_INC_VAL)
71
72/* VP WFQ min increment value */
73#define QM_VP_WFQ_MIN_INC_VAL           10800
74
75/* VP WFQ max increment value, 2^30 */
76#define QM_VP_WFQ_MAX_INC_VAL           0x40000000
77
78/* VP WFQ bypass threshold */
79#define QM_VP_WFQ_BYPASS_THRESH         (QM_VP_WFQ_MIN_INC_VAL - 100)
80
81/* VP RL credit task cost */
82#define QM_VP_RL_CRD_TASK_COST          9700
83
84/* Bit of VOQ in VP WFQ PQ map */
85#define QM_VP_WFQ_PQ_VOQ_SHIFT          0
86
87/* Bit of PF in VP WFQ PQ map */
88#define QM_VP_WFQ_PQ_PF_SHIFT   5
89
90/* RL constants */
91
92/* Period in us */
93#define QM_RL_PERIOD	5
94
95/* Period in 25MHz cycles */
96#define QM_RL_PERIOD_CLK_25M	(25 * QM_RL_PERIOD)
97
98/* RL increment value - rate is specified in mbps */
99#define QM_RL_INC_VAL(rate)                     ({	\
100						typeof(rate) __rate = (rate); \
101						max_t(u32,		\
102						(u32)(((__rate ? __rate : \
103						100000) *		\
104						QM_RL_PERIOD *		\
105						101) / (8 * 100)), 1); })
106
107/* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
108#define QM_PF_RL_UPPER_BOUND	62500000
109
110/* Max PF RL increment value is 0.7 * upper bound */
111#define QM_PF_RL_MAX_INC_VAL	((QM_PF_RL_UPPER_BOUND * 7) / 10)
112
113/* QCN RL Upper bound, speed is in Mpbs */
114#define QM_GLOBAL_RL_UPPER_BOUND(speed)         ((u32)max_t( \
115		u32,					    \
116		(u32)(((speed) *			    \
117		       QM_RL_PERIOD * 101) / (8 * 100)),    \
118		QM_VP_RL_CRD_TASK_COST			    \
119		+ 1000))
120
121/* AFullOprtnstcCrdMask constants */
122#define QM_OPPOR_LINE_VOQ_DEF	1
123#define QM_OPPOR_FW_STOP_DEF	0
124#define QM_OPPOR_PQ_EMPTY_DEF	1
125
126/* Command Queue constants */
127
128/* Pure LB CmdQ lines (+spare) */
129#define PBF_CMDQ_PURE_LB_LINES	150
130
131#define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
132	(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
133	 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
134		PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
135
136#define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
137	(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
138	 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
139		PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
140
141/* Returns the VOQ line credit for the specified number of PBF command lines.
142 * PBF lines are specified in 256b units.
143 */
144#define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
145	((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
146
147/* BTB: blocks constants (block size = 256B) */
148
149/* 256B blocks in 9700B packet */
150#define BTB_JUMBO_PKT_BLOCKS	38
151
152/* Headroom per-port */
153#define BTB_HEADROOM_BLOCKS	BTB_JUMBO_PKT_BLOCKS
154#define BTB_PURE_LB_FACTOR	10
155
156/* Factored (hence really 0.7) */
157#define BTB_PURE_LB_RATIO	7
158
159/* QM stop command constants */
160#define QM_STOP_PQ_MASK_WIDTH		32
161#define QM_STOP_CMD_ADDR		2
162#define QM_STOP_CMD_STRUCT_SIZE		2
163#define QM_STOP_CMD_PAUSE_MASK_OFFSET	0
164#define QM_STOP_CMD_PAUSE_MASK_SHIFT	0
165#define QM_STOP_CMD_PAUSE_MASK_MASK	-1
166#define QM_STOP_CMD_GROUP_ID_OFFSET	1
167#define QM_STOP_CMD_GROUP_ID_SHIFT	16
168#define QM_STOP_CMD_GROUP_ID_MASK	15
169#define QM_STOP_CMD_PQ_TYPE_OFFSET	1
170#define QM_STOP_CMD_PQ_TYPE_SHIFT	24
171#define QM_STOP_CMD_PQ_TYPE_MASK	1
172#define QM_STOP_CMD_MAX_POLL_COUNT	100
173#define QM_STOP_CMD_POLL_PERIOD_US	500
174
175/* QM command macros */
176#define QM_CMD_STRUCT_SIZE(cmd)	cmd ## _STRUCT_SIZE
177#define QM_CMD_SET_FIELD(var, cmd, field, value) \
178	SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
179		  cmd ## _ ## field, \
180		  value)
181
182#define QM_INIT_TX_PQ_MAP(p_hwfn, map, pq_id, vp_pq_id, rl_valid,	      \
183			  rl_id, ext_voq, wrr)				      \
184	do {								      \
185		u32 __reg = 0;						      \
186									      \
187		BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg));	      \
188		memset(&(map), 0, sizeof(map));				      \
189		SET_FIELD(__reg, QM_RF_PQ_MAP_PQ_VALID, 1);	      \
190		SET_FIELD(__reg, QM_RF_PQ_MAP_RL_VALID,	      \
191			  !!(rl_valid));				      \
192		SET_FIELD(__reg, QM_RF_PQ_MAP_VP_PQ_ID, (vp_pq_id)); \
193		SET_FIELD(__reg, QM_RF_PQ_MAP_RL_ID, (rl_id));	      \
194		SET_FIELD(__reg, QM_RF_PQ_MAP_VOQ, (ext_voq));	      \
195		SET_FIELD(__reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,      \
196			  (wrr));					      \
197									      \
198		STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id),    \
199			     __reg);					      \
200		(map).reg = cpu_to_le32(__reg);				      \
201	} while (0)
202
203#define WRITE_PQ_INFO_TO_RAM	1
204#define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
205	(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
206	((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
207	(((rl) >> 8) << 9))
208
209#define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
210	(XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
211	XSTORM_PQ_INFO_OFFSET(pq_id))
212
213static const char * const s_protocol_types[] = {
214	"PROTOCOLID_ISCSI", "PROTOCOLID_FCOE", "PROTOCOLID_ROCE",
215	"PROTOCOLID_CORE", "PROTOCOLID_ETH", "PROTOCOLID_IWARP",
216	"PROTOCOLID_TOE", "PROTOCOLID_PREROCE", "PROTOCOLID_COMMON",
217	"PROTOCOLID_TCP", "PROTOCOLID_RDMA", "PROTOCOLID_SCSI",
218};
219
220static const char *s_ramrod_cmd_ids[][28] = {
221	{
222	"ISCSI_RAMROD_CMD_ID_UNUSED", "ISCSI_RAMROD_CMD_ID_INIT_FUNC",
223	 "ISCSI_RAMROD_CMD_ID_DESTROY_FUNC",
224	 "ISCSI_RAMROD_CMD_ID_OFFLOAD_CONN",
225	 "ISCSI_RAMROD_CMD_ID_UPDATE_CONN",
226	 "ISCSI_RAMROD_CMD_ID_TERMINATION_CONN",
227	 "ISCSI_RAMROD_CMD_ID_CLEAR_SQ", "ISCSI_RAMROD_CMD_ID_MAC_UPDATE",
228	 "ISCSI_RAMROD_CMD_ID_CONN_STATS", },
229	{ "FCOE_RAMROD_CMD_ID_INIT_FUNC", "FCOE_RAMROD_CMD_ID_DESTROY_FUNC",
230	 "FCOE_RAMROD_CMD_ID_STAT_FUNC",
231	 "FCOE_RAMROD_CMD_ID_OFFLOAD_CONN",
232	 "FCOE_RAMROD_CMD_ID_TERMINATE_CONN", },
233	{ "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
