1/************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
4 *
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice.  This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik		: For pointing out the improper error condition
15 *			  check in the s2io_xmit routine and also some
16 *			  issues in the Tx watch dog function. Also for
17 *			  patiently answering all those innumerable
18 *			  questions regaring the 2.6 porting issues.
19 * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
20 *			  macros available only in 2.6 Kernel.
21 * Francois Romieu	: For pointing out all code part that were
22 *			  deprecated and also styling related comments.
23 * Grant Grundler	: For helping me get rid of some Architecture
24 *			  dependent code.
25 * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 *     This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 *		values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 *     2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 *     aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 *     Possible values '1' for enable and '0' for disable. Default is '1'
45 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
46 *                 Possible values '1' for enable , '0' for disable.
47 *                 Default is '2' - which means disable in promisc mode
48 *                 and enable in non-promiscuous mode.
49 * multiq: This parameter used to enable/disable MULTIQUEUE support.
50 *      Possible values '1' for enable and '0' for disable. Default is '0'
51 ************************************************************************/
52
53#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55#include <linux/module.h>
56#include <linux/types.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/pci.h>
60#include <linux/dma-mapping.h>
61#include <linux/kernel.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/mdio.h>
65#include <linux/skbuff.h>
66#include <linux/init.h>
67#include <linux/delay.h>
68#include <linux/stddef.h>
69#include <linux/ioctl.h>
70#include <linux/timex.h>
71#include <linux/ethtool.h>
72#include <linux/workqueue.h>
73#include <linux/if_vlan.h>
74#include <linux/ip.h>
75#include <linux/tcp.h>
76#include <linux/uaccess.h>
77#include <linux/io.h>
78#include <linux/io-64-nonatomic-lo-hi.h>
79#include <linux/slab.h>
80#include <linux/prefetch.h>
81#include <net/tcp.h>
82#include <net/checksum.h>
83
84#include <asm/div64.h>
85#include <asm/irq.h>
86
87/* local include */
88#include "s2io.h"
89#include "s2io-regs.h"
90
91#define DRV_VERSION "2.0.26.28"
92
93/* S2io Driver name & version. */
94static const char s2io_driver_name[] = "Neterion";
95static const char s2io_driver_version[] = DRV_VERSION;
96
97static const int rxd_size[2] = {32, 48};
98static const int rxd_count[2] = {127, 85};
99
100static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101{
102	int ret;
103
104	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106
107	return ret;
108}
109
110/*
111 * Cards with following subsystem_id have a link state indication
112 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113 * macro below identifies these cards given the subsystem_id.
114 */
115#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
116	(dev_type == XFRAME_I_DEVICE) ?					\
117	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
118	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119
120#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122
123static inline int is_s2io_card_up(const struct s2io_nic *sp)
124{
125	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126}
127
128/* Ethtool related variables and Macros. */
129static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130	"Register test\t(offline)",
131	"Eeprom test\t(offline)",
132	"Link test\t(online)",
133	"RLDRAM test\t(offline)",
134	"BIST Test\t(offline)"
135};
136
137static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138	{"tmac_frms"},
139	{"tmac_data_octets"},
140	{"tmac_drop_frms"},
141	{"tmac_mcst_frms"},
142	{"tmac_bcst_frms"},
143	{"tmac_pause_ctrl_frms"},
144	{"tmac_ttl_octets"},
145	{"tmac_ucst_frms"},
146	{"tmac_nucst_frms"},
147	{"tmac_any_err_frms"},
148	{"tmac_ttl_less_fb_octets"},
149	{"tmac_vld_ip_octets"},
150	{"tmac_vld_ip"},
151	{"tmac_drop_ip"},
152	{"tmac_icmp"},
153	{"tmac_rst_tcp"},
154	{"tmac_tcp"},
155	{"tmac_udp"},
156	{"rmac_vld_frms"},
157	{"rmac_data_octets"},
158	{"rmac_fcs_err_frms"},
159	{"rmac_drop_frms"},
160	{"rmac_vld_mcst_frms"},
161	{"rmac_vld_bcst_frms"},
162	{"rmac_in_rng_len_err_frms"},
163	{"rmac_out_rng_len_err_frms"},
164	{"rmac_long_frms"},
165	{"rmac_pause_ctrl_frms"},
166	{"rmac_unsup_ctrl_frms"},
167	{"rmac_ttl_octets"},
168	{"rmac_accepted_ucst_frms"},
169	{"rmac_accepted_nucst_frms"},
170	{"rmac_discarded_frms"},
171	{"rmac_drop_events"},
172	{"rmac_ttl_less_fb_octets"},
173	{"rmac_ttl_frms"},
174	{"rmac_usized_frms"},
175	{"rmac_osized_frms"},
176	{"rmac_frag_frms"},
177	{"rmac_jabber_frms"},
178	{"rmac_ttl_64_frms"},
179	{"rmac_ttl_65_127_frms"},
180	{"rmac_ttl_128_255_frms"},
181	{"rmac_ttl_256_511_frms"},
182	{"rmac_ttl_512_1023_frms"},
183	{"rmac_ttl_1024_1518_frms"},
184	{"rmac_ip"},
185	{"rmac_ip_octets"},
186	{"rmac_hdr_err_ip"},
187	{"rmac_drop_ip"},
188	{"rmac_icmp"},
189	{"rmac_tcp"},
190	{"rmac_udp"},
191	{"rmac_err_drp_udp"},
192	{"rmac_xgmii_err_sym"},
193	{"rmac_frms_q0"},
194	{"rmac_frms_q1"},
195	{"rmac_frms_q2"},
196	{"rmac_frms_q3"},
197	{"rmac_frms_q4"},
198	{"rmac_frms_q5"},
199	{"rmac_frms_q6"},
200	{"rmac_frms_q7"},
201	{"rmac_full_q0"},
202	{"rmac_full_q1"},
203	{"rmac_full_q2"},
204	{"rmac_full_q3"},
205	{"rmac_full_q4"},
206	{"rmac_full_q5"},
207	{"rmac_full_q6"},
208	{"rmac_full_q7"},
209	{"rmac_pause_cnt"},
210	{"rmac_xgmii_data_err_cnt"},
211	{"rmac_xgmii_ctrl_err_cnt"},
212	{"rmac_accepted_ip"},
213	{"rmac_err_tcp"},
214	{"rd_req_cnt"},
215	{"new_rd_req_cnt"},
216	{"new_rd_req_rtry_cnt"},
217	{"rd_rtry_cnt"},
218	{"wr_rtry_rd_ack_cnt"},
219	{"wr_req_cnt"},
220	{"new_wr_req_cnt"},
221	{"new_wr_req_rtry_cnt"},
222	{"wr_rtry_cnt"},
223	{"wr_disc_cnt"},
224	{"rd_rtry_wr_ack_cnt"},
225	{"txp_wr_cnt"},
226	{"txd_rd_cnt"},
227	{"txd_wr_cnt"},
228	{"rxd_rd_cnt"},
229	{"rxd_wr_cnt"},
230	{"txf_rd_cnt"},
231	{"rxf_wr_cnt"}
232};
233
234static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235	{"rmac_ttl_1519_4095_frms"},
236	{"rmac_ttl_4096_8191_frms"},
237	{"rmac_ttl_8192_max_frms"},
238	{"rmac_ttl_gt_max_frms"},
239	{"rmac_osized_alt_frms"},
240	{"rmac_jabber_alt_frms"},
241	{"rmac_gt_max_alt_frms"},
242	{"rmac_vlan_frms"},
243	{"rmac_len_discard"},
244	{"rmac_fcs_discard"},
245	{"rmac_pf_discard"},
246	{"rmac_da_discard"},
247	{"rmac_red_discard"},
248	{"rmac_rts_discard"},
249	{"rmac_ingm_full_discard"},
250	{"link_fault_cnt"}
251};
252
253static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254	{"\n DRIVER STATISTICS"},
255	{"single_bit_ecc_errs"},
256	{"double_bit_ecc_errs"},
257	{"parity_err_cnt"},
258	{"serious_err_cnt"},
259	{"soft_reset_cnt"},
260	{"fifo_full_cnt"},
261	{"ring_0_full_cnt"},
262	{"ring_1_full_cnt"},
263	{"ring_2_full_cnt"},
264	{"ring_3_full_cnt"},
265	{"ring_4_full_cnt"},
266	{"ring_5_full_cnt"},
267	{"ring_6_full_cnt"},
268	{"ring_7_full_cnt"},
269	{"alarm_transceiver_temp_high"},
270	{"alarm_transceiver_temp_low"},
271	{"alarm_laser_bias_current_high"},
272	{"alarm_laser_bias_current_low"},
273	{"alarm_laser_output_power_high"},
274	{"alarm_laser_output_power_low"},
275	{"warn_transceiver_temp_high"},
276	{"warn_transceiver_temp_low"},
277	{"warn_laser_bias_current_high"},
278	{"warn_laser_bias_current_low"},
279	{"warn_laser_output_power_high"},
280	{"warn_laser_output_power_low"},
281	{"lro_aggregated_pkts"},
282	{"lro_flush_both_count"},
283	{"lro_out_of_sequence_pkts"},
284	{"lro_flush_due_to_max_pkts"},
285	{"lro_avg_aggr_pkts"},
286	{"mem_alloc_fail_cnt"},
287	{"pci_map_fail_cnt"},
288	{"watchdog_timer_cnt"},
289	{"mem_allocated"},
290	{"mem_freed"},
291	{"link_up_cnt"},
292	{"link_down_cnt"},
293	{"link_up_time"},
294	{"link_down_time"},
295	{"tx_tcode_buf_abort_cnt"},
296	{"tx_tcode_desc_abort_cnt"},
297	{"tx_tcode_parity_err_cnt"},
298	{"tx_tcode_link_loss_cnt"},
299	{"tx_tcode_list_proc_err_cnt"},
300	{"rx_tcode_parity_err_cnt"},
301	{"rx_tcode_abort_cnt"},
302	{"rx_tcode_parity_abort_cnt"},
303	{"rx_tcode_rda_fail_cnt"},
304	{"rx_tcode_unkn_prot_cnt"},
305	{"rx_tcode_fcs_err_cnt"},
306	{"rx_tcode_buf_size_err_cnt"},
307	{"rx_tcode_rxd_corrupt_cnt"},
308	{"rx_tcode_unkn_err_cnt"},
309	{"tda_err_cnt"},
310	{"pfc_err_cnt"},
311	{"pcc_err_cnt"},
312	{"tti_err_cnt"},
313	{"tpa_err_cnt"},
314	{"sm_err_cnt"},
315	{"lso_err_cnt"},
316	{"mac_tmac_err_cnt"},
317	{"mac_rmac_err_cnt"},
318	{"xgxs_txgxs_err_cnt"},
319	{"xgxs_rxgxs_err_cnt"},
320	{"rc_err_cnt"},
321	{"prc_pcix_err_cnt"},
322	{"rpa_err_cnt"},
323	{"rda_err_cnt"},
324	{"rti_err_cnt"},
325	{"mc_err_cnt"}
326};
327
328#define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
329#define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
330#define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
331
332#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334
335#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337
338#define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
339#define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
340
341/* copy mac addr to def_mac_addr array */
342static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
343{
344	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
345	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
346	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
347	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
348	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
349	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
350}
351
352/*
353 * Constants to be programmed into the Xena's registers, to configure
354 * the XAUI.
355 */
356
357#define	END_SIGN	0x0
358static const u64 herc_act_dtx_cfg[] = {
359	/* Set address */
360	0x8000051536750000ULL, 0x80000515367500E0ULL,
361	/* Write data */
362	0x8000051536750004ULL, 0x80000515367500E4ULL,
363	/* Set address */
364	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
365	/* Write data */
366	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
367	/* Set address */
368	0x801205150D440000ULL, 0x801205150D4400E0ULL,
369	/* Write data */
370	0x801205150D440004ULL, 0x801205150D4400E4ULL,
371	/* Set address */
372	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
373	/* Write data */
374	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
375	/* Done */
376	END_SIGN
377};
378
379static const u64 xena_dtx_cfg[] = {
380	/* Set address */
381	0x8000051500000000ULL, 0x80000515000000E0ULL,
382	/* Write data */
383	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
384	/* Set address */
385	0x8001051500000000ULL, 0x80010515000000E0ULL,
386	/* Write data */
387	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
388	/* Set address */
389	0x8002051500000000ULL, 0x80020515000000E0ULL,
390	/* Write data */
391	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
392	END_SIGN
393};
394
395/*
396 * Constants for Fixing the MacAddress problem seen mostly on
397 * Alpha machines.
398 */
399static const u64 fix_mac[] = {
400	0x0060000000000000ULL, 0x0060600000000000ULL,
401	0x0040600000000000ULL, 0x0000600000000000ULL,
402	0x0020600000000000ULL, 0x0060600000000000ULL,
403	0x0020600000000000ULL, 0x0060600000000000ULL,
404	0x0020600000000000ULL, 0x0060600000000000ULL,
405	0x0020600000000000ULL, 0x0060600000000000ULL,
406	0x0020600000000000ULL, 0x0060600000000000ULL,
407	0x0020600000000000ULL, 0x0060600000000000ULL,
408	0x0020600000000000ULL, 0x0060600000000000ULL,
409	0x0020600000000000ULL, 0x0060600000000000ULL,
410	0x0020600000000000ULL, 0x0060600000000000ULL,
411	0x0020600000000000ULL, 0x0060600000000000ULL,
412	0x0020600000000000ULL, 0x0000600000000000ULL,
413	0x0040600000000000ULL, 0x0060600000000000ULL,
414	END_SIGN
415};
416
417MODULE_DESCRIPTION("Neterion 10GbE driver");
418MODULE_LICENSE("GPL");
419MODULE_VERSION(DRV_VERSION);
420
421
422/* Module Loadable parameters. */
423S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
424S2IO_PARM_INT(rx_ring_num, 1);
425S2IO_PARM_INT(multiq, 0);
426S2IO_PARM_INT(rx_ring_mode, 1);
427S2IO_PARM_INT(use_continuous_tx_intrs, 1);
428S2IO_PARM_INT(rmac_pause_time, 0x100);
429S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
430S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
431S2IO_PARM_INT(shared_splits, 0);
432S2IO_PARM_INT(tmac_util_period, 5);
433S2IO_PARM_INT(rmac_util_period, 5);
434S2IO_PARM_INT(l3l4hdr_size, 128);
435/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
436S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
437/* Frequency of Rx desc syncs expressed as power of 2 */
438S2IO_PARM_INT(rxsync_frequency, 3);
439/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
440S2IO_PARM_INT(intr_type, 2);
441/* Large receive offload feature */
442
443/* Max pkts to be aggregated by LRO at one time. If not specified,
444 * aggregation happens until we hit max IP pkt size(64K)
445 */
446S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
447S2IO_PARM_INT(indicate_max_pkts, 0);
448
449S2IO_PARM_INT(napi, 1);
450S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
451
452static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
453{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
454static unsigned int rx_ring_sz[MAX_RX_RINGS] =
455{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
456static unsigned int rts_frm_len[MAX_RX_RINGS] =
457{[0 ...(MAX_RX_RINGS - 1)] = 0 };
458
459module_param_array(tx_fifo_len, uint, NULL, 0);
460module_param_array(rx_ring_sz, uint, NULL, 0);
461module_param_array(rts_frm_len, uint, NULL, 0);
462
463/*
464 * S2IO device table.
465 * This table lists all the devices that this driver supports.
466 */
467static const struct pci_device_id s2io_tbl[] = {
468	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
469	 PCI_ANY_ID, PCI_ANY_ID},
470	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
471	 PCI_ANY_ID, PCI_ANY_ID},
472	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
473	 PCI_ANY_ID, PCI_ANY_ID},
474	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
475	 PCI_ANY_ID, PCI_ANY_ID},
476	{0,}
477};
478
479MODULE_DEVICE_TABLE(pci, s2io_tbl);
480
481static const struct pci_error_handlers s2io_err_handler = {
482	.error_detected = s2io_io_error_detected,
483	.slot_reset = s2io_io_slot_reset,
484	.resume = s2io_io_resume,
485};
486
487static struct pci_driver s2io_driver = {
488	.name = "S2IO",
489	.id_table = s2io_tbl,
490	.probe = s2io_init_nic,
491	.remove = s2io_rem_nic,
492	.err_handler = &s2io_err_handler,
493};
494
495/* A simplifier macro used both by init and free shared_mem Fns(). */
496#define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each)
497
498/* netqueue manipulation helper functions */
499static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
500{
501	if (!sp->config.multiq) {
502		int i;
503
504		for (i = 0; i < sp->config.tx_fifo_num; i++)
505			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
506	}
507	netif_tx_stop_all_queues(sp->dev);
508}
509
510static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
511{
512	if (!sp->config.multiq)
513		sp->mac_control.fifos[fifo_no].queue_state =
514			FIFO_QUEUE_STOP;
515
516	netif_tx_stop_all_queues(sp->dev);
517}
518
519static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
520{
521	if (!sp->config.multiq) {
522		int i;
523
524		for (i = 0; i < sp->config.tx_fifo_num; i++)
525			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
526	}
527	netif_tx_start_all_queues(sp->dev);
528}
529
530static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
531{
532	if (!sp->config.multiq) {
533		int i;
534
535		for (i = 0; i < sp->config.tx_fifo_num; i++)
536			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
537	}
538	netif_tx_wake_all_queues(sp->dev);
539}
540
541static inline void s2io_wake_tx_queue(
542	struct fifo_info *fifo, int cnt, u8 multiq)
543{
544
545	if (multiq) {
546		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
547			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
548	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
549		if (netif_queue_stopped(fifo->dev)) {
550			fifo->queue_state = FIFO_QUEUE_START;
551			netif_wake_queue(fifo->dev);
552		}
553	}
554}
555
556/**
557 * init_shared_mem - Allocation and Initialization of Memory
558 * @nic: Device private variable.
559 * Description: The function allocates all the memory areas shared
560 * between the NIC and the driver. This includes Tx descriptors,
561 * Rx descriptors and the statistics block.
562 */
563
564static int init_shared_mem(struct s2io_nic *nic)
565{
566	u32 size;
567	void *tmp_v_addr, *tmp_v_addr_next;
568	dma_addr_t tmp_p_addr, tmp_p_addr_next;
569	struct RxD_block *pre_rxd_blk = NULL;
570	int i, j, blk_cnt;
571	int lst_size, lst_per_page;
572	struct net_device *dev = nic->dev;
573	unsigned long tmp;
574	struct buffAdd *ba;
575	struct config_param *config = &nic->config;
576	struct mac_info *mac_control = &nic->mac_control;
577	unsigned long long mem_allocated = 0;
578
579	/* Allocation and initialization of TXDLs in FIFOs */
580	size = 0;
581	for (i = 0; i < config->tx_fifo_num; i++) {
582		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
583
584		size += tx_cfg->fifo_len;
585	}
586	if (size > MAX_AVAILABLE_TXDS) {
587		DBG_PRINT(ERR_DBG,
588			  "Too many TxDs requested: %d, max supported: %d\n",
589			  size, MAX_AVAILABLE_TXDS);
590		return -EINVAL;
591	}
592
593	size = 0;
594	for (i = 0; i < config->tx_fifo_num; i++) {
595		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
596
597		size = tx_cfg->fifo_len;
598		/*
599		 * Legal values are from 2 to 8192
600		 */
601		if (size < 2) {
602			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
603				  "Valid lengths are 2 through 8192\n",
604				  i, size);
605			return -EINVAL;
606		}
607	}
608
609	lst_size = (sizeof(struct TxD) * config->max_txds);
610	lst_per_page = PAGE_SIZE / lst_size;
611
612	for (i = 0; i < config->tx_fifo_num; i++) {
613		struct fifo_info *fifo = &mac_control->fifos[i];
614		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
615		int fifo_len = tx_cfg->fifo_len;
616		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
617
618		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
619		if (!fifo->list_info) {
620			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
621			return -ENOMEM;
622		}
623		mem_allocated += list_holder_size;
624	}
625	for (i = 0; i < config->tx_fifo_num; i++) {
626		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
627						lst_per_page);
628		struct fifo_info *fifo = &mac_control->fifos[i];
629		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
630
631		fifo->tx_curr_put_info.offset = 0;
632		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
633		fifo->tx_curr_get_info.offset = 0;
634		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
635		fifo->fifo_no = i;
636		fifo->nic = nic;
637		fifo->max_txds = MAX_SKB_FRAGS + 2;
638		fifo->dev = dev;
639
640		for (j = 0; j < page_num; j++) {
641			int k = 0;
642			dma_addr_t tmp_p;
643			void *tmp_v;
644			tmp_v = dma_alloc_coherent(&nic->pdev->dev, PAGE_SIZE,
645						   &tmp_p, GFP_KERNEL);
646			if (!tmp_v) {
647				DBG_PRINT(INFO_DBG,
648					  "dma_alloc_coherent failed for TxDL\n");
649				return -ENOMEM;
650			}
651			/* If we got a zero DMA address(can happen on
652			 * certain platforms like PPC), reallocate.
653			 * Store virtual address of page we don't want,
654			 * to be freed later.
655			 */
656			if (!tmp_p) {
657				mac_control->zerodma_virt_addr = tmp_v;
658				DBG_PRINT(INIT_DBG,
659					  "%s: Zero DMA address for TxDL. "
660					  "Virtual address %p\n",
661					  dev->name, tmp_v);
662				tmp_v = dma_alloc_coherent(&nic->pdev->dev,
663							   PAGE_SIZE, &tmp_p,
664							   GFP_KERNEL);
665				if (!tmp_v) {
666					DBG_PRINT(INFO_DBG,
667						  "dma_alloc_coherent failed for TxDL\n");
668					return -ENOMEM;
669				}
670				mem_allocated += PAGE_SIZE;
671			}
672			while (k < lst_per_page) {
673				int l = (j * lst_per_page) + k;
674				if (l == tx_cfg->fifo_len)
675					break;
676				fifo->list_info[l].list_virt_addr =
677					tmp_v + (k * lst_size);
678				fifo->list_info[l].list_phy_addr =
679					tmp_p + (k * lst_size);
680				k++;
681			}
682		}
683	}
684
685	for (i = 0; i < config->tx_fifo_num; i++) {
686		struct fifo_info *fifo = &mac_control->fifos[i];
687		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
688
689		size = tx_cfg->fifo_len;
690		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
691		if (!fifo->ufo_in_band_v)
692			return -ENOMEM;
693		mem_allocated += (size * sizeof(u64));
694	}
695
696	/* Allocation and initialization of RXDs in Rings */
697	size = 0;
698	for (i = 0; i < config->rx_ring_num; i++) {
699		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
700		struct ring_info *ring = &mac_control->rings[i];
701
702		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
703			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
704				  "multiple of RxDs per Block\n",
705				  dev->name, i);
706			return FAILURE;
707		}
708		size += rx_cfg->num_rxd;
709		ring->block_count = rx_cfg->num_rxd /
710			(rxd_count[nic->rxd_mode] + 1);
711		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
712	}
713	if (nic->rxd_mode == RXD_MODE_1)
714		size = (size * (sizeof(struct RxD1)));
715	else
716		size = (size * (sizeof(struct RxD3)));
717
718	for (i = 0; i < config->rx_ring_num; i++) {
719		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
720		struct ring_info *ring = &mac_control->rings[i];
721
722		ring->rx_curr_get_info.block_index = 0;
723		ring->rx_curr_get_info.offset = 0;
724		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
725		ring->rx_curr_put_info.block_index = 0;
726		ring->rx_curr_put_info.offset = 0;
727		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
728		ring->nic = nic;
729		ring->ring_no = i;
730
731		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
732		/*  Allocating all the Rx blocks */
733		for (j = 0; j < blk_cnt; j++) {
734			struct rx_block_info *rx_blocks;
735			int l;
736
737			rx_blocks = &ring->rx_blocks[j];
738			size = SIZE_OF_BLOCK;	/* size is always page size */
739			tmp_v_addr = dma_alloc_coherent(&nic->pdev->dev, size,
740							&tmp_p_addr, GFP_KERNEL);
741			if (tmp_v_addr == NULL) {
742				/*
743				 * In case of failure, free_shared_mem()
744				 * is called, which should free any
745				 * memory that was alloced till the
746				 * failure happened.
747				 */
748				rx_blocks->block_virt_addr = tmp_v_addr;
749				return -ENOMEM;
750			}
751			mem_allocated += size;
752
753			size = sizeof(struct rxd_info) *
754				rxd_count[nic->rxd_mode];
755			rx_blocks->block_virt_addr = tmp_v_addr;
756			rx_blocks->block_dma_addr = tmp_p_addr;
757			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
758			if (!rx_blocks->rxds)
759				return -ENOMEM;
760			mem_allocated += size;
761			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
762				rx_blocks->rxds[l].virt_addr =
763					rx_blocks->block_virt_addr +
764					(rxd_size[nic->rxd_mode] * l);
765				rx_blocks->rxds[l].dma_addr =
766					rx_blocks->block_dma_addr +
767					(rxd_size[nic->rxd_mode] * l);
768			}
769		}
770		/* Interlinking all Rx Blocks */
771		for (j = 0; j < blk_cnt; j++) {
772			int next = (j + 1) % blk_cnt;
773			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
774			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
775			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
776			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
777
778			pre_rxd_blk = tmp_v_addr;
779			pre_rxd_blk->reserved_2_pNext_RxD_block =
780				(unsigned long)tmp_v_addr_next;
781			pre_rxd_blk->pNext_RxD_Blk_physical =
782				(u64)tmp_p_addr_next;
783		}
784	}
785	if (nic->rxd_mode == RXD_MODE_3B) {
786		/*
787		 * Allocation of Storages for buffer addresses in 2BUFF mode
788		 * and the buffers as well.
789		 */
790		for (i = 0; i < config->rx_ring_num; i++) {
791			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
792			struct ring_info *ring = &mac_control->rings[i];
793
794			blk_cnt = rx_cfg->num_rxd /
795				(rxd_count[nic->rxd_mode] + 1);
796			size = sizeof(struct buffAdd *) * blk_cnt;
797			ring->ba = kmalloc(size, GFP_KERNEL);
798			if (!ring->ba)
799				return -ENOMEM;
800			mem_allocated += size;
801			for (j = 0; j < blk_cnt; j++) {
802				int k = 0;
803
804				size = sizeof(struct buffAdd) *
805					(rxd_count[nic->rxd_mode] + 1);
806				ring->ba[j] = kmalloc(size, GFP_KERNEL);
807				if (!ring->ba[j])
808					return -ENOMEM;
809				mem_allocated += size;
810				while (k != rxd_count[nic->rxd_mode]) {
811					ba = &ring->ba[j][k];
812					size = BUF0_LEN + ALIGN_SIZE;
813					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
814					if (!ba->ba_0_org)
815						return -ENOMEM;
816					mem_allocated += size;
817					tmp = (unsigned long)ba->ba_0_org;
818					tmp += ALIGN_SIZE;
819					tmp &= ~((unsigned long)ALIGN_SIZE);
820					ba->ba_0 = (void *)tmp;
821
822					size = BUF1_LEN + ALIGN_SIZE;
823					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
824					if (!ba->ba_1_org)
825						return -ENOMEM;
826					mem_allocated += size;
827					tmp = (unsigned long)ba->ba_1_org;
828					tmp += ALIGN_SIZE;
829					tmp &= ~((unsigned long)ALIGN_SIZE);
830					ba->ba_1 = (void *)tmp;
831					k++;
832				}
833			}
834		}
835	}
836
837	/* Allocation and initialization of Statistics block */
838	size = sizeof(struct stat_block);
839	mac_control->stats_mem =
840		dma_alloc_coherent(&nic->pdev->dev, size,
841				   &mac_control->stats_mem_phy, GFP_KERNEL);
842
843	if (!mac_control->stats_mem) {
844		/*
845		 * In case of failure, free_shared_mem() is called, which
846		 * should free any memory that was alloced till the
847		 * failure happened.
848		 */
849		return -ENOMEM;
850	}
851	mem_allocated += size;
852	mac_control->stats_mem_sz = size;
853
854	tmp_v_addr = mac_control->stats_mem;
855	mac_control->stats_info = tmp_v_addr;
856	memset(tmp_v_addr, 0, size);
857	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
858		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
859	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
860	return SUCCESS;
861}
862
863/**
864 * free_shared_mem - Free the allocated Memory
865 * @nic:  Device private variable.
866 * Description: This function is to free all memory locations allocated by
867 * the init_shared_mem() function and return it to the kernel.
