1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2/* Copyright (C) 2016-2018 Netronome Systems, Inc. */
3
4#define pr_fmt(fmt)	"NFP net bpf: " fmt
5
6#include <linux/bug.h>
7#include <linux/bpf.h>
8#include <linux/filter.h>
9#include <linux/kernel.h>
10#include <linux/pkt_cls.h>
11#include <linux/reciprocal_div.h>
12#include <linux/unistd.h>
13
14#include "main.h"
15#include "../nfp_asm.h"
16#include "../nfp_net_ctrl.h"
17
18/* --- NFP prog --- */
19/* Foreach "multiple" entries macros provide pos and next<n> pointers.
20 * It's safe to modify the next pointers (but not pos).
21 */
22#define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
23	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
24	     next = list_next_entry(pos, l);			\
25	     &(nfp_prog)->insns != &pos->l &&			\
26	     &(nfp_prog)->insns != &next->l;			\
27	     pos = nfp_meta_next(pos),				\
28	     next = nfp_meta_next(pos))
29
30#define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
31	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
32	     next = list_next_entry(pos, l),			\
33	     next2 = list_next_entry(next, l);			\
34	     &(nfp_prog)->insns != &pos->l &&			\
35	     &(nfp_prog)->insns != &next->l &&			\
36	     &(nfp_prog)->insns != &next2->l;			\
37	     pos = nfp_meta_next(pos),				\
38	     next = nfp_meta_next(pos),				\
39	     next2 = nfp_meta_next(next))
40
41static bool
42nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
43{
44	return meta->l.prev != &nfp_prog->insns;
45}
46
47static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
48{
49	if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
50		pr_warn("instruction limit reached (%u NFP instructions)\n",
51			nfp_prog->prog_len);
52		nfp_prog->error = -ENOSPC;
53		return;
54	}
55
56	nfp_prog->prog[nfp_prog->prog_len] = insn;
57	nfp_prog->prog_len++;
58}
59
60static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
61{
62	return nfp_prog->prog_len;
63}
64
65static bool
66nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
67{
68	/* If there is a recorded error we may have dropped instructions;
69	 * that doesn't have to be due to translator bug, and the translation
70	 * will fail anyway, so just return OK.
71	 */
72	if (nfp_prog->error)
73		return true;
74	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
75}
76
77/* --- Emitters --- */
78static void
79__emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
80	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
81	   bool indir)
82{
83	u64 insn;
84
85	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
86		FIELD_PREP(OP_CMD_CTX, ctx) |
87		FIELD_PREP(OP_CMD_B_SRC, breg) |
88		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
89		FIELD_PREP(OP_CMD_XFER, xfer) |
90		FIELD_PREP(OP_CMD_CNT, size) |
91		FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
92		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
93		FIELD_PREP(OP_CMD_INDIR, indir) |
94		FIELD_PREP(OP_CMD_MODE, mode);
95
96	nfp_prog_push(nfp_prog, insn);
97}
98
99static void
100emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
101	     swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
102{
103	struct nfp_insn_re_regs reg;
104	int err;
105
106	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
107	if (err) {
108		nfp_prog->error = err;
109		return;
110	}
111	if (reg.swap) {
112		pr_err("cmd can't swap arguments\n");
113		nfp_prog->error = -EFAULT;
114		return;
115	}
116	if (reg.dst_lmextn || reg.src_lmextn) {
117		pr_err("cmd can't use LMextn\n");
118		nfp_prog->error = -EFAULT;
119		return;
120	}
121
122	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
123		   indir);
124}
125
126static void
127emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
128	 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
129{
130	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
131}
132
133static void
134emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
135	       swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
136{
137	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
138}
139
140static void
141__emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
142	  enum br_ctx_signal_state css, u16 addr, u8 defer)
143{
144	u16 addr_lo, addr_hi;
145	u64 insn;
146
147	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
148	addr_hi = addr != addr_lo;
149
150	insn = OP_BR_BASE |
151		FIELD_PREP(OP_BR_MASK, mask) |
152		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
153		FIELD_PREP(OP_BR_CSS, css) |
154		FIELD_PREP(OP_BR_DEFBR, defer) |
155		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
156		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
157
158	nfp_prog_push(nfp_prog, insn);
159}
160
161static void
162emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
163	     enum nfp_relo_type relo)
164{
165	if (mask == BR_UNC && defer > 2) {
166		pr_err("BUG: branch defer out of bounds %d\n", defer);
167		nfp_prog->error = -EFAULT;
168		return;
169	}
170
171	__emit_br(nfp_prog, mask,
172		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
173		  BR_CSS_NONE, addr, defer);
174
175	nfp_prog->prog[nfp_prog->prog_len - 1] |=
176		FIELD_PREP(OP_RELO_TYPE, relo);
177}
178
179static void
180emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
181{
182	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
183}
184
185static void
186__emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
187	      bool set, bool src_lmextn)
188{
189	u16 addr_lo, addr_hi;
190	u64 insn;
191
192	addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
193	addr_hi = addr != addr_lo;
194
195	insn = OP_BR_BIT_BASE |
196		FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
197		FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
198		FIELD_PREP(OP_BR_BIT_BV, set) |
199		FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
200		FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
201		FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
202		FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
203
204	nfp_prog_push(nfp_prog, insn);
205}
206
207static void
208emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
209		 u8 defer, bool set, enum nfp_relo_type relo)
210{
211	struct nfp_insn_re_regs reg;
212	int err;
213
214	/* NOTE: The bit to test is specified as an rotation amount, such that
215	 *	 the bit to test will be placed on the MSB of the result when
216	 *	 doing a rotate right. For bit X, we need right rotate X + 1.
217	 */
218	bit += 1;
219
220	err = swreg_to_restricted(reg_none(), src, reg_imm(bit), &reg, false);
221	if (err) {
222		nfp_prog->error = err;
223		return;
224	}
225
226	__emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set,
227		      reg.src_lmextn);
228
229	nfp_prog->prog[nfp_prog->prog_len - 1] |=
230		FIELD_PREP(OP_RELO_TYPE, relo);
231}
232
233static void
234emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
235{
236	emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL);
237}
238
239static void
240__emit_br_alu(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
241	      u8 defer, bool dst_lmextn, bool src_lmextn)
242{
243	u64 insn;
244
245	insn = OP_BR_ALU_BASE |
246		FIELD_PREP(OP_BR_ALU_A_SRC, areg) |
247		FIELD_PREP(OP_BR_ALU_B_SRC, breg) |
248		FIELD_PREP(OP_BR_ALU_DEFBR, defer) |
249		FIELD_PREP(OP_BR_ALU_IMM_HI, imm_hi) |
250		FIELD_PREP(OP_BR_ALU_SRC_LMEXTN, src_lmextn) |
251		FIELD_PREP(OP_BR_ALU_DST_LMEXTN, dst_lmextn);
252
253	nfp_prog_push(nfp_prog, insn);
254}
255
256static void emit_rtn(struct nfp_prog *nfp_prog, swreg base, u8 defer)
257{
258	struct nfp_insn_ur_regs reg;
259	int err;
260
261	err = swreg_to_unrestricted(reg_none(), base, reg_imm(0), &reg);
262	if (err) {
263		nfp_prog->error = err;
264		return;
265	}
266
267	__emit_br_alu(nfp_prog, reg.areg, reg.breg, 0, defer, reg.dst_lmextn,
268		      reg.src_lmextn);
269}
270
271static void
272__emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
273	     enum immed_width width, bool invert,
274	     enum immed_shift shift, bool wr_both,
275	     bool dst_lmextn, bool src_lmextn)
276{
277	u64 insn;
278
279	insn = OP_IMMED_BASE |
280		FIELD_PREP(OP_IMMED_A_SRC, areg) |
281		FIELD_PREP(OP_IMMED_B_SRC, breg) |
282		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
283		FIELD_PREP(OP_IMMED_WIDTH, width) |
284		FIELD_PREP(OP_IMMED_INV, invert) |
285		FIELD_PREP(OP_IMMED_SHIFT, shift) |
286		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
287		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
288		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
289
290	nfp_prog_push(nfp_prog, insn);
291}
292
293static void
294emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
295	   enum immed_width width, bool invert, enum immed_shift shift)
296{
297	struct nfp_insn_ur_regs reg;
298	int err;
299
300	if (swreg_type(dst) == NN_REG_IMM) {
301		nfp_prog->error = -EFAULT;
302		return;
303	}
304
305	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
306	if (err) {
307		nfp_prog->error = err;
308		return;
309	}
310
311	/* Use reg.dst when destination is No-Dest. */
312	__emit_immed(nfp_prog,
313		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
314		     reg.breg, imm >> 8, width, invert, shift,
315		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
316}
317
318static void
319__emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
320	   enum shf_sc sc, u8 shift,
321	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
322	   bool dst_lmextn, bool src_lmextn)
323{
324	u64 insn;
325
326	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
327		nfp_prog->error = -EFAULT;
328		return;
329	}
330
331	/* NFP shift instruction has something special. If shift direction is
332	 * left then shift amount of 1 to 31 is specified as 32 minus the amount
333	 * to shift.
334	 *
335	 * But no need to do this for indirect shift which has shift amount be
336	 * 0. Even after we do this subtraction, shift amount 0 will be turned
337	 * into 32 which will eventually be encoded the same as 0 because only
338	 * low 5 bits are encoded, but shift amount be 32 will fail the
339	 * FIELD_PREP check done later on shift mask (0x1f), due to 32 is out of
340	 * mask range.
341	 */
342	if (sc == SHF_SC_L_SHF && shift)
343		shift = 32 - shift;
344
345	insn = OP_SHF_BASE |
346		FIELD_PREP(OP_SHF_A_SRC, areg) |
347		FIELD_PREP(OP_SHF_SC, sc) |
348		FIELD_PREP(OP_SHF_B_SRC, breg) |
349		FIELD_PREP(OP_SHF_I8, i8) |
350		FIELD_PREP(OP_SHF_SW, sw) |
351		FIELD_PREP(OP_SHF_DST, dst) |
352		FIELD_PREP(OP_SHF_SHIFT, shift) |
353		FIELD_PREP(OP_SHF_OP, op) |
354		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
355		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
356		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
357		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
358
359	nfp_prog_push(nfp_prog, insn);
360}
361
362static void
363emit_shf(struct nfp_prog *nfp_prog, swreg dst,
364	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
365{
366	struct nfp_insn_re_regs reg;
367	int err;
368
369	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
370	if (err) {
371		nfp_prog->error = err;
372		return;
373	}
374
375	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
376		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
377		   reg.dst_lmextn, reg.src_lmextn);
378}
379
380static void
381emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
382	       swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
383{
384	if (sc == SHF_SC_R_ROT) {
385		pr_err("indirect shift is not allowed on rotation\n");
386		nfp_prog->error = -EFAULT;
387		return;
388	}
389
390	emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0);
391}
392
393static void
394__emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
395	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
396	   bool dst_lmextn, bool src_lmextn)
397{
398	u64 insn;
399
400	insn = OP_ALU_BASE |
401		FIELD_PREP(OP_ALU_A_SRC, areg) |
402		FIELD_PREP(OP_ALU_B_SRC, breg) |
403		FIELD_PREP(OP_ALU_DST, dst) |
404		FIELD_PREP(OP_ALU_SW, swap) |
405		FIELD_PREP(OP_ALU_OP, op) |
406		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
407		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
408		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
409		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
410
411	nfp_prog_push(nfp_prog, insn);
412}
413
414static void
415emit_alu(struct nfp_prog *nfp_prog, swreg dst,
416	 swreg lreg, enum alu_op op, swreg rreg)
417{
418	struct nfp_insn_ur_regs reg;
419	int err;
420
421	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
422	if (err) {
423		nfp_prog->error = err;
424		return;
425	}
426
427	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
428		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
429		   reg.dst_lmextn, reg.src_lmextn);
430}
431
432static void
433__emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg,
434	   enum mul_type type, enum mul_step step, u16 breg, bool swap,
435	   bool wr_both, bool dst_lmextn, bool src_lmextn)
436{
437	u64 insn;
438
439	insn = OP_MUL_BASE |
440		FIELD_PREP(OP_MUL_A_SRC, areg) |
441		FIELD_PREP(OP_MUL_B_SRC, breg) |
442		FIELD_PREP(OP_MUL_STEP, step) |
443		FIELD_PREP(OP_MUL_DST_AB, dst_ab) |
444		FIELD_PREP(OP_MUL_SW, swap) |
445		FIELD_PREP(OP_MUL_TYPE, type) |
446		FIELD_PREP(OP_MUL_WR_AB, wr_both) |
447		FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) |
448		FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn);
449
450	nfp_prog_push(nfp_prog, insn);
451}
452
453static void
454emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type,
455	 enum mul_step step, swreg rreg)
456{
457	struct nfp_insn_ur_regs reg;
458	u16 areg;
459	int err;
460
461	if (type == MUL_TYPE_START && step != MUL_STEP_NONE) {
462		nfp_prog->error = -EINVAL;
463		return;
464	}
465
466	if (step == MUL_LAST || step == MUL_LAST_2) {
467		/* When type is step and step Number is LAST or LAST2, left
468		 * source is used as destination.
469		 */
470		err = swreg_to_unrestricted(lreg, reg_none(), rreg, &reg);
471		areg = reg.dst;
472	} else {
473		err = swreg_to_unrestricted(reg_none(), lreg, rreg, &reg);
474		areg = reg.areg;
475	}
476
477	if (err) {
478		nfp_prog->error = err;
479		return;
480	}
481
482	__emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap,
483		   reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
484}
485
486static void
487__emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
488		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
489		bool zero, bool swap, bool wr_both,
490		bool dst_lmextn, bool src_lmextn)
491{
492	u64 insn;
493
494	insn = OP_LDF_BASE |
495		FIELD_PREP(OP_LDF_A_SRC, areg) |
496		FIELD_PREP(OP_LDF_SC, sc) |
497		FIELD_PREP(OP_LDF_B_SRC, breg) |
498		FIELD_PREP(OP_LDF_I8, imm8) |
499		FIELD_PREP(OP_LDF_SW, swap) |
500		FIELD_PREP(OP_LDF_ZF, zero) |
501		FIELD_PREP(OP_LDF_BMASK, bmask) |
502		FIELD_PREP(OP_LDF_SHF, shift) |
503		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
504		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
505		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
506
507	nfp_prog_push(nfp_prog, insn);
508}
509
510static void
511emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
512		  enum shf_sc sc, u8 shift, bool zero)
513{
514	struct nfp_insn_re_regs reg;
515	int err;
516
517	/* Note: ld_field is special as it uses one of the src regs as dst */
518	err = swreg_to_restricted(dst, dst, src, &reg, true);
519	if (err) {
520		nfp_prog->error = err;
521		return;
522	}
523
524	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
525			reg.i8, zero, reg.swap, reg.wr_both,
526			reg.dst_lmextn, reg.src_lmextn);
527}
528
529static void
530emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
531	      enum shf_sc sc, u8 shift)
532{
533	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
534}
535
536static void
537__emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
538	    bool dst_lmextn, bool src_lmextn)
539{
540	u64 insn;
541
542	insn = OP_LCSR_BASE |
543		FIELD_PREP(OP_LCSR_A_SRC, areg) |
544		FIELD_PREP(OP_LCSR_B_SRC, breg) |
545		FIELD_PREP(OP_LCSR_WRITE, wr) |
546		FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
547		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
548		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
549
550	nfp_prog_push(nfp_prog, insn);
551}
552
553static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
554{
555	struct nfp_insn_ur_regs reg;
556	int err;
557
558	/* This instruction takes immeds instead of reg_none() for the ignored
559	 * operand, but we can't encode 2 immeds in one instr with our normal
560	 * swreg infra so if param is an immed, we encode as reg_none() and
561	 * copy the immed to both operands.