234	 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
235	 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
236	 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
237	 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
238	 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
239	 "RDMA_RAMROD_STOP_NS_TRACKING", "ROCE_RAMROD_CREATE_QP",
240	 "ROCE_RAMROD_MODIFY_QP", "ROCE_RAMROD_QUERY_QP",
241	 "ROCE_RAMROD_DESTROY_QP", "ROCE_RAMROD_CREATE_UD_QP",
242	 "ROCE_RAMROD_DESTROY_UD_QP", "ROCE_RAMROD_FUNC_UPDATE",
243	 "ROCE_RAMROD_SUSPEND_QP", "ROCE_RAMROD_QUERY_SUSPENDED_QP",
244	 "ROCE_RAMROD_CREATE_SUSPENDED_QP", "ROCE_RAMROD_RESUME_QP",
245	 "ROCE_RAMROD_SUSPEND_UD_QP", "ROCE_RAMROD_RESUME_UD_QP",
246	 "ROCE_RAMROD_CREATE_SUSPENDED_UD_QP", "ROCE_RAMROD_FLUSH_DPT_QP", },
247	{ "CORE_RAMROD_UNUSED", "CORE_RAMROD_RX_QUEUE_START",
248	 "CORE_RAMROD_TX_QUEUE_START", "CORE_RAMROD_RX_QUEUE_STOP",
249	 "CORE_RAMROD_TX_QUEUE_STOP",
250	 "CORE_RAMROD_RX_QUEUE_FLUSH",
251	 "CORE_RAMROD_TX_QUEUE_UPDATE", "CORE_RAMROD_QUEUE_STATS_QUERY", },
252	{ "ETH_RAMROD_UNUSED", "ETH_RAMROD_VPORT_START",
253	 "ETH_RAMROD_VPORT_UPDATE", "ETH_RAMROD_VPORT_STOP",
254	 "ETH_RAMROD_RX_QUEUE_START", "ETH_RAMROD_RX_QUEUE_STOP",
255	 "ETH_RAMROD_TX_QUEUE_START", "ETH_RAMROD_TX_QUEUE_STOP",
256	 "ETH_RAMROD_FILTERS_UPDATE", "ETH_RAMROD_RX_QUEUE_UPDATE",
257	 "ETH_RAMROD_RX_CREATE_OPENFLOW_ACTION",
258	 "ETH_RAMROD_RX_ADD_OPENFLOW_FILTER",
259	 "ETH_RAMROD_RX_DELETE_OPENFLOW_FILTER",
260	 "ETH_RAMROD_RX_ADD_UDP_FILTER",
261	 "ETH_RAMROD_RX_DELETE_UDP_FILTER",
262	 "ETH_RAMROD_RX_CREATE_GFT_ACTION",
263	 "ETH_RAMROD_RX_UPDATE_GFT_FILTER", "ETH_RAMROD_TX_QUEUE_UPDATE",
264	 "ETH_RAMROD_RGFS_FILTER_ADD", "ETH_RAMROD_RGFS_FILTER_DEL",
265	 "ETH_RAMROD_TGFS_FILTER_ADD", "ETH_RAMROD_TGFS_FILTER_DEL",
266	 "ETH_RAMROD_GFS_COUNTERS_REPORT_REQUEST", },
267	{ "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
268	 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
269	 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
270	 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
271	 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
272	 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
273	 "RDMA_RAMROD_STOP_NS_TRACKING",
274	 "IWARP_RAMROD_CMD_ID_TCP_OFFLOAD",
275	 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD",
276	 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD_SEND_RTR",
277	 "IWARP_RAMROD_CMD_ID_CREATE_QP", "IWARP_RAMROD_CMD_ID_QUERY_QP",
278	 "IWARP_RAMROD_CMD_ID_MODIFY_QP",
279	 "IWARP_RAMROD_CMD_ID_DESTROY_QP",
280	 "IWARP_RAMROD_CMD_ID_ABORT_TCP_OFFLOAD", },
281	{ NULL }, /*TOE*/
282	{ NULL }, /*PREROCE*/
283	{ "COMMON_RAMROD_UNUSED", "COMMON_RAMROD_PF_START",
284	     "COMMON_RAMROD_PF_STOP", "COMMON_RAMROD_VF_START",
285	     "COMMON_RAMROD_VF_STOP", "COMMON_RAMROD_PF_UPDATE",
286	     "COMMON_RAMROD_RL_UPDATE", "COMMON_RAMROD_EMPTY", }
287};
288
289/******************** INTERNAL IMPLEMENTATION *********************/
290
291/* Returns the external VOQ number */
292static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
293			  u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
294{
295	if (tc == PURE_LB_TC)
296		return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
297	else
298		return port_id * max_phys_tcs_per_port + tc;
299}
300
301/* Prepare PF RL enable/disable runtime init values */
302static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
303{
304	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
305	if (pf_rl_en) {
306		u8 num_ext_voqs = MAX_NUM_VOQS;
307		u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
308
309		/* Enable RLs for all VOQs */
310		STORE_RT_REG(p_hwfn,
311			     QM_REG_RLPFVOQENABLE_RT_OFFSET,
312			     (u32)voq_bit_mask);
313
314		/* Write RL period */
315		STORE_RT_REG(p_hwfn,
316			     QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
317		STORE_RT_REG(p_hwfn,
318			     QM_REG_RLPFPERIODTIMER_RT_OFFSET,
319			     QM_RL_PERIOD_CLK_25M);
320
321		/* Set credit threshold for QM bypass flow */
322		if (QM_BYPASS_EN)
323			STORE_RT_REG(p_hwfn,
324				     QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
325				     QM_PF_RL_UPPER_BOUND);
326	}
327}
328
329/* Prepare PF WFQ enable/disable runtime init values */
330static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
331{
332	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
333
334	/* Set credit threshold for QM bypass flow */
335	if (pf_wfq_en && QM_BYPASS_EN)
336		STORE_RT_REG(p_hwfn,
337			     QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
338			     QM_PF_WFQ_UPPER_BOUND);
339}
340
341/* Prepare global RL enable/disable runtime init values */
342static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
343{
344	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
345		     global_rl_en ? 1 : 0);
346	if (global_rl_en) {
347		/* Write RL period (use timer 0 only) */
348		STORE_RT_REG(p_hwfn,
349			     QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
350			     QM_RL_PERIOD_CLK_25M);
351		STORE_RT_REG(p_hwfn,
352			     QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
353			     QM_RL_PERIOD_CLK_25M);
354
355		/* Set credit threshold for QM bypass flow */
356		if (QM_BYPASS_EN)
357			STORE_RT_REG(p_hwfn,
358				     QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
359				     QM_GLOBAL_RL_UPPER_BOUND(10000) - 1);
360	}
361}
362
363/* Prepare VPORT WFQ enable/disable runtime init values */
364static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
365{
366	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
367		     vport_wfq_en ? 1 : 0);
368
369	/* Set credit threshold for QM bypass flow */
370	if (vport_wfq_en && QM_BYPASS_EN)
371		STORE_RT_REG(p_hwfn,
372			     QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
373			     QM_VP_WFQ_BYPASS_THRESH);
374}
375
376/* Prepare runtime init values to allocate PBF command queue lines for
377 * the specified VOQ.