868 */
869
870static void free_shared_mem(struct s2io_nic *nic)
871{
872	int i, j, blk_cnt, size;
873	void *tmp_v_addr;
874	dma_addr_t tmp_p_addr;
875	int lst_size, lst_per_page;
876	struct net_device *dev;
877	int page_num = 0;
878	struct config_param *config;
879	struct mac_info *mac_control;
880	struct stat_block *stats;
881	struct swStat *swstats;
882
883	if (!nic)
884		return;
885
886	dev = nic->dev;
887
888	config = &nic->config;
889	mac_control = &nic->mac_control;
890	stats = mac_control->stats_info;
891	swstats = &stats->sw_stat;
892
893	lst_size = sizeof(struct TxD) * config->max_txds;
894	lst_per_page = PAGE_SIZE / lst_size;
895
896	for (i = 0; i < config->tx_fifo_num; i++) {
897		struct fifo_info *fifo = &mac_control->fifos[i];
898		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
899
900		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
901		for (j = 0; j < page_num; j++) {
902			int mem_blks = (j * lst_per_page);
903			struct list_info_hold *fli;
904
905			if (!fifo->list_info)
906				return;
907
908			fli = &fifo->list_info[mem_blks];
909			if (!fli->list_virt_addr)
910				break;
911			dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
912					  fli->list_virt_addr,
913					  fli->list_phy_addr);
914			swstats->mem_freed += PAGE_SIZE;
915		}
916		/* If we got a zero DMA address during allocation,
917		 * free the page now
918		 */
919		if (mac_control->zerodma_virt_addr) {
920			dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
921					  mac_control->zerodma_virt_addr,
922					  (dma_addr_t)0);
923			DBG_PRINT(INIT_DBG,
924				  "%s: Freeing TxDL with zero DMA address. "
925				  "Virtual address %p\n",
926				  dev->name, mac_control->zerodma_virt_addr);
927			swstats->mem_freed += PAGE_SIZE;
928		}
929		kfree(fifo->list_info);
930		swstats->mem_freed += tx_cfg->fifo_len *
931			sizeof(struct list_info_hold);
932	}
933
934	size = SIZE_OF_BLOCK;
935	for (i = 0; i < config->rx_ring_num; i++) {
936		struct ring_info *ring = &mac_control->rings[i];
937
938		blk_cnt = ring->block_count;
939		for (j = 0; j < blk_cnt; j++) {
940			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
941			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
942			if (tmp_v_addr == NULL)
943				break;
944			dma_free_coherent(&nic->pdev->dev, size, tmp_v_addr,
945					  tmp_p_addr);
946			swstats->mem_freed += size;
947			kfree(ring->rx_blocks[j].rxds);
948			swstats->mem_freed += sizeof(struct rxd_info) *
949				rxd_count[nic->rxd_mode];
950		}
951	}
952
953	if (nic->rxd_mode == RXD_MODE_3B) {
954		/* Freeing buffer storage addresses in 2BUFF mode. */
955		for (i = 0; i < config->rx_ring_num; i++) {
956			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
957			struct ring_info *ring = &mac_control->rings[i];
958
959			blk_cnt = rx_cfg->num_rxd /
960				(rxd_count[nic->rxd_mode] + 1);
961			for (j = 0; j < blk_cnt; j++) {
962				int k = 0;
963				if (!ring->ba[j])
964					continue;
965				while (k != rxd_count[nic->rxd_mode]) {
966					struct buffAdd *ba = &ring->ba[j][k];
967					kfree(ba->ba_0_org);
968					swstats->mem_freed +=
969						BUF0_LEN + ALIGN_SIZE;
970					kfree(ba->ba_1_org);
971					swstats->mem_freed +=
972						BUF1_LEN + ALIGN_SIZE;
973					k++;
974				}
975				kfree(ring->ba[j]);
976				swstats->mem_freed += sizeof(struct buffAdd) *
977					(rxd_count[nic->rxd_mode] + 1);
978			}
979			kfree(ring->ba);
980			swstats->mem_freed += sizeof(struct buffAdd *) *
981				blk_cnt;
982		}
983	}
984
985	for (i = 0; i < nic->config.tx_fifo_num; i++) {
986		struct fifo_info *fifo = &mac_control->fifos[i];
987		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
988
989		if (fifo->ufo_in_band_v) {
990			swstats->mem_freed += tx_cfg->fifo_len *
991				sizeof(u64);
992			kfree(fifo->ufo_in_band_v);
993		}
994	}
995
996	if (mac_control->stats_mem) {
997		swstats->mem_freed += mac_control->stats_mem_sz;
998		dma_free_coherent(&nic->pdev->dev, mac_control->stats_mem_sz,
999				  mac_control->stats_mem,
1000				  mac_control->stats_mem_phy);
1001	}
1002}
1003
1004/*
1005 * s2io_verify_pci_mode -
1006 */
1007
1008static int s2io_verify_pci_mode(struct s2io_nic *nic)
1009{
1010	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1011	register u64 val64 = 0;
1012	int     mode;
1013
1014	val64 = readq(&bar0->pci_mode);
1015	mode = (u8)GET_PCI_MODE(val64);
1016
1017	if (val64 & PCI_MODE_UNKNOWN_MODE)
1018		return -1;      /* Unknown PCI mode */
1019	return mode;
1020}
1021
1022#define NEC_VENID   0x1033
1023#define NEC_DEVID   0x0125
1024static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1025{
1026	struct pci_dev *tdev = NULL;
1027	for_each_pci_dev(tdev) {
1028		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1029			if (tdev->bus == s2io_pdev->bus->parent) {
1030				pci_dev_put(tdev);
1031				return 1;
1032			}
1033		}
1034	}
1035	return 0;
1036}
1037
1038static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1039/*
1040 * s2io_print_pci_mode -
1041 */
1042static int s2io_print_pci_mode(struct s2io_nic *nic)
1043{
1044	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1045	register u64 val64 = 0;
1046	int	mode;
1047	struct config_param *config = &nic->config;
1048	const char *pcimode;
1049
1050	val64 = readq(&bar0->pci_mode);
1051	mode = (u8)GET_PCI_MODE(val64);
1052
1053	if (val64 & PCI_MODE_UNKNOWN_MODE)
1054		return -1;	/* Unknown PCI mode */
1055
1056	config->bus_speed = bus_speed[mode];
1057
1058	if (s2io_on_nec_bridge(nic->pdev)) {
1059		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1060			  nic->dev->name);
1061		return mode;
1062	}
1063
1064	switch (mode) {
1065	case PCI_MODE_PCI_33:
1066		pcimode = "33MHz PCI bus";
1067		break;
1068	case PCI_MODE_PCI_66:
1069		pcimode = "66MHz PCI bus";
1070		break;
1071	case PCI_MODE_PCIX_M1_66:
1072		pcimode = "66MHz PCIX(M1) bus";
1073		break;
1074	case PCI_MODE_PCIX_M1_100:
1075		pcimode = "100MHz PCIX(M1) bus";
1076		break;
1077	case PCI_MODE_PCIX_M1_133:
1078		pcimode = "133MHz PCIX(M1) bus";
1079		break;
1080	case PCI_MODE_PCIX_M2_66:
1081		pcimode = "133MHz PCIX(M2) bus";
1082		break;
1083	case PCI_MODE_PCIX_M2_100:
1084		pcimode = "200MHz PCIX(M2) bus";
1085		break;
1086	case PCI_MODE_PCIX_M2_133:
1087		pcimode = "266MHz PCIX(M2) bus";
1088		break;
1089	default:
1090		pcimode = "unsupported bus!";
1091		mode = -1;
1092	}
1093
1094	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1095		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1096
1097	return mode;
1098}
1099
1100/**
1101 *  init_tti - Initialization transmit traffic interrupt scheme
1102 *  @nic: device private variable
1103 *  @link: link status (UP/DOWN) used to enable/disable continuous
1104 *  transmit interrupts
1105 *  @may_sleep: parameter indicates if sleeping when waiting for
1106 *  command complete
1107 *  Description: The function configures transmit traffic interrupts
1108 *  Return Value:  SUCCESS on success and
1109 *  '-1' on failure
1110 */
1111
1112static int init_tti(struct s2io_nic *nic, int link, bool may_sleep)
1113{
1114	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1115	register u64 val64 = 0;
1116	int i;
1117	struct config_param *config = &nic->config;
1118
1119	for (i = 0; i < config->tx_fifo_num; i++) {
1120		/*
1121		 * TTI Initialization. Default Tx timer gets us about
1122		 * 250 interrupts per sec. Continuous interrupts are enabled
1123		 * by default.
1124		 */
1125		if (nic->device_type == XFRAME_II_DEVICE) {
1126			int count = (nic->config.bus_speed * 125)/2;
1127			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1128		} else
1129			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1130
1131		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1132			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1133			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1134			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1135		if (i == 0)
1136			if (use_continuous_tx_intrs && (link == LINK_UP))
1137				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1138		writeq(val64, &bar0->tti_data1_mem);
1139
1140		if (nic->config.intr_type == MSI_X) {
1141			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1142				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1143				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1144				TTI_DATA2_MEM_TX_UFC_D(0x300);
1145		} else {
1146			if ((nic->config.tx_steering_type ==
1147			     TX_DEFAULT_STEERING) &&
1148			    (config->tx_fifo_num > 1) &&
1149			    (i >= nic->udp_fifo_idx) &&
1150			    (i < (nic->udp_fifo_idx +
1151				  nic->total_udp_fifos)))
1152				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1153					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1154					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1155					TTI_DATA2_MEM_TX_UFC_D(0x120);
1156			else
1157				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1158					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1159					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1160					TTI_DATA2_MEM_TX_UFC_D(0x80);
1161		}
1162
1163		writeq(val64, &bar0->tti_data2_mem);
1164
1165		val64 = TTI_CMD_MEM_WE |
1166			TTI_CMD_MEM_STROBE_NEW_CMD |
1167			TTI_CMD_MEM_OFFSET(i);
1168		writeq(val64, &bar0->tti_command_mem);
1169
1170		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1171					  TTI_CMD_MEM_STROBE_NEW_CMD,
1172					  S2IO_BIT_RESET, may_sleep) != SUCCESS)
1173			return FAILURE;
1174	}
1175
1176	return SUCCESS;
1177}
1178
1179/**
1180 *  init_nic - Initialization of hardware
1181 *  @nic: device private variable
1182 *  Description: The function sequentially configures every block
1183 *  of the H/W from their reset values.
1184 *  Return Value:  SUCCESS on success and
1185 *  '-1' on failure (endian settings incorrect).
1186 */
1187
1188static int init_nic(struct s2io_nic *nic)
1189{
1190	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1191	struct net_device *dev = nic->dev;
1192	register u64 val64 = 0;
1193	void __iomem *add;
1194	u32 time;
1195	int i, j;
1196	int dtx_cnt = 0;
1197	unsigned long long mem_share;
1198	int mem_size;
1199	struct config_param *config = &nic->config;
1200	struct mac_info *mac_control = &nic->mac_control;
1201
1202	/* to set the swapper controle on the card */
1203	if (s2io_set_swapper(nic)) {
1204		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1205		return -EIO;
1206	}
1207
1208	/*
1209	 * Herc requires EOI to be removed from reset before XGXS, so..
1210	 */
1211	if (nic->device_type & XFRAME_II_DEVICE) {
1212		val64 = 0xA500000000ULL;
1213		writeq(val64, &bar0->sw_reset);
1214		msleep(500);
1215		val64 = readq(&bar0->sw_reset);
1216	}
1217
1218	/* Remove XGXS from reset state */
1219	val64 = 0;
1220	writeq(val64, &bar0->sw_reset);
1221	msleep(500);
1222	val64 = readq(&bar0->sw_reset);
1223
1224	/* Ensure that it's safe to access registers by checking
1225	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1226	 */
1227	if (nic->device_type == XFRAME_II_DEVICE) {
1228		for (i = 0; i < 50; i++) {
1229			val64 = readq(&bar0->adapter_status);
1230			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1231				break;
1232			msleep(10);
1233		}
1234		if (i == 50)
1235			return -ENODEV;
1236	}
1237
1238	/*  Enable Receiving broadcasts */
1239	add = &bar0->mac_cfg;
1240	val64 = readq(&bar0->mac_cfg);
1241	val64 |= MAC_RMAC_BCAST_ENABLE;
1242	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1243	writel((u32)val64, add);
1244	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1245	writel((u32) (val64 >> 32), (add + 4));
1246
1247	/* Read registers in all blocks */
1248	val64 = readq(&bar0->mac_int_mask);
1249	val64 = readq(&bar0->mc_int_mask);
1250	val64 = readq(&bar0->xgxs_int_mask);
1251
1252	/*  Set MTU */
1253	val64 = dev->mtu;
1254	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1255
1256	if (nic->device_type & XFRAME_II_DEVICE) {
1257		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1258			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1259					  &bar0->dtx_control, UF);
1260			if (dtx_cnt & 0x1)
1261				msleep(1); /* Necessary!! */
1262			dtx_cnt++;
1263		}
1264	} else {
1265		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1266			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1267					  &bar0->dtx_control, UF);
1268			val64 = readq(&bar0->dtx_control);
1269			dtx_cnt++;
1270		}
1271	}
1272
1273	/*  Tx DMA Initialization */
1274	val64 = 0;
1275	writeq(val64, &bar0->tx_fifo_partition_0);
1276	writeq(val64, &bar0->tx_fifo_partition_1);
1277	writeq(val64, &bar0->tx_fifo_partition_2);
1278	writeq(val64, &bar0->tx_fifo_partition_3);
1279
1280	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1281		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1282
1283		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1284			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1285
1286		if (i == (config->tx_fifo_num - 1)) {
1287			if (i % 2 == 0)
1288				i++;
1289		}
1290
1291		switch (i) {
1292		case 1:
1293			writeq(val64, &bar0->tx_fifo_partition_0);
1294			val64 = 0;
1295			j = 0;
1296			break;
1297		case 3:
1298			writeq(val64, &bar0->tx_fifo_partition_1);
1299			val64 = 0;
1300			j = 0;
1301			break;
1302		case 5:
1303			writeq(val64, &bar0->tx_fifo_partition_2);
1304			val64 = 0;
1305			j = 0;
1306			break;
1307		case 7:
1308			writeq(val64, &bar0->tx_fifo_partition_3);
1309			val64 = 0;
1310			j = 0;
1311			break;
1312		default:
1313			j++;
1314			break;
1315		}
1316	}
1317
1318	/*
1319	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1320	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1321	 */
1322	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1323		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1324
1325	val64 = readq(&bar0->tx_fifo_partition_0);
1326	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1327		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1328
1329	/*
1330	 * Initialization of Tx_PA_CONFIG register to ignore packet
1331	 * integrity checking.
1332	 */
1333	val64 = readq(&bar0->tx_pa_cfg);
1334	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1335		TX_PA_CFG_IGNORE_SNAP_OUI |
1336		TX_PA_CFG_IGNORE_LLC_CTRL |
1337		TX_PA_CFG_IGNORE_L2_ERR;
1338	writeq(val64, &bar0->tx_pa_cfg);
1339
1340	/* Rx DMA initialization. */
1341	val64 = 0;
1342	for (i = 0; i < config->rx_ring_num; i++) {
1343		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1344
1345		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1346	}
1347	writeq(val64, &bar0->rx_queue_priority);
1348
1349	/*
1350	 * Allocating equal share of memory to all the
1351	 * configured Rings.
1352	 */
1353	val64 = 0;
1354	if (nic->device_type & XFRAME_II_DEVICE)
1355		mem_size = 32;
1356	else
1357		mem_size = 64;
1358
1359	for (i = 0; i < config->rx_ring_num; i++) {
1360		switch (i) {
1361		case 0:
1362			mem_share = (mem_size / config->rx_ring_num +
1363				     mem_size % config->rx_ring_num);
1364			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1365			continue;
1366		case 1:
1367			mem_share = (mem_size / config->rx_ring_num);
1368			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1369			continue;
1370		case 2:
1371			mem_share = (mem_size / config->rx_ring_num);
1372			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1373			continue;
1374		case 3:
1375			mem_share = (mem_size / config->rx_ring_num);
1376			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1377			continue;
1378		case 4:
1379			mem_share = (mem_size / config->rx_ring_num);
1380			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1381			continue;
1382		case 5:
1383			mem_share = (mem_size / config->rx_ring_num);
1384			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1385			continue;
1386		case 6:
1387			mem_share = (mem_size / config->rx_ring_num);
1388			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1389			continue;
1390		case 7:
1391			mem_share = (mem_size / config->rx_ring_num);
1392			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1393			continue;
1394		}
1395	}
1396	writeq(val64, &bar0->rx_queue_cfg);
1397
1398	/*
1399	 * Filling Tx round robin registers
1400	 * as per the number of FIFOs for equal scheduling priority
1401	 */
1402	switch (config->tx_fifo_num) {
1403	case 1:
1404		val64 = 0x0;
1405		writeq(val64, &bar0->tx_w_round_robin_0);
1406		writeq(val64, &bar0->tx_w_round_robin_1);
1407		writeq(val64, &bar0->tx_w_round_robin_2);
1408		writeq(val64, &bar0->tx_w_round_robin_3);
1409		writeq(val64, &bar0->tx_w_round_robin_4);
1410		break;
1411	case 2:
1412		val64 = 0x0001000100010001ULL;
1413		writeq(val64, &bar0->tx_w_round_robin_0);
1414		writeq(val64, &bar0->tx_w_round_robin_1);
1415		writeq(val64, &bar0->tx_w_round_robin_2);
1416		writeq(val64, &bar0->tx_w_round_robin_3);
1417		val64 = 0x0001000100000000ULL;
1418		writeq(val64, &bar0->tx_w_round_robin_4);
1419		break;
1420	case 3:
1421		val64 = 0x0001020001020001ULL;
1422		writeq(val64, &bar0->tx_w_round_robin_0);
1423		val64 = 0x0200010200010200ULL;
1424		writeq(val64, &bar0->tx_w_round_robin_1);
1425		val64 = 0x0102000102000102ULL;
1426		writeq(val64, &bar0->tx_w_round_robin_2);
1427		val64 = 0x0001020001020001ULL;
1428		writeq(val64, &bar0->tx_w_round_robin_3);
1429		val64 = 0x0200010200000000ULL;
1430		writeq(val64, &bar0->tx_w_round_robin_4);
1431		break;
1432	case 4:
1433		val64 = 0x0001020300010203ULL;
1434		writeq(val64, &bar0->tx_w_round_robin_0);
1435		writeq(val64, &bar0->tx_w_round_robin_1);
1436		writeq(val64, &bar0->tx_w_round_robin_2);
1437		writeq(val64, &bar0->tx_w_round_robin_3);
1438		val64 = 0x0001020300000000ULL;
1439		writeq(val64, &bar0->tx_w_round_robin_4);
1440		break;
1441	case 5:
1442		val64 = 0x0001020304000102ULL;
1443		writeq(val64, &bar0->tx_w_round_robin_0);
1444		val64 = 0x0304000102030400ULL;
1445		writeq(val64, &bar0->tx_w_round_robin_1);
1446		val64 = 0x0102030400010203ULL;
1447		writeq(val64, &bar0->tx_w_round_robin_2);
1448		val64 = 0x0400010203040001ULL;
1449		writeq(val64, &bar0->tx_w_round_robin_3);
1450		val64 = 0x0203040000000000ULL;
1451		writeq(val64, &bar0->tx_w_round_robin_4);
1452		break;
1453	case 6:
1454		val64 = 0x0001020304050001ULL;
1455		writeq(val64, &bar0->tx_w_round_robin_0);
1456		val64 = 0x0203040500010203ULL;
1457		writeq(val64, &bar0->tx_w_round_robin_1);
1458		val64 = 0x0405000102030405ULL;
1459		writeq(val64, &bar0->tx_w_round_robin_2);
1460		val64 = 0x0001020304050001ULL;
1461		writeq(val64, &bar0->tx_w_round_robin_3);
1462		val64 = 0x0203040500000000ULL;
1463		writeq(val64, &bar0->tx_w_round_robin_4);
1464		break;
1465	case 7:
1466		val64 = 0x0001020304050600ULL;
1467		writeq(val64, &bar0->tx_w_round_robin_0);
1468		val64 = 0x0102030405060001ULL;
1469		writeq(val64, &bar0->tx_w_round_robin_1);
1470		val64 = 0x0203040506000102ULL;
1471		writeq(val64, &bar0->tx_w_round_robin_2);
1472		val64 = 0x0304050600010203ULL;
1473		writeq(val64, &bar0->tx_w_round_robin_3);
1474		val64 = 0x0405060000000000ULL;
1475		writeq(val64, &bar0->tx_w_round_robin_4);
1476		break;
1477	case 8:
1478		val64 = 0x0001020304050607ULL;
1479		writeq(val64, &bar0->tx_w_round_robin_0);
1480		writeq(val64, &bar0->tx_w_round_robin_1);
1481		writeq(val64, &bar0->tx_w_round_robin_2);
1482		writeq(val64, &bar0->tx_w_round_robin_3);
1483		val64 = 0x0001020300000000ULL;
1484		writeq(val64, &bar0->tx_w_round_robin_4);
1485		break;
1486	}
1487
1488	/* Enable all configured Tx FIFO partitions */
1489	val64 = readq(&bar0->tx_fifo_partition_0);
1490	val64 |= (TX_FIFO_PARTITION_EN);
1491	writeq(val64, &bar0->tx_fifo_partition_0);
1492
1493	/* Filling the Rx round robin registers as per the
1494	 * number of Rings and steering based on QoS with
1495	 * equal priority.
1496	 */
1497	switch (config->rx_ring_num) {
1498	case 1:
1499		val64 = 0x0;
1500		writeq(val64, &bar0->rx_w_round_robin_0);
1501		writeq(val64, &bar0->rx_w_round_robin_1);
1502		writeq(val64, &bar0->rx_w_round_robin_2);
1503		writeq(val64, &bar0->rx_w_round_robin_3);
1504		writeq(val64, &bar0->rx_w_round_robin_4);
1505
1506		val64 = 0x8080808080808080ULL;
1507		writeq(val64, &bar0->rts_qos_steering);
1508		break;
1509	case 2:
1510		val64 = 0x0001000100010001ULL;
1511		writeq(val64, &bar0->rx_w_round_robin_0);
1512		writeq(val64, &bar0->rx_w_round_robin_1);
1513		writeq(val64, &bar0->rx_w_round_robin_2);
1514		writeq(val64, &bar0->rx_w_round_robin_3);
1515		val64 = 0x0001000100000000ULL;
1516		writeq(val64, &bar0->rx_w_round_robin_4);
1517
1518		val64 = 0x8080808040404040ULL;
1519		writeq(val64, &bar0->rts_qos_steering);
1520		break;
1521	case 3:
1522		val64 = 0x0001020001020001ULL;
1523		writeq(val64, &bar0->rx_w_round_robin_0);
1524		val64 = 0x0200010200010200ULL;
1525		writeq(val64, &bar0->rx_w_round_robin_1);
1526		val64 = 0x0102000102000102ULL;
1527		writeq(val64, &bar0->rx_w_round_robin_2);
1528		val64 = 0x0001020001020001ULL;
1529		writeq(val64, &bar0->rx_w_round_robin_3);
1530		val64 = 0x0200010200000000ULL;
1531		writeq(val64, &bar0->rx_w_round_robin_4);
1532
1533		val64 = 0x8080804040402020ULL;
1534		writeq(val64, &bar0->rts_qos_steering);
1535		break;
1536	case 4:
1537		val64 = 0x0001020300010203ULL;
1538		writeq(val64, &bar0->rx_w_round_robin_0);
1539		writeq(val64, &bar0->rx_w_round_robin_1);
1540		writeq(val64, &bar0->rx_w_round_robin_2);
1541		writeq(val64, &bar0->rx_w_round_robin_3);
1542		val64 = 0x0001020300000000ULL;
1543		writeq(val64, &bar0->rx_w_round_robin_4);
1544
1545		val64 = 0x8080404020201010ULL;
1546		writeq(val64, &bar0->rts_qos_steering);
1547		break;
1548	case 5:
1549		val64 = 0x0001020304000102ULL;
1550		writeq(val64, &bar0->rx_w_round_robin_0);
1551		val64 = 0x0304000102030400ULL;
1552		writeq(val64, &bar0->rx_w_round_robin_1);
1553		val64 = 0x0102030400010203ULL;
1554		writeq(val64, &bar0->rx_w_round_robin_2);
1555		val64 = 0x0400010203040001ULL;
1556		writeq(val64, &bar0->rx_w_round_robin_3);
1557		val64 = 0x0203040000000000ULL;
1558		writeq(val64, &bar0->rx_w_round_robin_4);
1559
1560		val64 = 0x8080404020201008ULL;
1561		writeq(val64, &bar0->rts_qos_steering);
1562		break;
1563	case 6:
1564		val64 = 0x0001020304050001ULL;
1565		writeq(val64, &bar0->rx_w_round_robin_0);
1566		val64 = 0x0203040500010203ULL;
1567		writeq(val64, &bar0->rx_w_round_robin_1);
1568		val64 = 0x0405000102030405ULL;
1569		writeq(val64, &bar0->rx_w_round_robin_2);
1570		val64 = 0x0001020304050001ULL;
1571		writeq(val64, &bar0->rx_w_round_robin_3);
1572		val64 = 0x0203040500000000ULL;
1573		writeq(val64, &bar0->rx_w_round_robin_4);
1574
1575		val64 = 0x8080404020100804ULL;
1576		writeq(val64, &bar0->rts_qos_steering);
1577		break;
1578	case 7:
1579		val64 = 0x0001020304050600ULL;
1580		writeq(val64, &bar0->rx_w_round_robin_0);
1581		val64 = 0x0102030405060001ULL;
1582		writeq(val64, &bar0->rx_w_round_robin_1);
1583		val64 = 0x0203040506000102ULL;
1584		writeq(val64, &bar0->rx_w_round_robin_2);
1585		val64 = 0x0304050600010203ULL;
1586		writeq(val64, &bar0->rx_w_round_robin_3);
1587		val64 = 0x0405060000000000ULL;
1588		writeq(val64, &bar0->rx_w_round_robin_4);
1589
1590		val64 = 0x8080402010080402ULL;
1591		writeq(val64, &bar0->rts_qos_steering);
1592		break;
1593	case 8:
1594		val64 = 0x0001020304050607ULL;
1595		writeq(val64, &bar0->rx_w_round_robin_0);
1596		writeq(val64, &bar0->rx_w_round_robin_1);
1597		writeq(val64, &bar0->rx_w_round_robin_2);
1598		writeq(val64, &bar0->rx_w_round_robin_3);
1599		val64 = 0x0001020300000000ULL;
1600		writeq(val64, &bar0->rx_w_round_robin_4);
1601
1602		val64 = 0x8040201008040201ULL;
1603		writeq(val64, &bar0->rts_qos_steering);
1604		break;
1605	}
1606
1607	/* UDP Fix */
1608	val64 = 0;
1609	for (i = 0; i < 8; i++)
1610		writeq(val64, &bar0->rts_frm_len_n[i]);
1611
1612	/* Set the default rts frame length for the rings configured */
1613	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1614	for (i = 0 ; i < config->rx_ring_num ; i++)
1615		writeq(val64, &bar0->rts_frm_len_n[i]);
1616
1617	/* Set the frame length for the configured rings
1618	 * desired by the user
1619	 */
1620	for (i = 0; i < config->rx_ring_num; i++) {
1621		/* If rts_frm_len[i] == 0 then it is assumed that user not
1622		 * specified frame length steering.
1623		 * If the user provides the frame length then program
1624		 * the rts_frm_len register for those values or else
1625		 * leave it as it is.
1626		 */
1627		if (rts_frm_len[i] != 0) {
1628			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1629			       &bar0->rts_frm_len_n[i]);
1630		}
1631	}
1632
1633	/* Disable differentiated services steering logic */
1634	for (i = 0; i < 64; i++) {
1635		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1636			DBG_PRINT(ERR_DBG,
1637				  "%s: rts_ds_steer failed on codepoint %d\n",
1638				  dev->name, i);
1639			return -ENODEV;
1640		}
1641	}
1642
1643	/* Program statistics memory */
1644	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1645
1646	if (nic->device_type == XFRAME_II_DEVICE) {
1647		val64 = STAT_BC(0x320);
1648		writeq(val64, &bar0->stat_byte_cnt);
1649	}
1650
1651	/*
1652	 * Initializing the sampling rate for the device to calculate the
1653	 * bandwidth utilization.
1654	 */
1655	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1656		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1657	writeq(val64, &bar0->mac_link_util);
1658
1659	/*
1660	 * Initializing the Transmit and Receive Traffic Interrupt
1661	 * Scheme.
1662	 */
1663
1664	/* Initialize TTI */
1665	if (SUCCESS != init_tti(nic, nic->last_link_state, true))
1666		return -ENODEV;
1667
1668	/* RTI Initialization */
1669	if (nic->device_type == XFRAME_II_DEVICE) {
1670		/*
1671		 * Programmed to generate Apprx 500 Intrs per
1672		 * second
1673		 */
1674		int count = (nic->config.bus_speed * 125)/4;
1675		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1676	} else
1677		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1678	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1679		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1680		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1681		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1682
1683	writeq(val64, &bar0->rti_data1_mem);
1684
1685	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1686		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1687	if (nic->config.intr_type == MSI_X)
1688		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1689			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1690	else
1691		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1692			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1693	writeq(val64, &bar0->rti_data2_mem);
1694
1695	for (i = 0; i < config->rx_ring_num; i++) {
1696		val64 = RTI_CMD_MEM_WE |
1697			RTI_CMD_MEM_STROBE_NEW_CMD |
1698			RTI_CMD_MEM_OFFSET(i);
1699		writeq(val64, &bar0->rti_command_mem);
1700
1701		/*
1702		 * Once the operation completes, the Strobe bit of the
1703		 * command register will be reset. We poll for this
1704		 * particular condition. We wait for a maximum of 500ms
1705		 * for the operation to complete, if it's not complete
1706		 * by then we return error.
1707		 */
1708		time = 0;
1709		while (true) {
1710			val64 = readq(&bar0->rti_command_mem);
1711			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1712				break;
1713
1714			if (time > 10) {
1715				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1716					  dev->name);
1717				return -ENODEV;
1718			}
1719			time++;
1720			msleep(50);
1721		}
1722	}
1723
1724	/*
1725	 * Initializing proper values as Pause threshold into all
1726	 * the 8 Queues on Rx side.
1727	 */
1728	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1729	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1730
1731	/* Disable RMAC PAD STRIPPING */
1732	add = &bar0->mac_cfg;
1733	val64 = readq(&bar0->mac_cfg);
1734	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1735	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1736	writel((u32) (val64), add);
1737	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1738	writel((u32) (val64 >> 32), (add + 4));
1739	val64 = readq(&bar0->mac_cfg);
1740
1741	/* Enable FCS stripping by adapter */
1742	add = &bar0->mac_cfg;
1743	val64 = readq(&bar0->mac_cfg);
1744	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1745	if (nic->device_type == XFRAME_II_DEVICE)
1746		writeq(val64, &bar0->mac_cfg);
1747	else {
1748		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1749		writel((u32) (val64), add);
1750		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1751		writel((u32) (val64 >> 32), (add + 4));
1752	}
1753
1754	/*
1755	 * Set the time value to be inserted in the pause frame
1756	 * generated by xena.
1757	 */
1758	val64 = readq(&bar0->rmac_pause_cfg);
1759	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1760	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1761	writeq(val64, &bar0->rmac_pause_cfg);
1762
1763	/*
1764	 * Set the Threshold Limit for Generating the pause frame
1765	 * If the amount of data in any Queue exceeds ratio of
1766	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1767	 * pause frame is generated
1768	 */
1769	val64 = 0;
1770	for (i = 0; i < 4; i++) {
1771		val64 |= (((u64)0xFF00 |
1772			   nic->mac_control.mc_pause_threshold_q0q3)
1773			  << (i * 2 * 8));
1774	}
1775	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1776
1777	val64 = 0;
1778	for (i = 0; i < 4; i++) {
1779		val64 |= (((u64)0xFF00 |
1780			   nic->mac_control.mc_pause_threshold_q4q7)
1781			  << (i * 2 * 8));
1782	}
1783	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1784
1785	/*
1786	 * TxDMA will stop Read request if the number of read split has
1787	 * exceeded the limit pointed by shared_splits
1788	 */
1789	val64 = readq(&bar0->pic_control);
1790	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1791	writeq(val64, &bar0->pic_control);
1792
1793	if (nic->config.bus_speed == 266) {
1794		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1795		writeq(0x0, &bar0->read_retry_delay);
1796		writeq(0x0, &bar0->write_retry_delay);
1797	}
1798
1799	/*
1800	 * Programming the Herc to split every write transaction
1801	 * that does not start on an ADB to reduce disconnects.
1802	 */
1803	if (nic->device_type == XFRAME_II_DEVICE) {
1804		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1805			MISC_LINK_STABILITY_PRD(3);
1806		writeq(val64, &bar0->misc_control);
1807		val64 = readq(&bar0->pic_control2);
1808		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1809		writeq(val64, &bar0->pic_control2);
1810	}
1811	if (strstr(nic->product_name, "CX4")) {
1812		val64 = TMAC_AVG_IPG(0x17);
1813		writeq(val64, &bar0->tmac_avg_ipg);
1814	}
1815
1816	return SUCCESS;
1817}
1818#define LINK_UP_DOWN_INTERRUPT		1
1819#define MAC_RMAC_ERR_TIMER		2
1820
1821static int s2io_link_fault_indication(struct s2io_nic *nic)
1822{
1823	if (nic->device_type == XFRAME_II_DEVICE)
1824		return LINK_UP_DOWN_INTERRUPT;
1825	else
1826		return MAC_RMAC_ERR_TIMER;
1827}
1828
1829/**
1830 *  do_s2io_write_bits -  update alarm bits in alarm register
1831 *  @value: alarm bits
1832 *  @flag: interrupt status
1833 *  @addr: address value
1834 *  Description: update alarm bits in alarm register
1835 *  Return Value:
1836 *  NONE.