562	 */
563	if (swreg_type(src) == NN_REG_IMM) {
564		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
565		reg.breg = reg.areg;
566	} else {
567		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
568	}
569	if (err) {
570		nfp_prog->error = err;
571		return;
572	}
573
574	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
575		    false, reg.src_lmextn);
576}
577
578/* CSR value is read in following immed[gpr, 0] */
579static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
580{
581	__emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
582}
583
584static void emit_nop(struct nfp_prog *nfp_prog)
585{
586	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
587}
588
589/* --- Wrappers --- */
590static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
591{
592	if (!(imm & 0xffff0000)) {
593		*val = imm;
594		*shift = IMMED_SHIFT_0B;
595	} else if (!(imm & 0xff0000ff)) {
596		*val = imm >> 8;
597		*shift = IMMED_SHIFT_1B;
598	} else if (!(imm & 0x0000ffff)) {
599		*val = imm >> 16;
600		*shift = IMMED_SHIFT_2B;
601	} else {
602		return false;
603	}
604
605	return true;
606}
607
608static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
609{
610	enum immed_shift shift;
611	u16 val;
612
613	if (pack_immed(imm, &val, &shift)) {
614		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
615	} else if (pack_immed(~imm, &val, &shift)) {
616		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
617	} else {
618		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
619			   false, IMMED_SHIFT_0B);
620		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
621			   false, IMMED_SHIFT_2B);
622	}
623}
624
625static void
626wrp_zext(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst)
627{
628	if (meta->flags & FLAG_INSN_DO_ZEXT)
629		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
630}
631
632static void
633wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
634	       enum nfp_relo_type relo)
635{
636	if (imm > 0xffff) {
637		pr_err("relocation of a large immediate!\n");
638		nfp_prog->error = -EFAULT;
639		return;
640	}
641	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
642
643	nfp_prog->prog[nfp_prog->prog_len - 1] |=
644		FIELD_PREP(OP_RELO_TYPE, relo);
645}
646
647/* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
648 * If the @imm is small enough encode it directly in operand and return
649 * otherwise load @imm to a spare register and return its encoding.
650 */
651static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
652{
653	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
654		return reg_imm(imm);
655
656	wrp_immed(nfp_prog, tmp_reg, imm);
657	return tmp_reg;
658}
659
660/* re_load_imm_any() - encode immediate or use tmp register (restricted)
661 * If the @imm is small enough encode it directly in operand and return
662 * otherwise load @imm to a spare register and return its encoding.
663 */
664static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
665{
666	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
667		return reg_imm(imm);
668
669	wrp_immed(nfp_prog, tmp_reg, imm);
670	return tmp_reg;
671}
672
673static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
674{
675	while (count--)
676		emit_nop(nfp_prog);
677}
678
679static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
680{
681	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
682}
683
684static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
685{
686	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
687}
688
689/* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
690 * result to @dst from low end.
691 */
692static void
693wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
694		u8 offset)
695{
696	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
697	u8 mask = (1 << field_len) - 1;
698
699	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
700}
701
702/* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
703 * result to @dst from offset, there is no change on the other bits of @dst.
704 */
705static void
706wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
707		   u8 field_len, u8 offset)
708{
709	enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
710	u8 mask = ((1 << field_len) - 1) << offset;
711
712	emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
713}
714
715static void
716addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
717	      swreg *rega, swreg *regb)
718{
719	if (offset == reg_imm(0)) {
720		*rega = reg_a(src_gpr);
721		*regb = reg_b(src_gpr + 1);
722		return;
723	}
724
725	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
726	emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
727		 reg_imm(0));
728	*rega = imm_a(nfp_prog);
729	*regb = imm_b(nfp_prog);
730}
731
732/* NFP has Command Push Pull bus which supports bluk memory operations. */
733static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
734{
735	bool descending_seq = meta->ldst_gather_len < 0;
736	s16 len = abs(meta->ldst_gather_len);
737	swreg src_base, off;
738	bool src_40bit_addr;
739	unsigned int i;
740	u8 xfer_num;
741
742	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
743	src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
744	src_base = reg_a(meta->insn.src_reg * 2);
745	xfer_num = round_up(len, 4) / 4;
746
747	if (src_40bit_addr)
748		addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base,
749			      &off);
750
751	/* Setup PREV_ALU fields to override memory read length. */
752	if (len > 32)
753		wrp_immed(nfp_prog, reg_none(),
754			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
755
756	/* Memory read from source addr into transfer-in registers. */
757	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
758		     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
759		     src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
760
761	/* Move from transfer-in to transfer-out. */
762	for (i = 0; i < xfer_num; i++)
763		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
764
765	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
766
767	if (len <= 8) {
768		/* Use single direct_ref write8. */
769		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
770			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
771			 CMD_CTX_SWAP);
772	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
773		/* Use single direct_ref write32. */
774		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
775			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
776			 CMD_CTX_SWAP);
777	} else if (len <= 32) {
778		/* Use single indirect_ref write8. */
779		wrp_immed(nfp_prog, reg_none(),
780			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
781		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
782			       reg_a(meta->paired_st->dst_reg * 2), off,
783			       len - 1, CMD_CTX_SWAP);
784	} else if (IS_ALIGNED(len, 4)) {
785		/* Use single indirect_ref write32. */
786		wrp_immed(nfp_prog, reg_none(),
787			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
788		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
789			       reg_a(meta->paired_st->dst_reg * 2), off,
790			       xfer_num - 1, CMD_CTX_SWAP);
791	} else if (len <= 40) {
792		/* Use one direct_ref write32 to write the first 32-bytes, then
793		 * another direct_ref write8 to write the remaining bytes.
794		 */
795		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
796			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
797			 CMD_CTX_SWAP);
798
799		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
800				      imm_b(nfp_prog));
801		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
802			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
803			 CMD_CTX_SWAP);
804	} else {
805		/* Use one indirect_ref write32 to write 4-bytes aligned length,
806		 * then another direct_ref write8 to write the remaining bytes.
807		 */
808		u8 new_off;
809
810		wrp_immed(nfp_prog, reg_none(),
811			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
812		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
813			       reg_a(meta->paired_st->dst_reg * 2), off,
814			       xfer_num - 2, CMD_CTX_SWAP);
815		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
816		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
817		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
818			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
819			 (len & 0x3) - 1, CMD_CTX_SWAP);
820	}
821
822	/* TODO: The following extra load is to make sure data flow be identical
823	 *  before and after we do memory copy optimization.
824	 *
825	 *  The load destination register is not guaranteed to be dead, so we
826	 *  need to make sure it is loaded with the value the same as before
827	 *  this transformation.
828	 *
829	 *  These extra loads could be removed once we have accurate register
830	 *  usage information.
831	 */
832	if (descending_seq)
833		xfer_num = 0;
834	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
835		xfer_num = xfer_num - 1;
836	else
837		xfer_num = xfer_num - 2;
838
839	switch (BPF_SIZE(meta->insn.code)) {
840	case BPF_B:
841		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
842				reg_xfer(xfer_num), 1,
843				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
844		break;
845	case BPF_H:
846		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
847				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
848		break;
849	case BPF_W:
850		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
851			reg_xfer(0));
852		break;
853	case BPF_DW:
854		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
855			reg_xfer(xfer_num));
856		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
857			reg_xfer(xfer_num + 1));
858		break;
859	}
860
861	if (BPF_SIZE(meta->insn.code) != BPF_DW)
862		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
863
864	return 0;
865}
866
867static int
868data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, swreg offset,
869	u8 dst_gpr, int size)
870{
871	unsigned int i;
872	u16 shift, sz;
873
874	/* We load the value from the address indicated in @offset and then
875	 * shift out the data we don't need.  Note: this is big endian!
876	 */
877	sz = max(size, 4);
878	shift = size < 4 ? 4 - size : 0;
879
880	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
881		 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
882
883	i = 0;
884	if (shift)
885		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
886			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
887	else
888		for (; i * 4 < size; i++)
889			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
890
891	if (i < 2)
892		wrp_zext(nfp_prog, meta, dst_gpr);
893
894	return 0;
895}
896
897static int
898data_ld_host_order(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
899		   u8 dst_gpr, swreg lreg, swreg rreg, int size,
900		   enum cmd_mode mode)
901{
902	unsigned int i;
903	u8 mask, sz;
904
905	/* We load the value from the address indicated in rreg + lreg and then
906	 * mask out the data we don't need.  Note: this is little endian!
907	 */
908	sz = max(size, 4);
909	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
910
911	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
912		 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
913
914	i = 0;
915	if (mask)
916		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
917				  reg_xfer(0), SHF_SC_NONE, 0, true);
918	else
919		for (; i * 4 < size; i++)
920			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
921
922	if (i < 2)
923		wrp_zext(nfp_prog, meta, dst_gpr);
924
925	return 0;
926}
927
928static int
929data_ld_host_order_addr32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
930			  u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
931{
932	return data_ld_host_order(nfp_prog, meta, dst_gpr, reg_a(src_gpr),
933				  offset, size, CMD_MODE_32b);
934}
935
936static int
937data_ld_host_order_addr40(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
938			  u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
939{
940	swreg rega, regb;
941
942	addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
943
944	return data_ld_host_order(nfp_prog, meta, dst_gpr, rega, regb,
945				  size, CMD_MODE_40b_BA);
946}
947
948static int
949construct_data_ind_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
950		      u16 offset, u16 src, u8 size)
951{
952	swreg tmp_reg;
953
954	/* Calculate the true offset (src_reg + imm) */
955	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
956	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
957
958	/* Check packet length (size guaranteed to fit b/c it's u8) */
959	emit_alu(nfp_prog, imm_a(nfp_prog),
960		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
961	emit_alu(nfp_prog, reg_none(),
962		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
963	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
964
965	/* Load data */
966	return data_ld(nfp_prog, meta, imm_b(nfp_prog), 0, size);
967}
968
969static int
970construct_data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
971		  u16 offset, u8 size)
972{
973	swreg tmp_reg;
974
975	/* Check packet length */
976	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
977	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
978	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
979
980	/* Load data */
981	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
982	return data_ld(nfp_prog, meta, tmp_reg, 0, size);
983}
984
985static int
986data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
987		    u8 src_gpr, u8 size)
988{
989	unsigned int i;
990
991	for (i = 0; i * 4 < size; i++)
992		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
993
994	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
995		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
996
997	return 0;
998}
999
1000static int
1001data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
1002		   u64 imm, u8 size)
1003{
1004	wrp_immed(nfp_prog, reg_xfer(0), imm);
1005	if (size == 8)
1006		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
1007
1008	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
1009		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
1010
1011	return 0;
1012}
1013
1014typedef int
1015(*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
1016	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1017	     bool needs_inc);
1018
1019static int
1020wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
1021	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1022	      bool needs_inc)
1023{
1024	bool should_inc = needs_inc && new_gpr && !last;
1025	u32 idx, src_byte;
1026	enum shf_sc sc;
1027	swreg reg;
1028	int shf;
1029	u8 mask;
1030
1031	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
1032		return -EOPNOTSUPP;
1033
1034	idx = off / 4;
1035
1036	/* Move the entire word */
1037	if (size == 4) {
1038		wrp_mov(nfp_prog, reg_both(dst),
1039			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
1040		return 0;
1041	}
1042
1043	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1044		return -EOPNOTSUPP;
1045
1046	src_byte = off % 4;
1047
1048	mask = (1 << size) - 1;
1049	mask <<= dst_byte;
1050
1051	if (WARN_ON_ONCE(mask > 0xf))
1052		return -EOPNOTSUPP;
1053
1054	shf = abs(src_byte - dst_byte) * 8;
1055	if (src_byte == dst_byte) {
1056		sc = SHF_SC_NONE;
1057	} else if (src_byte < dst_byte) {
1058		shf = 32 - shf;
1059		sc = SHF_SC_L_SHF;
1060	} else {
1061		sc = SHF_SC_R_SHF;
1062	}
1063
1064	/* ld_field can address fewer indexes, if offset too large do RMW.
1065	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1066	 */
1067	if (idx <= RE_REG_LM_IDX_MAX) {
1068		reg = reg_lm(lm3 ? 3 : 0, idx);
1069	} else {
1070		reg = imm_a(nfp_prog);
1071		/* If it's not the first part of the load and we start a new GPR
1072		 * that means we are loading a second part of the LMEM word into
1073		 * a new GPR.  IOW we've already looked that LMEM word and
1074		 * therefore it has been loaded into imm_a().
1075		 */
1076		if (first || !new_gpr)
1077			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1078	}
1079
1080	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
1081
1082	if (should_inc)
1083		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1084
1085	return 0;
1086}
1087
1088static int
1089wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
1090	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1091	       bool needs_inc)
1092{
1093	bool should_inc = needs_inc && new_gpr && !last;
1094	u32 idx, dst_byte;
1095	enum shf_sc sc;
1096	swreg reg;
1097	int shf;
1098	u8 mask;
1099
1100	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
1101		return -EOPNOTSUPP;
1102
1103	idx = off / 4;
1104
1105	/* Move the entire word */
1106	if (size == 4) {
1107		wrp_mov(nfp_prog,
1108			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
1109			reg_b(src));
1110		return 0;
1111	}
1112
1113	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1114		return -EOPNOTSUPP;
1115
1116	dst_byte = off % 4;
1117
1118	mask = (1 << size) - 1;
1119	mask <<= dst_byte;
1120
1121	if (WARN_ON_ONCE(mask > 0xf))
1122		return -EOPNOTSUPP;
1123
1124	shf = abs(src_byte - dst_byte) * 8;
1125	if (src_byte == dst_byte) {
1126		sc = SHF_SC_NONE;
1127	} else if (src_byte < dst_byte) {
1128		shf = 32 - shf;
1129		sc = SHF_SC_L_SHF;
1130	} else {
1131		sc = SHF_SC_R_SHF;
1132	}
1133
1134	/* ld_field can address fewer indexes, if offset too large do RMW.
1135	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1136	 */
1137	if (idx <= RE_REG_LM_IDX_MAX) {
1138		reg = reg_lm(lm3 ? 3 : 0, idx);
1139	} else {
1140		reg = imm_a(nfp_prog);
1141		/* Only first and last LMEM locations are going to need RMW,
1142		 * the middle location will be overwritten fully.
1143		 */
1144		if (first || last)
1145			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1146	}
1147
1148	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
1149
1150	if (new_gpr || last) {
1151		if (idx > RE_REG_LM_IDX_MAX)
1152			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1153		if (should_inc)
1154			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1155	}
1156
1157	return 0;
1158}
1159
1160static int
1161mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1162	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1163	     bool clr_gpr, lmem_step step)
1164{
1165	s32 off = nfp_prog->stack_frame_depth + meta->insn.off + ptr_off;
1166	bool first = true, narrow_ld, last;
1167	bool needs_inc = false;
1168	swreg stack_off_reg;
1169	u8 prev_gpr = 255;
1170	u32 gpr_byte = 0;
1171	bool lm3 = true;
1172	int ret;
1173
1174	if (meta->ptr_not_const ||
1175	    meta->flags & FLAG_INSN_PTR_CALLER_STACK_FRAME) {
1176		/* Use of the last encountered ptr_off is OK, they all have
1177		 * the same alignment.  Depend on low bits of value being
1178		 * discarded when written to LMaddr register.
1179		 */
1180		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1181						stack_imm(nfp_prog));
1182
1183		emit_alu(nfp_prog, imm_b(nfp_prog),
1184			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1185
1186		needs_inc = true;
1187	} else if (off + size <= 64) {
1188		/* We can reach bottom 64B with LMaddr0 */
1189		lm3 = false;
1190	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1191		/* We have to set up a new pointer.  If we know the offset
1192		 * and the entire access falls into a single 32 byte aligned
1193		 * window we won't have to increment the LM pointer.
1194		 * The 32 byte alignment is imporant because offset is ORed in
1195		 * not added when doing *l$indexN[off].
1196		 */
1197		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1198						stack_imm(nfp_prog));
1199		emit_alu(nfp_prog, imm_b(nfp_prog),
1200			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1201
1202		off %= 32;
1203	} else {
1204		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1205						stack_imm(nfp_prog));
1206
1207		emit_alu(nfp_prog, imm_b(nfp_prog),
1208			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1209
1210		needs_inc = true;
1211	}
1212
1213	narrow_ld = clr_gpr && size < 8;
1214
1215	if (lm3) {
1216		unsigned int nop_cnt;
1217
1218		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1219		/* For size < 4 one slot will be filled by zeroing of upper,
1220		 * but be careful, that zeroing could be eliminated by zext
1221		 * optimization.