378 */
379static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
380				       u8 ext_voq, u16 cmdq_lines)
381{
382	u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
383
384	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
385			 (u32)cmdq_lines);
386	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
387		     qm_line_crd);
388	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
389		     qm_line_crd);
390}
391
392/* Prepare runtime init values to allocate PBF command queue lines. */
393static void
394qed_cmdq_lines_rt_init(struct qed_hwfn *p_hwfn,
395		       u8 max_ports_per_engine,
396		       u8 max_phys_tcs_per_port,
397		       struct init_qm_port_params port_params[MAX_NUM_PORTS])
398{
399	u8 tc, ext_voq, port_id, num_tcs_in_port;
400	u8 num_ext_voqs = MAX_NUM_VOQS;
401
402	/* Clear PBF lines of all VOQs */
403	for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
404		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
405
406	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
407		u16 phys_lines, phys_lines_per_tc;
408
409		if (!port_params[port_id].active)
410			continue;
411
412		/* Find number of command queue lines to divide between the
413		 * active physical TCs.
414		 */
415		phys_lines = port_params[port_id].num_pbf_cmd_lines;
416		phys_lines -= PBF_CMDQ_PURE_LB_LINES;
417
418		/* Find #lines per active physical TC */
419		num_tcs_in_port = 0;
420		for (tc = 0; tc < max_phys_tcs_per_port; tc++)
421			if (((port_params[port_id].active_phys_tcs >>
422			      tc) & 0x1) == 1)
423				num_tcs_in_port++;
424		phys_lines_per_tc = phys_lines / num_tcs_in_port;
425
426		/* Init registers per active TC */
427		for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
428			ext_voq = qed_get_ext_voq(p_hwfn,
429						  port_id,
430						  tc, max_phys_tcs_per_port);
431			if (((port_params[port_id].active_phys_tcs >>
432			      tc) & 0x1) == 1)
433				qed_cmdq_lines_voq_rt_init(p_hwfn,
434							   ext_voq,
435							   phys_lines_per_tc);
436		}
437
438		/* Init registers for pure LB TC */
439		ext_voq = qed_get_ext_voq(p_hwfn,
440					  port_id,
441					  PURE_LB_TC, max_phys_tcs_per_port);
442		qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
443					   PBF_CMDQ_PURE_LB_LINES);
444	}
445}
446
447/* Prepare runtime init values to allocate guaranteed BTB blocks for the
448 * specified port. The guaranteed BTB space is divided between the TCs as
449 * follows (shared space Is currently not used):
450 * 1. Parameters:
451 *    B - BTB blocks for this port
452 *    C - Number of physical TCs for this port
453 * 2. Calculation:
454 *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
455 *	 headroom.
456 *    b. B = B - 38 (remainder after global headroom allocation).
457 *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
458 *    d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
459 *    e. B/C blocks are allocated for each physical TC.
460 * Assumptions:
461 * - MTU is up to 9700 bytes (38 blocks)
462 * - All TCs are considered symmetrical (same rate and packet size)
463 * - No optimization for lossy TC (all are considered lossless). Shared space
464 *   is not enabled and allocated for each TC.
465 */
466static void
467qed_btb_blocks_rt_init(struct qed_hwfn *p_hwfn,
468		       u8 max_ports_per_engine,
469		       u8 max_phys_tcs_per_port,
470		       struct init_qm_port_params port_params[MAX_NUM_PORTS])
471{
472	u32 usable_blocks, pure_lb_blocks, phys_blocks;
473	u8 tc, ext_voq, port_id, num_tcs_in_port;
474
475	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
476		if (!port_params[port_id].active)
477			continue;
478
479		/* Subtract headroom blocks */
480		usable_blocks = port_params[port_id].num_btb_blocks -
481				BTB_HEADROOM_BLOCKS;
482
483		/* Find blocks per physical TC. Use factor to avoid floating
484		 * arithmethic.
485		 */
486		num_tcs_in_port = 0;
487		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
488			if (((port_params[port_id].active_phys_tcs >>
489			      tc) & 0x1) == 1)
490				num_tcs_in_port++;
491
492		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
493				 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
494				  BTB_PURE_LB_RATIO);
495		pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
496				       pure_lb_blocks / BTB_PURE_LB_FACTOR);
497		phys_blocks = (usable_blocks - pure_lb_blocks) /
498			      num_tcs_in_port;
499
500		/* Init physical TCs */
501		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
502			if (((port_params[port_id].active_phys_tcs >>
503			      tc) & 0x1) == 1) {
504				ext_voq =
505					qed_get_ext_voq(p_hwfn,
506							port_id,
507							tc,
508							max_phys_tcs_per_port);
509				STORE_RT_REG(p_hwfn,
510					     PBF_BTB_GUARANTEED_RT_OFFSET
511					     (ext_voq), phys_blocks);
512			}
513		}
514
515		/* Init pure LB TC */
516		ext_voq = qed_get_ext_voq(p_hwfn,
517					  port_id,
518					  PURE_LB_TC, max_phys_tcs_per_port);
519		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
520			     pure_lb_blocks);
521	}
522}
523
524/* Prepare runtime init values for the specified RL.
525 * Set max link speed (100Gbps) per rate limiter.
526 * Return -1 on error.
527 */
528static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
529{
530	u32 upper_bound = QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
531			  (u32)QM_RL_CRD_REG_SIGN_BIT;
532	u32 inc_val;
533	u16 rl_id;
534
535	/* Go over all global RLs */
536	for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
537		inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
538
539		STORE_RT_REG(p_hwfn,
540			     QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
541			     (u32)QM_RL_CRD_REG_SIGN_BIT);
542		STORE_RT_REG(p_hwfn,
543			     QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
544			     upper_bound);
545		STORE_RT_REG(p_hwfn,
546			     QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
547	}
548
549	return 0;
550}
551
552/* Returns the upper bound for the specified Vport RL parameters.
553 * link_speed is in Mbps.
554 * Returns 0 in case of error.
555 */
556static u32 qed_get_vport_rl_upper_bound(enum init_qm_rl_type vport_rl_type,
557					u32 link_speed)
558{
559	switch (vport_rl_type) {
560	case QM_RL_TYPE_NORMAL:
561		return QM_INITIAL_VOQ_BYTE_CRD;
562	case QM_RL_TYPE_QCN:
563		return QM_GLOBAL_RL_UPPER_BOUND(link_speed);
564	default:
565		return 0;
566	}
567}
568
569/* Prepare VPORT RL runtime init values.
570 * Return -1 on error.
571 */
572static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
573				u16 start_rl,
574				u16 num_rls,
575				u32 link_speed,
576				struct init_qm_rl_params *rl_params)
577{
578	u16 i, rl_id;
579
580	if (num_rls && start_rl + num_rls >= MAX_QM_GLOBAL_RLS) {
581		DP_NOTICE(p_hwfn, "Invalid rate limiter configuration\n");
582		return -1;
583	}
584
585	/* Go over all PF VPORTs */
586	for (i = 0, rl_id = start_rl; i < num_rls; i++, rl_id++) {
587		u32 upper_bound, inc_val;
588
589		upper_bound =
590		    qed_get_vport_rl_upper_bound((enum init_qm_rl_type)
591						 rl_params[i].vport_rl_type,
592						 link_speed);