1837 */
1838static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1839{
1840	u64 temp64;
1841
1842	temp64 = readq(addr);
1843
1844	if (flag == ENABLE_INTRS)
1845		temp64 &= ~((u64)value);
1846	else
1847		temp64 |= ((u64)value);
1848	writeq(temp64, addr);
1849}
1850
1851static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1852{
1853	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1854	register u64 gen_int_mask = 0;
1855	u64 interruptible;
1856
1857	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1858	if (mask & TX_DMA_INTR) {
1859		gen_int_mask |= TXDMA_INT_M;
1860
1861		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1862				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1863				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1864				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1865
1866		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1867				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1868				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1869				   &bar0->pfc_err_mask);
1870
1871		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1872				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1873				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1874
1875		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1876				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1877				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1878				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1879				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1880				   PCC_TXB_ECC_SG_ERR,
1881				   flag, &bar0->pcc_err_mask);
1882
1883		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1884				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1885
1886		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1887				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1888				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1889				   flag, &bar0->lso_err_mask);
1890
1891		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1892				   flag, &bar0->tpa_err_mask);
1893
1894		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1895	}
1896
1897	if (mask & TX_MAC_INTR) {
1898		gen_int_mask |= TXMAC_INT_M;
1899		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1900				   &bar0->mac_int_mask);
1901		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1902				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1903				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1904				   flag, &bar0->mac_tmac_err_mask);
1905	}
1906
1907	if (mask & TX_XGXS_INTR) {
1908		gen_int_mask |= TXXGXS_INT_M;
1909		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1910				   &bar0->xgxs_int_mask);
1911		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1912				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1913				   flag, &bar0->xgxs_txgxs_err_mask);
1914	}
1915
1916	if (mask & RX_DMA_INTR) {
1917		gen_int_mask |= RXDMA_INT_M;
1918		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1919				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1920				   flag, &bar0->rxdma_int_mask);
1921		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1922				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1923				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1924				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1925		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1926				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1927				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1928				   &bar0->prc_pcix_err_mask);
1929		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1930				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1931				   &bar0->rpa_err_mask);
1932		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1933				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1934				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1935				   RDA_FRM_ECC_SG_ERR |
1936				   RDA_MISC_ERR|RDA_PCIX_ERR,
1937				   flag, &bar0->rda_err_mask);
1938		do_s2io_write_bits(RTI_SM_ERR_ALARM |
1939				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1940				   flag, &bar0->rti_err_mask);
1941	}
1942
1943	if (mask & RX_MAC_INTR) {
1944		gen_int_mask |= RXMAC_INT_M;
1945		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1946				   &bar0->mac_int_mask);
1947		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1948				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1949				 RMAC_DOUBLE_ECC_ERR);
1950		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1951			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1952		do_s2io_write_bits(interruptible,
1953				   flag, &bar0->mac_rmac_err_mask);
1954	}
1955
1956	if (mask & RX_XGXS_INTR) {
1957		gen_int_mask |= RXXGXS_INT_M;
1958		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1959				   &bar0->xgxs_int_mask);
1960		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1961				   &bar0->xgxs_rxgxs_err_mask);
1962	}
1963
1964	if (mask & MC_INTR) {
1965		gen_int_mask |= MC_INT_M;
1966		do_s2io_write_bits(MC_INT_MASK_MC_INT,
1967				   flag, &bar0->mc_int_mask);
1968		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1969				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1970				   &bar0->mc_err_mask);
1971	}
1972	nic->general_int_mask = gen_int_mask;
1973
1974	/* Remove this line when alarm interrupts are enabled */
1975	nic->general_int_mask = 0;
1976}
1977
1978/**
1979 *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1980 *  @nic: device private variable,
1981 *  @mask: A mask indicating which Intr block must be modified and,
1982 *  @flag: A flag indicating whether to enable or disable the Intrs.
1983 *  Description: This function will either disable or enable the interrupts
1984 *  depending on the flag argument. The mask argument can be used to
1985 *  enable/disable any Intr block.
1986 *  Return Value: NONE.
1987 */
1988
1989static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1990{
1991	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1992	register u64 temp64 = 0, intr_mask = 0;
1993
1994	intr_mask = nic->general_int_mask;
1995
1996	/*  Top level interrupt classification */
1997	/*  PIC Interrupts */
1998	if (mask & TX_PIC_INTR) {
1999		/*  Enable PIC Intrs in the general intr mask register */
2000		intr_mask |= TXPIC_INT_M;
2001		if (flag == ENABLE_INTRS) {
2002			/*
2003			 * If Hercules adapter enable GPIO otherwise
2004			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2005			 * interrupts for now.
2006			 * TODO
2007			 */
2008			if (s2io_link_fault_indication(nic) ==
2009			    LINK_UP_DOWN_INTERRUPT) {
2010				do_s2io_write_bits(PIC_INT_GPIO, flag,
2011						   &bar0->pic_int_mask);
2012				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2013						   &bar0->gpio_int_mask);
2014			} else
2015				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2016		} else if (flag == DISABLE_INTRS) {
2017			/*
2018			 * Disable PIC Intrs in the general
2019			 * intr mask register
2020			 */
2021			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2022		}
2023	}
2024
2025	/*  Tx traffic interrupts */
2026	if (mask & TX_TRAFFIC_INTR) {
2027		intr_mask |= TXTRAFFIC_INT_M;
2028		if (flag == ENABLE_INTRS) {
2029			/*
2030			 * Enable all the Tx side interrupts
2031			 * writing 0 Enables all 64 TX interrupt levels
2032			 */
2033			writeq(0x0, &bar0->tx_traffic_mask);
2034		} else if (flag == DISABLE_INTRS) {
2035			/*
2036			 * Disable Tx Traffic Intrs in the general intr mask
2037			 * register.
2038			 */
2039			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2040		}
2041	}
2042
2043	/*  Rx traffic interrupts */
2044	if (mask & RX_TRAFFIC_INTR) {
2045		intr_mask |= RXTRAFFIC_INT_M;
2046		if (flag == ENABLE_INTRS) {
2047			/* writing 0 Enables all 8 RX interrupt levels */
2048			writeq(0x0, &bar0->rx_traffic_mask);
2049		} else if (flag == DISABLE_INTRS) {
2050			/*
2051			 * Disable Rx Traffic Intrs in the general intr mask
2052			 * register.
2053			 */
2054			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2055		}
2056	}
2057
2058	temp64 = readq(&bar0->general_int_mask);
2059	if (flag == ENABLE_INTRS)
2060		temp64 &= ~((u64)intr_mask);
2061	else
2062		temp64 = DISABLE_ALL_INTRS;
2063	writeq(temp64, &bar0->general_int_mask);
2064
2065	nic->general_int_mask = readq(&bar0->general_int_mask);
2066}
2067
2068/**
2069 *  verify_pcc_quiescent- Checks for PCC quiescent state
2070 *  @sp : private member of the device structure, which is a pointer to the
2071 *  s2io_nic structure.
2072 *  @flag: boolean controlling function path
2073 *  Return: 1 If PCC is quiescence
2074 *          0 If PCC is not quiescence
2075 */
2076static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2077{
2078	int ret = 0, herc;
2079	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2080	u64 val64 = readq(&bar0->adapter_status);
2081
2082	herc = (sp->device_type == XFRAME_II_DEVICE);
2083
2084	if (flag == false) {
2085		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2086			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2087				ret = 1;
2088		} else {
2089			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2090				ret = 1;
2091		}
2092	} else {
2093		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2094			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2095			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2096				ret = 1;
2097		} else {
2098			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2099			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2100				ret = 1;
2101		}
2102	}
2103
2104	return ret;
2105}
2106/**
2107 *  verify_xena_quiescence - Checks whether the H/W is ready
2108 *  @sp : private member of the device structure, which is a pointer to the
2109 *  s2io_nic structure.
2110 *  Description: Returns whether the H/W is ready to go or not. Depending
2111 *  on whether adapter enable bit was written or not the comparison
2112 *  differs and the calling function passes the input argument flag to
2113 *  indicate this.
2114 *  Return: 1 If xena is quiescence
2115 *          0 If Xena is not quiescence
2116 */
2117
2118static int verify_xena_quiescence(struct s2io_nic *sp)
2119{
2120	int  mode;
2121	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2122	u64 val64 = readq(&bar0->adapter_status);
2123	mode = s2io_verify_pci_mode(sp);
2124
2125	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2126		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2127		return 0;
2128	}
2129	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2130		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2131		return 0;
2132	}
2133	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2134		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2135		return 0;
2136	}
2137	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2138		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2139		return 0;
2140	}
2141	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2142		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2143		return 0;
2144	}
2145	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2146		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2147		return 0;
2148	}
2149	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2150		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2151		return 0;
2152	}
2153	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2154		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2155		return 0;
2156	}
2157
2158	/*
2159	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2160	 * the P_PLL_LOCK bit in the adapter_status register will
2161	 * not be asserted.
2162	 */
2163	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2164	    sp->device_type == XFRAME_II_DEVICE &&
2165	    mode != PCI_MODE_PCI_33) {
2166		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2167		return 0;
2168	}
2169	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2170	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2171		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2172		return 0;
2173	}
2174	return 1;
2175}
2176
2177/**
2178 * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2179 * @sp: Pointer to device specifc structure
2180 * Description :
2181 * New procedure to clear mac address reading  problems on Alpha platforms
2182 *
2183 */
2184
2185static void fix_mac_address(struct s2io_nic *sp)
2186{
2187	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2188	int i = 0;
2189
2190	while (fix_mac[i] != END_SIGN) {
2191		writeq(fix_mac[i++], &bar0->gpio_control);
2192		udelay(10);
2193		(void) readq(&bar0->gpio_control);
2194	}
2195}
2196
2197/**
2198 *  start_nic - Turns the device on
2199 *  @nic : device private variable.
2200 *  Description:
2201 *  This function actually turns the device on. Before this  function is
2202 *  called,all Registers are configured from their reset states
2203 *  and shared memory is allocated but the NIC is still quiescent. On
2204 *  calling this function, the device interrupts are cleared and the NIC is
2205 *  literally switched on by writing into the adapter control register.
2206 *  Return Value:
2207 *  SUCCESS on success and -1 on failure.
2208 */
2209
2210static int start_nic(struct s2io_nic *nic)
2211{
2212	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2213	struct net_device *dev = nic->dev;
2214	register u64 val64 = 0;
2215	u16 subid, i;
2216	struct config_param *config = &nic->config;
2217	struct mac_info *mac_control = &nic->mac_control;
2218
2219	/*  PRC Initialization and configuration */
2220	for (i = 0; i < config->rx_ring_num; i++) {
2221		struct ring_info *ring = &mac_control->rings[i];
2222
2223		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2224		       &bar0->prc_rxd0_n[i]);
2225
2226		val64 = readq(&bar0->prc_ctrl_n[i]);
2227		if (nic->rxd_mode == RXD_MODE_1)
2228			val64 |= PRC_CTRL_RC_ENABLED;
2229		else
2230			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2231		if (nic->device_type == XFRAME_II_DEVICE)
2232			val64 |= PRC_CTRL_GROUP_READS;
2233		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2234		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2235		writeq(val64, &bar0->prc_ctrl_n[i]);
2236	}
2237
2238	if (nic->rxd_mode == RXD_MODE_3B) {
2239		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2240		val64 = readq(&bar0->rx_pa_cfg);
2241		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2242		writeq(val64, &bar0->rx_pa_cfg);
2243	}
2244
2245	if (vlan_tag_strip == 0) {
2246		val64 = readq(&bar0->rx_pa_cfg);
2247		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2248		writeq(val64, &bar0->rx_pa_cfg);
2249		nic->vlan_strip_flag = 0;
2250	}
2251
2252	/*
2253	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2254	 * for around 100ms, which is approximately the time required
2255	 * for the device to be ready for operation.
2256	 */
2257	val64 = readq(&bar0->mc_rldram_mrs);
2258	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2259	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2260	val64 = readq(&bar0->mc_rldram_mrs);
2261
2262	msleep(100);	/* Delay by around 100 ms. */
2263
2264	/* Enabling ECC Protection. */
2265	val64 = readq(&bar0->adapter_control);
2266	val64 &= ~ADAPTER_ECC_EN;
2267	writeq(val64, &bar0->adapter_control);
2268
2269	/*
2270	 * Verify if the device is ready to be enabled, if so enable
2271	 * it.
2272	 */
2273	val64 = readq(&bar0->adapter_status);
2274	if (!verify_xena_quiescence(nic)) {
2275		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2276			  "Adapter status reads: 0x%llx\n",
2277			  dev->name, (unsigned long long)val64);
2278		return FAILURE;
2279	}
2280
2281	/*
2282	 * With some switches, link might be already up at this point.
2283	 * Because of this weird behavior, when we enable laser,
2284	 * we may not get link. We need to handle this. We cannot
2285	 * figure out which switch is misbehaving. So we are forced to
2286	 * make a global change.
2287	 */
2288
2289	/* Enabling Laser. */
2290	val64 = readq(&bar0->adapter_control);
2291	val64 |= ADAPTER_EOI_TX_ON;
2292	writeq(val64, &bar0->adapter_control);
2293
2294	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2295		/*
2296		 * Dont see link state interrupts initially on some switches,
2297		 * so directly scheduling the link state task here.
2298		 */
2299		schedule_work(&nic->set_link_task);
2300	}
2301	/* SXE-002: Initialize link and activity LED */
2302	subid = nic->pdev->subsystem_device;
2303	if (((subid & 0xFF) >= 0x07) &&
2304	    (nic->device_type == XFRAME_I_DEVICE)) {
2305		val64 = readq(&bar0->gpio_control);
2306		val64 |= 0x0000800000000000ULL;
2307		writeq(val64, &bar0->gpio_control);
2308		val64 = 0x0411040400000000ULL;
2309		writeq(val64, (void __iomem *)bar0 + 0x2700);
2310	}
2311
2312	return SUCCESS;
2313}
2314/**
2315 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2316 * @fifo_data: fifo data pointer
2317 * @txdlp: descriptor
2318 * @get_off: unused
2319 */
2320static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2321					struct TxD *txdlp, int get_off)
2322{
2323	struct s2io_nic *nic = fifo_data->nic;
2324	struct sk_buff *skb;
2325	struct TxD *txds;
2326	u16 j, frg_cnt;
2327
2328	txds = txdlp;
2329	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2330		dma_unmap_single(&nic->pdev->dev,
2331				 (dma_addr_t)txds->Buffer_Pointer,
2332				 sizeof(u64), DMA_TO_DEVICE);
2333		txds++;
2334	}
2335
2336	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2337	if (!skb) {
2338		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2339		return NULL;
2340	}
2341	dma_unmap_single(&nic->pdev->dev, (dma_addr_t)txds->Buffer_Pointer,
2342			 skb_headlen(skb), DMA_TO_DEVICE);
2343	frg_cnt = skb_shinfo(skb)->nr_frags;
2344	if (frg_cnt) {
2345		txds++;
2346		for (j = 0; j < frg_cnt; j++, txds++) {
2347			const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2348			if (!txds->Buffer_Pointer)
2349				break;
2350			dma_unmap_page(&nic->pdev->dev,
2351				       (dma_addr_t)txds->Buffer_Pointer,
2352				       skb_frag_size(frag), DMA_TO_DEVICE);
2353		}
2354	}
2355	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2356	return skb;
2357}
2358
2359/**
2360 *  free_tx_buffers - Free all queued Tx buffers
2361 *  @nic : device private variable.
2362 *  Description:
2363 *  Free all queued Tx buffers.
2364 *  Return Value: void
2365 */
2366
2367static void free_tx_buffers(struct s2io_nic *nic)
2368{
2369	struct net_device *dev = nic->dev;
2370	struct sk_buff *skb;
2371	struct TxD *txdp;
2372	int i, j;
2373	int cnt = 0;
2374	struct config_param *config = &nic->config;
2375	struct mac_info *mac_control = &nic->mac_control;
2376	struct stat_block *stats = mac_control->stats_info;
2377	struct swStat *swstats = &stats->sw_stat;
2378
2379	for (i = 0; i < config->tx_fifo_num; i++) {
2380		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2381		struct fifo_info *fifo = &mac_control->fifos[i];
2382		unsigned long flags;
2383
2384		spin_lock_irqsave(&fifo->tx_lock, flags);
2385		for (j = 0; j < tx_cfg->fifo_len; j++) {
2386			txdp = fifo->list_info[j].list_virt_addr;
2387			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2388			if (skb) {
2389				swstats->mem_freed += skb->truesize;
2390				dev_kfree_skb_irq(skb);
2391				cnt++;
2392			}
2393		}
2394		DBG_PRINT(INTR_DBG,
2395			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2396			  dev->name, cnt, i);
2397		fifo->tx_curr_get_info.offset = 0;
2398		fifo->tx_curr_put_info.offset = 0;
2399		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2400	}
2401}
2402
2403/**
2404 *   stop_nic -  To stop the nic
2405 *   @nic : device private variable.
2406 *   Description:
2407 *   This function does exactly the opposite of what the start_nic()
2408 *   function does. This function is called to stop the device.
2409 *   Return Value:
2410 *   void.
2411 */
2412
2413static void stop_nic(struct s2io_nic *nic)
2414{
2415	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2416	register u64 val64 = 0;
2417	u16 interruptible;
2418
2419	/*  Disable all interrupts */
2420	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2421	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2422	interruptible |= TX_PIC_INTR;
2423	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2424
2425	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2426	val64 = readq(&bar0->adapter_control);
2427	val64 &= ~(ADAPTER_CNTL_EN);
2428	writeq(val64, &bar0->adapter_control);
2429}
2430
2431/**
2432 *  fill_rx_buffers - Allocates the Rx side skbs
2433 *  @nic : device private variable.
2434 *  @ring: per ring structure
2435 *  @from_card_up: If this is true, we will map the buffer to get
2436 *     the dma address for buf0 and buf1 to give it to the card.
2437 *     Else we will sync the already mapped buffer to give it to the card.
2438 *  Description:
2439 *  The function allocates Rx side skbs and puts the physical
2440 *  address of these buffers into the RxD buffer pointers, so that the NIC
2441 *  can DMA the received frame into these locations.
2442 *  The NIC supports 3 receive modes, viz
2443 *  1. single buffer,
2444 *  2. three buffer and
2445 *  3. Five buffer modes.
2446 *  Each mode defines how many fragments the received frame will be split
2447 *  up into by the NIC. The frame is split into L3 header, L4 Header,
2448 *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2449 *  is split into 3 fragments. As of now only single buffer mode is
2450 *  supported.
2451 *   Return Value:
2452 *  SUCCESS on success or an appropriate -ve value on failure.
2453 */
2454static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2455			   int from_card_up)
2456{
2457	struct sk_buff *skb;
2458	struct RxD_t *rxdp;
2459	int off, size, block_no, block_no1;
2460	u32 alloc_tab = 0;
2461	u32 alloc_cnt;
2462	u64 tmp;
2463	struct buffAdd *ba;
2464	struct RxD_t *first_rxdp = NULL;
2465	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2466	struct RxD1 *rxdp1;
2467	struct RxD3 *rxdp3;
2468	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2469
2470	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2471
2472	block_no1 = ring->rx_curr_get_info.block_index;
2473	while (alloc_tab < alloc_cnt) {
2474		block_no = ring->rx_curr_put_info.block_index;
2475
2476		off = ring->rx_curr_put_info.offset;
2477
2478		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2479
2480		if ((block_no == block_no1) &&
2481		    (off == ring->rx_curr_get_info.offset) &&
2482		    (rxdp->Host_Control)) {
2483			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2484				  ring->dev->name);
2485			goto end;
2486		}
2487		if (off && (off == ring->rxd_count)) {
2488			ring->rx_curr_put_info.block_index++;
2489			if (ring->rx_curr_put_info.block_index ==
2490			    ring->block_count)
2491				ring->rx_curr_put_info.block_index = 0;
2492			block_no = ring->rx_curr_put_info.block_index;
2493			off = 0;
2494			ring->rx_curr_put_info.offset = off;
2495			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2496			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2497				  ring->dev->name, rxdp);
2498
2499		}
2500
2501		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2502		    ((ring->rxd_mode == RXD_MODE_3B) &&
2503		     (rxdp->Control_2 & s2BIT(0)))) {
2504			ring->rx_curr_put_info.offset = off;
2505			goto end;
2506		}
2507		/* calculate size of skb based on ring mode */
2508		size = ring->mtu +
2509			HEADER_ETHERNET_II_802_3_SIZE +
2510			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2511		if (ring->rxd_mode == RXD_MODE_1)
2512			size += NET_IP_ALIGN;
2513		else
2514			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2515
2516		/* allocate skb */
2517		skb = netdev_alloc_skb(nic->dev, size);
2518		if (!skb) {
2519			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2520				  ring->dev->name);
2521			if (first_rxdp) {
2522				dma_wmb();
2523				first_rxdp->Control_1 |= RXD_OWN_XENA;
2524			}
2525			swstats->mem_alloc_fail_cnt++;
2526
2527			return -ENOMEM ;
2528		}
2529		swstats->mem_allocated += skb->truesize;
2530
2531		if (ring->rxd_mode == RXD_MODE_1) {
2532			/* 1 buffer mode - normal operation mode */
2533			rxdp1 = (struct RxD1 *)rxdp;
2534			memset(rxdp, 0, sizeof(struct RxD1));
2535			skb_reserve(skb, NET_IP_ALIGN);
2536			rxdp1->Buffer0_ptr =
2537				dma_map_single(&ring->pdev->dev, skb->data,
2538					       size - NET_IP_ALIGN,
2539					       DMA_FROM_DEVICE);
2540			if (dma_mapping_error(&nic->pdev->dev, rxdp1->Buffer0_ptr))
2541				goto pci_map_failed;
2542
2543			rxdp->Control_2 =
2544				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2545			rxdp->Host_Control = (unsigned long)skb;
2546		} else if (ring->rxd_mode == RXD_MODE_3B) {
2547			/*
2548			 * 2 buffer mode -
2549			 * 2 buffer mode provides 128
2550			 * byte aligned receive buffers.
2551			 */
2552
2553			rxdp3 = (struct RxD3 *)rxdp;
2554			/* save buffer pointers to avoid frequent dma mapping */
2555			Buffer0_ptr = rxdp3->Buffer0_ptr;
2556			Buffer1_ptr = rxdp3->Buffer1_ptr;
2557			memset(rxdp, 0, sizeof(struct RxD3));
2558			/* restore the buffer pointers for dma sync*/
2559			rxdp3->Buffer0_ptr = Buffer0_ptr;
2560			rxdp3->Buffer1_ptr = Buffer1_ptr;
2561
2562			ba = &ring->ba[block_no][off];
2563			skb_reserve(skb, BUF0_LEN);
2564			tmp = (u64)(unsigned long)skb->data;
2565			tmp += ALIGN_SIZE;
2566			tmp &= ~ALIGN_SIZE;
2567			skb->data = (void *) (unsigned long)tmp;
2568			skb_reset_tail_pointer(skb);
2569
2570			if (from_card_up) {
2571				rxdp3->Buffer0_ptr =
2572					dma_map_single(&ring->pdev->dev,
2573						       ba->ba_0, BUF0_LEN,
2574						       DMA_FROM_DEVICE);
2575				if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer0_ptr))
2576					goto pci_map_failed;
2577			} else
2578				dma_sync_single_for_device(&ring->pdev->dev,
2579							   (dma_addr_t)rxdp3->Buffer0_ptr,
2580							   BUF0_LEN,
2581							   DMA_FROM_DEVICE);
2582
2583			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2584			if (ring->rxd_mode == RXD_MODE_3B) {
2585				/* Two buffer mode */
2586
2587				/*
2588				 * Buffer2 will have L3/L4 header plus
2589				 * L4 payload
2590				 */
2591				rxdp3->Buffer2_ptr = dma_map_single(&ring->pdev->dev,
2592								    skb->data,
2593								    ring->mtu + 4,
2594								    DMA_FROM_DEVICE);
2595
2596				if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer2_ptr))
2597					goto pci_map_failed;
2598
2599				if (from_card_up) {
2600					rxdp3->Buffer1_ptr =
2601						dma_map_single(&ring->pdev->dev,
2602							       ba->ba_1,
2603							       BUF1_LEN,
2604							       DMA_FROM_DEVICE);
2605
2606					if (dma_mapping_error(&nic->pdev->dev,
2607							      rxdp3->Buffer1_ptr)) {
2608						dma_unmap_single(&ring->pdev->dev,
2609								 (dma_addr_t)(unsigned long)
2610								 skb->data,
2611								 ring->mtu + 4,
2612								 DMA_FROM_DEVICE);
2613						goto pci_map_failed;
2614					}
2615				}
2616				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2617				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2618					(ring->mtu + 4);
2619			}
2620			rxdp->Control_2 |= s2BIT(0);
2621			rxdp->Host_Control = (unsigned long) (skb);
2622		}
2623		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2624			rxdp->Control_1 |= RXD_OWN_XENA;
2625		off++;
2626		if (off == (ring->rxd_count + 1))
2627			off = 0;
2628		ring->rx_curr_put_info.offset = off;
2629
2630		rxdp->Control_2 |= SET_RXD_MARKER;
2631		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2632			if (first_rxdp) {
2633				dma_wmb();
2634				first_rxdp->Control_1 |= RXD_OWN_XENA;
2635			}
2636			first_rxdp = rxdp;
2637		}
2638		ring->rx_bufs_left += 1;
2639		alloc_tab++;
2640	}
2641
2642end:
2643	/* Transfer ownership of first descriptor to adapter just before
2644	 * exiting. Before that, use memory barrier so that ownership
2645	 * and other fields are seen by adapter correctly.
2646	 */
2647	if (first_rxdp) {
2648		dma_wmb();
2649		first_rxdp->Control_1 |= RXD_OWN_XENA;
2650	}
2651
2652	return SUCCESS;
2653
2654pci_map_failed:
2655	swstats->pci_map_fail_cnt++;
2656	swstats->mem_freed += skb->truesize;
2657	dev_kfree_skb_irq(skb);
2658	return -ENOMEM;
2659}
2660
2661static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2662{
2663	struct net_device *dev = sp->dev;
2664	int j;
2665	struct sk_buff *skb;
2666	struct RxD_t *rxdp;
2667	struct RxD1 *rxdp1;
2668	struct RxD3 *rxdp3;
2669	struct mac_info *mac_control = &sp->mac_control;
2670	struct stat_block *stats = mac_control->stats_info;
2671	struct swStat *swstats = &stats->sw_stat;
2672
2673	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2674		rxdp = mac_control->rings[ring_no].
2675			rx_blocks[blk].rxds[j].virt_addr;
2676		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2677		if (!skb)
2678			continue;
2679		if (sp->rxd_mode == RXD_MODE_1) {
2680			rxdp1 = (struct RxD1 *)rxdp;
2681			dma_unmap_single(&sp->pdev->dev,
2682					 (dma_addr_t)rxdp1->Buffer0_ptr,
2683					 dev->mtu +
2684					 HEADER_ETHERNET_II_802_3_SIZE +
2685					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2686					 DMA_FROM_DEVICE);
2687			memset(rxdp, 0, sizeof(struct RxD1));
2688		} else if (sp->rxd_mode == RXD_MODE_3B) {
2689			rxdp3 = (struct RxD3 *)rxdp;
2690			dma_unmap_single(&sp->pdev->dev,
2691					 (dma_addr_t)rxdp3->Buffer0_ptr,
2692					 BUF0_LEN, DMA_FROM_DEVICE);
2693			dma_unmap_single(&sp->pdev->dev,
2694					 (dma_addr_t)rxdp3->Buffer1_ptr,
2695					 BUF1_LEN, DMA_FROM_DEVICE);
2696			dma_unmap_single(&sp->pdev->dev,
2697					 (dma_addr_t)rxdp3->Buffer2_ptr,
2698					 dev->mtu + 4, DMA_FROM_DEVICE);
2699			memset(rxdp, 0, sizeof(struct RxD3));
2700		}
2701		swstats->mem_freed += skb->truesize;
2702		dev_kfree_skb(skb);
2703		mac_control->rings[ring_no].rx_bufs_left -= 1;
2704	}
2705}
2706
2707/**
2708 *  free_rx_buffers - Frees all Rx buffers
2709 *  @sp: device private variable.
2710 *  Description:
2711 *  This function will free all Rx buffers allocated by host.
2712 *  Return Value:
2713 *  NONE.
2714 */
2715
2716static void free_rx_buffers(struct s2io_nic *sp)
2717{
2718	struct net_device *dev = sp->dev;
2719	int i, blk = 0, buf_cnt = 0;
2720	struct config_param *config = &sp->config;
2721	struct mac_info *mac_control = &sp->mac_control;
2722
2723	for (i = 0; i < config->rx_ring_num; i++) {
2724		struct ring_info *ring = &mac_control->rings[i];
2725
2726		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2727			free_rxd_blk(sp, i, blk);
2728
2729		ring->rx_curr_put_info.block_index = 0;
2730		ring->rx_curr_get_info.block_index = 0;
2731		ring->rx_curr_put_info.offset = 0;
2732		ring->rx_curr_get_info.offset = 0;
2733		ring->rx_bufs_left = 0;
2734		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2735			  dev->name, buf_cnt, i);
2736	}
2737}
2738
2739static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2740{
2741	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2742		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2743			  ring->dev->name);
2744	}
2745	return 0;
2746}
2747
2748/**
2749 * s2io_poll_msix - Rx interrupt handler for NAPI support
2750 * @napi : pointer to the napi structure.
2751 * @budget : The number of packets that were budgeted to be processed
2752 * during  one pass through the 'Poll" function.
2753 * Description:
2754 * Comes into picture only if NAPI support has been incorporated. It does
2755 * the same thing that rx_intr_handler does, but not in a interrupt context
2756 * also It will process only a given number of packets.
2757 * Return value:
2758 * 0 on success and 1 if there are No Rx packets to be processed.
2759 */
2760
2761static int s2io_poll_msix(struct napi_struct *napi, int budget)
2762{
2763	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2764	struct net_device *dev = ring->dev;
2765	int pkts_processed = 0;
2766	u8 __iomem *addr = NULL;
2767	u8 val8 = 0;
2768	struct s2io_nic *nic = netdev_priv(dev);
2769	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2770	int budget_org = budget;
2771
2772	if (unlikely(!is_s2io_card_up(nic)))
2773		return 0;
2774
2775	pkts_processed = rx_intr_handler(ring, budget);
2776	s2io_chk_rx_buffers(nic, ring);
2777
2778	if (pkts_processed < budget_org) {
2779		napi_complete_done(napi, pkts_processed);
2780		/*Re Enable MSI-Rx Vector*/
2781		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2782		addr += 7 - ring->ring_no;
2783		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2784		writeb(val8, addr);
2785		val8 = readb(addr);
2786	}
2787	return pkts_processed;
2788}
2789
2790static int s2io_poll_inta(struct napi_struct *napi, int budget)
2791{
2792	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2793	int pkts_processed = 0;
2794	int ring_pkts_processed, i;
2795	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2796	int budget_org = budget;
2797	struct config_param *config = &nic->config;
2798	struct mac_info *mac_control = &nic->mac_control;
2799
2800	if (unlikely(!is_s2io_card_up(nic)))
2801		return 0;
2802
2803	for (i = 0; i < config->rx_ring_num; i++) {
2804		struct ring_info *ring = &mac_control->rings[i];
2805		ring_pkts_processed = rx_intr_handler(ring, budget);
2806		s2io_chk_rx_buffers(nic, ring);
2807		pkts_processed += ring_pkts_processed;
2808		budget -= ring_pkts_processed;
2809		if (budget <= 0)
2810			break;
2811	}
2812	if (pkts_processed < budget_org) {
2813		napi_complete_done(napi, pkts_processed);
2814		/* Re enable the Rx interrupts for the ring */
2815		writeq(0, &bar0->rx_traffic_mask);
2816		readl(&bar0->rx_traffic_mask);
2817	}
2818	return pkts_processed;
2819}
2820
2821#ifdef CONFIG_NET_POLL_CONTROLLER
2822/**
2823 * s2io_netpoll - netpoll event handler entry point
2824 * @dev : pointer to the device structure.