1222		 */
1223		nop_cnt = narrow_ld && meta->flags & FLAG_INSN_DO_ZEXT ? 2 : 3;
1224		wrp_nops(nfp_prog, nop_cnt);
1225	}
1226
1227	if (narrow_ld)
1228		wrp_zext(nfp_prog, meta, gpr);
1229
1230	while (size) {
1231		u32 slice_end;
1232		u8 slice_size;
1233
1234		slice_size = min(size, 4 - gpr_byte);
1235		slice_end = min(off + slice_size, round_up(off + 1, 4));
1236		slice_size = slice_end - off;
1237
1238		last = slice_size == size;
1239
1240		if (needs_inc)
1241			off %= 4;
1242
1243		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1244			   first, gpr != prev_gpr, last, lm3, needs_inc);
1245		if (ret)
1246			return ret;
1247
1248		prev_gpr = gpr;
1249		first = false;
1250
1251		gpr_byte += slice_size;
1252		if (gpr_byte >= 4) {
1253			gpr_byte -= 4;
1254			gpr++;
1255		}
1256
1257		size -= slice_size;
1258		off += slice_size;
1259	}
1260
1261	return 0;
1262}
1263
1264static void
1265wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1266{
1267	swreg tmp_reg;
1268
1269	if (alu_op == ALU_OP_AND) {
1270		if (!imm)
1271			wrp_immed(nfp_prog, reg_both(dst), 0);
1272		if (!imm || !~imm)
1273			return;
1274	}
1275	if (alu_op == ALU_OP_OR) {
1276		if (!~imm)
1277			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1278		if (!imm || !~imm)
1279			return;
1280	}
1281	if (alu_op == ALU_OP_XOR) {
1282		if (!~imm)
1283			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1284				 ALU_OP_NOT, reg_b(dst));
1285		if (!imm || !~imm)
1286			return;
1287	}
1288
1289	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1290	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1291}
1292
1293static int
1294wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1295	      enum alu_op alu_op, bool skip)
1296{
1297	const struct bpf_insn *insn = &meta->insn;
1298	u64 imm = insn->imm; /* sign extend */
1299
1300	if (skip) {
1301		meta->flags |= FLAG_INSN_SKIP_NOOP;
1302		return 0;
1303	}
1304
1305	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1306	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1307
1308	return 0;
1309}
1310
1311static int
1312wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1313	      enum alu_op alu_op)
1314{
1315	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1316
1317	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1318	emit_alu(nfp_prog, reg_both(dst + 1),
1319		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1320
1321	return 0;
1322}
1323
1324static int
1325wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1326	      enum alu_op alu_op)
1327{
1328	const struct bpf_insn *insn = &meta->insn;
1329	u8 dst = insn->dst_reg * 2;
1330
1331	wrp_alu_imm(nfp_prog, dst, alu_op, insn->imm);
1332	wrp_zext(nfp_prog, meta, dst);
1333
1334	return 0;
1335}
1336
1337static int
1338wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1339	      enum alu_op alu_op)
1340{
1341	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1342
1343	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1344	wrp_zext(nfp_prog, meta, dst);
1345
1346	return 0;
1347}
1348
1349static void
1350wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1351		 enum br_mask br_mask, u16 off)
1352{
1353	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1354	emit_br(nfp_prog, br_mask, off, 0);
1355}
1356
1357static int
1358wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1359	     enum alu_op alu_op, enum br_mask br_mask)
1360{
1361	const struct bpf_insn *insn = &meta->insn;
1362
1363	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1364			 insn->src_reg * 2, br_mask, insn->off);
1365	if (is_mbpf_jmp64(meta))
1366		wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1367				 insn->src_reg * 2 + 1, br_mask, insn->off);
1368
1369	return 0;
1370}
1371
1372static const struct jmp_code_map {
1373	enum br_mask br_mask;
1374	bool swap;
1375} jmp_code_map[] = {
1376	[BPF_JGT >> 4]	= { BR_BLO, true },
1377	[BPF_JGE >> 4]	= { BR_BHS, false },
1378	[BPF_JLT >> 4]	= { BR_BLO, false },
1379	[BPF_JLE >> 4]	= { BR_BHS, true },
1380	[BPF_JSGT >> 4]	= { BR_BLT, true },
1381	[BPF_JSGE >> 4]	= { BR_BGE, false },
1382	[BPF_JSLT >> 4]	= { BR_BLT, false },
1383	[BPF_JSLE >> 4]	= { BR_BGE, true },
1384};
1385
1386static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1387{
1388	unsigned int op;
1389
1390	op = BPF_OP(meta->insn.code) >> 4;
1391	/* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1392	if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1393		      !jmp_code_map[op].br_mask,
1394		      "no code found for jump instruction"))
1395		return NULL;
1396
1397	return &jmp_code_map[op];
1398}
1399
1400static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1401{
1402	const struct bpf_insn *insn = &meta->insn;
1403	u64 imm = insn->imm; /* sign extend */
1404	const struct jmp_code_map *code;
1405	enum alu_op alu_op, carry_op;
1406	u8 reg = insn->dst_reg * 2;
1407	swreg tmp_reg;
1408
1409	code = nfp_jmp_code_get(meta);
1410	if (!code)
1411		return -EINVAL;
1412
1413	alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1414	carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1415
1416	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1417	if (!code->swap)
1418		emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
1419	else
1420		emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
1421
1422	if (is_mbpf_jmp64(meta)) {
1423		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1424		if (!code->swap)
1425			emit_alu(nfp_prog, reg_none(),
1426				 reg_a(reg + 1), carry_op, tmp_reg);
1427		else
1428			emit_alu(nfp_prog, reg_none(),
1429				 tmp_reg, carry_op, reg_a(reg + 1));
1430	}
1431
1432	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1433
1434	return 0;
1435}
1436
1437static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1438{
1439	const struct bpf_insn *insn = &meta->insn;
1440	const struct jmp_code_map *code;
1441	u8 areg, breg;
1442
1443	code = nfp_jmp_code_get(meta);
1444	if (!code)
1445		return -EINVAL;
1446
1447	areg = insn->dst_reg * 2;
1448	breg = insn->src_reg * 2;
1449
1450	if (code->swap) {
1451		areg ^= breg;
1452		breg ^= areg;
1453		areg ^= breg;
1454	}
1455
1456	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1457	if (is_mbpf_jmp64(meta))
1458		emit_alu(nfp_prog, reg_none(),
1459			 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1460	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1461
1462	return 0;
1463}
1464
1465static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1466{
1467	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1468		      SHF_SC_R_ROT, 8);
1469	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1470		      SHF_SC_R_ROT, 16);
1471}
1472
1473static void
1474wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1475	    swreg rreg, bool gen_high_half)
1476{
1477	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1478	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg);
1479	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg);
1480	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg);
1481	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg);
1482	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none());
1483	if (gen_high_half)
1484		emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2,
1485			 reg_none());
1486	else
1487		wrp_immed(nfp_prog, dst_hi, 0);
1488}
1489
1490static void
1491wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1492	    swreg rreg)
1493{
1494	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1495	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg);
1496	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg);
1497	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none());
1498}
1499
1500static int
1501wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1502	bool gen_high_half, bool ropnd_from_reg)
1503{
1504	swreg multiplier, multiplicand, dst_hi, dst_lo;
1505	const struct bpf_insn *insn = &meta->insn;
1506	u32 lopnd_max, ropnd_max;
1507	u8 dst_reg;
1508
1509	dst_reg = insn->dst_reg;
1510	multiplicand = reg_a(dst_reg * 2);
1511	dst_hi = reg_both(dst_reg * 2 + 1);
1512	dst_lo = reg_both(dst_reg * 2);
1513	lopnd_max = meta->umax_dst;
1514	if (ropnd_from_reg) {
1515		multiplier = reg_b(insn->src_reg * 2);
1516		ropnd_max = meta->umax_src;
1517	} else {
1518		u32 imm = insn->imm;
1519
1520		multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1521		ropnd_max = imm;
1522	}
1523	if (lopnd_max > U16_MAX || ropnd_max > U16_MAX)
1524		wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier,
1525			    gen_high_half);
1526	else
1527		wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier);
1528
1529	return 0;
1530}
1531
1532static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm)
1533{
1534	swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst);
1535	struct reciprocal_value_adv rvalue;
1536	u8 pre_shift, exp;
1537	swreg magic;
1538
1539	if (imm > U32_MAX) {
1540		wrp_immed(nfp_prog, dst_both, 0);
1541		return 0;
1542	}
1543
1544	/* NOTE: because we are using "reciprocal_value_adv" which doesn't
1545	 * support "divisor > (1u << 31)", we need to JIT separate NFP sequence
1546	 * to handle such case which actually equals to the result of unsigned
1547	 * comparison "dst >= imm" which could be calculated using the following
1548	 * NFP sequence:
1549	 *
1550	 *  alu[--, dst, -, imm]
1551	 *  immed[imm, 0]
1552	 *  alu[dst, imm, +carry, 0]
1553	 *
1554	 */
1555	if (imm > 1U << 31) {
1556		swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1557
1558		emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b);
1559		wrp_immed(nfp_prog, imm_a(nfp_prog), 0);
1560		emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C,
1561			 reg_imm(0));
1562		return 0;
1563	}
1564
1565	rvalue = reciprocal_value_adv(imm, 32);
1566	exp = rvalue.exp;
1567	if (rvalue.is_wide_m && !(imm & 1)) {
1568		pre_shift = fls(imm & -imm) - 1;
1569		rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift);
1570	} else {
1571		pre_shift = 0;
1572	}
1573	magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog));
1574	if (imm == 1U << exp) {
1575		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1576			 SHF_SC_R_SHF, exp);
1577	} else if (rvalue.is_wide_m) {
1578		wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a,
1579			    magic, true);
1580		emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB,
1581			 imm_b(nfp_prog));
1582		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1583			 SHF_SC_R_SHF, 1);
1584		emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD,
1585			 imm_b(nfp_prog));
1586		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1587			 SHF_SC_R_SHF, rvalue.sh - 1);
1588	} else {
1589		if (pre_shift)
1590			emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1591				 dst_b, SHF_SC_R_SHF, pre_shift);
1592		wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true);
1593		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1594			 dst_b, SHF_SC_R_SHF, rvalue.sh);
1595	}
1596
1597	return 0;
1598}
1599
1600static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1601{
1602	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1603	struct nfp_bpf_cap_adjust_head *adjust_head;
1604	u32 ret_einval, end;
1605
1606	adjust_head = &nfp_prog->bpf->adjust_head;
1607
1608	/* Optimized version - 5 vs 14 cycles */
1609	if (nfp_prog->adjust_head_location != UINT_MAX) {
1610		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1611			return -EINVAL;
1612
1613		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1614			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1615		emit_alu(nfp_prog, plen_reg(nfp_prog),
1616			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1617		emit_alu(nfp_prog, pv_len(nfp_prog),
1618			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1619
1620		wrp_immed(nfp_prog, reg_both(0), 0);
1621		wrp_immed(nfp_prog, reg_both(1), 0);
1622
1623		/* TODO: when adjust head is guaranteed to succeed we can
1624		 * also eliminate the following if (r0 == 0) branch.
1625		 */
1626
1627		return 0;
1628	}
1629
1630	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1631	end = ret_einval + 2;
1632
1633	/* We need to use a temp because offset is just a part of the pkt ptr */
1634	emit_alu(nfp_prog, tmp,
1635		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1636
1637	/* Validate result will fit within FW datapath constraints */
1638	emit_alu(nfp_prog, reg_none(),
1639		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1640	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1641	emit_alu(nfp_prog, reg_none(),
1642		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1643	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1644
1645	/* Validate the length is at least ETH_HLEN */
1646	emit_alu(nfp_prog, tmp_len,
1647		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1648	emit_alu(nfp_prog, reg_none(),
1649		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1650	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1651
1652	/* Load the ret code */
1653	wrp_immed(nfp_prog, reg_both(0), 0);
1654	wrp_immed(nfp_prog, reg_both(1), 0);
1655
1656	/* Modify the packet metadata */
1657	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1658
1659	/* Skip over the -EINVAL ret code (defer 2) */
1660	emit_br(nfp_prog, BR_UNC, end, 2);
1661
1662	emit_alu(nfp_prog, plen_reg(nfp_prog),
1663		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1664	emit_alu(nfp_prog, pv_len(nfp_prog),
1665		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1666
1667	/* return -EINVAL target */
1668	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1669		return -EINVAL;
1670
1671	wrp_immed(nfp_prog, reg_both(0), -22);
1672	wrp_immed(nfp_prog, reg_both(1), ~0);
1673
1674	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1675		return -EINVAL;
1676
1677	return 0;
1678}
1679
1680static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1681{
1682	u32 ret_einval, end;
1683	swreg plen, delta;
1684
1685	BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN));
1686
1687	plen = imm_a(nfp_prog);
1688	delta = reg_a(2 * 2);
1689
1690	ret_einval = nfp_prog_current_offset(nfp_prog) + 9;
1691	end = nfp_prog_current_offset(nfp_prog) + 11;
1692
1693	/* Calculate resulting length */
1694	emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta);
1695	/* delta == 0 is not allowed by the kernel, add must overflow to make
1696	 * length smaller.
1697	 */
1698	emit_br(nfp_prog, BR_BCC, ret_einval, 0);
1699
1700	/* if (new_len < 14) then -EINVAL */
1701	emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN));
1702	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1703
1704	emit_alu(nfp_prog, plen_reg(nfp_prog),
1705		 plen_reg(nfp_prog), ALU_OP_ADD, delta);
1706	emit_alu(nfp_prog, pv_len(nfp_prog),
1707		 pv_len(nfp_prog), ALU_OP_ADD, delta);
1708
1709	emit_br(nfp_prog, BR_UNC, end, 2);
1710	wrp_immed(nfp_prog, reg_both(0), 0);
1711	wrp_immed(nfp_prog, reg_both(1), 0);
1712
1713	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1714		return -EINVAL;
1715
1716	wrp_immed(nfp_prog, reg_both(0), -22);
1717	wrp_immed(nfp_prog, reg_both(1), ~0);
1718
1719	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1720		return -EINVAL;
1721
1722	return 0;
1723}
1724
1725static int
1726map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1727{
1728	bool load_lm_ptr;
1729	u32 ret_tgt;
1730	s64 lm_off;
1731
1732	/* We only have to reload LM0 if the key is not at start of stack */
1733	lm_off = nfp_prog->stack_frame_depth;
1734	lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1735	load_lm_ptr = meta->arg2.var_off || lm_off;
1736
1737	/* Set LM0 to start of key */
1738	if (load_lm_ptr)
1739		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1740	if (meta->func_id == BPF_FUNC_map_update_elem)
1741		emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1742
1743	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1744		     2, RELO_BR_HELPER);
1745	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1746
1747	/* Load map ID into A0 */
1748	wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1749
1750	/* Load the return address into B0 */
1751	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1752
1753	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1754		return -EINVAL;
1755
1756	/* Reset the LM0 pointer */
1757	if (!load_lm_ptr)
1758		return 0;
1759
1760	emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1761	wrp_nops(nfp_prog, 3);
1762
1763	return 0;
1764}
1765
1766static int
1767nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1768{
1769	__emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1770	/* CSR value is read in following immed[gpr, 0] */
1771	emit_immed(nfp_prog, reg_both(0), 0,
1772		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1773	emit_immed(nfp_prog, reg_both(1), 0,
1774		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1775	return 0;
1776}
1777
1778static int
1779nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1780{
1781	swreg ptr_type;
1782	u32 ret_tgt;
1783
1784	ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
1785
1786	ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1787
1788	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1789		     2, RELO_BR_HELPER);
1790
1791	/* Load ptr type into A1 */
1792	wrp_mov(nfp_prog, reg_a(1), ptr_type);
1793
1794	/* Load the return address into B0 */
1795	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1796
1797	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1798		return -EINVAL;
1799
1800	return 0;
1801}
1802
1803static int
1804nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1805{
1806	u32 jmp_tgt;
1807
1808	jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1809
1810	/* Make sure the queue id fits into FW field */
1811	emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1812		 ALU_OP_AND_NOT_B, reg_imm(0xff));
1813	emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
1814
1815	/* Set the 'queue selected' bit and the queue value */
1816	emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1817		 pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
1818		 SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1819	emit_ld_field(nfp_prog,
1820		      pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
1821		      SHF_SC_NONE, 0);
1822	/* Delay slots end here, we will jump over next instruction if queue
1823	 * value fits into the field.