593
594		inc_val =
595		    QM_RL_INC_VAL(rl_params[i].vport_rl ?
596				  rl_params[i].vport_rl : link_speed);
597		if (inc_val > upper_bound) {
598			DP_NOTICE(p_hwfn,
599				  "Invalid RL rate - limit configuration\n");
600			return -1;
601		}
602
603		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
604			     (u32)QM_RL_CRD_REG_SIGN_BIT);
605		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
606			     upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
607		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id,
608			     inc_val);
609	}
610
611	return 0;
612}
613
614/* Prepare Tx PQ mapping runtime init values for the specified PF */
615static int qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
616				 struct qed_ptt *p_ptt,
617				 struct qed_qm_pf_rt_init_params *p_params,
618				 u32 base_mem_addr_4kb)
619{
620	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
621	struct init_qm_vport_params *vport_params = p_params->vport_params;
622	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
623	u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
624	struct init_qm_pq_params *pq_params = p_params->pq_params;
625	u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
626
627	num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
628
629	first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
630	last_pq_group = (p_params->start_pq + num_pqs - 1) /
631			QM_PF_QUEUE_GROUP_SIZE;
632
633	pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
634	vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
635	mem_addr_4kb = base_mem_addr_4kb;
636
637	/* Set mapping from PQ group to PF */
638	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
639		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
640			     (u32)(p_params->pf_id));
641
642	/* Set PQ sizes */
643	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
644		     QM_PQ_SIZE_256B(p_params->num_pf_cids));
645	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
646		     QM_PQ_SIZE_256B(p_params->num_vf_cids));
647
648	/* Go over all Tx PQs */
649	for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
650		u16 *p_first_tx_pq_id, vport_id_in_pf;
651		struct qm_rf_pq_map tx_pq_map;
652		u8 tc_id = pq_params[i].tc_id;
653		bool is_vf_pq;
654		u8 ext_voq;
655
656		ext_voq = qed_get_ext_voq(p_hwfn,
657					  pq_params[i].port_id,
658					  tc_id,
659					  p_params->max_phys_tcs_per_port);
660		is_vf_pq = (i >= p_params->num_pf_pqs);
661
662		/* Update first Tx PQ of VPORT/TC */
663		vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
664		p_first_tx_pq_id =
665		    &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
666		if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
667			u32 map_val =
668				(ext_voq << QM_VP_WFQ_PQ_VOQ_SHIFT) |
669				(p_params->pf_id << QM_VP_WFQ_PQ_PF_SHIFT);
670
671			/* Create new VP PQ */
672			*p_first_tx_pq_id = pq_id;
673
674			/* Map VP PQ to VOQ and PF */
675			STORE_RT_REG(p_hwfn,
676				     QM_REG_WFQVPMAP_RT_OFFSET +
677				     *p_first_tx_pq_id,
678				     map_val);
679		}
680
681		/* Prepare PQ map entry */
682		QM_INIT_TX_PQ_MAP(p_hwfn,
683				  tx_pq_map,
684				  pq_id,
685				  *p_first_tx_pq_id,
686				  pq_params[i].rl_valid,
687				  pq_params[i].rl_id,
688				  ext_voq, pq_params[i].wrr_group);
689
690		/* Set PQ base address */
691		STORE_RT_REG(p_hwfn,
692			     QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
693			     mem_addr_4kb);
694
695		/* Clear PQ pointer table entry (64 bit) */
696		if (p_params->is_pf_loading)
697			for (j = 0; j < 2; j++)
698				STORE_RT_REG(p_hwfn,
699					     QM_REG_PTRTBLTX_RT_OFFSET +
700					     (pq_id * 2) + j, 0);
701
702		/* Write PQ info to RAM */
703		if (WRITE_PQ_INFO_TO_RAM != 0) {
704			u32 pq_info = 0;
705
706			pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
707						  p_params->pf_id,
708						  tc_id,
709						  pq_params[i].port_id,
710						  pq_params[i].rl_valid,
711						  pq_params[i].rl_id);
712			qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
713			       pq_info);
714		}
715
716		/* If VF PQ, add indication to PQ VF mask */
717		if (is_vf_pq) {
718			tx_pq_vf_mask[pq_id /
719				      QM_PF_QUEUE_GROUP_SIZE] |=
720			    BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
721			mem_addr_4kb += vport_pq_mem_4kb;
722		} else {
723			mem_addr_4kb += pq_mem_4kb;
724		}
725	}
726
727	/* Store Tx PQ VF mask to size select register */
728	for (i = 0; i < num_tx_pq_vf_masks; i++)
729		if (tx_pq_vf_mask[i])
730			STORE_RT_REG(p_hwfn,
731				     QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
732				     tx_pq_vf_mask[i]);
733
734	return 0;
735}
736
737/* Prepare Other PQ mapping runtime init values for the specified PF */
738static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
739				     u8 pf_id,
740				     bool is_pf_loading,
741				     u32 num_pf_cids,
742				     u32 num_tids, u32 base_mem_addr_4kb)
743{
744	u32 pq_size, pq_mem_4kb, mem_addr_4kb;
745	u16 i, j, pq_id, pq_group;
746
747	/* A single other PQ group is used in each PF, where PQ group i is used
748	 * in PF i.
749	 */
750	pq_group = pf_id;
751	pq_size = num_pf_cids + num_tids;
752	pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
753	mem_addr_4kb = base_mem_addr_4kb;
754
755	/* Map PQ group to PF */
756	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
757		     (u32)(pf_id));
758
759	/* Set PQ sizes */
760	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
761		     QM_PQ_SIZE_256B(pq_size));
762
763	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
764	     i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
765		/* Set PQ base address */
766		STORE_RT_REG(p_hwfn,
767			     QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
768			     mem_addr_4kb);
769
770		/* Clear PQ pointer table entry */
771		if (is_pf_loading)
772			for (j = 0; j < 2; j++)
773				STORE_RT_REG(p_hwfn,
774					     QM_REG_PTRTBLOTHER_RT_OFFSET +
775					     (pq_id * 2) + j, 0);
776
777		mem_addr_4kb += pq_mem_4kb;
778	}
779}
780
781/* Prepare PF WFQ runtime init values for the specified PF.
782 * Return -1 on error.
783 */
784static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
785			      struct qed_qm_pf_rt_init_params *p_params)
786{
787	u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
788	struct init_qm_pq_params *pq_params = p_params->pq_params;
789	u32 inc_val, crd_reg_offset;
790	u8 ext_voq;
791	u16 i;
792
793	inc_val = QM_PF_WFQ_INC_VAL(p_params->pf_wfq);
794	if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
795		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
796		return -1;
797	}
798
799	for (i = 0; i < num_tx_pqs; i++) {
800		ext_voq = qed_get_ext_voq(p_hwfn,
801					  pq_params[i].port_id,
802					  pq_params[i].tc_id,
803					  p_params->max_phys_tcs_per_port);
804		crd_reg_offset =
805			(p_params->pf_id < MAX_NUM_PFS_BB ?
806			 QM_REG_WFQPFCRD_RT_OFFSET :
807			 QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
808			ext_voq * MAX_NUM_PFS_BB +
809			(p_params->pf_id % MAX_NUM_PFS_BB);
810		OVERWRITE_RT_REG(p_hwfn,
811				 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
812	}
813
814	STORE_RT_REG(p_hwfn,
815		     QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
816		     QM_PF_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
817	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
818		     inc_val);
819
820	return 0;
821}
822
823/* Prepare PF RL runtime init values for the specified PF.
824 * Return -1 on error.
825 */
826static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
827{
828	u32 inc_val = QM_RL_INC_VAL(pf_rl);
829
830	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
831		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
832		return -1;
833	}
834
835	STORE_RT_REG(p_hwfn,
836		     QM_REG_RLPFCRD_RT_OFFSET + pf_id,
837		     (u32)QM_RL_CRD_REG_SIGN_BIT);
838	STORE_RT_REG(p_hwfn,
839		     QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
840		     QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
841	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
842
843	return 0;
844}
845
846/* Prepare VPORT WFQ runtime init values for the specified VPORTs.
847 * Return -1 on error.