2825 * Description:
2826 * 	This function will be called by upper layer to check for events on the
2827 * interface in situations where interrupts are disabled. It is used for
2828 * specific in-kernel networking tasks, such as remote consoles and kernel
2829 * debugging over the network (example netdump in RedHat).
2830 */
2831static void s2io_netpoll(struct net_device *dev)
2832{
2833	struct s2io_nic *nic = netdev_priv(dev);
2834	const int irq = nic->pdev->irq;
2835	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2836	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2837	int i;
2838	struct config_param *config = &nic->config;
2839	struct mac_info *mac_control = &nic->mac_control;
2840
2841	if (pci_channel_offline(nic->pdev))
2842		return;
2843
2844	disable_irq(irq);
2845
2846	writeq(val64, &bar0->rx_traffic_int);
2847	writeq(val64, &bar0->tx_traffic_int);
2848
2849	/* we need to free up the transmitted skbufs or else netpoll will
2850	 * run out of skbs and will fail and eventually netpoll application such
2851	 * as netdump will fail.
2852	 */
2853	for (i = 0; i < config->tx_fifo_num; i++)
2854		tx_intr_handler(&mac_control->fifos[i]);
2855
2856	/* check for received packet and indicate up to network */
2857	for (i = 0; i < config->rx_ring_num; i++) {
2858		struct ring_info *ring = &mac_control->rings[i];
2859
2860		rx_intr_handler(ring, 0);
2861	}
2862
2863	for (i = 0; i < config->rx_ring_num; i++) {
2864		struct ring_info *ring = &mac_control->rings[i];
2865
2866		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2867			DBG_PRINT(INFO_DBG,
2868				  "%s: Out of memory in Rx Netpoll!!\n",
2869				  dev->name);
2870			break;
2871		}
2872	}
2873	enable_irq(irq);
2874}
2875#endif
2876
2877/**
2878 *  rx_intr_handler - Rx interrupt handler
2879 *  @ring_data: per ring structure.
2880 *  @budget: budget for napi processing.
2881 *  Description:
2882 *  If the interrupt is because of a received frame or if the
2883 *  receive ring contains fresh as yet un-processed frames,this function is
2884 *  called. It picks out the RxD at which place the last Rx processing had
2885 *  stopped and sends the skb to the OSM's Rx handler and then increments
2886 *  the offset.
2887 *  Return Value:
2888 *  No. of napi packets processed.
2889 */
2890static int rx_intr_handler(struct ring_info *ring_data, int budget)
2891{
2892	int get_block, put_block;
2893	struct rx_curr_get_info get_info, put_info;
2894	struct RxD_t *rxdp;
2895	struct sk_buff *skb;
2896	int pkt_cnt = 0, napi_pkts = 0;
2897	int i;
2898	struct RxD1 *rxdp1;
2899	struct RxD3 *rxdp3;
2900
2901	if (budget <= 0)
2902		return napi_pkts;
2903
2904	get_info = ring_data->rx_curr_get_info;
2905	get_block = get_info.block_index;
2906	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2907	put_block = put_info.block_index;
2908	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2909
2910	while (RXD_IS_UP2DT(rxdp)) {
2911		/*
2912		 * If your are next to put index then it's
2913		 * FIFO full condition
2914		 */
2915		if ((get_block == put_block) &&
2916		    (get_info.offset + 1) == put_info.offset) {
2917			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2918				  ring_data->dev->name);
2919			break;
2920		}
2921		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2922		if (skb == NULL) {
2923			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2924				  ring_data->dev->name);
2925			return 0;
2926		}
2927		if (ring_data->rxd_mode == RXD_MODE_1) {
2928			rxdp1 = (struct RxD1 *)rxdp;
2929			dma_unmap_single(&ring_data->pdev->dev,
2930					 (dma_addr_t)rxdp1->Buffer0_ptr,
2931					 ring_data->mtu +
2932					 HEADER_ETHERNET_II_802_3_SIZE +
2933					 HEADER_802_2_SIZE +
2934					 HEADER_SNAP_SIZE,
2935					 DMA_FROM_DEVICE);
2936		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
2937			rxdp3 = (struct RxD3 *)rxdp;
2938			dma_sync_single_for_cpu(&ring_data->pdev->dev,
2939						(dma_addr_t)rxdp3->Buffer0_ptr,
2940						BUF0_LEN, DMA_FROM_DEVICE);
2941			dma_unmap_single(&ring_data->pdev->dev,
2942					 (dma_addr_t)rxdp3->Buffer2_ptr,
2943					 ring_data->mtu + 4, DMA_FROM_DEVICE);
2944		}
2945		prefetch(skb->data);
2946		rx_osm_handler(ring_data, rxdp);
2947		get_info.offset++;
2948		ring_data->rx_curr_get_info.offset = get_info.offset;
2949		rxdp = ring_data->rx_blocks[get_block].
2950			rxds[get_info.offset].virt_addr;
2951		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2952			get_info.offset = 0;
2953			ring_data->rx_curr_get_info.offset = get_info.offset;
2954			get_block++;
2955			if (get_block == ring_data->block_count)
2956				get_block = 0;
2957			ring_data->rx_curr_get_info.block_index = get_block;
2958			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2959		}
2960
2961		if (ring_data->nic->config.napi) {
2962			budget--;
2963			napi_pkts++;
2964			if (!budget)
2965				break;
2966		}
2967		pkt_cnt++;
2968		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2969			break;
2970	}
2971	if (ring_data->lro) {
2972		/* Clear all LRO sessions before exiting */
2973		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2974			struct lro *lro = &ring_data->lro0_n[i];
2975			if (lro->in_use) {
2976				update_L3L4_header(ring_data->nic, lro);
2977				queue_rx_frame(lro->parent, lro->vlan_tag);
2978				clear_lro_session(lro);
2979			}
2980		}
2981	}
2982	return napi_pkts;
2983}
2984
2985/**
2986 *  tx_intr_handler - Transmit interrupt handler
2987 *  @fifo_data : fifo data pointer
2988 *  Description:
2989 *  If an interrupt was raised to indicate DMA complete of the
2990 *  Tx packet, this function is called. It identifies the last TxD
2991 *  whose buffer was freed and frees all skbs whose data have already
2992 *  DMA'ed into the NICs internal memory.
2993 *  Return Value:
2994 *  NONE
2995 */
2996
2997static void tx_intr_handler(struct fifo_info *fifo_data)
2998{
2999	struct s2io_nic *nic = fifo_data->nic;
3000	struct tx_curr_get_info get_info, put_info;
3001	struct sk_buff *skb = NULL;
3002	struct TxD *txdlp;
3003	int pkt_cnt = 0;
3004	unsigned long flags = 0;
3005	u8 err_mask;
3006	struct stat_block *stats = nic->mac_control.stats_info;
3007	struct swStat *swstats = &stats->sw_stat;
3008
3009	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3010		return;
3011
3012	get_info = fifo_data->tx_curr_get_info;
3013	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3014	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3015	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3016	       (get_info.offset != put_info.offset) &&
3017	       (txdlp->Host_Control)) {
3018		/* Check for TxD errors */
3019		if (txdlp->Control_1 & TXD_T_CODE) {
3020			unsigned long long err;
3021			err = txdlp->Control_1 & TXD_T_CODE;
3022			if (err & 0x1) {
3023				swstats->parity_err_cnt++;
3024			}
3025
3026			/* update t_code statistics */
3027			err_mask = err >> 48;
3028			switch (err_mask) {
3029			case 2:
3030				swstats->tx_buf_abort_cnt++;
3031				break;
3032
3033			case 3:
3034				swstats->tx_desc_abort_cnt++;
3035				break;
3036
3037			case 7:
3038				swstats->tx_parity_err_cnt++;
3039				break;
3040
3041			case 10:
3042				swstats->tx_link_loss_cnt++;
3043				break;
3044
3045			case 15:
3046				swstats->tx_list_proc_err_cnt++;
3047				break;
3048			}
3049		}
3050
3051		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3052		if (skb == NULL) {
3053			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3054			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3055				  __func__);
3056			return;
3057		}
3058		pkt_cnt++;
3059
3060		/* Updating the statistics block */
3061		swstats->mem_freed += skb->truesize;
3062		dev_consume_skb_irq(skb);
3063
3064		get_info.offset++;
3065		if (get_info.offset == get_info.fifo_len + 1)
3066			get_info.offset = 0;
3067		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3068		fifo_data->tx_curr_get_info.offset = get_info.offset;
3069	}
3070
3071	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3072
3073	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3074}
3075
3076/**
3077 *  s2io_mdio_write - Function to write in to MDIO registers
3078 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3079 *  @addr     : address value
3080 *  @value    : data value
3081 *  @dev      : pointer to net_device structure
3082 *  Description:
3083 *  This function is used to write values to the MDIO registers
3084 *  NONE
3085 */
3086static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3087			    struct net_device *dev)
3088{
3089	u64 val64;
3090	struct s2io_nic *sp = netdev_priv(dev);
3091	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3092
3093	/* address transaction */
3094	val64 = MDIO_MMD_INDX_ADDR(addr) |
3095		MDIO_MMD_DEV_ADDR(mmd_type) |
3096		MDIO_MMS_PRT_ADDR(0x0);
3097	writeq(val64, &bar0->mdio_control);
3098	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3099	writeq(val64, &bar0->mdio_control);
3100	udelay(100);
3101
3102	/* Data transaction */
3103	val64 = MDIO_MMD_INDX_ADDR(addr) |
3104		MDIO_MMD_DEV_ADDR(mmd_type) |
3105		MDIO_MMS_PRT_ADDR(0x0) |
3106		MDIO_MDIO_DATA(value) |
3107		MDIO_OP(MDIO_OP_WRITE_TRANS);
3108	writeq(val64, &bar0->mdio_control);
3109	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3110	writeq(val64, &bar0->mdio_control);
3111	udelay(100);
3112
3113	val64 = MDIO_MMD_INDX_ADDR(addr) |
3114		MDIO_MMD_DEV_ADDR(mmd_type) |
3115		MDIO_MMS_PRT_ADDR(0x0) |
3116		MDIO_OP(MDIO_OP_READ_TRANS);
3117	writeq(val64, &bar0->mdio_control);
3118	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3119	writeq(val64, &bar0->mdio_control);
3120	udelay(100);
3121}
3122
3123/**
3124 *  s2io_mdio_read - Function to write in to MDIO registers
3125 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3126 *  @addr     : address value
3127 *  @dev      : pointer to net_device structure
3128 *  Description:
3129 *  This function is used to read values to the MDIO registers
3130 *  NONE
3131 */
3132static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3133{
3134	u64 val64 = 0x0;
3135	u64 rval64 = 0x0;
3136	struct s2io_nic *sp = netdev_priv(dev);
3137	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3138
3139	/* address transaction */
3140	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3141			 | MDIO_MMD_DEV_ADDR(mmd_type)
3142			 | MDIO_MMS_PRT_ADDR(0x0));
3143	writeq(val64, &bar0->mdio_control);
3144	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3145	writeq(val64, &bar0->mdio_control);
3146	udelay(100);
3147
3148	/* Data transaction */
3149	val64 = MDIO_MMD_INDX_ADDR(addr) |
3150		MDIO_MMD_DEV_ADDR(mmd_type) |
3151		MDIO_MMS_PRT_ADDR(0x0) |
3152		MDIO_OP(MDIO_OP_READ_TRANS);
3153	writeq(val64, &bar0->mdio_control);
3154	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3155	writeq(val64, &bar0->mdio_control);
3156	udelay(100);
3157
3158	/* Read the value from regs */
3159	rval64 = readq(&bar0->mdio_control);
3160	rval64 = rval64 & 0xFFFF0000;
3161	rval64 = rval64 >> 16;
3162	return rval64;
3163}
3164
3165/**
3166 *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3167 *  @counter      : counter value to be updated
3168 *  @regs_stat    : registers status
3169 *  @index        : index
3170 *  @flag         : flag to indicate the status
3171 *  @type         : counter type
3172 *  Description:
3173 *  This function is to check the status of the xpak counters value
3174 *  NONE
3175 */
3176
3177static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3178				  u16 flag, u16 type)
3179{
3180	u64 mask = 0x3;
3181	u64 val64;
3182	int i;
3183	for (i = 0; i < index; i++)
3184		mask = mask << 0x2;
3185
3186	if (flag > 0) {
3187		*counter = *counter + 1;
3188		val64 = *regs_stat & mask;
3189		val64 = val64 >> (index * 0x2);
3190		val64 = val64 + 1;
3191		if (val64 == 3) {
3192			switch (type) {
3193			case 1:
3194				DBG_PRINT(ERR_DBG,
3195					  "Take Xframe NIC out of service.\n");
3196				DBG_PRINT(ERR_DBG,
3197"Excessive temperatures may result in premature transceiver failure.\n");
3198				break;
3199			case 2:
3200				DBG_PRINT(ERR_DBG,
3201					  "Take Xframe NIC out of service.\n");
3202				DBG_PRINT(ERR_DBG,
3203"Excessive bias currents may indicate imminent laser diode failure.\n");
3204				break;
3205			case 3:
3206				DBG_PRINT(ERR_DBG,
3207					  "Take Xframe NIC out of service.\n");
3208				DBG_PRINT(ERR_DBG,
3209"Excessive laser output power may saturate far-end receiver.\n");
3210				break;
3211			default:
3212				DBG_PRINT(ERR_DBG,
3213					  "Incorrect XPAK Alarm type\n");
3214			}
3215			val64 = 0x0;
3216		}
3217		val64 = val64 << (index * 0x2);
3218		*regs_stat = (*regs_stat & (~mask)) | (val64);
3219
3220	} else {
3221		*regs_stat = *regs_stat & (~mask);
3222	}
3223}
3224
3225/**
3226 *  s2io_updt_xpak_counter - Function to update the xpak counters
3227 *  @dev         : pointer to net_device struct
3228 *  Description:
3229 *  This function is to upate the status of the xpak counters value
3230 *  NONE
3231 */
3232static void s2io_updt_xpak_counter(struct net_device *dev)
3233{
3234	u16 flag  = 0x0;
3235	u16 type  = 0x0;
3236	u16 val16 = 0x0;
3237	u64 val64 = 0x0;
3238	u64 addr  = 0x0;
3239
3240	struct s2io_nic *sp = netdev_priv(dev);
3241	struct stat_block *stats = sp->mac_control.stats_info;
3242	struct xpakStat *xstats = &stats->xpak_stat;
3243
3244	/* Check the communication with the MDIO slave */
3245	addr = MDIO_CTRL1;
3246	val64 = 0x0;
3247	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3248	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3249		DBG_PRINT(ERR_DBG,
3250			  "ERR: MDIO slave access failed - Returned %llx\n",
3251			  (unsigned long long)val64);
3252		return;
3253	}
3254
3255	/* Check for the expected value of control reg 1 */
3256	if (val64 != MDIO_CTRL1_SPEED10G) {
3257		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3258			  "Returned: %llx- Expected: 0x%x\n",
3259			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3260		return;
3261	}
3262
3263	/* Loading the DOM register to MDIO register */
3264	addr = 0xA100;
3265	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3266	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3267
3268	/* Reading the Alarm flags */
3269	addr = 0xA070;
3270	val64 = 0x0;
3271	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3272
3273	flag = CHECKBIT(val64, 0x7);
3274	type = 1;
3275	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3276			      &xstats->xpak_regs_stat,
3277			      0x0, flag, type);
3278
3279	if (CHECKBIT(val64, 0x6))
3280		xstats->alarm_transceiver_temp_low++;
3281
3282	flag = CHECKBIT(val64, 0x3);
3283	type = 2;
3284	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3285			      &xstats->xpak_regs_stat,
3286			      0x2, flag, type);
3287
3288	if (CHECKBIT(val64, 0x2))
3289		xstats->alarm_laser_bias_current_low++;
3290
3291	flag = CHECKBIT(val64, 0x1);
3292	type = 3;
3293	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3294			      &xstats->xpak_regs_stat,
3295			      0x4, flag, type);
3296
3297	if (CHECKBIT(val64, 0x0))
3298		xstats->alarm_laser_output_power_low++;
3299
3300	/* Reading the Warning flags */
3301	addr = 0xA074;
3302	val64 = 0x0;
3303	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3304
3305	if (CHECKBIT(val64, 0x7))
3306		xstats->warn_transceiver_temp_high++;
3307
3308	if (CHECKBIT(val64, 0x6))
3309		xstats->warn_transceiver_temp_low++;
3310
3311	if (CHECKBIT(val64, 0x3))
3312		xstats->warn_laser_bias_current_high++;
3313
3314	if (CHECKBIT(val64, 0x2))
3315		xstats->warn_laser_bias_current_low++;
3316
3317	if (CHECKBIT(val64, 0x1))
3318		xstats->warn_laser_output_power_high++;
3319
3320	if (CHECKBIT(val64, 0x0))
3321		xstats->warn_laser_output_power_low++;
3322}
3323
3324/**
3325 *  wait_for_cmd_complete - waits for a command to complete.
3326 *  @addr: address
3327 *  @busy_bit: bit to check for busy
3328 *  @bit_state: state to check
3329 *  @may_sleep: parameter indicates if sleeping when waiting for
3330 *  command complete
3331 *  Description: Function that waits for a command to Write into RMAC
3332 *  ADDR DATA registers to be completed and returns either success or
3333 *  error depending on whether the command was complete or not.
3334 *  Return value:
3335 *   SUCCESS on success and FAILURE on failure.
3336 */
3337
3338static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3339				 int bit_state, bool may_sleep)
3340{
3341	int ret = FAILURE, cnt = 0, delay = 1;
3342	u64 val64;
3343
3344	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3345		return FAILURE;
3346
3347	do {
3348		val64 = readq(addr);
3349		if (bit_state == S2IO_BIT_RESET) {
3350			if (!(val64 & busy_bit)) {
3351				ret = SUCCESS;
3352				break;
3353			}
3354		} else {
3355			if (val64 & busy_bit) {
3356				ret = SUCCESS;
3357				break;
3358			}
3359		}
3360
3361		if (!may_sleep)
3362			mdelay(delay);
3363		else
3364			msleep(delay);
3365
3366		if (++cnt >= 10)
3367			delay = 50;
3368	} while (cnt < 20);
3369	return ret;
3370}
3371/**
3372 * check_pci_device_id - Checks if the device id is supported
3373 * @id : device id
3374 * Description: Function to check if the pci device id is supported by driver.
3375 * Return value: Actual device id if supported else PCI_ANY_ID
3376 */
3377static u16 check_pci_device_id(u16 id)
3378{
3379	switch (id) {
3380	case PCI_DEVICE_ID_HERC_WIN:
3381	case PCI_DEVICE_ID_HERC_UNI:
3382		return XFRAME_II_DEVICE;
3383	case PCI_DEVICE_ID_S2IO_UNI:
3384	case PCI_DEVICE_ID_S2IO_WIN:
3385		return XFRAME_I_DEVICE;
3386	default:
3387		return PCI_ANY_ID;
3388	}
3389}
3390
3391/**
3392 *  s2io_reset - Resets the card.
3393 *  @sp : private member of the device structure.
3394 *  Description: Function to Reset the card. This function then also
3395 *  restores the previously saved PCI configuration space registers as
3396 *  the card reset also resets the configuration space.
3397 *  Return value:
3398 *  void.
3399 */
3400
3401static void s2io_reset(struct s2io_nic *sp)
3402{
3403	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3404	u64 val64;
3405	u16 subid, pci_cmd;
3406	int i;
3407	u16 val16;
3408	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3409	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3410	struct stat_block *stats;
3411	struct swStat *swstats;
3412
3413	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3414		  __func__, pci_name(sp->pdev));
3415
3416	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3417	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3418
3419	val64 = SW_RESET_ALL;
3420	writeq(val64, &bar0->sw_reset);
3421	if (strstr(sp->product_name, "CX4"))
3422		msleep(750);
3423	msleep(250);
3424	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3425
3426		/* Restore the PCI state saved during initialization. */
3427		pci_restore_state(sp->pdev);
3428		pci_save_state(sp->pdev);
3429		pci_read_config_word(sp->pdev, 0x2, &val16);
3430		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3431			break;
3432		msleep(200);
3433	}
3434
3435	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3436		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3437
3438	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3439
3440	s2io_init_pci(sp);
3441
3442	/* Set swapper to enable I/O register access */
3443	s2io_set_swapper(sp);
3444
3445	/* restore mac_addr entries */
3446	do_s2io_restore_unicast_mc(sp);
3447
3448	/* Restore the MSIX table entries from local variables */
3449	restore_xmsi_data(sp);
3450
3451	/* Clear certain PCI/PCI-X fields after reset */
3452	if (sp->device_type == XFRAME_II_DEVICE) {
3453		/* Clear "detected parity error" bit */
3454		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3455
3456		/* Clearing PCIX Ecc status register */
3457		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3458
3459		/* Clearing PCI_STATUS error reflected here */
3460		writeq(s2BIT(62), &bar0->txpic_int_reg);
3461	}
3462
3463	/* Reset device statistics maintained by OS */
3464	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3465
3466	stats = sp->mac_control.stats_info;
3467	swstats = &stats->sw_stat;
3468
3469	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3470	up_cnt = swstats->link_up_cnt;
3471	down_cnt = swstats->link_down_cnt;
3472	up_time = swstats->link_up_time;
3473	down_time = swstats->link_down_time;
3474	reset_cnt = swstats->soft_reset_cnt;
3475	mem_alloc_cnt = swstats->mem_allocated;
3476	mem_free_cnt = swstats->mem_freed;
3477	watchdog_cnt = swstats->watchdog_timer_cnt;
3478
3479	memset(stats, 0, sizeof(struct stat_block));
3480
3481	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3482	swstats->link_up_cnt = up_cnt;
3483	swstats->link_down_cnt = down_cnt;
3484	swstats->link_up_time = up_time;
3485	swstats->link_down_time = down_time;
3486	swstats->soft_reset_cnt = reset_cnt;
3487	swstats->mem_allocated = mem_alloc_cnt;
3488	swstats->mem_freed = mem_free_cnt;
3489	swstats->watchdog_timer_cnt = watchdog_cnt;
3490
3491	/* SXE-002: Configure link and activity LED to turn it off */
3492	subid = sp->pdev->subsystem_device;
3493	if (((subid & 0xFF) >= 0x07) &&
3494	    (sp->device_type == XFRAME_I_DEVICE)) {
3495		val64 = readq(&bar0->gpio_control);
3496		val64 |= 0x0000800000000000ULL;
3497		writeq(val64, &bar0->gpio_control);
3498		val64 = 0x0411040400000000ULL;
3499		writeq(val64, (void __iomem *)bar0 + 0x2700);
3500	}
3501
3502	/*
3503	 * Clear spurious ECC interrupts that would have occurred on
3504	 * XFRAME II cards after reset.
3505	 */
3506	if (sp->device_type == XFRAME_II_DEVICE) {
3507		val64 = readq(&bar0->pcc_err_reg);
3508		writeq(val64, &bar0->pcc_err_reg);
3509	}
3510
3511	sp->device_enabled_once = false;
3512}
3513
3514/**
3515 *  s2io_set_swapper - to set the swapper controle on the card
3516 *  @sp : private member of the device structure,
3517 *  pointer to the s2io_nic structure.
3518 *  Description: Function to set the swapper control on the card
3519 *  correctly depending on the 'endianness' of the system.
3520 *  Return value:
3521 *  SUCCESS on success and FAILURE on failure.
3522 */
3523
3524static int s2io_set_swapper(struct s2io_nic *sp)
3525{
3526	struct net_device *dev = sp->dev;
3527	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3528	u64 val64, valt, valr;
3529
3530	/*
3531	 * Set proper endian settings and verify the same by reading
3532	 * the PIF Feed-back register.
3533	 */
3534
3535	val64 = readq(&bar0->pif_rd_swapper_fb);
3536	if (val64 != 0x0123456789ABCDEFULL) {
3537		int i = 0;
3538		static const u64 value[] = {
3539			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3540			0x8100008181000081ULL,	/* FE=1, SE=0 */
3541			0x4200004242000042ULL,	/* FE=0, SE=1 */
3542			0			/* FE=0, SE=0 */
3543		};
3544
3545		while (i < 4) {
3546			writeq(value[i], &bar0->swapper_ctrl);
3547			val64 = readq(&bar0->pif_rd_swapper_fb);
3548			if (val64 == 0x0123456789ABCDEFULL)
3549				break;
3550			i++;
3551		}
3552		if (i == 4) {
3553			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3554				  "feedback read %llx\n",
3555				  dev->name, (unsigned long long)val64);
3556			return FAILURE;
3557		}
3558		valr = value[i];
3559	} else {
3560		valr = readq(&bar0->swapper_ctrl);
3561	}
3562
3563	valt = 0x0123456789ABCDEFULL;
3564	writeq(valt, &bar0->xmsi_address);
3565	val64 = readq(&bar0->xmsi_address);
3566
3567	if (val64 != valt) {
3568		int i = 0;
3569		static const u64 value[] = {
3570			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3571			0x0081810000818100ULL,	/* FE=1, SE=0 */
3572			0x0042420000424200ULL,	/* FE=0, SE=1 */
3573			0			/* FE=0, SE=0 */
3574		};
3575
3576		while (i < 4) {
3577			writeq((value[i] | valr), &bar0->swapper_ctrl);
3578			writeq(valt, &bar0->xmsi_address);
3579			val64 = readq(&bar0->xmsi_address);
3580			if (val64 == valt)
3581				break;
3582			i++;
3583		}
3584		if (i == 4) {
3585			unsigned long long x = val64;
3586			DBG_PRINT(ERR_DBG,
3587				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3588			return FAILURE;
3589		}
3590	}
3591	val64 = readq(&bar0->swapper_ctrl);
3592	val64 &= 0xFFFF000000000000ULL;
3593
3594#ifdef __BIG_ENDIAN
3595	/*
3596	 * The device by default set to a big endian format, so a
3597	 * big endian driver need not set anything.
3598	 */
3599	val64 |= (SWAPPER_CTRL_TXP_FE |
3600		  SWAPPER_CTRL_TXP_SE |
3601		  SWAPPER_CTRL_TXD_R_FE |
3602		  SWAPPER_CTRL_TXD_W_FE |
3603		  SWAPPER_CTRL_TXF_R_FE |
3604		  SWAPPER_CTRL_RXD_R_FE |
3605		  SWAPPER_CTRL_RXD_W_FE |
3606		  SWAPPER_CTRL_RXF_W_FE |
3607		  SWAPPER_CTRL_XMSI_FE |
3608		  SWAPPER_CTRL_STATS_FE |
3609		  SWAPPER_CTRL_STATS_SE);
3610	if (sp->config.intr_type == INTA)
3611		val64 |= SWAPPER_CTRL_XMSI_SE;
3612	writeq(val64, &bar0->swapper_ctrl);
3613#else
3614	/*
3615	 * Initially we enable all bits to make it accessible by the
3616	 * driver, then we selectively enable only those bits that
3617	 * we want to set.
3618	 */
3619	val64 |= (SWAPPER_CTRL_TXP_FE |
3620		  SWAPPER_CTRL_TXP_SE |
3621		  SWAPPER_CTRL_TXD_R_FE |
3622		  SWAPPER_CTRL_TXD_R_SE |
3623		  SWAPPER_CTRL_TXD_W_FE |
3624		  SWAPPER_CTRL_TXD_W_SE |
3625		  SWAPPER_CTRL_TXF_R_FE |
3626		  SWAPPER_CTRL_RXD_R_FE |
3627		  SWAPPER_CTRL_RXD_R_SE |
3628		  SWAPPER_CTRL_RXD_W_FE |
3629		  SWAPPER_CTRL_RXD_W_SE |
3630		  SWAPPER_CTRL_RXF_W_FE |
3631		  SWAPPER_CTRL_XMSI_FE |
3632		  SWAPPER_CTRL_STATS_FE |
3633		  SWAPPER_CTRL_STATS_SE);
3634	if (sp->config.intr_type == INTA)
3635		val64 |= SWAPPER_CTRL_XMSI_SE;
3636	writeq(val64, &bar0->swapper_ctrl);
3637#endif
3638	val64 = readq(&bar0->swapper_ctrl);
3639
3640	/*
3641	 * Verifying if endian settings are accurate by reading a
3642	 * feedback register.