1824	 */
1825	emit_ld_field(nfp_prog,
1826		      pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
1827		      SHF_SC_NONE, 0);
1828
1829	if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
1830		return -EINVAL;
1831
1832	return 0;
1833}
1834
1835/* --- Callbacks --- */
1836static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1837{
1838	const struct bpf_insn *insn = &meta->insn;
1839	u8 dst = insn->dst_reg * 2;
1840	u8 src = insn->src_reg * 2;
1841
1842	if (insn->src_reg == BPF_REG_10) {
1843		swreg stack_depth_reg;
1844
1845		stack_depth_reg = ur_load_imm_any(nfp_prog,
1846						  nfp_prog->stack_frame_depth,
1847						  stack_imm(nfp_prog));
1848		emit_alu(nfp_prog, reg_both(dst), stack_reg(nfp_prog),
1849			 ALU_OP_ADD, stack_depth_reg);
1850		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1851	} else {
1852		wrp_reg_mov(nfp_prog, dst, src);
1853		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1854	}
1855
1856	return 0;
1857}
1858
1859static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1860{
1861	u64 imm = meta->insn.imm; /* sign extend */
1862
1863	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1864	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1865
1866	return 0;
1867}
1868
1869static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1870{
1871	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1872}
1873
1874static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1875{
1876	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1877}
1878
1879static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1880{
1881	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1882}
1883
1884static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1885{
1886	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1887}
1888
1889static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1890{
1891	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1892}
1893
1894static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1895{
1896	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1897}
1898
1899static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1900{
1901	const struct bpf_insn *insn = &meta->insn;
1902
1903	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1904		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1905		 reg_b(insn->src_reg * 2));
1906	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1907		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1908		 reg_b(insn->src_reg * 2 + 1));
1909
1910	return 0;
1911}
1912
1913static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1914{
1915	const struct bpf_insn *insn = &meta->insn;
1916	u64 imm = insn->imm; /* sign extend */
1917
1918	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1919	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1920
1921	return 0;
1922}
1923
1924static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1925{
1926	const struct bpf_insn *insn = &meta->insn;
1927
1928	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1929		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1930		 reg_b(insn->src_reg * 2));
1931	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1932		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1933		 reg_b(insn->src_reg * 2 + 1));
1934
1935	return 0;
1936}
1937
1938static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1939{
1940	const struct bpf_insn *insn = &meta->insn;
1941	u64 imm = insn->imm; /* sign extend */
1942
1943	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1944	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1945
1946	return 0;
1947}
1948
1949static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1950{
1951	return wrp_mul(nfp_prog, meta, true, true);
1952}
1953
1954static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1955{
1956	return wrp_mul(nfp_prog, meta, true, false);
1957}
1958
1959static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1960{
1961	const struct bpf_insn *insn = &meta->insn;
1962
1963	return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm);
1964}
1965
1966static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1967{
1968	/* NOTE: verifier hook has rejected cases for which verifier doesn't
1969	 * know whether the source operand is constant or not.
1970	 */
1971	return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src);
1972}
1973
1974static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1975{
1976	const struct bpf_insn *insn = &meta->insn;
1977
1978	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1979		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1980	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1981		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1982
1983	return 0;
1984}
1985
1986/* Pseudo code:
1987 *   if shift_amt >= 32
1988 *     dst_high = dst_low << shift_amt[4:0]
1989 *     dst_low = 0;
1990 *   else
1991 *     dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1992 *     dst_low = dst_low << shift_amt
1993 *
1994 * The indirect shift will use the same logic at runtime.
1995 */
1996static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1997{
1998	if (!shift_amt)
1999		return 0;
2000
2001	if (shift_amt < 32) {
2002		emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
2003			 SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF,
2004			 32 - shift_amt);
2005		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2006			 reg_b(dst), SHF_SC_L_SHF, shift_amt);
2007	} else if (shift_amt == 32) {
2008		wrp_reg_mov(nfp_prog, dst + 1, dst);
2009		wrp_immed(nfp_prog, reg_both(dst), 0);
2010	} else if (shift_amt > 32) {
2011		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2012			 reg_b(dst), SHF_SC_L_SHF, shift_amt - 32);
2013		wrp_immed(nfp_prog, reg_both(dst), 0);
2014	}
2015
2016	return 0;
2017}
2018
2019static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2020{
2021	const struct bpf_insn *insn = &meta->insn;
2022	u8 dst = insn->dst_reg * 2;
2023
2024	return __shl_imm64(nfp_prog, dst, insn->imm);
2025}
2026
2027static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2028{
2029	emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB,
2030		 reg_b(src));
2031	emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0));
2032	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE,
2033		       reg_b(dst), SHF_SC_R_DSHF);
2034}
2035
2036/* NOTE: for indirect left shift, HIGH part should be calculated first. */
2037static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2038{
2039	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2040	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2041		       reg_b(dst), SHF_SC_L_SHF);
2042}
2043
2044static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2045{
2046	shl_reg64_lt32_high(nfp_prog, dst, src);
2047	shl_reg64_lt32_low(nfp_prog, dst, src);
2048}
2049
2050static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2051{
2052	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2053	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2054		       reg_b(dst), SHF_SC_L_SHF);
2055	wrp_immed(nfp_prog, reg_both(dst), 0);
2056}
2057
2058static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2059{
2060	const struct bpf_insn *insn = &meta->insn;
2061	u64 umin, umax;
2062	u8 dst, src;
2063
2064	dst = insn->dst_reg * 2;
2065	umin = meta->umin_src;
2066	umax = meta->umax_src;
2067	if (umin == umax)
2068		return __shl_imm64(nfp_prog, dst, umin);
2069
2070	src = insn->src_reg * 2;
2071	if (umax < 32) {
2072		shl_reg64_lt32(nfp_prog, dst, src);
2073	} else if (umin >= 32) {
2074		shl_reg64_ge32(nfp_prog, dst, src);
2075	} else {
2076		/* Generate different instruction sequences depending on runtime
2077		 * value of shift amount.
2078		 */
2079		u16 label_ge32, label_end;
2080
2081		label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
2082		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2083
2084		shl_reg64_lt32_high(nfp_prog, dst, src);
2085		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2086		emit_br(nfp_prog, BR_UNC, label_end, 2);
2087		/* shl_reg64_lt32_low packed in delay slot. */
2088		shl_reg64_lt32_low(nfp_prog, dst, src);
2089
2090		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2091			return -EINVAL;
2092		shl_reg64_ge32(nfp_prog, dst, src);
2093
2094		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2095			return -EINVAL;
2096	}
2097
2098	return 0;
2099}
2100
2101/* Pseudo code:
2102 *   if shift_amt >= 32
2103 *     dst_high = 0;
2104 *     dst_low = dst_high >> shift_amt[4:0]
2105 *   else
2106 *     dst_high = dst_high >> shift_amt
2107 *     dst_low = (dst_high, dst_low) >> shift_amt
2108 *
2109 * The indirect shift will use the same logic at runtime.
2110 */
2111static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2112{
2113	if (!shift_amt)
2114		return 0;
2115
2116	if (shift_amt < 32) {
2117		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2118			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2119		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2120			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2121	} else if (shift_amt == 32) {
2122		wrp_reg_mov(nfp_prog, dst, dst + 1);
2123		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2124	} else if (shift_amt > 32) {
2125		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2126			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2127		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2128	}
2129
2130	return 0;
2131}
2132
2133static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2134{
2135	const struct bpf_insn *insn = &meta->insn;
2136	u8 dst = insn->dst_reg * 2;
2137
2138	return __shr_imm64(nfp_prog, dst, insn->imm);
2139}
2140
2141/* NOTE: for indirect right shift, LOW part should be calculated first. */
2142static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2143{
2144	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2145	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2146		       reg_b(dst + 1), SHF_SC_R_SHF);
2147}
2148
2149static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2150{
2151	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2152	emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2153		       reg_b(dst), SHF_SC_R_DSHF);
2154}
2155
2156static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2157{
2158	shr_reg64_lt32_low(nfp_prog, dst, src);
2159	shr_reg64_lt32_high(nfp_prog, dst, src);
2160}
2161
2162static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2163{
2164	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2165	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2166		       reg_b(dst + 1), SHF_SC_R_SHF);
2167	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2168}
2169
2170static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2171{
2172	const struct bpf_insn *insn = &meta->insn;
2173	u64 umin, umax;
2174	u8 dst, src;
2175
2176	dst = insn->dst_reg * 2;
2177	umin = meta->umin_src;
2178	umax = meta->umax_src;
2179	if (umin == umax)
2180		return __shr_imm64(nfp_prog, dst, umin);
2181
2182	src = insn->src_reg * 2;
2183	if (umax < 32) {
2184		shr_reg64_lt32(nfp_prog, dst, src);
2185	} else if (umin >= 32) {
2186		shr_reg64_ge32(nfp_prog, dst, src);
2187	} else {
2188		/* Generate different instruction sequences depending on runtime
2189		 * value of shift amount.
2190		 */
2191		u16 label_ge32, label_end;
2192
2193		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2194		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2195		shr_reg64_lt32_low(nfp_prog, dst, src);
2196		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2197		emit_br(nfp_prog, BR_UNC, label_end, 2);
2198		/* shr_reg64_lt32_high packed in delay slot. */
2199		shr_reg64_lt32_high(nfp_prog, dst, src);
2200
2201		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2202			return -EINVAL;
2203		shr_reg64_ge32(nfp_prog, dst, src);
2204
2205		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2206			return -EINVAL;
2207	}
2208
2209	return 0;
2210}
2211
2212/* Code logic is the same as __shr_imm64 except ashr requires signedness bit
2213 * told through PREV_ALU result.
2214 */
2215static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2216{
2217	if (!shift_amt)
2218		return 0;
2219
2220	if (shift_amt < 32) {
2221		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2222			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2223		/* Set signedness bit. */
2224		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2225			 reg_imm(0));
2226		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2227			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2228	} else if (shift_amt == 32) {
2229		/* NOTE: this also helps setting signedness bit. */
2230		wrp_reg_mov(nfp_prog, dst, dst + 1);
2231		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2232			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2233	} else if (shift_amt > 32) {
2234		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2235			 reg_imm(0));
2236		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2237			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2238		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2239			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2240	}
2241
2242	return 0;
2243}
2244
2245static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2246{
2247	const struct bpf_insn *insn = &meta->insn;
2248	u8 dst = insn->dst_reg * 2;
2249
2250	return __ashr_imm64(nfp_prog, dst, insn->imm);
2251}
2252
2253static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2254{
2255	/* NOTE: the first insn will set both indirect shift amount (source A)
2256	 * and signedness bit (MSB of result).
2257	 */
2258	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2259	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2260		       reg_b(dst + 1), SHF_SC_R_SHF);
2261}
2262
2263static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2264{
2265	/* NOTE: it is the same as logic shift because we don't need to shift in
2266	 * signedness bit when the shift amount is less than 32.
2267	 */
2268	return shr_reg64_lt32_low(nfp_prog, dst, src);
2269}
2270
2271static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2272{
2273	ashr_reg64_lt32_low(nfp_prog, dst, src);
2274	ashr_reg64_lt32_high(nfp_prog, dst, src);
2275}
2276
2277static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2278{
2279	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2280	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2281		       reg_b(dst + 1), SHF_SC_R_SHF);
2282	emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2283		 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2284}
2285
2286/* Like ashr_imm64, but need to use indirect shift. */
2287static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2288{
2289	const struct bpf_insn *insn = &meta->insn;
2290	u64 umin, umax;
2291	u8 dst, src;
2292
2293	dst = insn->dst_reg * 2;
2294	umin = meta->umin_src;
2295	umax = meta->umax_src;
2296	if (umin == umax)
2297		return __ashr_imm64(nfp_prog, dst, umin);
2298
2299	src = insn->src_reg * 2;
2300	if (umax < 32) {
2301		ashr_reg64_lt32(nfp_prog, dst, src);
2302	} else if (umin >= 32) {
2303		ashr_reg64_ge32(nfp_prog, dst, src);
2304	} else {
2305		u16 label_ge32, label_end;
2306
2307		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2308		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2309		ashr_reg64_lt32_low(nfp_prog, dst, src);
2310		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2311		emit_br(nfp_prog, BR_UNC, label_end, 2);
2312		/* ashr_reg64_lt32_high packed in delay slot. */
2313		ashr_reg64_lt32_high(nfp_prog, dst, src);
2314
2315		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2316			return -EINVAL;
2317		ashr_reg64_ge32(nfp_prog, dst, src);
2318
2319		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2320			return -EINVAL;
2321	}
2322
2323	return 0;
2324}
2325
2326static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2327{
2328	const struct bpf_insn *insn = &meta->insn;
2329
2330	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
2331	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2332
2333	return 0;
2334}
2335
2336static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2337{
2338	const struct bpf_insn *insn = &meta->insn;
2339
2340	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
2341	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2342
2343	return 0;
2344}
2345
2346static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2347{
2348	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
2349}
2350
2351static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2352{
2353	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR);
2354}
2355
2356static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2357{
2358	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
2359}
2360
2361static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2362{
2363	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND);
2364}
2365
2366static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2367{
2368	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
2369}
2370
2371static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2372{
2373	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR);
2374}
2375
2376static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2377{
2378	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
2379}
2380
2381static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2382{
2383	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD);
2384}
2385
2386static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2387{
2388	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
2389}
2390
2391static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2392{
2393	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB);
2394}
2395
2396static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2397{
2398	return wrp_mul(nfp_prog, meta, false, true);
2399}
2400
2401static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2402{
2403	return wrp_mul(nfp_prog, meta, false, false);
2404}
2405
2406static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2407{
2408	return div_reg64(nfp_prog, meta);
2409}
2410
2411static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2412{
2413	return div_imm64(nfp_prog, meta);
2414}
2415
2416static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2417{
2418	u8 dst = meta->insn.dst_reg * 2;
2419
2420	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
2421	wrp_zext(nfp_prog, meta, dst);
2422
2423	return 0;
2424}
2425
2426static int
2427__ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2428	   u8 shift_amt)
2429{
2430	if (shift_amt) {
2431		/* Set signedness bit (MSB of result). */
2432		emit_alu(nfp_prog, reg_none(), reg_a(dst), ALU_OP_OR,
2433			 reg_imm(0));
2434		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2435			 reg_b(dst), SHF_SC_R_SHF, shift_amt);
2436	}
2437	wrp_zext(nfp_prog, meta, dst);
2438
2439	return 0;
2440}
2441
2442static int ashr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2443{
2444	const struct bpf_insn *insn = &meta->insn;
2445	u64 umin, umax;
2446	u8 dst, src;
2447
2448	dst = insn->dst_reg * 2;
2449	umin = meta->umin_src;
2450	umax = meta->umax_src;
2451	if (umin == umax)
2452		return __ashr_imm(nfp_prog, meta, dst, umin);
2453
2454	src = insn->src_reg * 2;
2455	/* NOTE: the first insn will set both indirect shift amount (source A)
2456	 * and signedness bit (MSB of result).