848 */
849static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
850			      u16 num_vports,
851			      struct init_qm_vport_params *vport_params)
852{
853	u16 vport_pq_id, wfq, i;
854	u32 inc_val;
855	u8 tc;
856
857	/* Go over all PF VPORTs */
858	for (i = 0; i < num_vports; i++) {
859		/* Each VPORT can have several VPORT PQ IDs for various TCs */
860		for (tc = 0; tc < NUM_OF_TCS; tc++) {
861			/* Check if VPORT/TC is valid */
862			vport_pq_id = vport_params[i].first_tx_pq_id[tc];
863			if (vport_pq_id == QM_INVALID_PQ_ID)
864				continue;
865
866			/* Find WFQ weight (per VPORT or per VPORT+TC) */
867			wfq = vport_params[i].wfq;
868			wfq = wfq ? wfq : vport_params[i].tc_wfq[tc];
869			inc_val = QM_VP_WFQ_INC_VAL(wfq);
870			if (inc_val > QM_VP_WFQ_MAX_INC_VAL) {
871				DP_NOTICE(p_hwfn,
872					  "Invalid VPORT WFQ weight configuration\n");
873				return -1;
874			}
875
876			/* Config registers */
877			STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET +
878				     vport_pq_id,
879				     (u32)QM_WFQ_CRD_REG_SIGN_BIT);
880			STORE_RT_REG(p_hwfn, QM_REG_WFQVPUPPERBOUND_RT_OFFSET +
881				     vport_pq_id,
882				     inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
883			STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET +
884				     vport_pq_id, inc_val);
885		}
886	}
887
888	return 0;
889}
890
891static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
892				     struct qed_ptt *p_ptt)
893{
894	u32 reg_val, i;
895
896	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
897	     i++) {
898		udelay(QM_STOP_CMD_POLL_PERIOD_US);
899		reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
900	}
901
902	/* Check if timeout while waiting for SDM command ready */
903	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
904		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
905			   "Timeout when waiting for QM SDM command ready signal\n");
906		return false;
907	}
908
909	return true;
910}
911
912static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
913			    struct qed_ptt *p_ptt,
914			    u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
915{
916	if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
917		return false;
918
919	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
920	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
921	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
922	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
923	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
924
925	return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
926}
927
928/******************** INTERFACE IMPLEMENTATION *********************/
929
930u32 qed_qm_pf_mem_size(u32 num_pf_cids,
931		       u32 num_vf_cids,
932		       u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
933{
934	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
935	       QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
936	       QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
937}
938
939int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
940			  struct qed_qm_common_rt_init_params *p_params)
941{
942	u32 mask = 0;
943
944	/* Init AFullOprtnstcCrdMask */
945	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
946		  QM_OPPOR_LINE_VOQ_DEF);
947	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
948	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ,
949		  p_params->pf_wfq_en ? 1 : 0);
950	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ,
951		  p_params->vport_wfq_en ? 1 : 0);
952	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL,
953		  p_params->pf_rl_en ? 1 : 0);
954	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
955		  p_params->global_rl_en ? 1 : 0);
956	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
957	SET_FIELD(mask,
958		  QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
959	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
960
961	/* Enable/disable PF RL */
962	qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
963
964	/* Enable/disable PF WFQ */
965	qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
966
967	/* Enable/disable global RL */
968	qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
969
970	/* Enable/disable VPORT WFQ */
971	qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
972
973	/* Init PBF CMDQ line credit */
974	qed_cmdq_lines_rt_init(p_hwfn,
975			       p_params->max_ports_per_engine,
976			       p_params->max_phys_tcs_per_port,
977			       p_params->port_params);
978
979	/* Init BTB blocks in PBF */
980	qed_btb_blocks_rt_init(p_hwfn,
981			       p_params->max_ports_per_engine,
982			       p_params->max_phys_tcs_per_port,
983			       p_params->port_params);
984
985	qed_global_rl_rt_init(p_hwfn);
986
987	return 0;
988}
989
990int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
991		      struct qed_ptt *p_ptt,
992		      struct qed_qm_pf_rt_init_params *p_params)
993{
994	struct init_qm_vport_params *vport_params = p_params->vport_params;
995	u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
996					       p_params->num_tids) *
997				 QM_OTHER_PQS_PER_PF;
998	u16 i;
999	u8 tc;
1000
1001	/* Clear first Tx PQ ID array for each VPORT */
1002	for (i = 0; i < p_params->num_vports; i++)
1003		for (tc = 0; tc < NUM_OF_TCS; tc++)
1004			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
1005
1006	/* Map Other PQs (if any) */
1007	qed_other_pq_map_rt_init(p_hwfn,
1008				 p_params->pf_id,
1009				 p_params->is_pf_loading, p_params->num_pf_cids,
1010				 p_params->num_tids, 0);
1011
1012	/* Map Tx PQs */
1013	if (qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb))
1014		return -1;
1015
1016	/* Init PF WFQ */
1017	if (p_params->pf_wfq)
1018		if (qed_pf_wfq_rt_init(p_hwfn, p_params))
1019			return -1;
1020
1021	/* Init PF RL */
1022	if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
1023		return -1;
1024
1025	/* Init VPORT WFQ */
1026	if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
1027		return -1;
1028
1029	/* Set VPORT RL */
1030	if (qed_vport_rl_rt_init(p_hwfn, p_params->start_rl,
1031				 p_params->num_rls, p_params->link_speed,
1032				 p_params->rl_params))
1033		return -1;
1034
1035	return 0;
1036}
1037
1038int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
1039		    struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
1040{
1041	u32 inc_val = QM_PF_WFQ_INC_VAL(pf_wfq);
1042
1043	if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
1044		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
1045		return -1;
1046	}
1047
1048	qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
1049
1050	return 0;
1051}
1052
1053int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
1054		   struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
1055{
1056	u32 inc_val = QM_RL_INC_VAL(pf_rl);
1057
1058	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
1059		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
1060		return -1;
1061	}
1062
1063	qed_wr(p_hwfn,
1064	       p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1065	qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
1066
1067	return 0;
1068}
1069
1070int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
1071		       struct qed_ptt *p_ptt,
1072		       u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
1073{
1074	int result = 0;
1075	u16 vport_pq_id;
1076	u8 tc;
1077
1078	for (tc = 0; tc < NUM_OF_TCS && !result; tc++) {
1079		vport_pq_id = first_tx_pq_id[tc];
1080		if (vport_pq_id != QM_INVALID_PQ_ID)
1081			result = qed_init_vport_tc_wfq(p_hwfn, p_ptt,
1082						       vport_pq_id, wfq);
1083	}
1084
1085	return result;
1086}
1087
1088int qed_init_vport_tc_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1089			  u16 first_tx_pq_id, u16 wfq)
1090{
1091	u32 inc_val;
1092
1093	if (first_tx_pq_id == QM_INVALID_PQ_ID)
1094		return -1;
1095
1096	inc_val = QM_VP_WFQ_INC_VAL(wfq);
1097	if (!inc_val || inc_val > QM_VP_WFQ_MAX_INC_VAL) {
1098		DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
1099		return -1;
1100	}
1101
1102	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPCRD + first_tx_pq_id * 4,
1103	       (u32)QM_WFQ_CRD_REG_SIGN_BIT);
1104	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPUPPERBOUND + first_tx_pq_id * 4,
1105	       inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
1106	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + first_tx_pq_id * 4,
1107	       inc_val);
1108
1109	return 0;
1110}
1111
1112int qed_init_global_rl(struct qed_hwfn *p_hwfn,
1113		       struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit,
1114		       enum init_qm_rl_type vport_rl_type)
1115{
1116	u32 inc_val, upper_bound;
1117
1118	upper_bound =
1119	    (vport_rl_type ==
1120	     QM_RL_TYPE_QCN) ? QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) :
1121	    QM_INITIAL_VOQ_BYTE_CRD;
1122	inc_val = QM_RL_INC_VAL(rate_limit);
1123	if (inc_val > upper_bound) {
1124		DP_NOTICE(p_hwfn, "Invalid VPORT rate limit configuration.\n");
1125		return -1;
1126	}
1127