3643	 */
3644	val64 = readq(&bar0->pif_rd_swapper_fb);
3645	if (val64 != 0x0123456789ABCDEFULL) {
3646		/* Endian settings are incorrect, calls for another dekko. */
3647		DBG_PRINT(ERR_DBG,
3648			  "%s: Endian settings are wrong, feedback read %llx\n",
3649			  dev->name, (unsigned long long)val64);
3650		return FAILURE;
3651	}
3652
3653	return SUCCESS;
3654}
3655
3656static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3657{
3658	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3659	u64 val64;
3660	int ret = 0, cnt = 0;
3661
3662	do {
3663		val64 = readq(&bar0->xmsi_access);
3664		if (!(val64 & s2BIT(15)))
3665			break;
3666		mdelay(1);
3667		cnt++;
3668	} while (cnt < 5);
3669	if (cnt == 5) {
3670		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3671		ret = 1;
3672	}
3673
3674	return ret;
3675}
3676
3677static void restore_xmsi_data(struct s2io_nic *nic)
3678{
3679	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3680	u64 val64;
3681	int i, msix_index;
3682
3683	if (nic->device_type == XFRAME_I_DEVICE)
3684		return;
3685
3686	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3687		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3688		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3689		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3690		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3691		writeq(val64, &bar0->xmsi_access);
3692		if (wait_for_msix_trans(nic, msix_index))
3693			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3694				  __func__, msix_index);
3695	}
3696}
3697
3698static void store_xmsi_data(struct s2io_nic *nic)
3699{
3700	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3701	u64 val64, addr, data;
3702	int i, msix_index;
3703
3704	if (nic->device_type == XFRAME_I_DEVICE)
3705		return;
3706
3707	/* Store and display */
3708	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3709		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3710		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3711		writeq(val64, &bar0->xmsi_access);
3712		if (wait_for_msix_trans(nic, msix_index)) {
3713			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3714				  __func__, msix_index);
3715			continue;
3716		}
3717		addr = readq(&bar0->xmsi_address);
3718		data = readq(&bar0->xmsi_data);
3719		if (addr && data) {
3720			nic->msix_info[i].addr = addr;
3721			nic->msix_info[i].data = data;
3722		}
3723	}
3724}
3725
3726static int s2io_enable_msi_x(struct s2io_nic *nic)
3727{
3728	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3729	u64 rx_mat;
3730	u16 msi_control; /* Temp variable */
3731	int ret, i, j, msix_indx = 1;
3732	int size;
3733	struct stat_block *stats = nic->mac_control.stats_info;
3734	struct swStat *swstats = &stats->sw_stat;
3735
3736	size = nic->num_entries * sizeof(struct msix_entry);
3737	nic->entries = kzalloc(size, GFP_KERNEL);
3738	if (!nic->entries) {
3739		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3740			  __func__);
3741		swstats->mem_alloc_fail_cnt++;
3742		return -ENOMEM;
3743	}
3744	swstats->mem_allocated += size;
3745
3746	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3747	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3748	if (!nic->s2io_entries) {
3749		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3750			  __func__);
3751		swstats->mem_alloc_fail_cnt++;
3752		kfree(nic->entries);
3753		swstats->mem_freed
3754			+= (nic->num_entries * sizeof(struct msix_entry));
3755		return -ENOMEM;
3756	}
3757	swstats->mem_allocated += size;
3758
3759	nic->entries[0].entry = 0;
3760	nic->s2io_entries[0].entry = 0;
3761	nic->s2io_entries[0].in_use = MSIX_FLG;
3762	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3763	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3764
3765	for (i = 1; i < nic->num_entries; i++) {
3766		nic->entries[i].entry = ((i - 1) * 8) + 1;
3767		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3768		nic->s2io_entries[i].arg = NULL;
3769		nic->s2io_entries[i].in_use = 0;
3770	}
3771
3772	rx_mat = readq(&bar0->rx_mat);
3773	for (j = 0; j < nic->config.rx_ring_num; j++) {
3774		rx_mat |= RX_MAT_SET(j, msix_indx);
3775		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3776		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3777		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3778		msix_indx += 8;
3779	}
3780	writeq(rx_mat, &bar0->rx_mat);
3781	readq(&bar0->rx_mat);
3782
3783	ret = pci_enable_msix_range(nic->pdev, nic->entries,
3784				    nic->num_entries, nic->num_entries);
3785	/* We fail init if error or we get less vectors than min required */
3786	if (ret < 0) {
3787		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3788		kfree(nic->entries);
3789		swstats->mem_freed += nic->num_entries *
3790			sizeof(struct msix_entry);
3791		kfree(nic->s2io_entries);
3792		swstats->mem_freed += nic->num_entries *
3793			sizeof(struct s2io_msix_entry);
3794		nic->entries = NULL;
3795		nic->s2io_entries = NULL;
3796		return -ENOMEM;
3797	}
3798
3799	/*
3800	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3801	 * in the herc NIC. (Temp change, needs to be removed later)
3802	 */
3803	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3804	msi_control |= 0x1; /* Enable MSI */
3805	pci_write_config_word(nic->pdev, 0x42, msi_control);
3806
3807	return 0;
3808}
3809
3810/* Handle software interrupt used during MSI(X) test */
3811static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3812{
3813	struct s2io_nic *sp = dev_id;
3814
3815	sp->msi_detected = 1;
3816	wake_up(&sp->msi_wait);
3817
3818	return IRQ_HANDLED;
3819}
3820
3821/* Test interrupt path by forcing a software IRQ */
3822static int s2io_test_msi(struct s2io_nic *sp)
3823{
3824	struct pci_dev *pdev = sp->pdev;
3825	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3826	int err;
3827	u64 val64, saved64;
3828
3829	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3830			  sp->name, sp);
3831	if (err) {
3832		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3833			  sp->dev->name, pci_name(pdev), pdev->irq);
3834		return err;
3835	}
3836
3837	init_waitqueue_head(&sp->msi_wait);
3838	sp->msi_detected = 0;
3839
3840	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3841	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3842	val64 |= SCHED_INT_CTRL_TIMER_EN;
3843	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3844	writeq(val64, &bar0->scheduled_int_ctrl);
3845
3846	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3847
3848	if (!sp->msi_detected) {
3849		/* MSI(X) test failed, go back to INTx mode */
3850		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3851			  "using MSI(X) during test\n",
3852			  sp->dev->name, pci_name(pdev));
3853
3854		err = -EOPNOTSUPP;
3855	}
3856
3857	free_irq(sp->entries[1].vector, sp);
3858
3859	writeq(saved64, &bar0->scheduled_int_ctrl);
3860
3861	return err;
3862}
3863
3864static void remove_msix_isr(struct s2io_nic *sp)
3865{
3866	int i;
3867	u16 msi_control;
3868
3869	for (i = 0; i < sp->num_entries; i++) {
3870		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3871			int vector = sp->entries[i].vector;
3872			void *arg = sp->s2io_entries[i].arg;
3873			free_irq(vector, arg);
3874		}
3875	}
3876
3877	kfree(sp->entries);
3878	kfree(sp->s2io_entries);
3879	sp->entries = NULL;
3880	sp->s2io_entries = NULL;
3881
3882	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3883	msi_control &= 0xFFFE; /* Disable MSI */
3884	pci_write_config_word(sp->pdev, 0x42, msi_control);
3885
3886	pci_disable_msix(sp->pdev);
3887}
3888
3889static void remove_inta_isr(struct s2io_nic *sp)
3890{
3891	free_irq(sp->pdev->irq, sp->dev);
3892}
3893
3894/* ********************************************************* *
3895 * Functions defined below concern the OS part of the driver *
3896 * ********************************************************* */
3897
3898/**
3899 *  s2io_open - open entry point of the driver
3900 *  @dev : pointer to the device structure.
3901 *  Description:
3902 *  This function is the open entry point of the driver. It mainly calls a
3903 *  function to allocate Rx buffers and inserts them into the buffer
3904 *  descriptors and then enables the Rx part of the NIC.
3905 *  Return value:
3906 *  0 on success and an appropriate (-)ve integer as defined in errno.h
3907 *   file on failure.
3908 */
3909
3910static int s2io_open(struct net_device *dev)
3911{
3912	struct s2io_nic *sp = netdev_priv(dev);
3913	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3914	int err = 0;
3915
3916	/*
3917	 * Make sure you have link off by default every time
3918	 * Nic is initialized
3919	 */
3920	netif_carrier_off(dev);
3921	sp->last_link_state = 0;
3922
3923	/* Initialize H/W and enable interrupts */
3924	err = s2io_card_up(sp);
3925	if (err) {
3926		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3927			  dev->name);
3928		goto hw_init_failed;
3929	}
3930
3931	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3932		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3933		s2io_card_down(sp);
3934		err = -ENODEV;
3935		goto hw_init_failed;
3936	}
3937	s2io_start_all_tx_queue(sp);
3938	return 0;
3939
3940hw_init_failed:
3941	if (sp->config.intr_type == MSI_X) {
3942		if (sp->entries) {
3943			kfree(sp->entries);
3944			swstats->mem_freed += sp->num_entries *
3945				sizeof(struct msix_entry);
3946		}
3947		if (sp->s2io_entries) {
3948			kfree(sp->s2io_entries);
3949			swstats->mem_freed += sp->num_entries *
3950				sizeof(struct s2io_msix_entry);
3951		}
3952	}
3953	return err;
3954}
3955
3956/**
3957 *  s2io_close -close entry point of the driver
3958 *  @dev : device pointer.
3959 *  Description:
3960 *  This is the stop entry point of the driver. It needs to undo exactly
3961 *  whatever was done by the open entry point,thus it's usually referred to
3962 *  as the close function.Among other things this function mainly stops the
3963 *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3964 *  Return value:
3965 *  0 on success and an appropriate (-)ve integer as defined in errno.h
3966 *  file on failure.
3967 */
3968
3969static int s2io_close(struct net_device *dev)
3970{
3971	struct s2io_nic *sp = netdev_priv(dev);
3972	struct config_param *config = &sp->config;
3973	u64 tmp64;
3974	int offset;
3975
3976	/* Return if the device is already closed               *
3977	 *  Can happen when s2io_card_up failed in change_mtu    *
3978	 */
3979	if (!is_s2io_card_up(sp))
3980		return 0;
3981
3982	s2io_stop_all_tx_queue(sp);
3983	/* delete all populated mac entries */
3984	for (offset = 1; offset < config->max_mc_addr; offset++) {
3985		tmp64 = do_s2io_read_unicast_mc(sp, offset);
3986		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3987			do_s2io_delete_unicast_mc(sp, tmp64);
3988	}
3989
3990	s2io_card_down(sp);
3991
3992	return 0;
3993}
3994
3995/**
3996 *  s2io_xmit - Tx entry point of te driver
3997 *  @skb : the socket buffer containing the Tx data.
3998 *  @dev : device pointer.
3999 *  Description :
4000 *  This function is the Tx entry point of the driver. S2IO NIC supports
4001 *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4002 *  NOTE: when device can't queue the pkt,just the trans_start variable will
4003 *  not be upadted.
4004 *  Return value:
4005 *  0 on success & 1 on failure.
4006 */
4007
4008static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4009{
4010	struct s2io_nic *sp = netdev_priv(dev);
4011	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4012	register u64 val64;
4013	struct TxD *txdp;
4014	struct TxFIFO_element __iomem *tx_fifo;
4015	unsigned long flags = 0;
4016	u16 vlan_tag = 0;
4017	struct fifo_info *fifo = NULL;
4018	int offload_type;
4019	int enable_per_list_interrupt = 0;
4020	struct config_param *config = &sp->config;
4021	struct mac_info *mac_control = &sp->mac_control;
4022	struct stat_block *stats = mac_control->stats_info;
4023	struct swStat *swstats = &stats->sw_stat;
4024
4025	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4026
4027	if (unlikely(skb->len <= 0)) {
4028		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4029		dev_kfree_skb_any(skb);
4030		return NETDEV_TX_OK;
4031	}
4032
4033	if (!is_s2io_card_up(sp)) {
4034		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4035			  dev->name);
4036		dev_kfree_skb_any(skb);
4037		return NETDEV_TX_OK;
4038	}
4039
4040	queue = 0;
4041	if (skb_vlan_tag_present(skb))
4042		vlan_tag = skb_vlan_tag_get(skb);
4043	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4044		if (skb->protocol == htons(ETH_P_IP)) {
4045			struct iphdr *ip;
4046			struct tcphdr *th;
4047			ip = ip_hdr(skb);
4048
4049			if (!ip_is_fragment(ip)) {
4050				th = (struct tcphdr *)(((unsigned char *)ip) +
4051						       ip->ihl*4);
4052
4053				if (ip->protocol == IPPROTO_TCP) {
4054					queue_len = sp->total_tcp_fifos;
4055					queue = (ntohs(th->source) +
4056						 ntohs(th->dest)) &
4057						sp->fifo_selector[queue_len - 1];
4058					if (queue >= queue_len)
4059						queue = queue_len - 1;
4060				} else if (ip->protocol == IPPROTO_UDP) {
4061					queue_len = sp->total_udp_fifos;
4062					queue = (ntohs(th->source) +
4063						 ntohs(th->dest)) &
4064						sp->fifo_selector[queue_len - 1];
4065					if (queue >= queue_len)
4066						queue = queue_len - 1;
4067					queue += sp->udp_fifo_idx;
4068					if (skb->len > 1024)
4069						enable_per_list_interrupt = 1;
4070				}
4071			}
4072		}
4073	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4074		/* get fifo number based on skb->priority value */
4075		queue = config->fifo_mapping
4076			[skb->priority & (MAX_TX_FIFOS - 1)];
4077	fifo = &mac_control->fifos[queue];
4078
4079	spin_lock_irqsave(&fifo->tx_lock, flags);
4080
4081	if (sp->config.multiq) {
4082		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4083			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4084			return NETDEV_TX_BUSY;
4085		}
4086	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4087		if (netif_queue_stopped(dev)) {
4088			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4089			return NETDEV_TX_BUSY;
4090		}
4091	}
4092
4093	put_off = (u16)fifo->tx_curr_put_info.offset;
4094	get_off = (u16)fifo->tx_curr_get_info.offset;
4095	txdp = fifo->list_info[put_off].list_virt_addr;
4096
4097	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4098	/* Avoid "put" pointer going beyond "get" pointer */
4099	if (txdp->Host_Control ||
4100	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4101		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4102		s2io_stop_tx_queue(sp, fifo->fifo_no);
4103		dev_kfree_skb_any(skb);
4104		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4105		return NETDEV_TX_OK;
4106	}
4107
4108	offload_type = s2io_offload_type(skb);
4109	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4110		txdp->Control_1 |= TXD_TCP_LSO_EN;
4111		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4112	}
4113	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4114		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4115				    TXD_TX_CKO_TCP_EN |
4116				    TXD_TX_CKO_UDP_EN);
4117	}
4118	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4119	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4120	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4121	if (enable_per_list_interrupt)
4122		if (put_off & (queue_len >> 5))
4123			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4124	if (vlan_tag) {
4125		txdp->Control_2 |= TXD_VLAN_ENABLE;
4126		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4127	}
4128
4129	frg_len = skb_headlen(skb);
4130	txdp->Buffer_Pointer = dma_map_single(&sp->pdev->dev, skb->data,
4131					      frg_len, DMA_TO_DEVICE);
4132	if (dma_mapping_error(&sp->pdev->dev, txdp->Buffer_Pointer))
4133		goto pci_map_failed;
4134
4135	txdp->Host_Control = (unsigned long)skb;
4136	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4137
4138	frg_cnt = skb_shinfo(skb)->nr_frags;
4139	/* For fragmented SKB. */
4140	for (i = 0; i < frg_cnt; i++) {
4141		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4142		/* A '0' length fragment will be ignored */
4143		if (!skb_frag_size(frag))
4144			continue;
4145		txdp++;
4146		txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4147							     frag, 0,
4148							     skb_frag_size(frag),
4149							     DMA_TO_DEVICE);
4150		txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4151	}
4152	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4153
4154	tx_fifo = mac_control->tx_FIFO_start[queue];
4155	val64 = fifo->list_info[put_off].list_phy_addr;
4156	writeq(val64, &tx_fifo->TxDL_Pointer);
4157
4158	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4159		 TX_FIFO_LAST_LIST);
4160	if (offload_type)
4161		val64 |= TX_FIFO_SPECIAL_FUNC;
4162
4163	writeq(val64, &tx_fifo->List_Control);
4164
4165	put_off++;
4166	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4167		put_off = 0;
4168	fifo->tx_curr_put_info.offset = put_off;
4169
4170	/* Avoid "put" pointer going beyond "get" pointer */
4171	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4172		swstats->fifo_full_cnt++;
4173		DBG_PRINT(TX_DBG,
4174			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4175			  put_off, get_off);
4176		s2io_stop_tx_queue(sp, fifo->fifo_no);
4177	}
4178	swstats->mem_allocated += skb->truesize;
4179	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4180
4181	if (sp->config.intr_type == MSI_X)
4182		tx_intr_handler(fifo);
4183
4184	return NETDEV_TX_OK;
4185
4186pci_map_failed:
4187	swstats->pci_map_fail_cnt++;
4188	s2io_stop_tx_queue(sp, fifo->fifo_no);
4189	swstats->mem_freed += skb->truesize;
4190	dev_kfree_skb_any(skb);
4191	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4192	return NETDEV_TX_OK;
4193}
4194
4195static void
4196s2io_alarm_handle(struct timer_list *t)
4197{
4198	struct s2io_nic *sp = from_timer(sp, t, alarm_timer);
4199	struct net_device *dev = sp->dev;
4200
4201	s2io_handle_errors(dev);
4202	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4203}
4204
4205static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4206{
4207	struct ring_info *ring = (struct ring_info *)dev_id;
4208	struct s2io_nic *sp = ring->nic;
4209	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4210
4211	if (unlikely(!is_s2io_card_up(sp)))
4212		return IRQ_HANDLED;
4213
4214	if (sp->config.napi) {
4215		u8 __iomem *addr = NULL;
4216		u8 val8 = 0;
4217
4218		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4219		addr += (7 - ring->ring_no);
4220		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4221		writeb(val8, addr);
4222		val8 = readb(addr);
4223		napi_schedule(&ring->napi);
4224	} else {
4225		rx_intr_handler(ring, 0);
4226		s2io_chk_rx_buffers(sp, ring);
4227	}
4228
4229	return IRQ_HANDLED;
4230}
4231
4232static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4233{
4234	int i;
4235	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4236	struct s2io_nic *sp = fifos->nic;
4237	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4238	struct config_param *config  = &sp->config;
4239	u64 reason;
4240
4241	if (unlikely(!is_s2io_card_up(sp)))
4242		return IRQ_NONE;
4243
4244	reason = readq(&bar0->general_int_status);
4245	if (unlikely(reason == S2IO_MINUS_ONE))
4246		/* Nothing much can be done. Get out */
4247		return IRQ_HANDLED;
4248
4249	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4250		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4251
4252		if (reason & GEN_INTR_TXPIC)
4253			s2io_txpic_intr_handle(sp);
4254
4255		if (reason & GEN_INTR_TXTRAFFIC)
4256			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4257
4258		for (i = 0; i < config->tx_fifo_num; i++)
4259			tx_intr_handler(&fifos[i]);
4260
4261		writeq(sp->general_int_mask, &bar0->general_int_mask);
4262		readl(&bar0->general_int_status);
4263		return IRQ_HANDLED;
4264	}
4265	/* The interrupt was not raised by us */
4266	return IRQ_NONE;
4267}
4268
4269static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4270{
4271	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4272	u64 val64;
4273
4274	val64 = readq(&bar0->pic_int_status);
4275	if (val64 & PIC_INT_GPIO) {
4276		val64 = readq(&bar0->gpio_int_reg);
4277		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4278		    (val64 & GPIO_INT_REG_LINK_UP)) {
4279			/*
4280			 * This is unstable state so clear both up/down
4281			 * interrupt and adapter to re-evaluate the link state.
4282			 */
4283			val64 |= GPIO_INT_REG_LINK_DOWN;
4284			val64 |= GPIO_INT_REG_LINK_UP;
4285			writeq(val64, &bar0->gpio_int_reg);
4286			val64 = readq(&bar0->gpio_int_mask);
4287			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4288				   GPIO_INT_MASK_LINK_DOWN);
4289			writeq(val64, &bar0->gpio_int_mask);
4290		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4291			val64 = readq(&bar0->adapter_status);
4292			/* Enable Adapter */
4293			val64 = readq(&bar0->adapter_control);
4294			val64 |= ADAPTER_CNTL_EN;
4295			writeq(val64, &bar0->adapter_control);
4296			val64 |= ADAPTER_LED_ON;
4297			writeq(val64, &bar0->adapter_control);
4298			if (!sp->device_enabled_once)
4299				sp->device_enabled_once = 1;
4300
4301			s2io_link(sp, LINK_UP);
4302			/*
4303			 * unmask link down interrupt and mask link-up
4304			 * intr
4305			 */
4306			val64 = readq(&bar0->gpio_int_mask);
4307			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4308			val64 |= GPIO_INT_MASK_LINK_UP;
4309			writeq(val64, &bar0->gpio_int_mask);
4310
4311		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4312			val64 = readq(&bar0->adapter_status);
4313			s2io_link(sp, LINK_DOWN);
4314			/* Link is down so unmaks link up interrupt */
4315			val64 = readq(&bar0->gpio_int_mask);
4316			val64 &= ~GPIO_INT_MASK_LINK_UP;
4317			val64 |= GPIO_INT_MASK_LINK_DOWN;
4318			writeq(val64, &bar0->gpio_int_mask);
4319
4320			/* turn off LED */
4321			val64 = readq(&bar0->adapter_control);
4322			val64 = val64 & (~ADAPTER_LED_ON);
4323			writeq(val64, &bar0->adapter_control);
4324		}
4325	}
4326	val64 = readq(&bar0->gpio_int_mask);
4327}
4328
4329/**
4330 *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4331 *  @value: alarm bits
4332 *  @addr: address value
4333 *  @cnt: counter variable
4334 *  Description: Check for alarm and increment the counter
4335 *  Return Value:
4336 *  1 - if alarm bit set
4337 *  0 - if alarm bit is not set
4338 */
4339static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4340				 unsigned long long *cnt)
4341{
4342	u64 val64;
4343	val64 = readq(addr);
4344	if (val64 & value) {
4345		writeq(val64, addr);
4346		(*cnt)++;
4347		return 1;
4348	}
4349	return 0;
4350
4351}
4352
4353/**
4354 *  s2io_handle_errors - Xframe error indication handler
4355 *  @dev_id: opaque handle to dev
4356 *  Description: Handle alarms such as loss of link, single or
4357 *  double ECC errors, critical and serious errors.
4358 *  Return Value:
4359 *  NONE
4360 */
4361static void s2io_handle_errors(void *dev_id)
4362{
4363	struct net_device *dev = (struct net_device *)dev_id;
4364	struct s2io_nic *sp = netdev_priv(dev);
4365	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4366	u64 temp64 = 0, val64 = 0;
4367	int i = 0;
4368
4369	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4370	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4371
4372	if (!is_s2io_card_up(sp))
4373		return;
4374
4375	if (pci_channel_offline(sp->pdev))
4376		return;
4377
4378	memset(&sw_stat->ring_full_cnt, 0,
4379	       sizeof(sw_stat->ring_full_cnt));
4380
4381	/* Handling the XPAK counters update */
4382	if (stats->xpak_timer_count < 72000) {
4383		/* waiting for an hour */
4384		stats->xpak_timer_count++;
4385	} else {
4386		s2io_updt_xpak_counter(dev);
4387		/* reset the count to zero */
4388		stats->xpak_timer_count = 0;
4389	}
4390
4391	/* Handling link status change error Intr */
4392	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4393		val64 = readq(&bar0->mac_rmac_err_reg);
4394		writeq(val64, &bar0->mac_rmac_err_reg);
4395		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4396			schedule_work(&sp->set_link_task);
4397	}
4398
4399	/* In case of a serious error, the device will be Reset. */
4400	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4401				  &sw_stat->serious_err_cnt))
4402		goto reset;
4403
4404	/* Check for data parity error */
4405	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4406				  &sw_stat->parity_err_cnt))
4407		goto reset;
4408
4409	/* Check for ring full counter */
4410	if (sp->device_type == XFRAME_II_DEVICE) {
4411		val64 = readq(&bar0->ring_bump_counter1);
4412		for (i = 0; i < 4; i++) {
4413			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4414			temp64 >>= 64 - ((i+1)*16);
4415			sw_stat->ring_full_cnt[i] += temp64;
4416		}
4417
4418		val64 = readq(&bar0->ring_bump_counter2);
4419		for (i = 0; i < 4; i++) {
4420			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4421			temp64 >>= 64 - ((i+1)*16);
4422			sw_stat->ring_full_cnt[i+4] += temp64;
4423		}
4424	}
4425
4426	val64 = readq(&bar0->txdma_int_status);
4427	/*check for pfc_err*/
4428	if (val64 & TXDMA_PFC_INT) {
4429		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4430					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4431					  PFC_PCIX_ERR,
4432					  &bar0->pfc_err_reg,
4433					  &sw_stat->pfc_err_cnt))
4434			goto reset;
4435		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4436				      &bar0->pfc_err_reg,
4437				      &sw_stat->pfc_err_cnt);
4438	}
4439
4440	/*check for tda_err*/
4441	if (val64 & TXDMA_TDA_INT) {
4442		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4443					  TDA_SM0_ERR_ALARM |
4444					  TDA_SM1_ERR_ALARM,
4445					  &bar0->tda_err_reg,
4446					  &sw_stat->tda_err_cnt))
4447			goto reset;
4448		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4449				      &bar0->tda_err_reg,
4450				      &sw_stat->tda_err_cnt);
4451	}
4452	/*check for pcc_err*/
4453	if (val64 & TXDMA_PCC_INT) {
4454		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4455					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4456					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4457					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4458					  PCC_TXB_ECC_DB_ERR,
4459					  &bar0->pcc_err_reg,
4460					  &sw_stat->pcc_err_cnt))
4461			goto reset;
4462		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4463				      &bar0->pcc_err_reg,
4464				      &sw_stat->pcc_err_cnt);
4465	}
4466
4467	/*check for tti_err*/
4468	if (val64 & TXDMA_TTI_INT) {
4469		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4470					  &bar0->tti_err_reg,
4471					  &sw_stat->tti_err_cnt))
4472			goto reset;
4473		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4474				      &bar0->tti_err_reg,
4475				      &sw_stat->tti_err_cnt);
4476	}
4477
4478	/*check for lso_err*/
4479	if (val64 & TXDMA_LSO_INT) {
4480		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4481					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4482					  &bar0->lso_err_reg,
4483					  &sw_stat->lso_err_cnt))
4484			goto reset;
4485		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4486				      &bar0->lso_err_reg,
4487				      &sw_stat->lso_err_cnt);
4488	}
4489
4490	/*check for tpa_err*/
4491	if (val64 & TXDMA_TPA_INT) {
4492		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4493					  &bar0->tpa_err_reg,
4494					  &sw_stat->tpa_err_cnt))
4495			goto reset;
4496		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4497				      &bar0->tpa_err_reg,
4498				      &sw_stat->tpa_err_cnt);
4499	}
4500
4501	/*check for sm_err*/
4502	if (val64 & TXDMA_SM_INT) {
4503		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4504					  &bar0->sm_err_reg,
4505					  &sw_stat->sm_err_cnt))
4506			goto reset;
4507	}
4508
4509	val64 = readq(&bar0->mac_int_status);
4510	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4511		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4512					  &bar0->mac_tmac_err_reg,
4513					  &sw_stat->mac_tmac_err_cnt))
4514			goto reset;
4515		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4516				      TMAC_DESC_ECC_SG_ERR |
4517				      TMAC_DESC_ECC_DB_ERR,
4518				      &bar0->mac_tmac_err_reg,
4519				      &sw_stat->mac_tmac_err_cnt);
4520	}
4521
4522	val64 = readq(&bar0->xgxs_int_status);
4523	if (val64 & XGXS_INT_STATUS_TXGXS) {
4524		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4525					  &bar0->xgxs_txgxs_err_reg,
4526					  &sw_stat->xgxs_txgxs_err_cnt))
4527			goto reset;
4528		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4529				      &bar0->xgxs_txgxs_err_reg,
4530				      &sw_stat->xgxs_txgxs_err_cnt);
4531	}
4532
4533	val64 = readq(&bar0->rxdma_int_status);
4534	if (val64 & RXDMA_INT_RC_INT_M) {
4535		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4536					  RC_FTC_ECC_DB_ERR |
4537					  RC_PRCn_SM_ERR_ALARM |
4538					  RC_FTC_SM_ERR_ALARM,
4539					  &bar0->rc_err_reg,
4540					  &sw_stat->rc_err_cnt))
4541			goto reset;
4542		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4543				      RC_FTC_ECC_SG_ERR |
4544				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4545				      &sw_stat->rc_err_cnt);
4546		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4547					  PRC_PCI_AB_WR_Rn |
4548					  PRC_PCI_AB_F_WR_Rn,
4549					  &bar0->prc_pcix_err_reg,
4550					  &sw_stat->prc_pcix_err_cnt))
4551			goto reset;
4552		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4553				      PRC_PCI_DP_WR_Rn |
4554				      PRC_PCI_DP_F_WR_Rn,
4555				      &bar0->prc_pcix_err_reg,
4556				      &sw_stat->prc_pcix_err_cnt);
4557	}
4558
4559	if (val64 & RXDMA_INT_RPA_INT_M) {
4560		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4561					  &bar0->rpa_err_reg,
4562					  &sw_stat->rpa_err_cnt))
4563			goto reset;
4564		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4565				      &bar0->rpa_err_reg,
4566				      &sw_stat->rpa_err_cnt);
4567	}
4568
4569	if (val64 & RXDMA_INT_RDA_INT_M) {
4570		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4571					  RDA_FRM_ECC_DB_N_AERR |
4572					  RDA_SM1_ERR_ALARM |
4573					  RDA_SM0_ERR_ALARM |
4574					  RDA_RXD_ECC_DB_SERR,
4575					  &bar0->rda_err_reg,
4576					  &sw_stat->rda_err_cnt))
4577			goto reset;
4578		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4579				      RDA_FRM_ECC_SG_ERR |
4580				      RDA_MISC_ERR |
4581				      RDA_PCIX_ERR,
4582				      &bar0->rda_err_reg,
4583				      &sw_stat->rda_err_cnt);
4584	}
4585
4586	if (val64 & RXDMA_INT_RTI_INT_M) {
4587		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4588					  &bar0->rti_err_reg,
4589					  &sw_stat->rti_err_cnt))
4590			goto reset;
4591		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4592				      &bar0->rti_err_reg,
4593				      &sw_stat->rti_err_cnt);
4594	}
4595
4596	val64 = readq(&bar0->mac_int_status);
4597	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4598		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4599					  &bar0->mac_rmac_err_reg,
4600					  &sw_stat->mac_rmac_err_cnt))
4601			goto reset;
4602		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4603				      RMAC_SINGLE_ECC_ERR |
4604				      RMAC_DOUBLE_ECC_ERR,
4605				      &bar0->mac_rmac_err_reg,
4606				      &sw_stat->mac_rmac_err_cnt);
4607	}
4608
4609	val64 = readq(&bar0->xgxs_int_status);
4610	if (val64 & XGXS_INT_STATUS_RXGXS) {
4611		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4612					  &bar0->xgxs_rxgxs_err_reg,
4613					  &sw_stat->xgxs_rxgxs_err_cnt))
4614			goto reset;
4615	}
4616
4617	val64 = readq(&bar0->mc_int_status);
4618	if (val64 & MC_INT_STATUS_MC_INT) {
4619		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4620					  &bar0->mc_err_reg,
4621					  &sw_stat->mc_err_cnt))
4622			goto reset;
4623
4624		/* Handling Ecc errors */
4625		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4626			writeq(val64, &bar0->mc_err_reg);
4627			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4628				sw_stat->double_ecc_errs++;
4629				if (sp->device_type != XFRAME_II_DEVICE) {
4630					/*
4631					 * Reset XframeI only if critical error
4632					 */
4633					if (val64 &
4634					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4635					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4636						goto reset;
4637				}
4638			} else
4639				sw_stat->single_ecc_errs++;
4640		}
4641	}
4642	return;
4643
4644reset:
4645	s2io_stop_all_tx_queue(sp);
4646	schedule_work(&sp->rst_timer_task);
4647	sw_stat->soft_reset_cnt++;
4648}
4649
4650/**
4651 *  s2io_isr - ISR handler of the device .
4652 *  @irq: the irq of the device.
4653 *  @dev_id: a void pointer to the dev structure of the NIC.
4654 *  Description:  This function is the ISR handler of the device. It
4655 *  identifies the reason for the interrupt and calls the relevant
4656 *  service routines. As a contongency measure, this ISR allocates the
4657 *  recv buffers, if their numbers are below the panic value which is
4658 *  presently set to 25% of the original number of rcv buffers allocated.