2457	 */
2458	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst));
2459	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2460		       reg_b(dst), SHF_SC_R_SHF);
2461	wrp_zext(nfp_prog, meta, dst);
2462
2463	return 0;
2464}
2465
2466static int ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2467{
2468	const struct bpf_insn *insn = &meta->insn;
2469	u8 dst = insn->dst_reg * 2;
2470
2471	return __ashr_imm(nfp_prog, meta, dst, insn->imm);
2472}
2473
2474static int
2475__shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2476	  u8 shift_amt)
2477{
2478	if (shift_amt)
2479		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2480			 reg_b(dst), SHF_SC_R_SHF, shift_amt);
2481	wrp_zext(nfp_prog, meta, dst);
2482	return 0;
2483}
2484
2485static int shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2486{
2487	const struct bpf_insn *insn = &meta->insn;
2488	u8 dst = insn->dst_reg * 2;
2489
2490	return __shr_imm(nfp_prog, meta, dst, insn->imm);
2491}
2492
2493static int shr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2494{
2495	const struct bpf_insn *insn = &meta->insn;
2496	u64 umin, umax;
2497	u8 dst, src;
2498
2499	dst = insn->dst_reg * 2;
2500	umin = meta->umin_src;
2501	umax = meta->umax_src;
2502	if (umin == umax)
2503		return __shr_imm(nfp_prog, meta, dst, umin);
2504
2505	src = insn->src_reg * 2;
2506	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2507	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2508		       reg_b(dst), SHF_SC_R_SHF);
2509	wrp_zext(nfp_prog, meta, dst);
2510	return 0;
2511}
2512
2513static int
2514__shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2515	  u8 shift_amt)
2516{
2517	if (shift_amt)
2518		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2519			 reg_b(dst), SHF_SC_L_SHF, shift_amt);
2520	wrp_zext(nfp_prog, meta, dst);
2521	return 0;
2522}
2523
2524static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2525{
2526	const struct bpf_insn *insn = &meta->insn;
2527	u8 dst = insn->dst_reg * 2;
2528
2529	return __shl_imm(nfp_prog, meta, dst, insn->imm);
2530}
2531
2532static int shl_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2533{
2534	const struct bpf_insn *insn = &meta->insn;
2535	u64 umin, umax;
2536	u8 dst, src;
2537
2538	dst = insn->dst_reg * 2;
2539	umin = meta->umin_src;
2540	umax = meta->umax_src;
2541	if (umin == umax)
2542		return __shl_imm(nfp_prog, meta, dst, umin);
2543
2544	src = insn->src_reg * 2;
2545	shl_reg64_lt32_low(nfp_prog, dst, src);
2546	wrp_zext(nfp_prog, meta, dst);
2547	return 0;
2548}
2549
2550static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2551{
2552	const struct bpf_insn *insn = &meta->insn;
2553	u8 gpr = insn->dst_reg * 2;
2554
2555	switch (insn->imm) {
2556	case 16:
2557		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
2558			      SHF_SC_R_ROT, 8);
2559		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
2560			      SHF_SC_R_SHF, 16);
2561
2562		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2563		break;
2564	case 32:
2565		wrp_end32(nfp_prog, reg_a(gpr), gpr);
2566		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2567		break;
2568	case 64:
2569		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
2570
2571		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
2572		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
2573		break;
2574	}
2575
2576	return 0;
2577}
2578
2579static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2580{
2581	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
2582	u32 imm_lo, imm_hi;
2583	u8 dst;
2584
2585	dst = prev->insn.dst_reg * 2;
2586	imm_lo = prev->insn.imm;
2587	imm_hi = meta->insn.imm;
2588
2589	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
2590
2591	/* mov is always 1 insn, load imm may be two, so try to use mov */
2592	if (imm_hi == imm_lo)
2593		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
2594	else
2595		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
2596
2597	return 0;
2598}
2599
2600static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2601{
2602	meta->double_cb = imm_ld8_part2;
2603	return 0;
2604}
2605
2606static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2607{
2608	return construct_data_ld(nfp_prog, meta, meta->insn.imm, 1);
2609}
2610
2611static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2612{
2613	return construct_data_ld(nfp_prog, meta, meta->insn.imm, 2);
2614}
2615
2616static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2617{
2618	return construct_data_ld(nfp_prog, meta, meta->insn.imm, 4);
2619}
2620
2621static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2622{
2623	return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2624				     meta->insn.src_reg * 2, 1);
2625}
2626
2627static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2628{
2629	return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2630				     meta->insn.src_reg * 2, 2);
2631}
2632
2633static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2634{
2635	return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2636				     meta->insn.src_reg * 2, 4);
2637}
2638
2639static int
2640mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2641	      unsigned int size, unsigned int ptr_off)
2642{
2643	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2644			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
2645			    true, wrp_lmem_load);
2646}
2647
2648static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2649		       u8 size)
2650{
2651	swreg dst = reg_both(meta->insn.dst_reg * 2);
2652
2653	switch (meta->insn.off) {
2654	case offsetof(struct __sk_buff, len):
2655		if (size != sizeof_field(struct __sk_buff, len))
2656			return -EOPNOTSUPP;
2657		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
2658		break;
2659	case offsetof(struct __sk_buff, data):
2660		if (size != sizeof_field(struct __sk_buff, data))
2661			return -EOPNOTSUPP;
2662		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2663		break;
2664	case offsetof(struct __sk_buff, data_end):
2665		if (size != sizeof_field(struct __sk_buff, data_end))
2666			return -EOPNOTSUPP;
2667		emit_alu(nfp_prog, dst,
2668			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2669		break;
2670	default:
2671		return -EOPNOTSUPP;
2672	}
2673
2674	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2675
2676	return 0;
2677}
2678
2679static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2680		       u8 size)
2681{
2682	swreg dst = reg_both(meta->insn.dst_reg * 2);
2683
2684	switch (meta->insn.off) {
2685	case offsetof(struct xdp_md, data):
2686		if (size != sizeof_field(struct xdp_md, data))
2687			return -EOPNOTSUPP;
2688		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2689		break;
2690	case offsetof(struct xdp_md, data_end):
2691		if (size != sizeof_field(struct xdp_md, data_end))
2692			return -EOPNOTSUPP;
2693		emit_alu(nfp_prog, dst,
2694			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2695		break;
2696	default:
2697		return -EOPNOTSUPP;
2698	}
2699
2700	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2701
2702	return 0;
2703}
2704
2705static int
2706mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2707	     unsigned int size)
2708{
2709	swreg tmp_reg;
2710
2711	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2712
2713	return data_ld_host_order_addr32(nfp_prog, meta, meta->insn.src_reg * 2,
2714					 tmp_reg, meta->insn.dst_reg * 2, size);
2715}
2716
2717static int
2718mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2719	     unsigned int size)
2720{
2721	swreg tmp_reg;
2722
2723	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2724
2725	return data_ld_host_order_addr40(nfp_prog, meta, meta->insn.src_reg * 2,
2726					 tmp_reg, meta->insn.dst_reg * 2, size);
2727}
2728
2729static void
2730mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
2731			   struct nfp_insn_meta *meta)
2732{
2733	s16 range_start = meta->pkt_cache.range_start;
2734	s16 range_end = meta->pkt_cache.range_end;
2735	swreg src_base, off;
2736	u8 xfer_num, len;
2737	bool indir;
2738
2739	off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
2740	src_base = reg_a(meta->insn.src_reg * 2);
2741	len = range_end - range_start;
2742	xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
2743
2744	indir = len > 8 * REG_WIDTH;
2745	/* Setup PREV_ALU for indirect mode. */
2746	if (indir)
2747		wrp_immed(nfp_prog, reg_none(),
2748			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
2749
2750	/* Cache memory into transfer-in registers. */
2751	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
2752		     off, xfer_num - 1, CMD_CTX_SWAP, indir);
2753}
2754
2755static int
2756mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
2757				     struct nfp_insn_meta *meta,
2758				     unsigned int size)
2759{
2760	s16 range_start = meta->pkt_cache.range_start;
2761	s16 insn_off = meta->insn.off - range_start;
2762	swreg dst_lo, dst_hi, src_lo, src_mid;
2763	u8 dst_gpr = meta->insn.dst_reg * 2;
2764	u8 len_lo = size, len_mid = 0;
2765	u8 idx = insn_off / REG_WIDTH;
2766	u8 off = insn_off % REG_WIDTH;
2767
2768	dst_hi = reg_both(dst_gpr + 1);
2769	dst_lo = reg_both(dst_gpr);
2770	src_lo = reg_xfer(idx);
2771
2772	/* The read length could involve as many as three registers. */
2773	if (size > REG_WIDTH - off) {
2774		/* Calculate the part in the second register. */
2775		len_lo = REG_WIDTH - off;
2776		len_mid = size - len_lo;
2777
2778		/* Calculate the part in the third register. */
2779		if (size > 2 * REG_WIDTH - off)
2780			len_mid = REG_WIDTH;
2781	}
2782
2783	wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
2784
2785	if (!len_mid) {
2786		wrp_zext(nfp_prog, meta, dst_gpr);
2787		return 0;
2788	}
2789
2790	src_mid = reg_xfer(idx + 1);
2791
2792	if (size <= REG_WIDTH) {
2793		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
2794		wrp_zext(nfp_prog, meta, dst_gpr);
2795	} else {
2796		swreg src_hi = reg_xfer(idx + 2);
2797
2798		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
2799				   REG_WIDTH - len_lo, len_lo);
2800		wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
2801				REG_WIDTH - len_lo);
2802		wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
2803				   len_lo);
2804	}
2805
2806	return 0;
2807}
2808
2809static int
2810mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2811				   struct nfp_insn_meta *meta,
2812				   unsigned int size)
2813{
2814	swreg dst_lo, dst_hi, src_lo;
2815	u8 dst_gpr, idx;
2816
2817	idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2818	dst_gpr = meta->insn.dst_reg * 2;
2819	dst_hi = reg_both(dst_gpr + 1);
2820	dst_lo = reg_both(dst_gpr);
2821	src_lo = reg_xfer(idx);
2822
2823	if (size < REG_WIDTH) {
2824		wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
2825		wrp_zext(nfp_prog, meta, dst_gpr);
2826	} else if (size == REG_WIDTH) {
2827		wrp_mov(nfp_prog, dst_lo, src_lo);
2828		wrp_zext(nfp_prog, meta, dst_gpr);
2829	} else {
2830		swreg src_hi = reg_xfer(idx + 1);
2831
2832		wrp_mov(nfp_prog, dst_lo, src_lo);
2833		wrp_mov(nfp_prog, dst_hi, src_hi);
2834	}
2835
2836	return 0;
2837}
2838
2839static int
2840mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2841			   struct nfp_insn_meta *meta, unsigned int size)
2842{
2843	u8 off = meta->insn.off - meta->pkt_cache.range_start;
2844
2845	if (IS_ALIGNED(off, REG_WIDTH))
2846		return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2847
2848	return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2849}
2850
2851static int
2852mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2853	unsigned int size)
2854{
2855	if (meta->ldst_gather_len)
2856		return nfp_cpp_memcpy(nfp_prog, meta);
2857
2858	if (meta->ptr.type == PTR_TO_CTX) {
2859		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2860			return mem_ldx_xdp(nfp_prog, meta, size);
2861		else
2862			return mem_ldx_skb(nfp_prog, meta, size);
2863	}
2864
2865	if (meta->ptr.type == PTR_TO_PACKET) {
2866		if (meta->pkt_cache.range_end) {
2867			if (meta->pkt_cache.do_init)
2868				mem_ldx_data_init_pktcache(nfp_prog, meta);
2869
2870			return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2871		} else {
2872			return mem_ldx_data(nfp_prog, meta, size);
2873		}
2874	}
2875
2876	if (meta->ptr.type == PTR_TO_STACK)
2877		return mem_ldx_stack(nfp_prog, meta, size,
2878				     meta->ptr.off + meta->ptr.var_off.value);
2879
2880	if (meta->ptr.type == PTR_TO_MAP_VALUE)
2881		return mem_ldx_emem(nfp_prog, meta, size);
2882
2883	return -EOPNOTSUPP;
2884}
2885
2886static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2887{
2888	return mem_ldx(nfp_prog, meta, 1);
2889}
2890
2891static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2892{
2893	return mem_ldx(nfp_prog, meta, 2);
2894}
2895
2896static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2897{
2898	return mem_ldx(nfp_prog, meta, 4);
2899}
2900
2901static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2902{
2903	return mem_ldx(nfp_prog, meta, 8);
2904}
2905
2906static int
2907mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2908	    unsigned int size)
2909{
2910	u64 imm = meta->insn.imm; /* sign extend */
2911	swreg off_reg;
2912
2913	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2914
2915	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2916				  imm, size);
2917}
2918
2919static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2920		  unsigned int size)
2921{
2922	if (meta->ptr.type == PTR_TO_PACKET)
2923		return mem_st_data(nfp_prog, meta, size);
2924
2925	return -EOPNOTSUPP;
2926}
2927
2928static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2929{
2930	return mem_st(nfp_prog, meta, 1);
2931}
2932
2933static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2934{
2935	return mem_st(nfp_prog, meta, 2);
2936}
2937
2938static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2939{
2940	return mem_st(nfp_prog, meta, 4);
2941}
2942
2943static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2944{
2945	return mem_st(nfp_prog, meta, 8);
2946}
2947
2948static int
2949mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2950	     unsigned int size)
2951{
2952	swreg off_reg;
2953
2954	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2955
2956	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2957				   meta->insn.src_reg * 2, size);
2958}
2959
2960static int
2961mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2962	      unsigned int size, unsigned int ptr_off)
2963{
2964	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2965			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2966			    false, wrp_lmem_store);
2967}
2968
2969static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2970{
2971	switch (meta->insn.off) {
2972	case offsetof(struct xdp_md, rx_queue_index):
2973		return nfp_queue_select(nfp_prog, meta);
2974	}
2975
2976	WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2977	return -EOPNOTSUPP;
2978}
2979
2980static int
2981mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2982	unsigned int size)
2983{
2984	if (meta->ptr.type == PTR_TO_PACKET)
2985		return mem_stx_data(nfp_prog, meta, size);
2986
2987	if (meta->ptr.type == PTR_TO_STACK)
2988		return mem_stx_stack(nfp_prog, meta, size,
2989				     meta->ptr.off + meta->ptr.var_off.value);
2990
2991	return -EOPNOTSUPP;
2992}
2993
2994static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2995{
2996	return mem_stx(nfp_prog, meta, 1);
2997}
2998
2999static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3000{
3001	return mem_stx(nfp_prog, meta, 2);
3002}
3003
3004static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3005{
3006	if (meta->ptr.type == PTR_TO_CTX)
3007		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
3008			return mem_stx_xdp(nfp_prog, meta);
3009	return mem_stx(nfp_prog, meta, 4);
3010}
3011
3012static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3013{
3014	return mem_stx(nfp_prog, meta, 8);
3015}
3016
3017static int
3018mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
3019{
3020	u8 dst_gpr = meta->insn.dst_reg * 2;
3021	u8 src_gpr = meta->insn.src_reg * 2;
3022	unsigned int full_add, out;
3023	swreg addra, addrb, off;
3024
3025	off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
3026
3027	/* We can fit 16 bits into command immediate, if we know the immediate
3028	 * is guaranteed to either always or never fit into 16 bit we only
3029	 * generate code to handle that particular case, otherwise generate
3030	 * code for both.
3031	 */
3032	out = nfp_prog_current_offset(nfp_prog);
3033	full_add = nfp_prog_current_offset(nfp_prog);
3034
3035	if (meta->insn.off) {
3036		out += 2;
3037		full_add += 2;
3038	}
3039	if (meta->xadd_maybe_16bit) {
3040		out += 3;
3041		full_add += 3;
3042	}
3043	if (meta->xadd_over_16bit)
3044		out += 2 + is64;
3045	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3046		out += 5;
3047		full_add += 5;
3048	}
3049
3050	/* Generate the branch for choosing add_imm vs add */
3051	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3052		swreg max_imm = imm_a(nfp_prog);
3053
3054		wrp_immed(nfp_prog, max_imm, 0xffff);
3055		emit_alu(nfp_prog, reg_none(),
3056			 max_imm, ALU_OP_SUB, reg_b(src_gpr));
3057		emit_alu(nfp_prog, reg_none(),
3058			 reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
3059		emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
3060		/* defer for add */
3061	}
3062
3063	/* If insn has an offset add to the address */
3064	if (!meta->insn.off) {
3065		addra = reg_a(dst_gpr);
3066		addrb = reg_b(dst_gpr + 1);
3067	} else {
3068		emit_alu(nfp_prog, imma_a(nfp_prog),
3069			 reg_a(dst_gpr), ALU_OP_ADD, off);
3070		emit_alu(nfp_prog, imma_b(nfp_prog),
3071			 reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
3072		addra = imma_a(nfp_prog);
3073		addrb = imma_b(nfp_prog);
3074	}
3075
3076	/* Generate the add_imm if 16 bits are possible */
3077	if (meta->xadd_maybe_16bit) {
3078		swreg prev_alu = imm_a(nfp_prog);
3079
3080		wrp_immed(nfp_prog, prev_alu,
3081			  FIELD_PREP(CMD_OVE_DATA, 2) |
3082			  CMD_OVE_LEN |
3083			  FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
3084		wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
3085		emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
3086			       addra, addrb, 0, CMD_CTX_NO_SWAP);
3087
3088		if (meta->xadd_over_16bit)
3089			emit_br(nfp_prog, BR_UNC, out, 0);
3090	}
3091
3092	if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
3093		return -EINVAL;
3094
3095	/* Generate the add if 16 bits are not guaranteed */
3096	if (meta->xadd_over_16bit) {
3097		emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
3098			 addra, addrb, is64 << 2,
3099			 is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
3100
3101		wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
3102		if (is64)
3103			wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
3104	}
3105
3106	if (!nfp_prog_confirm_current_offset(nfp_prog, out))
3107		return -EINVAL;
3108
3109	return 0;
3110}
3111
3112static int mem_atomic4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3113{
3114	if (meta->insn.imm != BPF_ADD)
3115		return -EOPNOTSUPP;
3116
3117	return mem_xadd(nfp_prog, meta, false);
3118}
3119
3120static int mem_atomic8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3121{
3122	if (meta->insn.imm != BPF_ADD)
3123		return -EOPNOTSUPP;
3124
3125	return mem_xadd(nfp_prog, meta, true);
3126}
3127
3128static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3129{
3130	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
3131
3132	return 0;
3133}
3134
3135static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3136{
3137	const struct bpf_insn *insn = &meta->insn;
3138	u64 imm = insn->imm; /* sign extend */
3139	swreg or1, or2, tmp_reg;
3140
3141	or1 = reg_a(insn->dst_reg * 2);
3142	or2 = reg_b(insn->dst_reg * 2 + 1);
3143
3144	if (imm & ~0U) {
3145		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3146		emit_alu(nfp_prog, imm_a(nfp_prog),
3147			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3148		or1 = imm_a(nfp_prog);
3149	}
3150
3151	if (imm >> 32) {
3152		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3153		emit_alu(nfp_prog, imm_b(nfp_prog),
3154			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3155		or2 = imm_b(nfp_prog);
3156	}
3157
3158	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
3159	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3160
3161	return 0;
3162}
3163
3164static int jeq32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3165{
3166	const struct bpf_insn *insn = &meta->insn;
3167	swreg tmp_reg;
3168
3169	tmp_reg = ur_load_imm_any(nfp_prog, insn->imm, imm_b(nfp_prog));
3170	emit_alu(nfp_prog, reg_none(),
3171		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3172	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3173
3174	return 0;
3175}
3176
3177static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3178{
3179	const struct bpf_insn *insn = &meta->insn;
3180	u64 imm = insn->imm; /* sign extend */
3181	u8 dst_gpr = insn->dst_reg * 2;
3182	swreg tmp_reg;
3183
3184	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3185	emit_alu(nfp_prog, imm_b(nfp_prog),
3186		 reg_a(dst_gpr), ALU_OP_AND, tmp_reg);
3187	/* Upper word of the mask can only be 0 or ~0 from sign extension,
3188	 * so either ignore it or OR the whole thing in.