1128	qed_wr(p_hwfn, p_ptt,
1129	       QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1130	qed_wr(p_hwfn,
1131	       p_ptt,
1132	       QM_REG_RLGLBLUPPERBOUND + rl_id * 4,
1133	       upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
1134	qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
1135
1136	return 0;
1137}
1138
1139bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
1140			  struct qed_ptt *p_ptt,
1141			  bool is_release_cmd,
1142			  bool is_tx_pq, u16 start_pq, u16 num_pqs)
1143{
1144	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
1145	u32 pq_mask = 0, last_pq, pq_id;
1146
1147	last_pq = start_pq + num_pqs - 1;
1148
1149	/* Set command's PQ type */
1150	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
1151
1152	/* Go over requested PQs */
1153	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
1154		/* Set PQ bit in mask (stop command only) */
1155		if (!is_release_cmd)
1156			pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
1157
1158		/* If last PQ or end of PQ mask, write command */
1159		if ((pq_id == last_pq) ||
1160		    (pq_id % QM_STOP_PQ_MASK_WIDTH ==
1161		     (QM_STOP_PQ_MASK_WIDTH - 1))) {
1162			QM_CMD_SET_FIELD(cmd_arr,
1163					 QM_STOP_CMD, PAUSE_MASK, pq_mask);
1164			QM_CMD_SET_FIELD(cmd_arr,
1165					 QM_STOP_CMD,
1166					 GROUP_ID,
1167					 pq_id / QM_STOP_PQ_MASK_WIDTH);
1168			if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
1169					     cmd_arr[0], cmd_arr[1]))
1170				return false;
1171			pq_mask = 0;
1172		}
1173	}
1174
1175	return true;
1176}
1177
1178#define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1179	do { \
1180		typeof(var) *__p_var = &(var); \
1181		typeof(offset) __offset = offset; \
1182		*__p_var = (*__p_var & ~BIT(__offset)) | \
1183			   ((enable) ? BIT(__offset) : 0); \
1184	} while (0)
1185
1186#define PRS_ETH_TUNN_OUTPUT_FORMAT     0xF4DAB910
1187#define PRS_ETH_OUTPUT_FORMAT          0xFFFF4910
1188
1189#define ARR_REG_WR(dev, ptt, addr, arr,	arr_size) \
1190	do { \
1191		u32 i; \
1192		\
1193		for (i = 0; i < (arr_size); i++) \
1194			qed_wr(dev, ptt, \
1195			       ((addr) + (4 * i)), \
1196			       ((u32 *)&(arr))[i]); \
1197	} while (0)
1198
1199/**
1200 * qed_dmae_to_grc() - Internal function for writing from host to
1201 * wide-bus registers (split registers are not supported yet).
1202 *
1203 * @p_hwfn: HW device data.
1204 * @p_ptt: PTT window used for writing the registers.
1205 * @p_data: Pointer to source data.
1206 * @addr: Destination register address.
1207 * @len_in_dwords: Data length in dwords (u32).
1208 *
1209 * Return: Length of the written data in dwords (u32) or -1 on invalid
1210 *         input.
1211 */
1212static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1213			   __le32 *p_data, u32 addr, u32 len_in_dwords)
1214{
1215	struct qed_dmae_params params = { 0 };
1216	u32 *data_cpu;
1217	int rc;
1218
1219	if (!p_data)
1220		return -1;
1221
1222	/* Set DMAE params */
1223	SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
1224
1225	/* Execute DMAE command */
1226	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
1227			       (u64)(uintptr_t)(p_data),
1228			       addr, len_in_dwords, &params);
1229
1230	/* If not read using DMAE, read using GRC */
1231	if (rc) {
1232		DP_VERBOSE(p_hwfn,
1233			   QED_MSG_DEBUG,
1234			   "Failed writing to chip using DMAE, using GRC instead\n");
1235
1236		/* Swap to CPU byteorder and write to registers using GRC */
1237		data_cpu = (__force u32 *)p_data;
1238		le32_to_cpu_array(data_cpu, len_in_dwords);
1239
1240		ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
1241		cpu_to_le32_array(data_cpu, len_in_dwords);
1242	}
1243
1244	return len_in_dwords;
1245}
1246
1247void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1248			     struct qed_ptt *p_ptt, u16 dest_port)
1249{
1250	/* Update PRS register */
1251	qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1252
1253	/* Update NIG register */
1254	qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1255
1256	/* Update PBF register */
1257	qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1258}
1259
1260void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1261			  struct qed_ptt *p_ptt, bool vxlan_enable)
1262{
1263	u32 reg_val;
1264	u8 shift;
1265
1266	/* Update PRS register */
1267	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1268	SET_FIELD(reg_val,
1269		  PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE, vxlan_enable);
1270	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1271	if (reg_val) {
1272		reg_val =
1273		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1274
1275		/* Update output  only if tunnel blocks not included. */
1276		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1277			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1278			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1279	}
1280
1281	/* Update NIG register */
1282	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1283	shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1284	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1285	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1286
1287	/* Update DORQ register */
1288	qed_wr(p_hwfn,
1289	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1290}
1291
1292void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1293			struct qed_ptt *p_ptt,
1294			bool eth_gre_enable, bool ip_gre_enable)
1295{
1296	u32 reg_val;
1297	u8 shift;
1298
1299	/* Update PRS register */
1300	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1301	SET_FIELD(reg_val,
1302		  PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE,
1303		  eth_gre_enable);
1304	SET_FIELD(reg_val,
1305		  PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE,
1306		  ip_gre_enable);
1307	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1308	if (reg_val) {
1309		reg_val =
1310		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1311
1312		/* Update output  only if tunnel blocks not included. */
1313		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1314			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1315			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1316	}
1317
1318	/* Update NIG register */
1319	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1320	shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1321	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1322	shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1323	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1324	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1325
1326	/* Update DORQ registers */
1327	qed_wr(p_hwfn,
1328	       p_ptt,
1329	       DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1330	qed_wr(p_hwfn,
1331	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1332}
1333
1334void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1335			      struct qed_ptt *p_ptt, u16 dest_port)
1336{
1337	/* Update PRS register */
1338	qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1339
1340	/* Update NIG register */
1341	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1342
1343	/* Update PBF register */
1344	qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1345}
1346
1347void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1348			   struct qed_ptt *p_ptt,
1349			   bool eth_geneve_enable, bool ip_geneve_enable)
1350{
1351	u32 reg_val;
1352
1353	/* Update PRS register */
1354	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1355	SET_FIELD(reg_val,
1356		  PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE,
1357		  eth_geneve_enable);
1358	SET_FIELD(reg_val,
1359		  PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE,
1360		  ip_geneve_enable);
1361	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1362	if (reg_val) {
1363		reg_val =
1364		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1365
1366		/* Update output  only if tunnel blocks not included. */
1367		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1368			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1369			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1370	}
1371
1372	/* Update NIG register */
1373	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1374	       eth_geneve_enable ? 1 : 0);
1375	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1376
1377	/* EDPM with geneve tunnel not supported in BB */
1378	if (QED_IS_BB_B0(p_hwfn->cdev))
1379		return;
1380
1381	/* Update DORQ registers */
1382	qed_wr(p_hwfn,
1383	       p_ptt,
1384	       DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2,
1385	       eth_geneve_enable ? 1 : 0);
1386	qed_wr(p_hwfn,
1387	       p_ptt,
1388	       DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2,
1389	       ip_geneve_enable ? 1 : 0);
1390}
1391
1392#define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET      3
1393#define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT   0xC8DAB910
1394
1395void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1396				struct qed_ptt *p_ptt, bool enable)