4659 *  Return value:
4660 *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4661 *   IRQ_NONE: will be returned if interrupt is not from our device
4662 */
4663static irqreturn_t s2io_isr(int irq, void *dev_id)
4664{
4665	struct net_device *dev = (struct net_device *)dev_id;
4666	struct s2io_nic *sp = netdev_priv(dev);
4667	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4668	int i;
4669	u64 reason = 0;
4670	struct mac_info *mac_control;
4671	struct config_param *config;
4672
4673	/* Pretend we handled any irq's from a disconnected card */
4674	if (pci_channel_offline(sp->pdev))
4675		return IRQ_NONE;
4676
4677	if (!is_s2io_card_up(sp))
4678		return IRQ_NONE;
4679
4680	config = &sp->config;
4681	mac_control = &sp->mac_control;
4682
4683	/*
4684	 * Identify the cause for interrupt and call the appropriate
4685	 * interrupt handler. Causes for the interrupt could be;
4686	 * 1. Rx of packet.
4687	 * 2. Tx complete.
4688	 * 3. Link down.
4689	 */
4690	reason = readq(&bar0->general_int_status);
4691
4692	if (unlikely(reason == S2IO_MINUS_ONE))
4693		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4694
4695	if (reason &
4696	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4697		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4698
4699		if (config->napi) {
4700			if (reason & GEN_INTR_RXTRAFFIC) {
4701				napi_schedule(&sp->napi);
4702				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4703				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4704				readl(&bar0->rx_traffic_int);
4705			}
4706		} else {
4707			/*
4708			 * rx_traffic_int reg is an R1 register, writing all 1's
4709			 * will ensure that the actual interrupt causing bit
4710			 * get's cleared and hence a read can be avoided.
4711			 */
4712			if (reason & GEN_INTR_RXTRAFFIC)
4713				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4714
4715			for (i = 0; i < config->rx_ring_num; i++) {
4716				struct ring_info *ring = &mac_control->rings[i];
4717
4718				rx_intr_handler(ring, 0);
4719			}
4720		}
4721
4722		/*
4723		 * tx_traffic_int reg is an R1 register, writing all 1's
4724		 * will ensure that the actual interrupt causing bit get's
4725		 * cleared and hence a read can be avoided.
4726		 */
4727		if (reason & GEN_INTR_TXTRAFFIC)
4728			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4729
4730		for (i = 0; i < config->tx_fifo_num; i++)
4731			tx_intr_handler(&mac_control->fifos[i]);
4732
4733		if (reason & GEN_INTR_TXPIC)
4734			s2io_txpic_intr_handle(sp);
4735
4736		/*
4737		 * Reallocate the buffers from the interrupt handler itself.
4738		 */
4739		if (!config->napi) {
4740			for (i = 0; i < config->rx_ring_num; i++) {
4741				struct ring_info *ring = &mac_control->rings[i];
4742
4743				s2io_chk_rx_buffers(sp, ring);
4744			}
4745		}
4746		writeq(sp->general_int_mask, &bar0->general_int_mask);
4747		readl(&bar0->general_int_status);
4748
4749		return IRQ_HANDLED;
4750
4751	} else if (!reason) {
4752		/* The interrupt was not raised by us */
4753		return IRQ_NONE;
4754	}
4755
4756	return IRQ_HANDLED;
4757}
4758
4759/*
4760 * s2io_updt_stats -
4761 */
4762static void s2io_updt_stats(struct s2io_nic *sp)
4763{
4764	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4765	u64 val64;
4766	int cnt = 0;
4767
4768	if (is_s2io_card_up(sp)) {
4769		/* Apprx 30us on a 133 MHz bus */
4770		val64 = SET_UPDT_CLICKS(10) |
4771			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4772		writeq(val64, &bar0->stat_cfg);
4773		do {
4774			udelay(100);
4775			val64 = readq(&bar0->stat_cfg);
4776			if (!(val64 & s2BIT(0)))
4777				break;
4778			cnt++;
4779			if (cnt == 5)
4780				break; /* Updt failed */
4781		} while (1);
4782	}
4783}
4784
4785/**
4786 *  s2io_get_stats - Updates the device statistics structure.
4787 *  @dev : pointer to the device structure.
4788 *  Description:
4789 *  This function updates the device statistics structure in the s2io_nic
4790 *  structure and returns a pointer to the same.
4791 *  Return value:
4792 *  pointer to the updated net_device_stats structure.
4793 */
4794static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4795{
4796	struct s2io_nic *sp = netdev_priv(dev);
4797	struct mac_info *mac_control = &sp->mac_control;
4798	struct stat_block *stats = mac_control->stats_info;
4799	u64 delta;
4800
4801	/* Configure Stats for immediate updt */
4802	s2io_updt_stats(sp);
4803
4804	/* A device reset will cause the on-adapter statistics to be zero'ed.
4805	 * This can be done while running by changing the MTU.  To prevent the
4806	 * system from having the stats zero'ed, the driver keeps a copy of the
4807	 * last update to the system (which is also zero'ed on reset).  This
4808	 * enables the driver to accurately know the delta between the last
4809	 * update and the current update.
4810	 */
4811	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4812		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4813	sp->stats.rx_packets += delta;
4814	dev->stats.rx_packets += delta;
4815
4816	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4817		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4818	sp->stats.tx_packets += delta;
4819	dev->stats.tx_packets += delta;
4820
4821	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4822		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4823	sp->stats.rx_bytes += delta;
4824	dev->stats.rx_bytes += delta;
4825
4826	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4827		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4828	sp->stats.tx_bytes += delta;
4829	dev->stats.tx_bytes += delta;
4830
4831	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4832	sp->stats.rx_errors += delta;
4833	dev->stats.rx_errors += delta;
4834
4835	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4836		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4837	sp->stats.tx_errors += delta;
4838	dev->stats.tx_errors += delta;
4839
4840	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4841	sp->stats.rx_dropped += delta;
4842	dev->stats.rx_dropped += delta;
4843
4844	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4845	sp->stats.tx_dropped += delta;
4846	dev->stats.tx_dropped += delta;
4847
4848	/* The adapter MAC interprets pause frames as multicast packets, but
4849	 * does not pass them up.  This erroneously increases the multicast
4850	 * packet count and needs to be deducted when the multicast frame count
4851	 * is queried.
4852	 */
4853	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4854		le32_to_cpu(stats->rmac_vld_mcst_frms);
4855	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4856	delta -= sp->stats.multicast;
4857	sp->stats.multicast += delta;
4858	dev->stats.multicast += delta;
4859
4860	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4861		le32_to_cpu(stats->rmac_usized_frms)) +
4862		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4863	sp->stats.rx_length_errors += delta;
4864	dev->stats.rx_length_errors += delta;
4865
4866	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4867	sp->stats.rx_crc_errors += delta;
4868	dev->stats.rx_crc_errors += delta;
4869
4870	return &dev->stats;
4871}
4872
4873/**
4874 *  s2io_set_multicast - entry point for multicast address enable/disable.
4875 *  @dev : pointer to the device structure
4876 *  @may_sleep: parameter indicates if sleeping when waiting for command
4877 *  complete
4878 *  Description:
4879 *  This function is a driver entry point which gets called by the kernel
4880 *  whenever multicast addresses must be enabled/disabled. This also gets
4881 *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4882 *  determine, if multicast address must be enabled or if promiscuous mode
4883 *  is to be disabled etc.
4884 *  Return value:
4885 *  void.
4886 */
4887static void s2io_set_multicast(struct net_device *dev, bool may_sleep)
4888{
4889	int i, j, prev_cnt;
4890	struct netdev_hw_addr *ha;
4891	struct s2io_nic *sp = netdev_priv(dev);
4892	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4893	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4894		0xfeffffffffffULL;
4895	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4896	void __iomem *add;
4897	struct config_param *config = &sp->config;
4898
4899	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4900		/*  Enable all Multicast addresses */
4901		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4902		       &bar0->rmac_addr_data0_mem);
4903		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4904		       &bar0->rmac_addr_data1_mem);
4905		val64 = RMAC_ADDR_CMD_MEM_WE |
4906			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4907			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4908		writeq(val64, &bar0->rmac_addr_cmd_mem);
4909		/* Wait till command completes */
4910		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4911				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4912				      S2IO_BIT_RESET, may_sleep);
4913
4914		sp->m_cast_flg = 1;
4915		sp->all_multi_pos = config->max_mc_addr - 1;
4916	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4917		/*  Disable all Multicast addresses */
4918		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4919		       &bar0->rmac_addr_data0_mem);
4920		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4921		       &bar0->rmac_addr_data1_mem);
4922		val64 = RMAC_ADDR_CMD_MEM_WE |
4923			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4924			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4925		writeq(val64, &bar0->rmac_addr_cmd_mem);
4926		/* Wait till command completes */
4927		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4928				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4929				      S2IO_BIT_RESET, may_sleep);
4930
4931		sp->m_cast_flg = 0;
4932		sp->all_multi_pos = 0;
4933	}
4934
4935	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4936		/*  Put the NIC into promiscuous mode */
4937		add = &bar0->mac_cfg;
4938		val64 = readq(&bar0->mac_cfg);
4939		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4940
4941		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4942		writel((u32)val64, add);
4943		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4944		writel((u32) (val64 >> 32), (add + 4));
4945
4946		if (vlan_tag_strip != 1) {
4947			val64 = readq(&bar0->rx_pa_cfg);
4948			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4949			writeq(val64, &bar0->rx_pa_cfg);
4950			sp->vlan_strip_flag = 0;
4951		}
4952
4953		val64 = readq(&bar0->mac_cfg);
4954		sp->promisc_flg = 1;
4955		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4956			  dev->name);
4957	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4958		/*  Remove the NIC from promiscuous mode */
4959		add = &bar0->mac_cfg;
4960		val64 = readq(&bar0->mac_cfg);
4961		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4962
4963		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4964		writel((u32)val64, add);
4965		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4966		writel((u32) (val64 >> 32), (add + 4));
4967
4968		if (vlan_tag_strip != 0) {
4969			val64 = readq(&bar0->rx_pa_cfg);
4970			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4971			writeq(val64, &bar0->rx_pa_cfg);
4972			sp->vlan_strip_flag = 1;
4973		}
4974
4975		val64 = readq(&bar0->mac_cfg);
4976		sp->promisc_flg = 0;
4977		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
4978	}
4979
4980	/*  Update individual M_CAST address list */
4981	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
4982		if (netdev_mc_count(dev) >
4983		    (config->max_mc_addr - config->max_mac_addr)) {
4984			DBG_PRINT(ERR_DBG,
4985				  "%s: No more Rx filters can be added - "
4986				  "please enable ALL_MULTI instead\n",
4987				  dev->name);
4988			return;
4989		}
4990
4991		prev_cnt = sp->mc_addr_count;
4992		sp->mc_addr_count = netdev_mc_count(dev);
4993
4994		/* Clear out the previous list of Mc in the H/W. */
4995		for (i = 0; i < prev_cnt; i++) {
4996			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4997			       &bar0->rmac_addr_data0_mem);
4998			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4999			       &bar0->rmac_addr_data1_mem);
5000			val64 = RMAC_ADDR_CMD_MEM_WE |
5001				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5002				RMAC_ADDR_CMD_MEM_OFFSET
5003				(config->mc_start_offset + i);
5004			writeq(val64, &bar0->rmac_addr_cmd_mem);
5005
5006			/* Wait for command completes */
5007			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5008						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5009						  S2IO_BIT_RESET, may_sleep)) {
5010				DBG_PRINT(ERR_DBG,
5011					  "%s: Adding Multicasts failed\n",
5012					  dev->name);
5013				return;
5014			}
5015		}
5016
5017		/* Create the new Rx filter list and update the same in H/W. */
5018		i = 0;
5019		netdev_for_each_mc_addr(ha, dev) {
5020			mac_addr = 0;
5021			for (j = 0; j < ETH_ALEN; j++) {
5022				mac_addr |= ha->addr[j];
5023				mac_addr <<= 8;
5024			}
5025			mac_addr >>= 8;
5026			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5027			       &bar0->rmac_addr_data0_mem);
5028			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5029			       &bar0->rmac_addr_data1_mem);
5030			val64 = RMAC_ADDR_CMD_MEM_WE |
5031				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5032				RMAC_ADDR_CMD_MEM_OFFSET
5033				(i + config->mc_start_offset);
5034			writeq(val64, &bar0->rmac_addr_cmd_mem);
5035
5036			/* Wait for command completes */
5037			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5038						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5039						  S2IO_BIT_RESET, may_sleep)) {
5040				DBG_PRINT(ERR_DBG,
5041					  "%s: Adding Multicasts failed\n",
5042					  dev->name);
5043				return;
5044			}
5045			i++;
5046		}
5047	}
5048}
5049
5050/* NDO wrapper for s2io_set_multicast */
5051static void s2io_ndo_set_multicast(struct net_device *dev)
5052{
5053	s2io_set_multicast(dev, false);
5054}
5055
5056/* read from CAM unicast & multicast addresses and store it in
5057 * def_mac_addr structure
5058 */
5059static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5060{
5061	int offset;
5062	u64 mac_addr = 0x0;
5063	struct config_param *config = &sp->config;
5064
5065	/* store unicast & multicast mac addresses */
5066	for (offset = 0; offset < config->max_mc_addr; offset++) {
5067		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5068		/* if read fails disable the entry */
5069		if (mac_addr == FAILURE)
5070			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5071		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5072	}
5073}
5074
5075/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5076static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5077{
5078	int offset;
5079	struct config_param *config = &sp->config;
5080	/* restore unicast mac address */
5081	for (offset = 0; offset < config->max_mac_addr; offset++)
5082		do_s2io_prog_unicast(sp->dev,
5083				     sp->def_mac_addr[offset].mac_addr);
5084
5085	/* restore multicast mac address */
5086	for (offset = config->mc_start_offset;
5087	     offset < config->max_mc_addr; offset++)
5088		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5089}
5090
5091/* add a multicast MAC address to CAM */
5092static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5093{
5094	int i;
5095	u64 mac_addr;
5096	struct config_param *config = &sp->config;
5097
5098	mac_addr = ether_addr_to_u64(addr);
5099	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5100		return SUCCESS;
5101
5102	/* check if the multicast mac already preset in CAM */
5103	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5104		u64 tmp64;
5105		tmp64 = do_s2io_read_unicast_mc(sp, i);
5106		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5107			break;
5108
5109		if (tmp64 == mac_addr)
5110			return SUCCESS;
5111	}
5112	if (i == config->max_mc_addr) {
5113		DBG_PRINT(ERR_DBG,
5114			  "CAM full no space left for multicast MAC\n");
5115		return FAILURE;
5116	}
5117	/* Update the internal structure with this new mac address */
5118	do_s2io_copy_mac_addr(sp, i, mac_addr);
5119
5120	return do_s2io_add_mac(sp, mac_addr, i);
5121}
5122
5123/* add MAC address to CAM */
5124static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5125{
5126	u64 val64;
5127	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5128
5129	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5130	       &bar0->rmac_addr_data0_mem);
5131
5132	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5133		RMAC_ADDR_CMD_MEM_OFFSET(off);
5134	writeq(val64, &bar0->rmac_addr_cmd_mem);
5135
5136	/* Wait till command completes */
5137	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5138				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5139				  S2IO_BIT_RESET, true)) {
5140		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5141		return FAILURE;
5142	}
5143	return SUCCESS;
5144}
5145/* deletes a specified unicast/multicast mac entry from CAM */
5146static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5147{
5148	int offset;
5149	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5150	struct config_param *config = &sp->config;
5151
5152	for (offset = 1;
5153	     offset < config->max_mc_addr; offset++) {
5154		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5155		if (tmp64 == addr) {
5156			/* disable the entry by writing  0xffffffffffffULL */
5157			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5158				return FAILURE;
5159			/* store the new mac list from CAM */
5160			do_s2io_store_unicast_mc(sp);
5161			return SUCCESS;
5162		}
5163	}
5164	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5165		  (unsigned long long)addr);
5166	return FAILURE;
5167}
5168
5169/* read mac entries from CAM */
5170static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5171{
5172	u64 tmp64, val64;
5173	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5174
5175	/* read mac addr */
5176	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5177		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5178	writeq(val64, &bar0->rmac_addr_cmd_mem);
5179
5180	/* Wait till command completes */
5181	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5182				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5183				  S2IO_BIT_RESET, true)) {
5184		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5185		return FAILURE;
5186	}
5187	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5188
5189	return tmp64 >> 16;
5190}
5191
5192/*
5193 * s2io_set_mac_addr - driver entry point
5194 */
5195
5196static int s2io_set_mac_addr(struct net_device *dev, void *p)
5197{
5198	struct sockaddr *addr = p;
5199
5200	if (!is_valid_ether_addr(addr->sa_data))
5201		return -EADDRNOTAVAIL;
5202
5203	eth_hw_addr_set(dev, addr->sa_data);
5204
5205	/* store the MAC address in CAM */
5206	return do_s2io_prog_unicast(dev, dev->dev_addr);
5207}
5208/**
5209 *  do_s2io_prog_unicast - Programs the Xframe mac address
5210 *  @dev : pointer to the device structure.
5211 *  @addr: a uchar pointer to the new mac address which is to be set.
5212 *  Description : This procedure will program the Xframe to receive
5213 *  frames with new Mac Address
5214 *  Return value: SUCCESS on success and an appropriate (-)ve integer
5215 *  as defined in errno.h file on failure.
5216 */
5217
5218static int do_s2io_prog_unicast(struct net_device *dev, const u8 *addr)
5219{
5220	struct s2io_nic *sp = netdev_priv(dev);
5221	register u64 mac_addr, perm_addr;
5222	int i;
5223	u64 tmp64;
5224	struct config_param *config = &sp->config;
5225
5226	/*
5227	 * Set the new MAC address as the new unicast filter and reflect this
5228	 * change on the device address registered with the OS. It will be
5229	 * at offset 0.
5230	 */
5231	mac_addr = ether_addr_to_u64(addr);
5232	perm_addr = ether_addr_to_u64(sp->def_mac_addr[0].mac_addr);
5233
5234	/* check if the dev_addr is different than perm_addr */
5235	if (mac_addr == perm_addr)
5236		return SUCCESS;
5237
5238	/* check if the mac already preset in CAM */
5239	for (i = 1; i < config->max_mac_addr; i++) {
5240		tmp64 = do_s2io_read_unicast_mc(sp, i);
5241		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5242			break;
5243
5244		if (tmp64 == mac_addr) {
5245			DBG_PRINT(INFO_DBG,
5246				  "MAC addr:0x%llx already present in CAM\n",
5247				  (unsigned long long)mac_addr);
5248			return SUCCESS;
5249		}
5250	}
5251	if (i == config->max_mac_addr) {
5252		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5253		return FAILURE;
5254	}
5255	/* Update the internal structure with this new mac address */
5256	do_s2io_copy_mac_addr(sp, i, mac_addr);
5257
5258	return do_s2io_add_mac(sp, mac_addr, i);
5259}
5260
5261/**
5262 * s2io_ethtool_set_link_ksettings - Sets different link parameters.
5263 * @dev : pointer to netdev
5264 * @cmd: pointer to the structure with parameters given by ethtool to set
5265 * link information.
5266 * Description:
5267 * The function sets different link parameters provided by the user onto
5268 * the NIC.
5269 * Return value:
5270 * 0 on success.
5271 */
5272
5273static int
5274s2io_ethtool_set_link_ksettings(struct net_device *dev,
5275				const struct ethtool_link_ksettings *cmd)
5276{
5277	struct s2io_nic *sp = netdev_priv(dev);
5278	if ((cmd->base.autoneg == AUTONEG_ENABLE) ||
5279	    (cmd->base.speed != SPEED_10000) ||
5280	    (cmd->base.duplex != DUPLEX_FULL))
5281		return -EINVAL;
5282	else {
5283		s2io_close(sp->dev);
5284		s2io_open(sp->dev);
5285	}
5286
5287	return 0;
5288}
5289
5290/**
5291 * s2io_ethtool_get_link_ksettings - Return link specific information.
5292 * @dev: pointer to netdev
5293 * @cmd : pointer to the structure with parameters given by ethtool
5294 * to return link information.
5295 * Description:
5296 * Returns link specific information like speed, duplex etc.. to ethtool.
5297 * Return value :
5298 * return 0 on success.
5299 */
5300
5301static int
5302s2io_ethtool_get_link_ksettings(struct net_device *dev,
5303				struct ethtool_link_ksettings *cmd)
5304{
5305	struct s2io_nic *sp = netdev_priv(dev);
5306
5307	ethtool_link_ksettings_zero_link_mode(cmd, supported);
5308	ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full);
5309	ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE);
5310
5311	ethtool_link_ksettings_zero_link_mode(cmd, advertising);
5312	ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full);
5313	ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE);
5314
5315	cmd->base.port = PORT_FIBRE;
5316
5317	if (netif_carrier_ok(sp->dev)) {
5318		cmd->base.speed = SPEED_10000;
5319		cmd->base.duplex = DUPLEX_FULL;
5320	} else {
5321		cmd->base.speed = SPEED_UNKNOWN;
5322		cmd->base.duplex = DUPLEX_UNKNOWN;
5323	}
5324
5325	cmd->base.autoneg = AUTONEG_DISABLE;
5326	return 0;
5327}
5328
5329/**
5330 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5331 * @dev: pointer to netdev
5332 * @info : pointer to the structure with parameters given by ethtool to
5333 * return driver information.
5334 * Description:
5335 * Returns driver specefic information like name, version etc.. to ethtool.
5336 * Return value:
5337 *  void
5338 */
5339
5340static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5341				  struct ethtool_drvinfo *info)
5342{
5343	struct s2io_nic *sp = netdev_priv(dev);
5344
5345	strscpy(info->driver, s2io_driver_name, sizeof(info->driver));
5346	strscpy(info->version, s2io_driver_version, sizeof(info->version));
5347	strscpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5348}
5349
5350/**
5351 *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5352 *  @dev: pointer to netdev
5353 *  @regs : pointer to the structure with parameters given by ethtool for
5354 *          dumping the registers.
5355 *  @space: The input argument into which all the registers are dumped.
5356 *  Description:
5357 *  Dumps the entire register space of xFrame NIC into the user given
5358 *  buffer area.
5359 * Return value :
5360 * void .
5361 */
5362
5363static void s2io_ethtool_gregs(struct net_device *dev,
5364			       struct ethtool_regs *regs, void *space)
5365{
5366	int i;
5367	u64 reg;
5368	u8 *reg_space = (u8 *)space;
5369	struct s2io_nic *sp = netdev_priv(dev);
5370
5371	regs->len = XENA_REG_SPACE;
5372	regs->version = sp->pdev->subsystem_device;
5373
5374	for (i = 0; i < regs->len; i += 8) {
5375		reg = readq(sp->bar0 + i);
5376		memcpy((reg_space + i), &reg, 8);
5377	}
5378}
5379
5380/*
5381 *  s2io_set_led - control NIC led
5382 */
5383static void s2io_set_led(struct s2io_nic *sp, bool on)
5384{
5385	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5386	u16 subid = sp->pdev->subsystem_device;
5387	u64 val64;
5388
5389	if ((sp->device_type == XFRAME_II_DEVICE) ||
5390	    ((subid & 0xFF) >= 0x07)) {
5391		val64 = readq(&bar0->gpio_control);
5392		if (on)
5393			val64 |= GPIO_CTRL_GPIO_0;
5394		else
5395			val64 &= ~GPIO_CTRL_GPIO_0;
5396
5397		writeq(val64, &bar0->gpio_control);
5398	} else {
5399		val64 = readq(&bar0->adapter_control);
5400		if (on)
5401			val64 |= ADAPTER_LED_ON;
5402		else
5403			val64 &= ~ADAPTER_LED_ON;
5404
5405		writeq(val64, &bar0->adapter_control);
5406	}
5407
5408}
5409
5410/**
5411 * s2io_ethtool_set_led - To physically identify the nic on the system.
5412 * @dev : network device
5413 * @state: led setting
5414 *
5415 * Description: Used to physically identify the NIC on the system.
5416 * The Link LED will blink for a time specified by the user for
5417 * identification.
5418 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5419 * identification is possible only if it's link is up.
5420 */
5421
5422static int s2io_ethtool_set_led(struct net_device *dev,
5423				enum ethtool_phys_id_state state)
5424{
5425	struct s2io_nic *sp = netdev_priv(dev);
5426	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5427	u16 subid = sp->pdev->subsystem_device;
5428
5429	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5430		u64 val64 = readq(&bar0->adapter_control);
5431		if (!(val64 & ADAPTER_CNTL_EN)) {
5432			pr_err("Adapter Link down, cannot blink LED\n");
5433			return -EAGAIN;
5434		}
5435	}
5436
5437	switch (state) {
5438	case ETHTOOL_ID_ACTIVE:
5439		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5440		return 1;	/* cycle on/off once per second */
5441
5442	case ETHTOOL_ID_ON:
5443		s2io_set_led(sp, true);
5444		break;
5445
5446	case ETHTOOL_ID_OFF:
5447		s2io_set_led(sp, false);
5448		break;
5449
5450	case ETHTOOL_ID_INACTIVE:
5451		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5452			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5453	}
5454
5455	return 0;
5456}
5457
5458static void
5459s2io_ethtool_gringparam(struct net_device *dev,
5460			struct ethtool_ringparam *ering,
5461			struct kernel_ethtool_ringparam *kernel_ering,
5462			struct netlink_ext_ack *extack)
5463{
5464	struct s2io_nic *sp = netdev_priv(dev);
5465	int i, tx_desc_count = 0, rx_desc_count = 0;
5466
5467	if (sp->rxd_mode == RXD_MODE_1) {
5468		ering->rx_max_pending = MAX_RX_DESC_1;
5469		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5470	} else {
5471		ering->rx_max_pending = MAX_RX_DESC_2;
5472		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5473	}
5474
5475	ering->tx_max_pending = MAX_TX_DESC;
5476
5477	for (i = 0; i < sp->config.rx_ring_num; i++)
5478		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5479	ering->rx_pending = rx_desc_count;
5480	ering->rx_jumbo_pending = rx_desc_count;
5481
5482	for (i = 0; i < sp->config.tx_fifo_num; i++)
5483		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5484	ering->tx_pending = tx_desc_count;
5485	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5486}
5487
5488/**
5489 * s2io_ethtool_getpause_data -Pause frame generation and reception.
5490 * @dev: pointer to netdev
5491 * @ep : pointer to the structure with pause parameters given by ethtool.
5492 * Description:
5493 * Returns the Pause frame generation and reception capability of the NIC.
5494 * Return value:
5495 *  void
5496 */
5497static void s2io_ethtool_getpause_data(struct net_device *dev,
5498				       struct ethtool_pauseparam *ep)
5499{
5500	u64 val64;
5501	struct s2io_nic *sp = netdev_priv(dev);
5502	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5503
5504	val64 = readq(&bar0->rmac_pause_cfg);
5505	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5506		ep->tx_pause = true;
5507	if (val64 & RMAC_PAUSE_RX_ENABLE)
5508		ep->rx_pause = true;
5509	ep->autoneg = false;
5510}
5511
5512/**
5513 * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5514 * @dev: pointer to netdev
5515 * @ep : pointer to the structure with pause parameters given by ethtool.
5516 * Description:
5517 * It can be used to set or reset Pause frame generation or reception
5518 * support of the NIC.
5519 * Return value:
5520 * int, returns 0 on Success
5521 */
5522
5523static int s2io_ethtool_setpause_data(struct net_device *dev,
5524				      struct ethtool_pauseparam *ep)
5525{
5526	u64 val64;
5527	struct s2io_nic *sp = netdev_priv(dev);
5528	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5529
5530	val64 = readq(&bar0->rmac_pause_cfg);
5531	if (ep->tx_pause)
5532		val64 |= RMAC_PAUSE_GEN_ENABLE;
5533	else
5534		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5535	if (ep->rx_pause)
5536		val64 |= RMAC_PAUSE_RX_ENABLE;
5537	else
5538		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5539	writeq(val64, &bar0->rmac_pause_cfg);
5540	return 0;
5541}
5542
5543#define S2IO_DEV_ID		5
5544/**
5545 * read_eeprom - reads 4 bytes of data from user given offset.
5546 * @sp : private member of the device structure, which is a pointer to the
5547 *      s2io_nic structure.
5548 * @off : offset at which the data must be written
5549 * @data : Its an output parameter where the data read at the given
5550 *	offset is stored.
5551 * Description:
5552 * Will read 4 bytes of data from the user given offset and return the
5553 * read data.
5554 * NOTE: Will allow to read only part of the EEPROM visible through the
5555 *   I2C bus.
5556 * Return value:
5557 *  -1 on failure and 0 on success.
5558 */
5559static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5560{
5561	int ret = -1;
5562	u32 exit_cnt = 0;
5563	u64 val64;
5564	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5565
5566	if (sp->device_type == XFRAME_I_DEVICE) {
5567		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5568			I2C_CONTROL_ADDR(off) |
5569			I2C_CONTROL_BYTE_CNT(0x3) |
5570			I2C_CONTROL_READ |
5571			I2C_CONTROL_CNTL_START;
5572		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5573
5574		while (exit_cnt < 5) {
5575			val64 = readq(&bar0->i2c_control);
5576			if (I2C_CONTROL_CNTL_END(val64)) {
5577				*data = I2C_CONTROL_GET_DATA(val64);
5578				ret = 0;
5579				break;
5580			}
5581			msleep(50);
5582			exit_cnt++;
5583		}
5584	}
5585
5586	if (sp->device_type == XFRAME_II_DEVICE) {
5587		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5588			SPI_CONTROL_BYTECNT(0x3) |
5589			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5590		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5591		val64 |= SPI_CONTROL_REQ;
5592		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5593		while (exit_cnt < 5) {
5594			val64 = readq(&bar0->spi_control);
5595			if (val64 & SPI_CONTROL_NACK) {
5596				ret = 1;
5597				break;
5598			} else if (val64 & SPI_CONTROL_DONE) {
5599				*data = readq(&bar0->spi_data);
5600				*data &= 0xffffff;
5601				ret = 0;
5602				break;
5603			}
5604			msleep(50);
5605			exit_cnt++;
5606		}
5607	}
5608	return ret;
5609}
5610
5611/**
5612 *  write_eeprom - actually writes the relevant part of the data value.
5613 *  @sp : private member of the device structure, which is a pointer to the
5614 *       s2io_nic structure.
5615 *  @off : offset at which the data must be written
5616 *  @data : The data that is to be written
5617 *  @cnt : Number of bytes of the data that are actually to be written into
5618 *  the Eeprom. (max of 3)
5619 * Description:
5620 *  Actually writes the relevant part of the data value into the Eeprom
5621 *  through the I2C bus.
5622 * Return value:
5623 *  0 on success, -1 on failure.