3189	 */
3190	if (is_mbpf_jmp64(meta) && imm >> 32) {
3191		emit_alu(nfp_prog, reg_none(),
3192			 reg_a(dst_gpr + 1), ALU_OP_OR, imm_b(nfp_prog));
3193	}
3194	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3195
3196	return 0;
3197}
3198
3199static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3200{
3201	const struct bpf_insn *insn = &meta->insn;
3202	u64 imm = insn->imm; /* sign extend */
3203	bool is_jmp32 = is_mbpf_jmp32(meta);
3204	swreg tmp_reg;
3205
3206	if (!imm) {
3207		if (is_jmp32)
3208			emit_alu(nfp_prog, reg_none(), reg_none(), ALU_OP_NONE,
3209				 reg_b(insn->dst_reg * 2));
3210		else
3211			emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
3212				 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
3213		emit_br(nfp_prog, BR_BNE, insn->off, 0);
3214		return 0;
3215	}
3216
3217	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3218	emit_alu(nfp_prog, reg_none(),
3219		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3220	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3221
3222	if (is_jmp32)
3223		return 0;
3224
3225	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3226	emit_alu(nfp_prog, reg_none(),
3227		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3228	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3229
3230	return 0;
3231}
3232
3233static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3234{
3235	const struct bpf_insn *insn = &meta->insn;
3236
3237	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
3238		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
3239	if (is_mbpf_jmp64(meta)) {
3240		emit_alu(nfp_prog, imm_b(nfp_prog),
3241			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR,
3242			 reg_b(insn->src_reg * 2 + 1));
3243		emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR,
3244			 imm_b(nfp_prog));
3245	}
3246	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3247
3248	return 0;
3249}
3250
3251static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3252{
3253	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
3254}
3255
3256static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3257{
3258	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
3259}
3260
3261static int
3262bpf_to_bpf_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3263{
3264	u32 ret_tgt, stack_depth, offset_br;
3265	swreg tmp_reg;
3266
3267	stack_depth = round_up(nfp_prog->stack_frame_depth, STACK_FRAME_ALIGN);
3268	/* Space for saving the return address is accounted for by the callee,
3269	 * so stack_depth can be zero for the main function.
3270	 */
3271	if (stack_depth) {
3272		tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3273					  stack_imm(nfp_prog));
3274		emit_alu(nfp_prog, stack_reg(nfp_prog),
3275			 stack_reg(nfp_prog), ALU_OP_ADD, tmp_reg);
3276		emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3277			    NFP_CSR_ACT_LM_ADDR0);
3278	}
3279
3280	/* Two cases for jumping to the callee:
3281	 *
3282	 * - If callee uses and needs to save R6~R9 then:
3283	 *     1. Put the start offset of the callee into imm_b(). This will
3284	 *        require a fixup step, as we do not necessarily know this
3285	 *        address yet.
3286	 *     2. Put the return address from the callee to the caller into
3287	 *        register ret_reg().
3288	 *     3. (After defer slots are consumed) Jump to the subroutine that
3289	 *        pushes the registers to the stack.
3290	 *   The subroutine acts as a trampoline, and returns to the address in
3291	 *   imm_b(), i.e. jumps to the callee.
3292	 *
3293	 * - If callee does not need to save R6~R9 then just load return
3294	 *   address to the caller in ret_reg(), and jump to the callee
3295	 *   directly.
3296	 *
3297	 * Using ret_reg() to pass the return address to the callee is set here
3298	 * as a convention. The callee can then push this address onto its
3299	 * stack frame in its prologue. The advantages of passing the return
3300	 * address through ret_reg(), instead of pushing it to the stack right
3301	 * here, are the following:
3302	 * - It looks cleaner.
3303	 * - If the called function is called multiple time, we get a lower
3304	 *   program size.
3305	 * - We save two no-op instructions that should be added just before
3306	 *   the emit_br() when stack depth is not null otherwise.
3307	 * - If we ever find a register to hold the return address during whole
3308	 *   execution of the callee, we will not have to push the return
3309	 *   address to the stack for leaf functions.
3310	 */
3311	if (!meta->jmp_dst) {
3312		pr_err("BUG: BPF-to-BPF call has no destination recorded\n");
3313		return -ELOOP;
3314	}
3315	if (nfp_prog->subprog[meta->jmp_dst->subprog_idx].needs_reg_push) {
3316		ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
3317		emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2,
3318			     RELO_BR_GO_CALL_PUSH_REGS);
3319		offset_br = nfp_prog_current_offset(nfp_prog);
3320		wrp_immed_relo(nfp_prog, imm_b(nfp_prog), 0, RELO_IMMED_REL);
3321	} else {
3322		ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
3323		emit_br(nfp_prog, BR_UNC, meta->insn.imm, 1);
3324		offset_br = nfp_prog_current_offset(nfp_prog);
3325	}
3326	wrp_immed_relo(nfp_prog, ret_reg(nfp_prog), ret_tgt, RELO_IMMED_REL);
3327
3328	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
3329		return -EINVAL;
3330
3331	if (stack_depth) {
3332		tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3333					  stack_imm(nfp_prog));
3334		emit_alu(nfp_prog, stack_reg(nfp_prog),
3335			 stack_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
3336		emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3337			    NFP_CSR_ACT_LM_ADDR0);
3338		wrp_nops(nfp_prog, 3);
3339	}
3340
3341	meta->num_insns_after_br = nfp_prog_current_offset(nfp_prog);
3342	meta->num_insns_after_br -= offset_br;
3343
3344	return 0;
3345}
3346
3347static int helper_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3348{
3349	switch (meta->insn.imm) {
3350	case BPF_FUNC_xdp_adjust_head:
3351		return adjust_head(nfp_prog, meta);
3352	case BPF_FUNC_xdp_adjust_tail:
3353		return adjust_tail(nfp_prog, meta);
3354	case BPF_FUNC_map_lookup_elem:
3355	case BPF_FUNC_map_update_elem:
3356	case BPF_FUNC_map_delete_elem:
3357		return map_call_stack_common(nfp_prog, meta);
3358	case BPF_FUNC_get_prandom_u32:
3359		return nfp_get_prandom_u32(nfp_prog, meta);
3360	case BPF_FUNC_perf_event_output:
3361		return nfp_perf_event_output(nfp_prog, meta);
3362	default:
3363		WARN_ONCE(1, "verifier allowed unsupported function\n");
3364		return -EOPNOTSUPP;
3365	}
3366}
3367
3368static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3369{
3370	if (is_mbpf_pseudo_call(meta))
3371		return bpf_to_bpf_call(nfp_prog, meta);
3372	else
3373		return helper_call(nfp_prog, meta);
3374}
3375
3376static bool nfp_is_main_function(struct nfp_insn_meta *meta)
3377{
3378	return meta->subprog_idx == 0;
3379}
3380
3381static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3382{
3383	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
3384
3385	return 0;
3386}
3387
3388static int
3389nfp_subprog_epilogue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3390{
3391	if (nfp_prog->subprog[meta->subprog_idx].needs_reg_push) {
3392		/* Pop R6~R9 to the stack via related subroutine.
3393		 * We loaded the return address to the caller into ret_reg().
3394		 * This means that the subroutine does not come back here, we
3395		 * make it jump back to the subprogram caller directly!
3396		 */
3397		emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 1,
3398			     RELO_BR_GO_CALL_POP_REGS);
3399		/* Pop return address from the stack. */
3400		wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3401	} else {
3402		/* Pop return address from the stack. */
3403		wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3404		/* Jump back to caller if no callee-saved registers were used
3405		 * by the subprogram.
3406		 */
3407		emit_rtn(nfp_prog, ret_reg(nfp_prog), 0);
3408	}
3409
3410	return 0;
3411}
3412
3413static int jmp_exit(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3414{
3415	if (nfp_is_main_function(meta))
3416		return goto_out(nfp_prog, meta);
3417	else
3418		return nfp_subprog_epilogue(nfp_prog, meta);
3419}
3420
3421static const instr_cb_t instr_cb[256] = {
3422	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
3423	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
3424	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
3425	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
3426	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
3427	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
3428	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
3429	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
3430	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
3431	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
3432	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
3433	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
3434	[BPF_ALU64 | BPF_MUL | BPF_X] =	mul_reg64,
3435	[BPF_ALU64 | BPF_MUL | BPF_K] =	mul_imm64,
3436	[BPF_ALU64 | BPF_DIV | BPF_X] =	div_reg64,
3437	[BPF_ALU64 | BPF_DIV | BPF_K] =	div_imm64,
3438	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
3439	[BPF_ALU64 | BPF_LSH | BPF_X] =	shl_reg64,
3440	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
3441	[BPF_ALU64 | BPF_RSH | BPF_X] =	shr_reg64,
3442	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
3443	[BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64,
3444	[BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
3445	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
3446	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
3447	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
3448	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
3449	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
3450	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
3451	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
3452	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
3453	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
3454	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
3455	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
3456	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
3457	[BPF_ALU | BPF_MUL | BPF_X] =	mul_reg,
3458	[BPF_ALU | BPF_MUL | BPF_K] =	mul_imm,
3459	[BPF_ALU | BPF_DIV | BPF_X] =	div_reg,
3460	[BPF_ALU | BPF_DIV | BPF_K] =	div_imm,
3461	[BPF_ALU | BPF_NEG] =		neg_reg,
3462	[BPF_ALU | BPF_LSH | BPF_X] =	shl_reg,
3463	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
3464	[BPF_ALU | BPF_RSH | BPF_X] =	shr_reg,
3465	[BPF_ALU | BPF_RSH | BPF_K] =	shr_imm,
3466	[BPF_ALU | BPF_ARSH | BPF_X] =	ashr_reg,
3467	[BPF_ALU | BPF_ARSH | BPF_K] =	ashr_imm,
3468	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
3469	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
3470	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
3471	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
3472	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
3473	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
3474	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
3475	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
3476	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
3477	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
3478	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
3479	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
3480	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
3481	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
3482	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
3483	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
3484	[BPF_STX | BPF_ATOMIC | BPF_W] =	mem_atomic4,
3485	[BPF_STX | BPF_ATOMIC | BPF_DW] =	mem_atomic8,
3486	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
3487	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
3488	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
3489	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
3490	[BPF_JMP | BPF_JA | BPF_K] =	jump,
3491	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
3492	[BPF_JMP | BPF_JGT | BPF_K] =	cmp_imm,
3493	[BPF_JMP | BPF_JGE | BPF_K] =	cmp_imm,
3494	[BPF_JMP | BPF_JLT | BPF_K] =	cmp_imm,
3495	[BPF_JMP | BPF_JLE | BPF_K] =	cmp_imm,
3496	[BPF_JMP | BPF_JSGT | BPF_K] =  cmp_imm,
3497	[BPF_JMP | BPF_JSGE | BPF_K] =  cmp_imm,
3498	[BPF_JMP | BPF_JSLT | BPF_K] =  cmp_imm,
3499	[BPF_JMP | BPF_JSLE | BPF_K] =  cmp_imm,
3500	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
3501	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
3502	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
3503	[BPF_JMP | BPF_JGT | BPF_X] =	cmp_reg,
3504	[BPF_JMP | BPF_JGE | BPF_X] =	cmp_reg,
3505	[BPF_JMP | BPF_JLT | BPF_X] =	cmp_reg,
3506	[BPF_JMP | BPF_JLE | BPF_X] =	cmp_reg,
3507	[BPF_JMP | BPF_JSGT | BPF_X] =  cmp_reg,
3508	[BPF_JMP | BPF_JSGE | BPF_X] =  cmp_reg,
3509	[BPF_JMP | BPF_JSLT | BPF_X] =  cmp_reg,
3510	[BPF_JMP | BPF_JSLE | BPF_X] =  cmp_reg,
3511	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
3512	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
3513	[BPF_JMP32 | BPF_JEQ | BPF_K] =	jeq32_imm,
3514	[BPF_JMP32 | BPF_JGT | BPF_K] =	cmp_imm,
3515	[BPF_JMP32 | BPF_JGE | BPF_K] =	cmp_imm,
3516	[BPF_JMP32 | BPF_JLT | BPF_K] =	cmp_imm,
3517	[BPF_JMP32 | BPF_JLE | BPF_K] =	cmp_imm,
3518	[BPF_JMP32 | BPF_JSGT | BPF_K] =cmp_imm,
3519	[BPF_JMP32 | BPF_JSGE | BPF_K] =cmp_imm,
3520	[BPF_JMP32 | BPF_JSLT | BPF_K] =cmp_imm,
3521	[BPF_JMP32 | BPF_JSLE | BPF_K] =cmp_imm,
3522	[BPF_JMP32 | BPF_JSET | BPF_K] =jset_imm,
3523	[BPF_JMP32 | BPF_JNE | BPF_K] =	jne_imm,
3524	[BPF_JMP32 | BPF_JEQ | BPF_X] =	jeq_reg,
3525	[BPF_JMP32 | BPF_JGT | BPF_X] =	cmp_reg,
3526	[BPF_JMP32 | BPF_JGE | BPF_X] =	cmp_reg,
3527	[BPF_JMP32 | BPF_JLT | BPF_X] =	cmp_reg,
3528	[BPF_JMP32 | BPF_JLE | BPF_X] =	cmp_reg,
3529	[BPF_JMP32 | BPF_JSGT | BPF_X] =cmp_reg,
3530	[BPF_JMP32 | BPF_JSGE | BPF_X] =cmp_reg,
3531	[BPF_JMP32 | BPF_JSLT | BPF_X] =cmp_reg,
3532	[BPF_JMP32 | BPF_JSLE | BPF_X] =cmp_reg,
3533	[BPF_JMP32 | BPF_JSET | BPF_X] =jset_reg,
3534	[BPF_JMP32 | BPF_JNE | BPF_X] =	jne_reg,
3535	[BPF_JMP | BPF_CALL] =		call,
3536	[BPF_JMP | BPF_EXIT] =		jmp_exit,
3537};
3538
3539/* --- Assembler logic --- */
3540static int
3541nfp_fixup_immed_relo(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
3542		     struct nfp_insn_meta *jmp_dst, u32 br_idx)
3543{
3544	if (immed_get_value(nfp_prog->prog[br_idx + 1])) {
3545		pr_err("BUG: failed to fix up callee register saving\n");
3546		return -EINVAL;
3547	}
3548
3549	immed_set_value(&nfp_prog->prog[br_idx + 1], jmp_dst->off);
3550
3551	return 0;
3552}
3553
3554static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
3555{
3556	struct nfp_insn_meta *meta, *jmp_dst;
3557	u32 idx, br_idx;
3558	int err;
3559
3560	list_for_each_entry(meta, &nfp_prog->insns, l) {
3561		if (meta->flags & FLAG_INSN_SKIP_MASK)
3562			continue;
3563		if (!is_mbpf_jmp(meta))
3564			continue;
3565		if (meta->insn.code == (BPF_JMP | BPF_EXIT) &&
3566		    !nfp_is_main_function(meta))
3567			continue;
3568		if (is_mbpf_helper_call(meta))
3569			continue;
3570
3571		if (list_is_last(&meta->l, &nfp_prog->insns))
3572			br_idx = nfp_prog->last_bpf_off;
3573		else
3574			br_idx = list_next_entry(meta, l)->off - 1;
3575
3576		/* For BPF-to-BPF function call, a stack adjustment sequence is
3577		 * generated after the return instruction. Therefore, we must
3578		 * withdraw the length of this sequence to have br_idx pointing
3579		 * to where the "branch" NFP instruction is expected to be.