1397{
1398	u32 reg_val, cfg_mask;
1399
1400	/* read PRS config register */
1401	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1402
1403	/* set VXLAN_NO_L2_ENABLE mask */
1404	cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1405
1406	if (enable) {
1407		/* set VXLAN_NO_L2_ENABLE flag */
1408		reg_val |= cfg_mask;
1409
1410		/* update PRS FIC  register */
1411		qed_wr(p_hwfn,
1412		       p_ptt,
1413		       PRS_REG_OUTPUT_FORMAT_4_0,
1414		       (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1415	} else {
1416		/* clear VXLAN_NO_L2_ENABLE flag */
1417		reg_val &= ~cfg_mask;
1418	}
1419
1420	/* write PRS config register */
1421	qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1422}
1423
1424#define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1425#define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1426#define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1427#define PARSER_ETH_CONN_CM_HDR 0
1428#define CAM_LINE_SIZE sizeof(u32)
1429#define RAM_LINE_SIZE sizeof(u64)
1430#define REG_SIZE sizeof(u32)
1431
1432void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1433{
1434	struct regpair ram_line = { 0 };
1435
1436	/* Disable gft search for PF */
1437	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1438
1439	/* Clean ram & cam for next gft session */
1440
1441	/* Zero camline */
1442	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1443
1444	/* Zero ramline */
1445	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1446			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1447			sizeof(ram_line) / REG_SIZE);
1448}
1449
1450void qed_gft_config(struct qed_hwfn *p_hwfn,
1451		    struct qed_ptt *p_ptt,
1452		    u16 pf_id,
1453		    bool tcp,
1454		    bool udp,
1455		    bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1456{
1457	struct regpair ram_line;
1458	u32 search_non_ip_as_gft;
1459	u32 reg_val, cam_line;
1460	u32 lo = 0, hi = 0;
1461
1462	if (!ipv6 && !ipv4)
1463		DP_NOTICE(p_hwfn,
1464			  "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1465	if (!tcp && !udp)
1466		DP_NOTICE(p_hwfn,
1467			  "gft_config: must accept at least on of - udp or tcp\n");
1468	if (profile_type >= MAX_GFT_PROFILE_TYPE)
1469		DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1470
1471	/* Set RFS event ID to be awakened i Tstorm By Prs */
1472	reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1473		  PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1474	reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1475	qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1476
1477	/* Do not load context only cid in PRS on match. */
1478	qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1479
1480	/* Do not use tenant ID exist bit for gft search */
1481	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1482
1483	/* Set Cam */
1484	cam_line = 0;
1485	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1486
1487	/* Filters are per PF!! */
1488	SET_FIELD(cam_line,
1489		  GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1490		  GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1491	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1492
1493	if (!(tcp && udp)) {
1494		SET_FIELD(cam_line,
1495			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1496			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1497		if (tcp)
1498			SET_FIELD(cam_line,
1499				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1500				  GFT_PROFILE_TCP_PROTOCOL);
1501		else
1502			SET_FIELD(cam_line,
1503				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1504				  GFT_PROFILE_UDP_PROTOCOL);
1505	}
1506
1507	if (!(ipv4 && ipv6)) {
1508		SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1509		if (ipv4)
1510			SET_FIELD(cam_line,
1511				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1512				  GFT_PROFILE_IPV4);
1513		else
1514			SET_FIELD(cam_line,
1515				  GFT_CAM_LINE_MAPPED_IP_VERSION,
1516				  GFT_PROFILE_IPV6);
1517	}
1518
1519	/* Write characteristics to cam */
1520	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1521	       cam_line);
1522	cam_line =
1523	    qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1524
1525	/* Write line to RAM - compare to filter 4 tuple */
1526
1527	/* Search no IP as GFT */
1528	search_non_ip_as_gft = 0;
1529
1530	/* Tunnel type */
1531	SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1532	SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1533
1534	if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1535		SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1536		SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1537		SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1538		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1539		SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
1540		SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1541	} else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1542		SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1543		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1544		SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1545	} else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1546		SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1547		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1548	} else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1549		SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1550		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1551	} else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1552		SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1553
1554		/* Allow tunneled traffic without inner IP */
1555		search_non_ip_as_gft = 1;
1556	}
1557
1558	ram_line.lo = cpu_to_le32(lo);
1559	ram_line.hi = cpu_to_le32(hi);
1560
1561	qed_wr(p_hwfn,
1562	       p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1563	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1564			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1565			sizeof(ram_line) / REG_SIZE);
1566
1567	/* Set default profile so that no filter match will happen */
1568	ram_line.lo = cpu_to_le32(0xffffffff);
1569	ram_line.hi = cpu_to_le32(0x3ff);
1570	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1571			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1572			PRS_GFT_CAM_LINES_NO_MATCH,
1573			sizeof(ram_line) / REG_SIZE);
1574
1575	/* Enable gft search */
1576	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1577}
1578
1579DECLARE_CRC8_TABLE(cdu_crc8_table);
1580
1581/* Calculate and return CDU validation byte per connection type/region/cid */
1582static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1583{
1584	const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1585	u8 crc, validation_byte = 0;
1586	static u8 crc8_table_valid; /* automatically initialized to 0 */
1587	u32 validation_string = 0;
1588	__be32 data_to_crc;
1589
1590	if (!crc8_table_valid) {
1591		crc8_populate_msb(cdu_crc8_table, 0x07);
1592		crc8_table_valid = 1;
1593	}
1594
1595	/* The CRC is calculated on the String-to-compress:
1596	 * [31:8]  = {CID[31:20],CID[11:0]}
1597	 * [7:4]   = Region
1598	 * [3:0]   = Type
1599	 */
1600	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1601		validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1602
1603	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1604		validation_string |= ((region & 0xF) << 4);
1605
1606	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1607		validation_string |= (conn_type & 0xF);
1608
1609	/* Convert to big-endian and calculate CRC8 */
1610	data_to_crc = cpu_to_be32(validation_string);
1611	crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
1612		   CRC8_INIT_VALUE);
1613
1614	/* The validation byte [7:0] is composed:
1615	 * for type A validation
1616	 * [7]          = active configuration bit
1617	 * [6:0]        = crc[6:0]
1618	 *
1619	 * for type B validation
1620	 * [7]          = active configuration bit
1621	 * [6:3]        = connection_type[3:0]
1622	 * [2:0]        = crc[2:0]
1623	 */
1624	validation_byte |=
1625	    ((validation_cfg >>
1626	      CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1627
1628	if ((validation_cfg >>
1629	     CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1630		validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1631	else
1632		validation_byte |= crc & 0x7F;
1633
1634	return validation_byte;
1635}
1636
1637/* Calcualte and set validation bytes for session context */
1638void qed_calc_session_ctx_validation(void *p_ctx_mem,
1639				     u16 ctx_size, u8 ctx_type, u32 cid)
1640{
1641	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1642
1643	p_ctx = (u8 * const)p_ctx_mem;
1644	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1645	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1646	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1647
1648	memset(p_ctx, 0, ctx_size);
1649
1650	*x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1651	*t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1652	*u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1653}