5624 */
5625
5626static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5627{
5628	int exit_cnt = 0, ret = -1;
5629	u64 val64;
5630	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5631
5632	if (sp->device_type == XFRAME_I_DEVICE) {
5633		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5634			I2C_CONTROL_ADDR(off) |
5635			I2C_CONTROL_BYTE_CNT(cnt) |
5636			I2C_CONTROL_SET_DATA((u32)data) |
5637			I2C_CONTROL_CNTL_START;
5638		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5639
5640		while (exit_cnt < 5) {
5641			val64 = readq(&bar0->i2c_control);
5642			if (I2C_CONTROL_CNTL_END(val64)) {
5643				if (!(val64 & I2C_CONTROL_NACK))
5644					ret = 0;
5645				break;
5646			}
5647			msleep(50);
5648			exit_cnt++;
5649		}
5650	}
5651
5652	if (sp->device_type == XFRAME_II_DEVICE) {
5653		int write_cnt = (cnt == 8) ? 0 : cnt;
5654		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5655
5656		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5657			SPI_CONTROL_BYTECNT(write_cnt) |
5658			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5659		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5660		val64 |= SPI_CONTROL_REQ;
5661		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5662		while (exit_cnt < 5) {
5663			val64 = readq(&bar0->spi_control);
5664			if (val64 & SPI_CONTROL_NACK) {
5665				ret = 1;
5666				break;
5667			} else if (val64 & SPI_CONTROL_DONE) {
5668				ret = 0;
5669				break;
5670			}
5671			msleep(50);
5672			exit_cnt++;
5673		}
5674	}
5675	return ret;
5676}
5677static void s2io_vpd_read(struct s2io_nic *nic)
5678{
5679	u8 *vpd_data;
5680	u8 data;
5681	int i = 0, cnt, len, fail = 0;
5682	int vpd_addr = 0x80;
5683	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5684
5685	if (nic->device_type == XFRAME_II_DEVICE) {
5686		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5687		vpd_addr = 0x80;
5688	} else {
5689		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5690		vpd_addr = 0x50;
5691	}
5692	strcpy(nic->serial_num, "NOT AVAILABLE");
5693
5694	vpd_data = kmalloc(256, GFP_KERNEL);
5695	if (!vpd_data) {
5696		swstats->mem_alloc_fail_cnt++;
5697		return;
5698	}
5699	swstats->mem_allocated += 256;
5700
5701	for (i = 0; i < 256; i += 4) {
5702		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5703		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5704		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5705		for (cnt = 0; cnt < 5; cnt++) {
5706			msleep(2);
5707			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5708			if (data == 0x80)
5709				break;
5710		}
5711		if (cnt >= 5) {
5712			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5713			fail = 1;
5714			break;
5715		}
5716		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5717				      (u32 *)&vpd_data[i]);
5718	}
5719
5720	if (!fail) {
5721		/* read serial number of adapter */
5722		for (cnt = 0; cnt < 252; cnt++) {
5723			if ((vpd_data[cnt] == 'S') &&
5724			    (vpd_data[cnt+1] == 'N')) {
5725				len = vpd_data[cnt+2];
5726				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5727					memcpy(nic->serial_num,
5728					       &vpd_data[cnt + 3],
5729					       len);
5730					memset(nic->serial_num+len,
5731					       0,
5732					       VPD_STRING_LEN-len);
5733					break;
5734				}
5735			}
5736		}
5737	}
5738
5739	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5740		len = vpd_data[1];
5741		memcpy(nic->product_name, &vpd_data[3], len);
5742		nic->product_name[len] = 0;
5743	}
5744	kfree(vpd_data);
5745	swstats->mem_freed += 256;
5746}
5747
5748/**
5749 *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5750 *  @dev: pointer to netdev
5751 *  @eeprom : pointer to the user level structure provided by ethtool,
5752 *  containing all relevant information.
5753 *  @data_buf : user defined value to be written into Eeprom.
5754 *  Description: Reads the values stored in the Eeprom at given offset
5755 *  for a given length. Stores these values int the input argument data
5756 *  buffer 'data_buf' and returns these to the caller (ethtool.)
5757 *  Return value:
5758 *  int  0 on success
5759 */
5760
5761static int s2io_ethtool_geeprom(struct net_device *dev,
5762				struct ethtool_eeprom *eeprom, u8 * data_buf)
5763{
5764	u32 i, valid;
5765	u64 data;
5766	struct s2io_nic *sp = netdev_priv(dev);
5767
5768	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5769
5770	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5771		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5772
5773	for (i = 0; i < eeprom->len; i += 4) {
5774		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5775			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5776			return -EFAULT;
5777		}
5778		valid = INV(data);
5779		memcpy((data_buf + i), &valid, 4);
5780	}
5781	return 0;
5782}
5783
5784/**
5785 *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5786 *  @dev: pointer to netdev
5787 *  @eeprom : pointer to the user level structure provided by ethtool,
5788 *  containing all relevant information.
5789 *  @data_buf : user defined value to be written into Eeprom.
5790 *  Description:
5791 *  Tries to write the user provided value in the Eeprom, at the offset
5792 *  given by the user.
5793 *  Return value:
5794 *  0 on success, -EFAULT on failure.
5795 */
5796
5797static int s2io_ethtool_seeprom(struct net_device *dev,
5798				struct ethtool_eeprom *eeprom,
5799				u8 *data_buf)
5800{
5801	int len = eeprom->len, cnt = 0;
5802	u64 valid = 0, data;
5803	struct s2io_nic *sp = netdev_priv(dev);
5804
5805	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5806		DBG_PRINT(ERR_DBG,
5807			  "ETHTOOL_WRITE_EEPROM Err: "
5808			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5809			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5810			  eeprom->magic);
5811		return -EFAULT;
5812	}
5813
5814	while (len) {
5815		data = (u32)data_buf[cnt] & 0x000000FF;
5816		if (data)
5817			valid = (u32)(data << 24);
5818		else
5819			valid = data;
5820
5821		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5822			DBG_PRINT(ERR_DBG,
5823				  "ETHTOOL_WRITE_EEPROM Err: "
5824				  "Cannot write into the specified offset\n");
5825			return -EFAULT;
5826		}
5827		cnt++;
5828		len--;
5829	}
5830
5831	return 0;
5832}
5833
5834/**
5835 * s2io_register_test - reads and writes into all clock domains.
5836 * @sp : private member of the device structure, which is a pointer to the
5837 * s2io_nic structure.
5838 * @data : variable that returns the result of each of the test conducted b
5839 * by the driver.
5840 * Description:
5841 * Read and write into all clock domains. The NIC has 3 clock domains,
5842 * see that registers in all the three regions are accessible.
5843 * Return value:
5844 * 0 on success.
5845 */
5846
5847static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5848{
5849	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5850	u64 val64 = 0, exp_val;
5851	int fail = 0;
5852
5853	val64 = readq(&bar0->pif_rd_swapper_fb);
5854	if (val64 != 0x123456789abcdefULL) {
5855		fail = 1;
5856		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5857	}
5858
5859	val64 = readq(&bar0->rmac_pause_cfg);
5860	if (val64 != 0xc000ffff00000000ULL) {
5861		fail = 1;
5862		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5863	}
5864
5865	val64 = readq(&bar0->rx_queue_cfg);
5866	if (sp->device_type == XFRAME_II_DEVICE)
5867		exp_val = 0x0404040404040404ULL;
5868	else
5869		exp_val = 0x0808080808080808ULL;
5870	if (val64 != exp_val) {
5871		fail = 1;
5872		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5873	}
5874
5875	val64 = readq(&bar0->xgxs_efifo_cfg);
5876	if (val64 != 0x000000001923141EULL) {
5877		fail = 1;
5878		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5879	}
5880
5881	val64 = 0x5A5A5A5A5A5A5A5AULL;
5882	writeq(val64, &bar0->xmsi_data);
5883	val64 = readq(&bar0->xmsi_data);
5884	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5885		fail = 1;
5886		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5887	}
5888
5889	val64 = 0xA5A5A5A5A5A5A5A5ULL;
5890	writeq(val64, &bar0->xmsi_data);
5891	val64 = readq(&bar0->xmsi_data);
5892	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5893		fail = 1;
5894		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5895	}
5896
5897	*data = fail;
5898	return fail;
5899}
5900
5901/**
5902 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5903 * @sp : private member of the device structure, which is a pointer to the
5904 * s2io_nic structure.
5905 * @data:variable that returns the result of each of the test conducted by
5906 * the driver.
5907 * Description:
5908 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5909 * register.
5910 * Return value:
5911 * 0 on success.
5912 */
5913
5914static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5915{
5916	int fail = 0;
5917	u64 ret_data, org_4F0, org_7F0;
5918	u8 saved_4F0 = 0, saved_7F0 = 0;
5919	struct net_device *dev = sp->dev;
5920
5921	/* Test Write Error at offset 0 */
5922	/* Note that SPI interface allows write access to all areas
5923	 * of EEPROM. Hence doing all negative testing only for Xframe I.
5924	 */
5925	if (sp->device_type == XFRAME_I_DEVICE)
5926		if (!write_eeprom(sp, 0, 0, 3))
5927			fail = 1;
5928
5929	/* Save current values at offsets 0x4F0 and 0x7F0 */
5930	if (!read_eeprom(sp, 0x4F0, &org_4F0))
5931		saved_4F0 = 1;
5932	if (!read_eeprom(sp, 0x7F0, &org_7F0))
5933		saved_7F0 = 1;
5934
5935	/* Test Write at offset 4f0 */
5936	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5937		fail = 1;
5938	if (read_eeprom(sp, 0x4F0, &ret_data))
5939		fail = 1;
5940
5941	if (ret_data != 0x012345) {
5942		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5943			  "Data written %llx Data read %llx\n",
5944			  dev->name, (unsigned long long)0x12345,
5945			  (unsigned long long)ret_data);
5946		fail = 1;
5947	}
5948
5949	/* Reset the EEPROM data go FFFF */
5950	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5951
5952	/* Test Write Request Error at offset 0x7c */
5953	if (sp->device_type == XFRAME_I_DEVICE)
5954		if (!write_eeprom(sp, 0x07C, 0, 3))
5955			fail = 1;
5956
5957	/* Test Write Request at offset 0x7f0 */
5958	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5959		fail = 1;
5960	if (read_eeprom(sp, 0x7F0, &ret_data))
5961		fail = 1;
5962
5963	if (ret_data != 0x012345) {
5964		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5965			  "Data written %llx Data read %llx\n",
5966			  dev->name, (unsigned long long)0x12345,
5967			  (unsigned long long)ret_data);
5968		fail = 1;
5969	}
5970
5971	/* Reset the EEPROM data go FFFF */
5972	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5973
5974	if (sp->device_type == XFRAME_I_DEVICE) {
5975		/* Test Write Error at offset 0x80 */
5976		if (!write_eeprom(sp, 0x080, 0, 3))
5977			fail = 1;
5978
5979		/* Test Write Error at offset 0xfc */
5980		if (!write_eeprom(sp, 0x0FC, 0, 3))
5981			fail = 1;
5982
5983		/* Test Write Error at offset 0x100 */
5984		if (!write_eeprom(sp, 0x100, 0, 3))
5985			fail = 1;
5986
5987		/* Test Write Error at offset 4ec */
5988		if (!write_eeprom(sp, 0x4EC, 0, 3))
5989			fail = 1;
5990	}
5991
5992	/* Restore values at offsets 0x4F0 and 0x7F0 */
5993	if (saved_4F0)
5994		write_eeprom(sp, 0x4F0, org_4F0, 3);
5995	if (saved_7F0)
5996		write_eeprom(sp, 0x7F0, org_7F0, 3);
5997
5998	*data = fail;
5999	return fail;
6000}
6001
6002/**
6003 * s2io_bist_test - invokes the MemBist test of the card .
6004 * @sp : private member of the device structure, which is a pointer to the
6005 * s2io_nic structure.
6006 * @data:variable that returns the result of each of the test conducted by
6007 * the driver.
6008 * Description:
6009 * This invokes the MemBist test of the card. We give around
6010 * 2 secs time for the Test to complete. If it's still not complete
6011 * within this peiod, we consider that the test failed.
6012 * Return value:
6013 * 0 on success and -1 on failure.
6014 */
6015
6016static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6017{
6018	u8 bist = 0;
6019	int cnt = 0, ret = -1;
6020
6021	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6022	bist |= PCI_BIST_START;
6023	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6024
6025	while (cnt < 20) {
6026		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6027		if (!(bist & PCI_BIST_START)) {
6028			*data = (bist & PCI_BIST_CODE_MASK);
6029			ret = 0;
6030			break;
6031		}
6032		msleep(100);
6033		cnt++;
6034	}
6035
6036	return ret;
6037}
6038
6039/**
6040 * s2io_link_test - verifies the link state of the nic
6041 * @sp: private member of the device structure, which is a pointer to the
6042 * s2io_nic structure.
6043 * @data: variable that returns the result of each of the test conducted by
6044 * the driver.
6045 * Description:
6046 * The function verifies the link state of the NIC and updates the input
6047 * argument 'data' appropriately.
6048 * Return value:
6049 * 0 on success.
6050 */
6051
6052static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6053{
6054	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6055	u64 val64;
6056
6057	val64 = readq(&bar0->adapter_status);
6058	if (!(LINK_IS_UP(val64)))
6059		*data = 1;
6060	else
6061		*data = 0;
6062
6063	return *data;
6064}
6065
6066/**
6067 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6068 * @sp: private member of the device structure, which is a pointer to the
6069 * s2io_nic structure.
6070 * @data: variable that returns the result of each of the test
6071 * conducted by the driver.
6072 * Description:
6073 *  This is one of the offline test that tests the read and write
6074 *  access to the RldRam chip on the NIC.
6075 * Return value:
6076 *  0 on success.
6077 */
6078
6079static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6080{
6081	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6082	u64 val64;
6083	int cnt, iteration = 0, test_fail = 0;
6084
6085	val64 = readq(&bar0->adapter_control);
6086	val64 &= ~ADAPTER_ECC_EN;
6087	writeq(val64, &bar0->adapter_control);
6088
6089	val64 = readq(&bar0->mc_rldram_test_ctrl);
6090	val64 |= MC_RLDRAM_TEST_MODE;
6091	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6092
6093	val64 = readq(&bar0->mc_rldram_mrs);
6094	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6095	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6096
6097	val64 |= MC_RLDRAM_MRS_ENABLE;
6098	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6099
6100	while (iteration < 2) {
6101		val64 = 0x55555555aaaa0000ULL;
6102		if (iteration == 1)
6103			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6104		writeq(val64, &bar0->mc_rldram_test_d0);
6105
6106		val64 = 0xaaaa5a5555550000ULL;
6107		if (iteration == 1)
6108			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6109		writeq(val64, &bar0->mc_rldram_test_d1);
6110
6111		val64 = 0x55aaaaaaaa5a0000ULL;
6112		if (iteration == 1)
6113			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6114		writeq(val64, &bar0->mc_rldram_test_d2);
6115
6116		val64 = (u64) (0x0000003ffffe0100ULL);
6117		writeq(val64, &bar0->mc_rldram_test_add);
6118
6119		val64 = MC_RLDRAM_TEST_MODE |
6120			MC_RLDRAM_TEST_WRITE |
6121			MC_RLDRAM_TEST_GO;
6122		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6123
6124		for (cnt = 0; cnt < 5; cnt++) {
6125			val64 = readq(&bar0->mc_rldram_test_ctrl);
6126			if (val64 & MC_RLDRAM_TEST_DONE)
6127				break;
6128			msleep(200);
6129		}
6130
6131		if (cnt == 5)
6132			break;
6133
6134		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6135		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6136
6137		for (cnt = 0; cnt < 5; cnt++) {
6138			val64 = readq(&bar0->mc_rldram_test_ctrl);
6139			if (val64 & MC_RLDRAM_TEST_DONE)
6140				break;
6141			msleep(500);
6142		}
6143
6144		if (cnt == 5)
6145			break;
6146
6147		val64 = readq(&bar0->mc_rldram_test_ctrl);
6148		if (!(val64 & MC_RLDRAM_TEST_PASS))
6149			test_fail = 1;
6150
6151		iteration++;
6152	}
6153
6154	*data = test_fail;
6155
6156	/* Bring the adapter out of test mode */
6157	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6158
6159	return test_fail;
6160}
6161
6162/**
6163 *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6164 *  @dev: pointer to netdev
6165 *  @ethtest : pointer to a ethtool command specific structure that will be
6166 *  returned to the user.
6167 *  @data : variable that returns the result of each of the test
6168 * conducted by the driver.
6169 * Description:
6170 *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6171 *  the health of the card.
6172 * Return value:
6173 *  void
6174 */
6175
6176static void s2io_ethtool_test(struct net_device *dev,
6177			      struct ethtool_test *ethtest,
6178			      uint64_t *data)
6179{
6180	struct s2io_nic *sp = netdev_priv(dev);
6181	int orig_state = netif_running(sp->dev);
6182
6183	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6184		/* Offline Tests. */
6185		if (orig_state)
6186			s2io_close(sp->dev);
6187
6188		if (s2io_register_test(sp, &data[0]))
6189			ethtest->flags |= ETH_TEST_FL_FAILED;
6190
6191		s2io_reset(sp);
6192
6193		if (s2io_rldram_test(sp, &data[3]))
6194			ethtest->flags |= ETH_TEST_FL_FAILED;
6195
6196		s2io_reset(sp);
6197
6198		if (s2io_eeprom_test(sp, &data[1]))
6199			ethtest->flags |= ETH_TEST_FL_FAILED;
6200
6201		if (s2io_bist_test(sp, &data[4]))
6202			ethtest->flags |= ETH_TEST_FL_FAILED;
6203
6204		if (orig_state)
6205			s2io_open(sp->dev);
6206
6207		data[2] = 0;
6208	} else {
6209		/* Online Tests. */
6210		if (!orig_state) {
6211			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6212				  dev->name);
6213			data[0] = -1;
6214			data[1] = -1;
6215			data[2] = -1;
6216			data[3] = -1;
6217			data[4] = -1;
6218		}
6219
6220		if (s2io_link_test(sp, &data[2]))
6221			ethtest->flags |= ETH_TEST_FL_FAILED;
6222
6223		data[0] = 0;
6224		data[1] = 0;
6225		data[3] = 0;
6226		data[4] = 0;
6227	}
6228}
6229
6230static void s2io_get_ethtool_stats(struct net_device *dev,
6231				   struct ethtool_stats *estats,
6232				   u64 *tmp_stats)
6233{
6234	int i = 0, k;
6235	struct s2io_nic *sp = netdev_priv(dev);
6236	struct stat_block *stats = sp->mac_control.stats_info;
6237	struct swStat *swstats = &stats->sw_stat;
6238	struct xpakStat *xstats = &stats->xpak_stat;
6239
6240	s2io_updt_stats(sp);
6241	tmp_stats[i++] =
6242		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6243		le32_to_cpu(stats->tmac_frms);
6244	tmp_stats[i++] =
6245		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6246		le32_to_cpu(stats->tmac_data_octets);
6247	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6248	tmp_stats[i++] =
6249		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6250		le32_to_cpu(stats->tmac_mcst_frms);
6251	tmp_stats[i++] =
6252		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6253		le32_to_cpu(stats->tmac_bcst_frms);
6254	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6255	tmp_stats[i++] =
6256		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6257		le32_to_cpu(stats->tmac_ttl_octets);
6258	tmp_stats[i++] =
6259		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6260		le32_to_cpu(stats->tmac_ucst_frms);
6261	tmp_stats[i++] =
6262		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6263		le32_to_cpu(stats->tmac_nucst_frms);
6264	tmp_stats[i++] =
6265		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6266		le32_to_cpu(stats->tmac_any_err_frms);
6267	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6268	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6269	tmp_stats[i++] =
6270		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6271		le32_to_cpu(stats->tmac_vld_ip);
6272	tmp_stats[i++] =
6273		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6274		le32_to_cpu(stats->tmac_drop_ip);
6275	tmp_stats[i++] =
6276		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6277		le32_to_cpu(stats->tmac_icmp);
6278	tmp_stats[i++] =
6279		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6280		le32_to_cpu(stats->tmac_rst_tcp);
6281	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6282	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6283		le32_to_cpu(stats->tmac_udp);
6284	tmp_stats[i++] =
6285		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6286		le32_to_cpu(stats->rmac_vld_frms);
6287	tmp_stats[i++] =
6288		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6289		le32_to_cpu(stats->rmac_data_octets);
6290	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6291	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6292	tmp_stats[i++] =
6293		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6294		le32_to_cpu(stats->rmac_vld_mcst_frms);
6295	tmp_stats[i++] =
6296		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6297		le32_to_cpu(stats->rmac_vld_bcst_frms);
6298	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6299	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6300	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6301	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6302	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6303	tmp_stats[i++] =
6304		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6305		le32_to_cpu(stats->rmac_ttl_octets);
6306	tmp_stats[i++] =
6307		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6308		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6309	tmp_stats[i++] =
6310		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6311		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6312	tmp_stats[i++] =
6313		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6314		le32_to_cpu(stats->rmac_discarded_frms);
6315	tmp_stats[i++] =
6316		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6317		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6318	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6319	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6320	tmp_stats[i++] =
6321		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6322		le32_to_cpu(stats->rmac_usized_frms);
6323	tmp_stats[i++] =
6324		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6325		le32_to_cpu(stats->rmac_osized_frms);
6326	tmp_stats[i++] =
6327		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6328		le32_to_cpu(stats->rmac_frag_frms);
6329	tmp_stats[i++] =
6330		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6331		le32_to_cpu(stats->rmac_jabber_frms);
6332	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6333	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6334	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6335	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6336	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6337	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6338	tmp_stats[i++] =
6339		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6340		le32_to_cpu(stats->rmac_ip);
6341	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6342	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6343	tmp_stats[i++] =
6344		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6345		le32_to_cpu(stats->rmac_drop_ip);
6346	tmp_stats[i++] =
6347		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6348		le32_to_cpu(stats->rmac_icmp);
6349	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6350	tmp_stats[i++] =
6351		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6352		le32_to_cpu(stats->rmac_udp);
6353	tmp_stats[i++] =
6354		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6355		le32_to_cpu(stats->rmac_err_drp_udp);
6356	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6357	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6358	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6359	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6360	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6361	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6362	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6363	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6364	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6365	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6366	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6367	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6368	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6369	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6370	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6371	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6372	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6373	tmp_stats[i++] =
6374		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6375		le32_to_cpu(stats->rmac_pause_cnt);
6376	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6377	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6378	tmp_stats[i++] =
6379		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6380		le32_to_cpu(stats->rmac_accepted_ip);
6381	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6382	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6383	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6384	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6385	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6386	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6387	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6388	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6389	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6390	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6391	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6392	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6393	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6394	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6395	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6396	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6397	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6398	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6399	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6400
6401	/* Enhanced statistics exist only for Hercules */
6402	if (sp->device_type == XFRAME_II_DEVICE) {
6403		tmp_stats[i++] =
6404			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6405		tmp_stats[i++] =
6406			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6407		tmp_stats[i++] =
6408			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6409		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6410		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6411		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6412		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6413		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6414		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6415		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6416		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6417		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6418		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6419		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6420		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6421		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6422	}
6423
6424	tmp_stats[i++] = 0;
6425	tmp_stats[i++] = swstats->single_ecc_errs;
6426	tmp_stats[i++] = swstats->double_ecc_errs;
6427	tmp_stats[i++] = swstats->parity_err_cnt;
6428	tmp_stats[i++] = swstats->serious_err_cnt;
6429	tmp_stats[i++] = swstats->soft_reset_cnt;
6430	tmp_stats[i++] = swstats->fifo_full_cnt;
6431	for (k = 0; k < MAX_RX_RINGS; k++)
6432		tmp_stats[i++] = swstats->ring_full_cnt[k];
6433	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6434	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6435	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6436	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6437	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6438	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6439	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6440	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6441	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6442	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6443	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6444	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6445	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6446	tmp_stats[i++] = swstats->sending_both;
6447	tmp_stats[i++] = swstats->outof_sequence_pkts;
6448	tmp_stats[i++] = swstats->flush_max_pkts;
6449	if (swstats->num_aggregations) {
6450		u64 tmp = swstats->sum_avg_pkts_aggregated;
6451		int count = 0;
6452		/*
6453		 * Since 64-bit divide does not work on all platforms,
6454		 * do repeated subtraction.
6455		 */
6456		while (tmp >= swstats->num_aggregations) {
6457			tmp -= swstats->num_aggregations;
6458			count++;
6459		}
6460		tmp_stats[i++] = count;
6461	} else
6462		tmp_stats[i++] = 0;
6463	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6464	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6465	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6466	tmp_stats[i++] = swstats->mem_allocated;
6467	tmp_stats[i++] = swstats->mem_freed;
6468	tmp_stats[i++] = swstats->link_up_cnt;
6469	tmp_stats[i++] = swstats->link_down_cnt;
6470	tmp_stats[i++] = swstats->link_up_time;
6471	tmp_stats[i++] = swstats->link_down_time;
6472
6473	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6474	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6475	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6476	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6477	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6478
6479	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6480	tmp_stats[i++] = swstats->rx_abort_cnt;
6481	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6482	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6483	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6484	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6485	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6486	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6487	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6488	tmp_stats[i++] = swstats->tda_err_cnt;
6489	tmp_stats[i++] = swstats->pfc_err_cnt;
6490	tmp_stats[i++] = swstats->pcc_err_cnt;
6491	tmp_stats[i++] = swstats->tti_err_cnt;
6492	tmp_stats[i++] = swstats->tpa_err_cnt;
6493	tmp_stats[i++] = swstats->sm_err_cnt;
6494	tmp_stats[i++] = swstats->lso_err_cnt;
6495	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6496	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6497	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6498	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6499	tmp_stats[i++] = swstats->rc_err_cnt;
6500	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6501	tmp_stats[i++] = swstats->rpa_err_cnt;
6502	tmp_stats[i++] = swstats->rda_err_cnt;
6503	tmp_stats[i++] = swstats->rti_err_cnt;
6504	tmp_stats[i++] = swstats->mc_err_cnt;
6505}
6506
6507static int s2io_ethtool_get_regs_len(struct net_device *dev)
6508{
6509	return XENA_REG_SPACE;
6510}
6511
6512
6513static int s2io_get_eeprom_len(struct net_device *dev)
6514{
6515	return XENA_EEPROM_SPACE;
6516}
6517
6518static int s2io_get_sset_count(struct net_device *dev, int sset)
6519{
6520	struct s2io_nic *sp = netdev_priv(dev);
6521
6522	switch (sset) {
6523	case ETH_SS_TEST:
6524		return S2IO_TEST_LEN;
6525	case ETH_SS_STATS:
6526		switch (sp->device_type) {
6527		case XFRAME_I_DEVICE:
6528			return XFRAME_I_STAT_LEN;
6529		case XFRAME_II_DEVICE:
6530			return XFRAME_II_STAT_LEN;
6531		default:
6532			return 0;
6533		}
6534	default:
6535		return -EOPNOTSUPP;
6536	}
6537}
6538
6539static void s2io_ethtool_get_strings(struct net_device *dev,
6540				     u32 stringset, u8 *data)
6541{
6542	int stat_size = 0;
6543	struct s2io_nic *sp = netdev_priv(dev);
6544
6545	switch (stringset) {
6546	case ETH_SS_TEST:
6547		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6548		break;
6549	case ETH_SS_STATS:
6550		stat_size = sizeof(ethtool_xena_stats_keys);
6551		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6552		if (sp->device_type == XFRAME_II_DEVICE) {
6553			memcpy(data + stat_size,
6554			       &ethtool_enhanced_stats_keys,
6555			       sizeof(ethtool_enhanced_stats_keys));
6556			stat_size += sizeof(ethtool_enhanced_stats_keys);
6557		}
6558
6559		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6560		       sizeof(ethtool_driver_stats_keys));
6561	}
6562}
6563
6564static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6565{
6566	struct s2io_nic *sp = netdev_priv(dev);
6567	netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6568
6569	if (changed && netif_running(dev)) {
6570		int rc;
6571
6572		s2io_stop_all_tx_queue(sp);
6573		s2io_card_down(sp);
6574		dev->features = features;
6575		rc = s2io_card_up(sp);
6576		if (rc)
6577			s2io_reset(sp);
6578		else
6579			s2io_start_all_tx_queue(sp);
6580
6581		return rc ? rc : 1;
6582	}
6583
6584	return 0;
6585}
6586
6587static const struct ethtool_ops netdev_ethtool_ops = {
6588	.get_drvinfo = s2io_ethtool_gdrvinfo,
6589	.get_regs_len = s2io_ethtool_get_regs_len,
6590	.get_regs = s2io_ethtool_gregs,
6591	.get_link = ethtool_op_get_link,
6592	.get_eeprom_len = s2io_get_eeprom_len,
6593	.get_eeprom = s2io_ethtool_geeprom,
6594	.set_eeprom = s2io_ethtool_seeprom,
6595	.get_ringparam = s2io_ethtool_gringparam,
6596	.get_pauseparam = s2io_ethtool_getpause_data,
6597	.set_pauseparam = s2io_ethtool_setpause_data,
6598	.self_test = s2io_ethtool_test,
6599	.get_strings = s2io_ethtool_get_strings,
6600	.set_phys_id = s2io_ethtool_set_led,
6601	.get_ethtool_stats = s2io_get_ethtool_stats,
6602	.get_sset_count = s2io_get_sset_count,
6603	.get_link_ksettings = s2io_ethtool_get_link_ksettings,
6604	.set_link_ksettings = s2io_ethtool_set_link_ksettings,
6605};
6606
6607/**
6608 *  s2io_ioctl - Entry point for the Ioctl
6609 *  @dev :  Device pointer.
6610 *  @rq :  An IOCTL specefic structure, that can contain a pointer to
6611 *  a proprietary structure used to pass information to the driver.
6612 *  @cmd :  This is used to distinguish between the different commands that
6613 *  can be passed to the IOCTL functions.
6614 *  Description:
6615 *  Currently there are no special functionality supported in IOCTL, hence
6616 *  function always return EOPNOTSUPPORTED
6617 */
6618
6619static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6620{
6621	return -EOPNOTSUPP;
6622}
6623
6624/**
6625 *  s2io_change_mtu - entry point to change MTU size for the device.
6626 *   @dev : device pointer.
6627 *   @new_mtu : the new MTU size for the device.
6628 *   Description: A driver entry point to change MTU size for the device.
6629 *   Before changing the MTU the device must be stopped.
6630 *  Return value:
6631 *   0 on success and an appropriate (-)ve integer as defined in errno.h
6632 *   file on failure.
6633 */
6634
6635static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6636{
6637	struct s2io_nic *sp = netdev_priv(dev);
6638	int ret = 0;
6639
6640	dev->mtu = new_mtu;
6641	if (netif_running(dev)) {
6642		s2io_stop_all_tx_queue(sp);
6643		s2io_card_down(sp);
6644		ret = s2io_card_up(sp);
6645		if (ret) {
6646			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6647				  __func__);
6648			return ret;
6649		}
6650		s2io_wake_all_tx_queue(sp);
6651	} else { /* Device is down */
6652		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6653		u64 val64 = new_mtu;
6654
6655		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6656	}
6657
6658	return ret;
6659}
6660
6661/**
6662 * s2io_set_link - Set the LInk status
6663 * @work: work struct containing a pointer to device private structure
6664 * Description: Sets the link status for the adapter
6665 */
6666
6667static void s2io_set_link(struct work_struct *work)
6668{
6669	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6670					    set_link_task);
6671	struct net_device *dev = nic->dev;
6672	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6673	register u64 val64;
6674	u16 subid;
6675
6676	rtnl_lock();
6677
6678	if (!netif_running(dev))
6679		goto out_unlock;
6680
6681	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6682		/* The card is being reset, no point doing anything */
6683		goto out_unlock;
6684	}
6685
6686	subid = nic->pdev->subsystem_device;
6687	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6688		/*
6689		 * Allow a small delay for the NICs self initiated
6690		 * cleanup to complete.