3580		 */
3581		if (is_mbpf_pseudo_call(meta))
3582			br_idx -= meta->num_insns_after_br;
3583
3584		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
3585			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
3586			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
3587			return -ELOOP;
3588		}
3589
3590		if (meta->insn.code == (BPF_JMP | BPF_EXIT))
3591			continue;
3592
3593		/* Leave special branches for later */
3594		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3595		    RELO_BR_REL && !is_mbpf_pseudo_call(meta))
3596			continue;
3597
3598		if (!meta->jmp_dst) {
3599			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
3600			return -ELOOP;
3601		}
3602
3603		jmp_dst = meta->jmp_dst;
3604
3605		if (jmp_dst->flags & FLAG_INSN_SKIP_PREC_DEPENDENT) {
3606			pr_err("Branch landing on removed instruction!!\n");
3607			return -ELOOP;
3608		}
3609
3610		if (is_mbpf_pseudo_call(meta) &&
3611		    nfp_prog->subprog[jmp_dst->subprog_idx].needs_reg_push) {
3612			err = nfp_fixup_immed_relo(nfp_prog, meta,
3613						   jmp_dst, br_idx);
3614			if (err)
3615				return err;
3616		}
3617
3618		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3619		    RELO_BR_REL)
3620			continue;
3621
3622		for (idx = meta->off; idx <= br_idx; idx++) {
3623			if (!nfp_is_br(nfp_prog->prog[idx]))
3624				continue;
3625			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
3626		}
3627	}
3628
3629	return 0;
3630}
3631
3632static void nfp_intro(struct nfp_prog *nfp_prog)
3633{
3634	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
3635	emit_alu(nfp_prog, plen_reg(nfp_prog),
3636		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
3637}
3638
3639static void
3640nfp_subprog_prologue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3641{
3642	/* Save return address into the stack. */
3643	wrp_mov(nfp_prog, reg_lm(0, 0), ret_reg(nfp_prog));
3644}
3645
3646static void
3647nfp_start_subprog(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3648{
3649	unsigned int depth = nfp_prog->subprog[meta->subprog_idx].stack_depth;
3650
3651	nfp_prog->stack_frame_depth = round_up(depth, 4);
3652	nfp_subprog_prologue(nfp_prog, meta);
3653}
3654
3655bool nfp_is_subprog_start(struct nfp_insn_meta *meta)
3656{
3657	return meta->flags & FLAG_INSN_IS_SUBPROG_START;
3658}
3659
3660static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
3661{
3662	/* TC direct-action mode:
3663	 *   0,1   ok        NOT SUPPORTED[1]
3664	 *   2   drop  0x22 -> drop,  count as stat1
3665	 *   4,5 nuke  0x02 -> drop
3666	 *   7  redir  0x44 -> redir, count as stat2
3667	 *   * unspec  0x11 -> pass,  count as stat0
3668	 *
3669	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
3670	 *     the exact decision made.  We are forced to support UNSPEC
3671	 *     to handle aborts so that's the only one we handle for passing
3672	 *     packets up the stack.
3673	 */
3674	/* Target for aborts */
3675	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3676
3677	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3678
3679	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3680	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
3681
3682	/* Target for normal exits */
3683	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3684
3685	/* if R0 > 7 jump to abort */
3686	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
3687	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3688	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3689
3690	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
3691	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
3692
3693	emit_shf(nfp_prog, reg_a(1),
3694		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
3695
3696	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3697	emit_shf(nfp_prog, reg_a(2),
3698		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3699
3700	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3701	emit_shf(nfp_prog, reg_b(2),
3702		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
3703
3704	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3705
3706	emit_shf(nfp_prog, reg_b(2),
3707		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
3708	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3709}
3710
3711static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
3712{
3713	/* XDP return codes:
3714	 *   0 aborted  0x82 -> drop,  count as stat3
3715	 *   1    drop  0x22 -> drop,  count as stat1
3716	 *   2    pass  0x11 -> pass,  count as stat0
3717	 *   3      tx  0x44 -> redir, count as stat2
3718	 *   * unknown  0x82 -> drop,  count as stat3
3719	 */
3720	/* Target for aborts */
3721	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3722
3723	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3724
3725	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3726	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
3727
3728	/* Target for normal exits */
3729	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3730
3731	/* if R0 > 3 jump to abort */
3732	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
3733	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3734
3735	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
3736
3737	emit_shf(nfp_prog, reg_a(1),
3738		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
3739
3740	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3741	emit_shf(nfp_prog, reg_b(2),
3742		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3743
3744	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3745
3746	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3747	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3748}
3749
3750static bool nfp_prog_needs_callee_reg_save(struct nfp_prog *nfp_prog)
3751{
3752	unsigned int idx;
3753
3754	for (idx = 1; idx < nfp_prog->subprog_cnt; idx++)
3755		if (nfp_prog->subprog[idx].needs_reg_push)
3756			return true;
3757
3758	return false;
3759}
3760
3761static void nfp_push_callee_registers(struct nfp_prog *nfp_prog)
3762{
3763	u8 reg;
3764
3765	/* Subroutine: Save all callee saved registers (R6 ~ R9).
3766	 * imm_b() holds the return address.
3767	 */
3768	nfp_prog->tgt_call_push_regs = nfp_prog_current_offset(nfp_prog);
3769	for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3770		u8 adj = (reg - BPF_REG_0) * 2;
3771		u8 idx = (reg - BPF_REG_6) * 2;
3772
3773		/* The first slot in the stack frame is used to push the return
3774		 * address in bpf_to_bpf_call(), start just after.
3775		 */
3776		wrp_mov(nfp_prog, reg_lm(0, 1 + idx), reg_b(adj));
3777
3778		if (reg == BPF_REG_8)
3779			/* Prepare to jump back, last 3 insns use defer slots */
3780			emit_rtn(nfp_prog, imm_b(nfp_prog), 3);
3781
3782		wrp_mov(nfp_prog, reg_lm(0, 1 + idx + 1), reg_b(adj + 1));
3783	}
3784}
3785
3786static void nfp_pop_callee_registers(struct nfp_prog *nfp_prog)
3787{
3788	u8 reg;
3789
3790	/* Subroutine: Restore all callee saved registers (R6 ~ R9).
3791	 * ret_reg() holds the return address.
3792	 */
3793	nfp_prog->tgt_call_pop_regs = nfp_prog_current_offset(nfp_prog);
3794	for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3795		u8 adj = (reg - BPF_REG_0) * 2;
3796		u8 idx = (reg - BPF_REG_6) * 2;
3797
3798		/* The first slot in the stack frame holds the return address,
3799		 * start popping just after that.
3800		 */
3801		wrp_mov(nfp_prog, reg_both(adj), reg_lm(0, 1 + idx));
3802
3803		if (reg == BPF_REG_8)
3804			/* Prepare to jump back, last 3 insns use defer slots */
3805			emit_rtn(nfp_prog, ret_reg(nfp_prog), 3);
3806
3807		wrp_mov(nfp_prog, reg_both(adj + 1), reg_lm(0, 1 + idx + 1));
3808	}
3809}
3810
3811static void nfp_outro(struct nfp_prog *nfp_prog)
3812{
3813	switch (nfp_prog->type) {
3814	case BPF_PROG_TYPE_SCHED_CLS:
3815		nfp_outro_tc_da(nfp_prog);
3816		break;
3817	case BPF_PROG_TYPE_XDP:
3818		nfp_outro_xdp(nfp_prog);
3819		break;
3820	default:
3821		WARN_ON(1);
3822	}
3823
3824	if (!nfp_prog_needs_callee_reg_save(nfp_prog))
3825		return;
3826
3827	nfp_push_callee_registers(nfp_prog);
3828	nfp_pop_callee_registers(nfp_prog);
3829}
3830
3831static int nfp_translate(struct nfp_prog *nfp_prog)
3832{
3833	struct nfp_insn_meta *meta;
3834	unsigned int depth;
3835	int err;
3836
3837	depth = nfp_prog->subprog[0].stack_depth;
3838	nfp_prog->stack_frame_depth = round_up(depth, 4);
3839
3840	nfp_intro(nfp_prog);
3841	if (nfp_prog->error)
3842		return nfp_prog->error;
3843
3844	list_for_each_entry(meta, &nfp_prog->insns, l) {
3845		instr_cb_t cb = instr_cb[meta->insn.code];
3846
3847		meta->off = nfp_prog_current_offset(nfp_prog);
3848
3849		if (nfp_is_subprog_start(meta)) {
3850			nfp_start_subprog(nfp_prog, meta);
3851			if (nfp_prog->error)
3852				return nfp_prog->error;
3853		}
3854
3855		if (meta->flags & FLAG_INSN_SKIP_MASK) {
3856			nfp_prog->n_translated++;
3857			continue;
3858		}
3859
3860		if (nfp_meta_has_prev(nfp_prog, meta) &&
3861		    nfp_meta_prev(meta)->double_cb)
3862			cb = nfp_meta_prev(meta)->double_cb;
3863		if (!cb)
3864			return -ENOENT;
3865		err = cb(nfp_prog, meta);
3866		if (err)
3867			return err;
3868		if (nfp_prog->error)
3869			return nfp_prog->error;
3870
3871		nfp_prog->n_translated++;
3872	}
3873
3874	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
3875
3876	nfp_outro(nfp_prog);
3877	if (nfp_prog->error)
3878		return nfp_prog->error;
3879
3880	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
3881	if (nfp_prog->error)
3882		return nfp_prog->error;
3883
3884	return nfp_fixup_branches(nfp_prog);
3885}
3886
3887/* --- Optimizations --- */
3888static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
3889{
3890	struct nfp_insn_meta *meta;
3891
3892	list_for_each_entry(meta, &nfp_prog->insns, l) {
3893		struct bpf_insn insn = meta->insn;
3894
3895		/* Programs converted from cBPF start with register xoring */
3896		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
3897		    insn.src_reg == insn.dst_reg)
3898			continue;
3899
3900		/* Programs start with R6 = R1 but we ignore the skb pointer */
3901		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
3902		    insn.src_reg == 1 && insn.dst_reg == 6)
3903			meta->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3904
3905		/* Return as soon as something doesn't match */
3906		if (!(meta->flags & FLAG_INSN_SKIP_MASK))
3907			return;
3908	}
3909}
3910
3911/* abs(insn.imm) will fit better into unrestricted reg immediate -
3912 * convert add/sub of a negative number into a sub/add of a positive one.
3913 */
3914static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
3915{
3916	struct nfp_insn_meta *meta;
3917
3918	list_for_each_entry(meta, &nfp_prog->insns, l) {
3919		struct bpf_insn insn = meta->insn;
3920
3921		if (meta->flags & FLAG_INSN_SKIP_MASK)
3922			continue;
3923
3924		if (!is_mbpf_alu(meta) && !is_mbpf_jmp(meta))
3925			continue;
3926		if (BPF_SRC(insn.code) != BPF_K)
3927			continue;
3928		if (insn.imm >= 0)
3929			continue;
3930
3931		if (is_mbpf_jmp(meta)) {
3932			switch (BPF_OP(insn.code)) {
3933			case BPF_JGE:
3934			case BPF_JSGE:
3935			case BPF_JLT:
3936			case BPF_JSLT:
3937				meta->jump_neg_op = true;
3938				break;
3939			default:
3940				continue;
3941			}
3942		} else {
3943			if (BPF_OP(insn.code) == BPF_ADD)
3944				insn.code = BPF_CLASS(insn.code) | BPF_SUB;
3945			else if (BPF_OP(insn.code) == BPF_SUB)
3946				insn.code = BPF_CLASS(insn.code) | BPF_ADD;
3947			else
3948				continue;
3949
3950			meta->insn.code = insn.code | BPF_K;
3951		}
3952
3953		meta->insn.imm = -insn.imm;
3954	}
3955}
3956
3957/* Remove masking after load since our load guarantees this is not needed */
3958static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
3959{
3960	struct nfp_insn_meta *meta1, *meta2;
3961	static const s32 exp_mask[] = {
3962		[BPF_B] = 0x000000ffU,
3963		[BPF_H] = 0x0000ffffU,
3964		[BPF_W] = 0xffffffffU,
3965	};
3966
3967	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3968		struct bpf_insn insn, next;
3969
3970		insn = meta1->insn;
3971		next = meta2->insn;
3972
3973		if (BPF_CLASS(insn.code) != BPF_LD)
3974			continue;
3975		if (BPF_MODE(insn.code) != BPF_ABS &&
3976		    BPF_MODE(insn.code) != BPF_IND)
3977			continue;
3978
3979		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
3980			continue;
3981
3982		if (!exp_mask[BPF_SIZE(insn.code)])
3983			continue;
3984		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
3985			continue;
3986
3987		if (next.src_reg || next.dst_reg)
3988			continue;
3989
3990		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
3991			continue;
3992
3993		meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3994	}
3995}
3996
3997static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
3998{
3999	struct nfp_insn_meta *meta1, *meta2, *meta3;
4000
4001	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
4002		struct bpf_insn insn, next1, next2;
4003
4004		insn = meta1->insn;
4005		next1 = meta2->insn;
4006		next2 = meta3->insn;
4007
4008		if (BPF_CLASS(insn.code) != BPF_LD)
4009			continue;
4010		if (BPF_MODE(insn.code) != BPF_ABS &&
4011		    BPF_MODE(insn.code) != BPF_IND)
4012			continue;
4013		if (BPF_SIZE(insn.code) != BPF_W)
4014			continue;
4015
4016		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
4017		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
4018		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
4019		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
4020			continue;
4021
4022		if (next1.src_reg || next1.dst_reg ||
4023		    next2.src_reg || next2.dst_reg)
4024			continue;
4025
4026		if (next1.imm != 0x20 || next2.imm != 0x20)
4027			continue;
4028
4029		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
4030		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
4031			continue;
4032
4033		meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4034		meta3->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4035	}
4036}
4037
4038/* load/store pair that forms memory copy sould look like the following:
4039 *
4040 *   ld_width R, [addr_src + offset_src]
4041 *   st_width [addr_dest + offset_dest], R
4042 *
4043 * The destination register of load and source register of store should
4044 * be the same, load and store should also perform at the same width.
4045 * If either of addr_src or addr_dest is stack pointer, we don't do the
4046 * CPP optimization as stack is modelled by registers on NFP.
4047 */
4048static bool
4049curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
4050		    struct nfp_insn_meta *st_meta)
4051{
4052	struct bpf_insn *ld = &ld_meta->insn;
4053	struct bpf_insn *st = &st_meta->insn;
4054
4055	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
4056		return false;
4057
4058	if (ld_meta->ptr.type != PTR_TO_PACKET &&
4059	    ld_meta->ptr.type != PTR_TO_MAP_VALUE)
4060		return false;
4061
4062	if (st_meta->ptr.type != PTR_TO_PACKET)
4063		return false;
4064
4065	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
4066		return false;
4067
4068	if (ld->dst_reg != st->src_reg)
4069		return false;
4070
4071	/* There is jump to the store insn in this pair. */
4072	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
4073		return false;
4074
4075	return true;
4076}
4077
4078/* Currently, we only support chaining load/store pairs if:
4079 *
4080 *  - Their address base registers are the same.
4081 *  - Their address offsets are in the same order.
4082 *  - They operate at the same memory width.
4083 *  - There is no jump into the middle of them.