1654
1655/* Calcualte and set validation bytes for task context */
1656void qed_calc_task_ctx_validation(void *p_ctx_mem,
1657				  u16 ctx_size, u8 ctx_type, u32 tid)
1658{
1659	u8 *p_ctx, *region1_val_ptr;
1660
1661	p_ctx = (u8 * const)p_ctx_mem;
1662	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1663
1664	memset(p_ctx, 0, ctx_size);
1665
1666	*region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1667}
1668
1669/* Memset session context to 0 while preserving validation bytes */
1670void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1671{
1672	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1673	u8 x_val, t_val, u_val;
1674
1675	p_ctx = (u8 * const)p_ctx_mem;
1676	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1677	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1678	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1679
1680	x_val = *x_val_ptr;
1681	t_val = *t_val_ptr;
1682	u_val = *u_val_ptr;
1683
1684	memset(p_ctx, 0, ctx_size);
1685
1686	*x_val_ptr = x_val;
1687	*t_val_ptr = t_val;
1688	*u_val_ptr = u_val;
1689}
1690
1691/* Memset task context to 0 while preserving validation bytes */
1692void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1693{
1694	u8 *p_ctx, *region1_val_ptr;
1695	u8 region1_val;
1696
1697	p_ctx = (u8 * const)p_ctx_mem;
1698	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1699
1700	region1_val = *region1_val_ptr;
1701
1702	memset(p_ctx, 0, ctx_size);
1703
1704	*region1_val_ptr = region1_val;
1705}
1706
1707/* Enable and configure context validation */
1708void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1709				   struct qed_ptt *p_ptt)
1710{
1711	u32 ctx_validation;
1712
1713	/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1714	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1715	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1716
1717	/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1718	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1719	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1720
1721	/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1722	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1723	qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1724}
1725
1726const char *qed_get_protocol_type_str(u32 protocol_type)
1727{
1728	if (protocol_type >= ARRAY_SIZE(s_protocol_types))
1729		return "Invalid protocol type";
1730
1731	return s_protocol_types[protocol_type];
1732}
1733
1734const char *qed_get_ramrod_cmd_id_str(u32 protocol_type, u32 ramrod_cmd_id)
1735{
1736	const char *ramrod_cmd_id_str;
1737
1738	if (protocol_type >= ARRAY_SIZE(s_ramrod_cmd_ids))
1739		return "Invalid protocol type";
1740
1741	if (ramrod_cmd_id >= ARRAY_SIZE(s_ramrod_cmd_ids[0]))
1742		return "Invalid Ramrod command ID";
1743
1744	ramrod_cmd_id_str = s_ramrod_cmd_ids[protocol_type][ramrod_cmd_id];
1745
1746	if (!ramrod_cmd_id_str)
1747		return "Invalid Ramrod command ID";
1748
1749	return ramrod_cmd_id_str;
1750}
1751
1752static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1753{
1754	switch (storm_id) {
1755	case 0:
1756		return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1757		    TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1758	case 1:
1759		return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1760		    MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1761	case 2:
1762		return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1763		    USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1764	case 3:
1765		return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1766		    XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1767	case 4:
1768		return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1769		    YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1770	case 5:
1771		return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1772		    PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1773
1774	default:
1775		return 0;
1776	}
1777}
1778
1779void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1780			      struct qed_ptt *p_ptt,
1781			      u8 assert_level[NUM_STORMS])
1782{
1783	u8 storm_id;
1784
1785	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1786		u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1787
1788		qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1789	}
1790}
1791
1792#define PHYS_ADDR_DWORDS        DIV_ROUND_UP(sizeof(dma_addr_t), 4)
1793#define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
1794
1795static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1796{
1797	switch (storm_id) {
1798	case 0:
1799		return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1800		    TSTORM_OVERLAY_BUF_ADDR_OFFSET;
1801	case 1:
1802		return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1803		    MSTORM_OVERLAY_BUF_ADDR_OFFSET;
1804	case 2:
1805		return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1806		    USTORM_OVERLAY_BUF_ADDR_OFFSET;
1807	case 3:
1808		return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1809		    XSTORM_OVERLAY_BUF_ADDR_OFFSET;
1810	case 4:
1811		return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1812		    YSTORM_OVERLAY_BUF_ADDR_OFFSET;
1813	case 5:
1814		return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1815		    PSTORM_OVERLAY_BUF_ADDR_OFFSET;
1816
1817	default:
1818		return 0;
1819	}
1820}
1821
1822struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
1823					       const u32 * const
1824					       fw_overlay_in_buf,
1825					       u32 buf_size_in_bytes)
1826{
1827	u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
1828	struct phys_mem_desc *allocated_mem;
1829
1830	if (!buf_size)
1831		return NULL;
1832
1833	allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
1834				GFP_KERNEL);
1835	if (!allocated_mem)
1836		return NULL;
1837
1838	/* For each Storm, set physical address in RAM */
1839	while (buf_offset < buf_size) {
1840		struct phys_mem_desc *storm_mem_desc;
1841		struct fw_overlay_buf_hdr *hdr;
1842		u32 storm_buf_size;
1843		u8 storm_id;
1844
1845		hdr =
1846		    (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
1847		storm_buf_size = GET_FIELD(hdr->data,
1848					   FW_OVERLAY_BUF_HDR_BUF_SIZE);
1849		storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
1850		if (storm_id >= NUM_STORMS)
1851			break;
1852		storm_mem_desc = allocated_mem + storm_id;
1853		storm_mem_desc->size = storm_buf_size * sizeof(u32);
1854
1855		/* Allocate physical memory for Storm's overlays buffer */
1856		storm_mem_desc->virt_addr =
1857		    dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1858				       storm_mem_desc->size,
1859				       &storm_mem_desc->phys_addr, GFP_KERNEL);
1860		if (!storm_mem_desc->virt_addr)
1861			break;
1862
1863		/* Skip overlays buffer header */
1864		buf_offset += OVERLAY_HDR_SIZE_DWORDS;
1865
1866		/* Copy Storm's overlays buffer to allocated memory */
1867		memcpy(storm_mem_desc->virt_addr,
1868		       &fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
1869
1870		/* Advance to next Storm */
1871		buf_offset += storm_buf_size;
1872	}
1873
1874	/* If memory allocation has failed, free all allocated memory */
1875	if (buf_offset < buf_size) {
1876		qed_fw_overlay_mem_free(p_hwfn, &allocated_mem);
1877		return NULL;
1878	}
1879
1880	return allocated_mem;
1881}
1882
1883void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
1884			     struct qed_ptt *p_ptt,
1885			     struct phys_mem_desc *fw_overlay_mem)
1886{
1887	u8 storm_id;
1888
1889	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1890		struct phys_mem_desc *storm_mem_desc =
1891		    (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1892		u32 ram_addr, i;
1893
1894		/* Skip Storms with no FW overlays */
1895		if (!storm_mem_desc->virt_addr)
1896			continue;
1897
1898		/* Calculate overlay RAM GRC address of current PF */
1899		ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
1900			   sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
1901
1902		/* Write Storm's overlay physical address to RAM */
1903		for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
1904			qed_wr(p_hwfn, p_ptt, ram_addr,
1905			       ((u32 *)&storm_mem_desc->phys_addr)[i]);
1906	}
1907}
1908
1909void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
1910			     struct phys_mem_desc **fw_overlay_mem)
1911{
1912	u8 storm_id;
1913
1914	if (!fw_overlay_mem || !(*fw_overlay_mem))
1915		return;
1916
1917	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1918		struct phys_mem_desc *storm_mem_desc =
1919		    (struct phys_mem_desc *)*fw_overlay_mem + storm_id;
1920
1921		/* Free Storm's physical memory */
1922		if (storm_mem_desc->virt_addr)
1923			dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1924					  storm_mem_desc->size,
1925					  storm_mem_desc->virt_addr,
1926					  storm_mem_desc->phys_addr);
1927	}
1928
1929	/* Free allocated virtual memory */
1930	kfree(*fw_overlay_mem);
1931	*fw_overlay_mem = NULL;
1932}
1933