4084 */
4085static bool
4086curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
4087			      struct nfp_insn_meta *st_meta,
4088			      struct bpf_insn *prev_ld,
4089			      struct bpf_insn *prev_st)
4090{
4091	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
4092	struct bpf_insn *ld = &ld_meta->insn;
4093	struct bpf_insn *st = &st_meta->insn;
4094	s16 prev_ld_off, prev_st_off;
4095
4096	/* This pair is the start pair. */
4097	if (!prev_ld)
4098		return true;
4099
4100	prev_size = BPF_LDST_BYTES(prev_ld);
4101	curr_size = BPF_LDST_BYTES(ld);
4102	prev_ld_base = prev_ld->src_reg;
4103	prev_st_base = prev_st->dst_reg;
4104	prev_ld_dst = prev_ld->dst_reg;
4105	prev_ld_off = prev_ld->off;
4106	prev_st_off = prev_st->off;
4107
4108	if (ld->dst_reg != prev_ld_dst)
4109		return false;
4110
4111	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
4112		return false;
4113
4114	if (curr_size != prev_size)
4115		return false;
4116
4117	/* There is jump to the head of this pair. */
4118	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
4119		return false;
4120
4121	/* Both in ascending order. */
4122	if (prev_ld_off + prev_size == ld->off &&
4123	    prev_st_off + prev_size == st->off)
4124		return true;
4125
4126	/* Both in descending order. */
4127	if (ld->off + curr_size == prev_ld_off &&
4128	    st->off + curr_size == prev_st_off)
4129		return true;
4130
4131	return false;
4132}
4133
4134/* Return TRUE if cross memory access happens. Cross memory access means
4135 * store area is overlapping with load area that a later load might load
4136 * the value from previous store, for this case we can't treat the sequence
4137 * as an memory copy.
4138 */
4139static bool
4140cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
4141		 struct nfp_insn_meta *head_st_meta)
4142{
4143	s16 head_ld_off, head_st_off, ld_off;
4144
4145	/* Different pointer types does not overlap. */
4146	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
4147		return false;
4148
4149	/* load and store are both PTR_TO_PACKET, check ID info.  */
4150	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
4151		return true;
4152
4153	/* Canonicalize the offsets. Turn all of them against the original
4154	 * base register.
4155	 */
4156	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
4157	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
4158	ld_off = ld->off + head_ld_meta->ptr.off;
4159
4160	/* Ascending order cross. */
4161	if (ld_off > head_ld_off &&
4162	    head_ld_off < head_st_off && ld_off >= head_st_off)
4163		return true;
4164
4165	/* Descending order cross. */
4166	if (ld_off < head_ld_off &&
4167	    head_ld_off > head_st_off && ld_off <= head_st_off)
4168		return true;
4169
4170	return false;
4171}
4172
4173/* This pass try to identify the following instructoin sequences.
4174 *
4175 *   load R, [regA + offA]
4176 *   store [regB + offB], R
4177 *   load R, [regA + offA + const_imm_A]
4178 *   store [regB + offB + const_imm_A], R
4179 *   load R, [regA + offA + 2 * const_imm_A]
4180 *   store [regB + offB + 2 * const_imm_A], R
4181 *   ...
4182 *
4183 * Above sequence is typically generated by compiler when lowering
4184 * memcpy. NFP prefer using CPP instructions to accelerate it.
4185 */
4186static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
4187{
4188	struct nfp_insn_meta *head_ld_meta = NULL;
4189	struct nfp_insn_meta *head_st_meta = NULL;
4190	struct nfp_insn_meta *meta1, *meta2;
4191	struct bpf_insn *prev_ld = NULL;
4192	struct bpf_insn *prev_st = NULL;
4193	u8 count = 0;
4194
4195	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4196		struct bpf_insn *ld = &meta1->insn;
4197		struct bpf_insn *st = &meta2->insn;
4198
4199		/* Reset record status if any of the following if true:
4200		 *   - The current insn pair is not load/store.
4201		 *   - The load/store pair doesn't chain with previous one.
4202		 *   - The chained load/store pair crossed with previous pair.
4203		 *   - The chained load/store pair has a total size of memory
4204		 *     copy beyond 128 bytes which is the maximum length a
4205		 *     single NFP CPP command can transfer.
4206		 */
4207		if (!curr_pair_is_memcpy(meta1, meta2) ||
4208		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
4209						   prev_st) ||
4210		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
4211						       head_st_meta) ||
4212				      head_ld_meta->ldst_gather_len >= 128))) {
4213			if (!count)
4214				continue;
4215
4216			if (count > 1) {
4217				s16 prev_ld_off = prev_ld->off;
4218				s16 prev_st_off = prev_st->off;
4219				s16 head_ld_off = head_ld_meta->insn.off;
4220
4221				if (prev_ld_off < head_ld_off) {
4222					head_ld_meta->insn.off = prev_ld_off;
4223					head_st_meta->insn.off = prev_st_off;
4224					head_ld_meta->ldst_gather_len =
4225						-head_ld_meta->ldst_gather_len;
4226				}
4227
4228				head_ld_meta->paired_st = &head_st_meta->insn;
4229				head_st_meta->flags |=
4230					FLAG_INSN_SKIP_PREC_DEPENDENT;
4231			} else {
4232				head_ld_meta->ldst_gather_len = 0;
4233			}
4234
4235			/* If the chain is ended by an load/store pair then this
4236			 * could serve as the new head of the next chain.
4237			 */
4238			if (curr_pair_is_memcpy(meta1, meta2)) {
4239				head_ld_meta = meta1;
4240				head_st_meta = meta2;
4241				head_ld_meta->ldst_gather_len =
4242					BPF_LDST_BYTES(ld);
4243				meta1 = nfp_meta_next(meta1);
4244				meta2 = nfp_meta_next(meta2);
4245				prev_ld = ld;
4246				prev_st = st;
4247				count = 1;
4248			} else {
4249				head_ld_meta = NULL;
4250				head_st_meta = NULL;
4251				prev_ld = NULL;
4252				prev_st = NULL;
4253				count = 0;
4254			}
4255
4256			continue;
4257		}
4258
4259		if (!head_ld_meta) {
4260			head_ld_meta = meta1;
4261			head_st_meta = meta2;
4262		} else {
4263			meta1->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4264			meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4265		}
4266
4267		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
4268		meta1 = nfp_meta_next(meta1);
4269		meta2 = nfp_meta_next(meta2);
4270		prev_ld = ld;
4271		prev_st = st;
4272		count++;
4273	}
4274}
4275
4276static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
4277{
4278	struct nfp_insn_meta *meta, *range_node = NULL;
4279	s16 range_start = 0, range_end = 0;
4280	bool cache_avail = false;
4281	struct bpf_insn *insn;
4282	s32 range_ptr_off = 0;
4283	u32 range_ptr_id = 0;
4284
4285	list_for_each_entry(meta, &nfp_prog->insns, l) {
4286		if (meta->flags & FLAG_INSN_IS_JUMP_DST)
4287			cache_avail = false;
4288
4289		if (meta->flags & FLAG_INSN_SKIP_MASK)
4290			continue;
4291
4292		insn = &meta->insn;
4293
4294		if (is_mbpf_store_pkt(meta) ||
4295		    insn->code == (BPF_JMP | BPF_CALL) ||
4296		    is_mbpf_classic_store_pkt(meta) ||
4297		    is_mbpf_classic_load(meta)) {
4298			cache_avail = false;
4299			continue;
4300		}
4301
4302		if (!is_mbpf_load(meta))
4303			continue;
4304
4305		if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
4306			cache_avail = false;
4307			continue;
4308		}
4309
4310		if (!cache_avail) {
4311			cache_avail = true;
4312			if (range_node)
4313				goto end_current_then_start_new;
4314			goto start_new;
4315		}
4316
4317		/* Check ID to make sure two reads share the same
4318		 * variable offset against PTR_TO_PACKET, and check OFF
4319		 * to make sure they also share the same constant
4320		 * offset.
4321		 *
4322		 * OFFs don't really need to be the same, because they
4323		 * are the constant offsets against PTR_TO_PACKET, so
4324		 * for different OFFs, we could canonicalize them to
4325		 * offsets against original packet pointer. We don't
4326		 * support this.
4327		 */
4328		if (meta->ptr.id == range_ptr_id &&
4329		    meta->ptr.off == range_ptr_off) {
4330			s16 new_start = range_start;
4331			s16 end, off = insn->off;
4332			s16 new_end = range_end;
4333			bool changed = false;
4334
4335			if (off < range_start) {
4336				new_start = off;
4337				changed = true;
4338			}
4339
4340			end = off + BPF_LDST_BYTES(insn);
4341			if (end > range_end) {
4342				new_end = end;
4343				changed = true;
4344			}
4345
4346			if (!changed)
4347				continue;
4348
4349			if (new_end - new_start <= 64) {
4350				/* Install new range. */
4351				range_start = new_start;
4352				range_end = new_end;
4353				continue;
4354			}
4355		}
4356
4357end_current_then_start_new:
4358		range_node->pkt_cache.range_start = range_start;
4359		range_node->pkt_cache.range_end = range_end;
4360start_new:
4361		range_node = meta;
4362		range_node->pkt_cache.do_init = true;
4363		range_ptr_id = range_node->ptr.id;
4364		range_ptr_off = range_node->ptr.off;
4365		range_start = insn->off;
4366		range_end = insn->off + BPF_LDST_BYTES(insn);
4367	}
4368
4369	if (range_node) {
4370		range_node->pkt_cache.range_start = range_start;
4371		range_node->pkt_cache.range_end = range_end;
4372	}
4373
4374	list_for_each_entry(meta, &nfp_prog->insns, l) {
4375		if (meta->flags & FLAG_INSN_SKIP_MASK)
4376			continue;
4377
4378		if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
4379			if (meta->pkt_cache.do_init) {
4380				range_start = meta->pkt_cache.range_start;
4381				range_end = meta->pkt_cache.range_end;
4382			} else {
4383				meta->pkt_cache.range_start = range_start;
4384				meta->pkt_cache.range_end = range_end;
4385			}
4386		}
4387	}
4388}
4389
4390static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
4391{
4392	nfp_bpf_opt_reg_init(nfp_prog);
4393
4394	nfp_bpf_opt_neg_add_sub(nfp_prog);
4395	nfp_bpf_opt_ld_mask(nfp_prog);
4396	nfp_bpf_opt_ld_shift(nfp_prog);
4397	nfp_bpf_opt_ldst_gather(nfp_prog);
4398	nfp_bpf_opt_pkt_cache(nfp_prog);
4399
4400	return 0;
4401}
4402
4403static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
4404{
4405	struct nfp_insn_meta *meta1, *meta2;
4406	struct nfp_bpf_map *nfp_map;
4407	struct bpf_map *map;
4408	u32 id;
4409
4410	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4411		if (meta1->flags & FLAG_INSN_SKIP_MASK ||
4412		    meta2->flags & FLAG_INSN_SKIP_MASK)
4413			continue;
4414
4415		if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
4416		    meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
4417			continue;
4418
4419		map = (void *)(unsigned long)((u32)meta1->insn.imm |
4420					      (u64)meta2->insn.imm << 32);
4421		if (bpf_map_offload_neutral(map)) {
4422			id = map->id;
4423		} else {
4424			nfp_map = map_to_offmap(map)->dev_priv;
4425			id = nfp_map->tid;
4426		}
4427
4428		meta1->insn.imm = id;
4429		meta2->insn.imm = 0;
4430	}
4431
4432	return 0;
4433}
4434
4435static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
4436{
4437	__le64 *ustore = (__force __le64 *)prog;
4438	int i;
4439
4440	for (i = 0; i < len; i++) {
4441		int err;
4442
4443		err = nfp_ustore_check_valid_no_ecc(prog[i]);
4444		if (err)
4445			return err;
4446
4447		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
4448	}
4449
4450	return 0;
4451}
4452
4453static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
4454{
4455	void *prog;
4456
4457	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
4458	if (!prog)
4459		return;
4460
4461	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
4462	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
4463	kvfree(nfp_prog->prog);
4464	nfp_prog->prog = prog;
4465}
4466
4467int nfp_bpf_jit(struct nfp_prog *nfp_prog)
4468{
4469	int ret;
4470
4471	ret = nfp_bpf_replace_map_ptrs(nfp_prog);
4472	if (ret)
4473		return ret;
4474
4475	ret = nfp_bpf_optimize(nfp_prog);
4476	if (ret)
4477		return ret;
4478
4479	ret = nfp_translate(nfp_prog);
4480	if (ret) {
4481		pr_err("Translation failed with error %d (translated: %u)\n",
4482		       ret, nfp_prog->n_translated);
4483		return -EINVAL;
4484	}
4485
4486	nfp_bpf_prog_trim(nfp_prog);
4487
4488	return ret;
4489}
4490
4491void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog)
4492{
4493	struct nfp_insn_meta *meta;
4494
4495	/* Another pass to record jump information. */
4496	list_for_each_entry(meta, &nfp_prog->insns, l) {
4497		struct nfp_insn_meta *dst_meta;
4498		u64 code = meta->insn.code;
4499		unsigned int dst_idx;
4500		bool pseudo_call;
4501
4502		if (!is_mbpf_jmp(meta))
4503			continue;
4504		if (BPF_OP(code) == BPF_EXIT)
4505			continue;
4506		if (is_mbpf_helper_call(meta))
4507			continue;
4508
4509		/* If opcode is BPF_CALL at this point, this can only be a
4510		 * BPF-to-BPF call (a.k.a pseudo call).
4511		 */
4512		pseudo_call = BPF_OP(code) == BPF_CALL;
4513
4514		if (pseudo_call)
4515			dst_idx = meta->n + 1 + meta->insn.imm;
4516		else
4517			dst_idx = meta->n + 1 + meta->insn.off;
4518
4519		dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_idx);
4520
4521		if (pseudo_call)
4522			dst_meta->flags |= FLAG_INSN_IS_SUBPROG_START;
4523
4524		dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
4525		meta->jmp_dst = dst_meta;
4526	}
4527}
4528
4529bool nfp_bpf_supported_opcode(u8 code)
4530{
4531	return !!instr_cb[code];
4532}
4533
4534void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
4535{
4536	unsigned int i;
4537	u64 *prog;
4538	int err;
4539
4540	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
4541		       GFP_KERNEL);
4542	if (!prog)
4543		return ERR_PTR(-ENOMEM);
4544
4545	for (i = 0; i < nfp_prog->prog_len; i++) {
4546		enum nfp_relo_type special;
4547		u32 val;
4548		u16 off;
4549
4550		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
4551		switch (special) {
4552		case RELO_NONE:
4553			continue;
4554		case RELO_BR_REL:
4555			br_add_offset(&prog[i], bv->start_off);
4556			break;
4557		case RELO_BR_GO_OUT:
4558			br_set_offset(&prog[i],
4559				      nfp_prog->tgt_out + bv->start_off);
4560			break;
4561		case RELO_BR_GO_ABORT:
4562			br_set_offset(&prog[i],
4563				      nfp_prog->tgt_abort + bv->start_off);
4564			break;
4565		case RELO_BR_GO_CALL_PUSH_REGS:
4566			if (!nfp_prog->tgt_call_push_regs) {
4567				pr_err("BUG: failed to detect subprogram registers needs\n");
4568				err = -EINVAL;
4569				goto err_free_prog;
4570			}
4571			off = nfp_prog->tgt_call_push_regs + bv->start_off;
4572			br_set_offset(&prog[i], off);
4573			break;
4574		case RELO_BR_GO_CALL_POP_REGS:
4575			if (!nfp_prog->tgt_call_pop_regs) {
4576				pr_err("BUG: failed to detect subprogram registers needs\n");
4577				err = -EINVAL;
4578				goto err_free_prog;
4579			}
4580			off = nfp_prog->tgt_call_pop_regs + bv->start_off;
4581			br_set_offset(&prog[i], off);
4582			break;
4583		case RELO_BR_NEXT_PKT:
4584			br_set_offset(&prog[i], bv->tgt_done);
4585			break;
4586		case RELO_BR_HELPER:
4587			val = br_get_offset(prog[i]);
4588			val -= BR_OFF_RELO;
4589			switch (val) {
4590			case BPF_FUNC_map_lookup_elem:
4591				val = nfp_prog->bpf->helpers.map_lookup;
4592				break;
4593			case BPF_FUNC_map_update_elem:
4594				val = nfp_prog->bpf->helpers.map_update;
4595				break;
4596			case BPF_FUNC_map_delete_elem:
4597				val = nfp_prog->bpf->helpers.map_delete;
4598				break;
4599			case BPF_FUNC_perf_event_output:
4600				val = nfp_prog->bpf->helpers.perf_event_output;
4601				break;
4602			default:
4603				pr_err("relocation of unknown helper %d\n",
4604				       val);
4605				err = -EINVAL;
4606				goto err_free_prog;
4607			}
4608			br_set_offset(&prog[i], val);
4609			break;
4610		case RELO_IMMED_REL:
4611			immed_add_value(&prog[i], bv->start_off);
4612			break;
4613		}
4614
4615		prog[i] &= ~OP_RELO_TYPE;
4616	}
4617
4618	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
4619	if (err)
4620		goto err_free_prog;
4621
4622	return prog;
4623
4624err_free_prog:
4625	kfree(prog);
4626	return ERR_PTR(err);
4627}
4628