6691		 */
6692		msleep(100);
6693	}
6694
6695	val64 = readq(&bar0->adapter_status);
6696	if (LINK_IS_UP(val64)) {
6697		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6698			if (verify_xena_quiescence(nic)) {
6699				val64 = readq(&bar0->adapter_control);
6700				val64 |= ADAPTER_CNTL_EN;
6701				writeq(val64, &bar0->adapter_control);
6702				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6703					    nic->device_type, subid)) {
6704					val64 = readq(&bar0->gpio_control);
6705					val64 |= GPIO_CTRL_GPIO_0;
6706					writeq(val64, &bar0->gpio_control);
6707					val64 = readq(&bar0->gpio_control);
6708				} else {
6709					val64 |= ADAPTER_LED_ON;
6710					writeq(val64, &bar0->adapter_control);
6711				}
6712				nic->device_enabled_once = true;
6713			} else {
6714				DBG_PRINT(ERR_DBG,
6715					  "%s: Error: device is not Quiescent\n",
6716					  dev->name);
6717				s2io_stop_all_tx_queue(nic);
6718			}
6719		}
6720		val64 = readq(&bar0->adapter_control);
6721		val64 |= ADAPTER_LED_ON;
6722		writeq(val64, &bar0->adapter_control);
6723		s2io_link(nic, LINK_UP);
6724	} else {
6725		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6726						      subid)) {
6727			val64 = readq(&bar0->gpio_control);
6728			val64 &= ~GPIO_CTRL_GPIO_0;
6729			writeq(val64, &bar0->gpio_control);
6730			val64 = readq(&bar0->gpio_control);
6731		}
6732		/* turn off LED */
6733		val64 = readq(&bar0->adapter_control);
6734		val64 = val64 & (~ADAPTER_LED_ON);
6735		writeq(val64, &bar0->adapter_control);
6736		s2io_link(nic, LINK_DOWN);
6737	}
6738	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6739
6740out_unlock:
6741	rtnl_unlock();
6742}
6743
6744static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6745				  struct buffAdd *ba,
6746				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6747				  u64 *temp2, int size)
6748{
6749	struct net_device *dev = sp->dev;
6750	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6751
6752	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6753		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6754		/* allocate skb */
6755		if (*skb) {
6756			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6757			/*
6758			 * As Rx frame are not going to be processed,
6759			 * using same mapped address for the Rxd
6760			 * buffer pointer
6761			 */
6762			rxdp1->Buffer0_ptr = *temp0;
6763		} else {
6764			*skb = netdev_alloc_skb(dev, size);
6765			if (!(*skb)) {
6766				DBG_PRINT(INFO_DBG,
6767					  "%s: Out of memory to allocate %s\n",
6768					  dev->name, "1 buf mode SKBs");
6769				stats->mem_alloc_fail_cnt++;
6770				return -ENOMEM ;
6771			}
6772			stats->mem_allocated += (*skb)->truesize;
6773			/* storing the mapped addr in a temp variable
6774			 * such it will be used for next rxd whose
6775			 * Host Control is NULL
6776			 */
6777			rxdp1->Buffer0_ptr = *temp0 =
6778				dma_map_single(&sp->pdev->dev, (*skb)->data,
6779					       size - NET_IP_ALIGN,
6780					       DMA_FROM_DEVICE);
6781			if (dma_mapping_error(&sp->pdev->dev, rxdp1->Buffer0_ptr))
6782				goto memalloc_failed;
6783			rxdp->Host_Control = (unsigned long) (*skb);
6784		}
6785	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6786		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6787		/* Two buffer Mode */
6788		if (*skb) {
6789			rxdp3->Buffer2_ptr = *temp2;
6790			rxdp3->Buffer0_ptr = *temp0;
6791			rxdp3->Buffer1_ptr = *temp1;
6792		} else {
6793			*skb = netdev_alloc_skb(dev, size);
6794			if (!(*skb)) {
6795				DBG_PRINT(INFO_DBG,
6796					  "%s: Out of memory to allocate %s\n",
6797					  dev->name,
6798					  "2 buf mode SKBs");
6799				stats->mem_alloc_fail_cnt++;
6800				return -ENOMEM;
6801			}
6802			stats->mem_allocated += (*skb)->truesize;
6803			rxdp3->Buffer2_ptr = *temp2 =
6804				dma_map_single(&sp->pdev->dev, (*skb)->data,
6805					       dev->mtu + 4, DMA_FROM_DEVICE);
6806			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer2_ptr))
6807				goto memalloc_failed;
6808			rxdp3->Buffer0_ptr = *temp0 =
6809				dma_map_single(&sp->pdev->dev, ba->ba_0,
6810					       BUF0_LEN, DMA_FROM_DEVICE);
6811			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer0_ptr)) {
6812				dma_unmap_single(&sp->pdev->dev,
6813						 (dma_addr_t)rxdp3->Buffer2_ptr,
6814						 dev->mtu + 4,
6815						 DMA_FROM_DEVICE);
6816				goto memalloc_failed;
6817			}
6818			rxdp->Host_Control = (unsigned long) (*skb);
6819
6820			/* Buffer-1 will be dummy buffer not used */
6821			rxdp3->Buffer1_ptr = *temp1 =
6822				dma_map_single(&sp->pdev->dev, ba->ba_1,
6823					       BUF1_LEN, DMA_FROM_DEVICE);
6824			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer1_ptr)) {
6825				dma_unmap_single(&sp->pdev->dev,
6826						 (dma_addr_t)rxdp3->Buffer0_ptr,
6827						 BUF0_LEN, DMA_FROM_DEVICE);
6828				dma_unmap_single(&sp->pdev->dev,
6829						 (dma_addr_t)rxdp3->Buffer2_ptr,
6830						 dev->mtu + 4,
6831						 DMA_FROM_DEVICE);
6832				goto memalloc_failed;
6833			}
6834		}
6835	}
6836	return 0;
6837
6838memalloc_failed:
6839	stats->pci_map_fail_cnt++;
6840	stats->mem_freed += (*skb)->truesize;
6841	dev_kfree_skb(*skb);
6842	return -ENOMEM;
6843}
6844
6845static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6846				int size)
6847{
6848	struct net_device *dev = sp->dev;
6849	if (sp->rxd_mode == RXD_MODE_1) {
6850		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6851	} else if (sp->rxd_mode == RXD_MODE_3B) {
6852		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6853		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6854		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6855	}
6856}
6857
6858static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6859{
6860	int i, j, k, blk_cnt = 0, size;
6861	struct config_param *config = &sp->config;
6862	struct mac_info *mac_control = &sp->mac_control;
6863	struct net_device *dev = sp->dev;
6864	struct RxD_t *rxdp = NULL;
6865	struct sk_buff *skb = NULL;
6866	struct buffAdd *ba = NULL;
6867	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6868
6869	/* Calculate the size based on ring mode */
6870	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6871		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6872	if (sp->rxd_mode == RXD_MODE_1)
6873		size += NET_IP_ALIGN;
6874	else if (sp->rxd_mode == RXD_MODE_3B)
6875		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6876
6877	for (i = 0; i < config->rx_ring_num; i++) {
6878		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6879		struct ring_info *ring = &mac_control->rings[i];
6880
6881		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6882
6883		for (j = 0; j < blk_cnt; j++) {
6884			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6885				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6886				if (sp->rxd_mode == RXD_MODE_3B)
6887					ba = &ring->ba[j][k];
6888				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6889							   &temp0_64,
6890							   &temp1_64,
6891							   &temp2_64,
6892							   size) == -ENOMEM) {
6893					return 0;
6894				}
6895
6896				set_rxd_buffer_size(sp, rxdp, size);
6897				dma_wmb();
6898				/* flip the Ownership bit to Hardware */
6899				rxdp->Control_1 |= RXD_OWN_XENA;
6900			}
6901		}
6902	}
6903	return 0;
6904
6905}
6906
6907static int s2io_add_isr(struct s2io_nic *sp)
6908{
6909	int ret = 0;
6910	struct net_device *dev = sp->dev;
6911	int err = 0;
6912
6913	if (sp->config.intr_type == MSI_X)
6914		ret = s2io_enable_msi_x(sp);
6915	if (ret) {
6916		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6917		sp->config.intr_type = INTA;
6918	}
6919
6920	/*
6921	 * Store the values of the MSIX table in
6922	 * the struct s2io_nic structure
6923	 */
6924	store_xmsi_data(sp);
6925
6926	/* After proper initialization of H/W, register ISR */
6927	if (sp->config.intr_type == MSI_X) {
6928		int i, msix_rx_cnt = 0;
6929
6930		for (i = 0; i < sp->num_entries; i++) {
6931			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6932				if (sp->s2io_entries[i].type ==
6933				    MSIX_RING_TYPE) {
6934					snprintf(sp->desc[i],
6935						sizeof(sp->desc[i]),
6936						"%s:MSI-X-%d-RX",
6937						dev->name, i);
6938					err = request_irq(sp->entries[i].vector,
6939							  s2io_msix_ring_handle,
6940							  0,
6941							  sp->desc[i],
6942							  sp->s2io_entries[i].arg);
6943				} else if (sp->s2io_entries[i].type ==
6944					   MSIX_ALARM_TYPE) {
6945					snprintf(sp->desc[i],
6946						sizeof(sp->desc[i]),
6947						"%s:MSI-X-%d-TX",
6948						dev->name, i);
6949					err = request_irq(sp->entries[i].vector,
6950							  s2io_msix_fifo_handle,
6951							  0,
6952							  sp->desc[i],
6953							  sp->s2io_entries[i].arg);
6954
6955				}
6956				/* if either data or addr is zero print it. */
6957				if (!(sp->msix_info[i].addr &&
6958				      sp->msix_info[i].data)) {
6959					DBG_PRINT(ERR_DBG,
6960						  "%s @Addr:0x%llx Data:0x%llx\n",
6961						  sp->desc[i],
6962						  (unsigned long long)
6963						  sp->msix_info[i].addr,
6964						  (unsigned long long)
6965						  ntohl(sp->msix_info[i].data));
6966				} else
6967					msix_rx_cnt++;
6968				if (err) {
6969					remove_msix_isr(sp);
6970
6971					DBG_PRINT(ERR_DBG,
6972						  "%s:MSI-X-%d registration "
6973						  "failed\n", dev->name, i);
6974
6975					DBG_PRINT(ERR_DBG,
6976						  "%s: Defaulting to INTA\n",
6977						  dev->name);
6978					sp->config.intr_type = INTA;
6979					break;
6980				}
6981				sp->s2io_entries[i].in_use =
6982					MSIX_REGISTERED_SUCCESS;
6983			}
6984		}
6985		if (!err) {
6986			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
6987			DBG_PRINT(INFO_DBG,
6988				  "MSI-X-TX entries enabled through alarm vector\n");
6989		}
6990	}
6991	if (sp->config.intr_type == INTA) {
6992		err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
6993				  sp->name, dev);
6994		if (err) {
6995			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6996				  dev->name);
6997			return -1;
6998		}
6999	}
7000	return 0;
7001}
7002
7003static void s2io_rem_isr(struct s2io_nic *sp)
7004{
7005	if (sp->config.intr_type == MSI_X)
7006		remove_msix_isr(sp);
7007	else
7008		remove_inta_isr(sp);
7009}
7010
7011static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7012{
7013	int cnt = 0;
7014	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7015	register u64 val64 = 0;
7016	struct config_param *config;
7017	config = &sp->config;
7018
7019	if (!is_s2io_card_up(sp))
7020		return;
7021
7022	del_timer_sync(&sp->alarm_timer);
7023	/* If s2io_set_link task is executing, wait till it completes. */
7024	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7025		msleep(50);
7026	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7027
7028	/* Disable napi */
7029	if (sp->config.napi) {
7030		int off = 0;
7031		if (config->intr_type ==  MSI_X) {
7032			for (; off < sp->config.rx_ring_num; off++)
7033				napi_disable(&sp->mac_control.rings[off].napi);
7034		}
7035		else
7036			napi_disable(&sp->napi);
7037	}
7038
7039	/* disable Tx and Rx traffic on the NIC */
7040	if (do_io)
7041		stop_nic(sp);
7042
7043	s2io_rem_isr(sp);
7044
7045	/* stop the tx queue, indicate link down */
7046	s2io_link(sp, LINK_DOWN);
7047
7048	/* Check if the device is Quiescent and then Reset the NIC */
7049	while (do_io) {
7050		/* As per the HW requirement we need to replenish the
7051		 * receive buffer to avoid the ring bump. Since there is
7052		 * no intention of processing the Rx frame at this pointwe are
7053		 * just setting the ownership bit of rxd in Each Rx
7054		 * ring to HW and set the appropriate buffer size
7055		 * based on the ring mode
7056		 */
7057		rxd_owner_bit_reset(sp);
7058
7059		val64 = readq(&bar0->adapter_status);
7060		if (verify_xena_quiescence(sp)) {
7061			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7062				break;
7063		}
7064
7065		msleep(50);
7066		cnt++;
7067		if (cnt == 10) {
7068			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7069				  "adapter status reads 0x%llx\n",
7070				  (unsigned long long)val64);
7071			break;
7072		}
7073	}
7074	if (do_io)
7075		s2io_reset(sp);
7076
7077	/* Free all Tx buffers */
7078	free_tx_buffers(sp);
7079
7080	/* Free all Rx buffers */
7081	free_rx_buffers(sp);
7082
7083	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7084}
7085
7086static void s2io_card_down(struct s2io_nic *sp)
7087{
7088	do_s2io_card_down(sp, 1);
7089}
7090
7091static int s2io_card_up(struct s2io_nic *sp)
7092{
7093	int i, ret = 0;
7094	struct config_param *config;
7095	struct mac_info *mac_control;
7096	struct net_device *dev = sp->dev;
7097	u16 interruptible;
7098
7099	/* Initialize the H/W I/O registers */
7100	ret = init_nic(sp);
7101	if (ret != 0) {
7102		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7103			  dev->name);
7104		if (ret != -EIO)
7105			s2io_reset(sp);
7106		return ret;
7107	}
7108
7109	/*
7110	 * Initializing the Rx buffers. For now we are considering only 1
7111	 * Rx ring and initializing buffers into 30 Rx blocks
7112	 */
7113	config = &sp->config;
7114	mac_control = &sp->mac_control;
7115
7116	for (i = 0; i < config->rx_ring_num; i++) {
7117		struct ring_info *ring = &mac_control->rings[i];
7118
7119		ring->mtu = dev->mtu;
7120		ring->lro = !!(dev->features & NETIF_F_LRO);
7121		ret = fill_rx_buffers(sp, ring, 1);
7122		if (ret) {
7123			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7124				  dev->name);
7125			ret = -ENOMEM;
7126			goto err_fill_buff;
7127		}
7128		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7129			  ring->rx_bufs_left);
7130	}
7131
7132	/* Initialise napi */
7133	if (config->napi) {
7134		if (config->intr_type ==  MSI_X) {
7135			for (i = 0; i < sp->config.rx_ring_num; i++)
7136				napi_enable(&sp->mac_control.rings[i].napi);
7137		} else {
7138			napi_enable(&sp->napi);
7139		}
7140	}
7141
7142	/* Maintain the state prior to the open */
7143	if (sp->promisc_flg)
7144		sp->promisc_flg = 0;
7145	if (sp->m_cast_flg) {
7146		sp->m_cast_flg = 0;
7147		sp->all_multi_pos = 0;
7148	}
7149
7150	/* Setting its receive mode */
7151	s2io_set_multicast(dev, true);
7152
7153	if (dev->features & NETIF_F_LRO) {
7154		/* Initialize max aggregatable pkts per session based on MTU */
7155		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7156		/* Check if we can use (if specified) user provided value */
7157		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7158			sp->lro_max_aggr_per_sess = lro_max_pkts;
7159	}
7160
7161	/* Enable Rx Traffic and interrupts on the NIC */
7162	if (start_nic(sp)) {
7163		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7164		ret = -ENODEV;
7165		goto err_out;
7166	}
7167
7168	/* Add interrupt service routine */
7169	if (s2io_add_isr(sp) != 0) {
7170		if (sp->config.intr_type == MSI_X)
7171			s2io_rem_isr(sp);
7172		ret = -ENODEV;
7173		goto err_out;
7174	}
7175
7176	timer_setup(&sp->alarm_timer, s2io_alarm_handle, 0);
7177	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
7178
7179	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7180
7181	/*  Enable select interrupts */
7182	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7183	if (sp->config.intr_type != INTA) {
7184		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7185		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7186	} else {
7187		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7188		interruptible |= TX_PIC_INTR;
7189		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7190	}
7191
7192	return 0;
7193
7194err_out:
7195	if (config->napi) {
7196		if (config->intr_type == MSI_X) {
7197			for (i = 0; i < sp->config.rx_ring_num; i++)
7198				napi_disable(&sp->mac_control.rings[i].napi);
7199		} else {
7200			napi_disable(&sp->napi);
7201		}
7202	}
7203err_fill_buff:
7204	s2io_reset(sp);
7205	free_rx_buffers(sp);
7206	return ret;
7207}
7208
7209/**
7210 * s2io_restart_nic - Resets the NIC.
7211 * @work : work struct containing a pointer to the device private structure
7212 * Description:
7213 * This function is scheduled to be run by the s2io_tx_watchdog
7214 * function after 0.5 secs to reset the NIC. The idea is to reduce
7215 * the run time of the watch dog routine which is run holding a
7216 * spin lock.
7217 */
7218
7219static void s2io_restart_nic(struct work_struct *work)
7220{
7221	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7222	struct net_device *dev = sp->dev;
7223
7224	rtnl_lock();
7225
7226	if (!netif_running(dev))
7227		goto out_unlock;
7228
7229	s2io_card_down(sp);
7230	if (s2io_card_up(sp)) {
7231		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7232	}
7233	s2io_wake_all_tx_queue(sp);
7234	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7235out_unlock:
7236	rtnl_unlock();
7237}
7238
7239/**
7240 *  s2io_tx_watchdog - Watchdog for transmit side.
7241 *  @dev : Pointer to net device structure
7242 *  @txqueue: index of the hanging queue
7243 *  Description:
7244 *  This function is triggered if the Tx Queue is stopped
7245 *  for a pre-defined amount of time when the Interface is still up.
7246 *  If the Interface is jammed in such a situation, the hardware is
7247 *  reset (by s2io_close) and restarted again (by s2io_open) to
7248 *  overcome any problem that might have been caused in the hardware.
7249 *  Return value:
7250 *  void
7251 */
7252
7253static void s2io_tx_watchdog(struct net_device *dev, unsigned int txqueue)
7254{
7255	struct s2io_nic *sp = netdev_priv(dev);
7256	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7257
7258	if (netif_carrier_ok(dev)) {
7259		swstats->watchdog_timer_cnt++;
7260		schedule_work(&sp->rst_timer_task);
7261		swstats->soft_reset_cnt++;
7262	}
7263}
7264
7265/**
7266 *   rx_osm_handler - To perform some OS related operations on SKB.
7267 *   @ring_data : the ring from which this RxD was extracted.
7268 *   @rxdp: descriptor
7269 *   Description:
7270 *   This function is called by the Rx interrupt serivce routine to perform
7271 *   some OS related operations on the SKB before passing it to the upper
7272 *   layers. It mainly checks if the checksum is OK, if so adds it to the
7273 *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7274 *   to the upper layer. If the checksum is wrong, it increments the Rx
7275 *   packet error count, frees the SKB and returns error.
7276 *   Return value:
7277 *   SUCCESS on success and -1 on failure.
7278 */
7279static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7280{
7281	struct s2io_nic *sp = ring_data->nic;
7282	struct net_device *dev = ring_data->dev;
7283	struct sk_buff *skb = (struct sk_buff *)
7284		((unsigned long)rxdp->Host_Control);
7285	int ring_no = ring_data->ring_no;
7286	u16 l3_csum, l4_csum;
7287	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7288	struct lro *lro;
7289	u8 err_mask;
7290	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7291
7292	skb->dev = dev;
7293
7294	if (err) {
7295		/* Check for parity error */
7296		if (err & 0x1)
7297			swstats->parity_err_cnt++;
7298
7299		err_mask = err >> 48;
7300		switch (err_mask) {
7301		case 1:
7302			swstats->rx_parity_err_cnt++;
7303			break;
7304
7305		case 2:
7306			swstats->rx_abort_cnt++;
7307			break;
7308
7309		case 3:
7310			swstats->rx_parity_abort_cnt++;
7311			break;
7312
7313		case 4:
7314			swstats->rx_rda_fail_cnt++;
7315			break;
7316
7317		case 5:
7318			swstats->rx_unkn_prot_cnt++;
7319			break;
7320
7321		case 6:
7322			swstats->rx_fcs_err_cnt++;
7323			break;
7324
7325		case 7:
7326			swstats->rx_buf_size_err_cnt++;
7327			break;
7328
7329		case 8:
7330			swstats->rx_rxd_corrupt_cnt++;
7331			break;
7332
7333		case 15:
7334			swstats->rx_unkn_err_cnt++;
7335			break;
7336		}
7337		/*
7338		 * Drop the packet if bad transfer code. Exception being
7339		 * 0x5, which could be due to unsupported IPv6 extension header.
7340		 * In this case, we let stack handle the packet.
7341		 * Note that in this case, since checksum will be incorrect,
7342		 * stack will validate the same.
7343		 */
7344		if (err_mask != 0x5) {
7345			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7346				  dev->name, err_mask);
7347			dev->stats.rx_crc_errors++;
7348			swstats->mem_freed
7349				+= skb->truesize;
7350			dev_kfree_skb(skb);
7351			ring_data->rx_bufs_left -= 1;
7352			rxdp->Host_Control = 0;
7353			return 0;
7354		}
7355	}
7356
7357	rxdp->Host_Control = 0;
7358	if (sp->rxd_mode == RXD_MODE_1) {
7359		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7360
7361		skb_put(skb, len);
7362	} else if (sp->rxd_mode == RXD_MODE_3B) {
7363		int get_block = ring_data->rx_curr_get_info.block_index;
7364		int get_off = ring_data->rx_curr_get_info.offset;
7365		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7366		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7367
7368		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7369		skb_put_data(skb, ba->ba_0, buf0_len);
7370		skb_put(skb, buf2_len);
7371	}
7372
7373	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7374	    ((!ring_data->lro) ||
7375	     (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) &&
7376	    (dev->features & NETIF_F_RXCSUM)) {
7377		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7378		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7379		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7380			/*
7381			 * NIC verifies if the Checksum of the received
7382			 * frame is Ok or not and accordingly returns
7383			 * a flag in the RxD.
7384			 */
7385			skb->ip_summed = CHECKSUM_UNNECESSARY;
7386			if (ring_data->lro) {
7387				u32 tcp_len = 0;
7388				u8 *tcp;
7389				int ret = 0;
7390
7391				ret = s2io_club_tcp_session(ring_data,
7392							    skb->data, &tcp,
7393							    &tcp_len, &lro,
7394							    rxdp, sp);
7395				switch (ret) {
7396				case 3: /* Begin anew */
7397					lro->parent = skb;
7398					goto aggregate;
7399				case 1: /* Aggregate */
7400					lro_append_pkt(sp, lro, skb, tcp_len);
7401					goto aggregate;
7402				case 4: /* Flush session */
7403					lro_append_pkt(sp, lro, skb, tcp_len);
7404					queue_rx_frame(lro->parent,
7405						       lro->vlan_tag);
7406					clear_lro_session(lro);
7407					swstats->flush_max_pkts++;
7408					goto aggregate;
7409				case 2: /* Flush both */
7410					lro->parent->data_len = lro->frags_len;
7411					swstats->sending_both++;
7412					queue_rx_frame(lro->parent,
7413						       lro->vlan_tag);
7414					clear_lro_session(lro);
7415					goto send_up;
7416				case 0: /* sessions exceeded */
7417				case -1: /* non-TCP or not L2 aggregatable */
7418				case 5: /*
7419					 * First pkt in session not
7420					 * L3/L4 aggregatable
7421					 */
7422					break;
7423				default:
7424					DBG_PRINT(ERR_DBG,
7425						  "%s: Samadhana!!\n",
7426						  __func__);
7427					BUG();
7428				}
7429			}
7430		} else {
7431			/*
7432			 * Packet with erroneous checksum, let the
7433			 * upper layers deal with it.
7434			 */
7435			skb_checksum_none_assert(skb);
7436		}
7437	} else
7438		skb_checksum_none_assert(skb);
7439
7440	swstats->mem_freed += skb->truesize;
7441send_up:
7442	skb_record_rx_queue(skb, ring_no);
7443	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7444aggregate:
7445	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7446	return SUCCESS;
7447}
7448
7449/**
7450 *  s2io_link - stops/starts the Tx queue.
7451 *  @sp : private member of the device structure, which is a pointer to the
7452 *  s2io_nic structure.
7453 *  @link : inidicates whether link is UP/DOWN.
7454 *  Description:
7455 *  This function stops/starts the Tx queue depending on whether the link
7456 *  status of the NIC is down or up. This is called by the Alarm
7457 *  interrupt handler whenever a link change interrupt comes up.
7458 *  Return value:
7459 *  void.
7460 */
7461
7462static void s2io_link(struct s2io_nic *sp, int link)
7463{
7464	struct net_device *dev = sp->dev;
7465	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7466
7467	if (link != sp->last_link_state) {
7468		init_tti(sp, link, false);
7469		if (link == LINK_DOWN) {
7470			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7471			s2io_stop_all_tx_queue(sp);
7472			netif_carrier_off(dev);
7473			if (swstats->link_up_cnt)
7474				swstats->link_up_time =
7475					jiffies - sp->start_time;
7476			swstats->link_down_cnt++;
7477		} else {
7478			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7479			if (swstats->link_down_cnt)
7480				swstats->link_down_time =
7481					jiffies - sp->start_time;
7482			swstats->link_up_cnt++;
7483			netif_carrier_on(dev);
7484			s2io_wake_all_tx_queue(sp);
7485		}
7486	}
7487	sp->last_link_state = link;
7488	sp->start_time = jiffies;
7489}
7490
7491/**
7492 *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7493 *  @sp : private member of the device structure, which is a pointer to the
7494 *  s2io_nic structure.
7495 *  Description:
7496 *  This function initializes a few of the PCI and PCI-X configuration registers
7497 *  with recommended values.
7498 *  Return value:
7499 *  void
7500 */
7501
7502static void s2io_init_pci(struct s2io_nic *sp)
7503{
7504	u16 pci_cmd = 0, pcix_cmd = 0;
7505
7506	/* Enable Data Parity Error Recovery in PCI-X command register. */
7507	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7508			     &(pcix_cmd));
7509	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7510			      (pcix_cmd | 1));
7511	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7512			     &(pcix_cmd));
7513
7514	/* Set the PErr Response bit in PCI command register. */
7515	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7516	pci_write_config_word(sp->pdev, PCI_COMMAND,
7517			      (pci_cmd | PCI_COMMAND_PARITY));
7518	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7519}
7520
7521static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7522			    u8 *dev_multiq)
7523{
7524	int i;
7525
7526	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7527		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7528			  "(%d) not supported\n", tx_fifo_num);
7529
7530		if (tx_fifo_num < 1)
7531			tx_fifo_num = 1;
7532		else
7533			tx_fifo_num = MAX_TX_FIFOS;
7534
7535		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7536	}
7537
7538	if (multiq)
7539		*dev_multiq = multiq;
7540
7541	if (tx_steering_type && (1 == tx_fifo_num)) {
7542		if (tx_steering_type != TX_DEFAULT_STEERING)
7543			DBG_PRINT(ERR_DBG,
7544				  "Tx steering is not supported with "
7545				  "one fifo. Disabling Tx steering.\n");
7546		tx_steering_type = NO_STEERING;
7547	}
7548
7549	if ((tx_steering_type < NO_STEERING) ||
7550	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7551		DBG_PRINT(ERR_DBG,
7552			  "Requested transmit steering not supported\n");
7553		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7554		tx_steering_type = NO_STEERING;
7555	}
7556
7557	if (rx_ring_num > MAX_RX_RINGS) {
7558		DBG_PRINT(ERR_DBG,
7559			  "Requested number of rx rings not supported\n");
7560		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7561			  MAX_RX_RINGS);
7562		rx_ring_num = MAX_RX_RINGS;
7563	}
7564
7565	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7566		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7567			  "Defaulting to INTA\n");
7568		*dev_intr_type = INTA;
7569	}
7570
7571	if ((*dev_intr_type == MSI_X) &&
7572	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7573	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7574		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7575			  "Defaulting to INTA\n");
7576		*dev_intr_type = INTA;
7577	}
7578
7579	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7580		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7581		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7582		rx_ring_mode = 1;
7583	}
7584
7585	for (i = 0; i < MAX_RX_RINGS; i++)
7586		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7587			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7588				  "supported\nDefaulting to %d\n",
7589				  MAX_RX_BLOCKS_PER_RING);
7590			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7591		}
7592
7593	return SUCCESS;
7594}
7595
7596/**
7597 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS or Traffic class respectively.
7598 * @nic: device private variable
7599 * @ds_codepoint: data
7600 * @ring: ring index
7601 * Description: The function configures the receive steering to
7602 * desired receive ring.
7603 * Return Value:  SUCCESS on success and
7604 * '-1' on failure (endian settings incorrect).
7605 */
7606static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7607{
7608	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7609	register u64 val64 = 0;
7610
7611	if (ds_codepoint > 63)
7612		return FAILURE;
7613
7614	val64 = RTS_DS_MEM_DATA(ring);
7615	writeq(val64, &bar0->rts_ds_mem_data);
7616
7617	val64 = RTS_DS_MEM_CTRL_WE |
7618		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7619		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7620
7621	writeq(val64, &bar0->rts_ds_mem_ctrl);
7622
7623	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7624				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7625				     S2IO_BIT_RESET, true);
7626}
7627
7628static const struct net_device_ops s2io_netdev_ops = {
7629	.ndo_open	        = s2io_open,
7630	.ndo_stop	        = s2io_close,
7631	.ndo_get_stats	        = s2io_get_stats,
7632	.ndo_start_xmit    	= s2io_xmit,
7633	.ndo_validate_addr	= eth_validate_addr,
7634	.ndo_set_rx_mode	= s2io_ndo_set_multicast,
7635	.ndo_eth_ioctl		= s2io_ioctl,
7636	.ndo_set_mac_address    = s2io_set_mac_addr,
7637	.ndo_change_mtu	   	= s2io_change_mtu,
7638	.ndo_set_features	= s2io_set_features,
7639	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7640#ifdef CONFIG_NET_POLL_CONTROLLER
7641	.ndo_poll_controller    = s2io_netpoll,
7642#endif
7643};
7644
7645/**
7646 *  s2io_init_nic - Initialization of the adapter .
7647 *  @pdev : structure containing the PCI related information of the device.
7648 *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7649 *  Description:
7650 *  The function initializes an adapter identified by the pci_dec structure.
7651 *  All OS related initialization including memory and device structure and
7652 *  initlaization of the device private variable is done. Also the swapper
7653 *  control register is initialized to enable read and write into the I/O
7654 *  registers of the device.
7655 *  Return value:
7656 *  returns 0 on success and negative on failure.
7657 */
7658
7659static int
7660s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7661{
7662	struct s2io_nic *sp;
7663	struct net_device *dev;
7664	int i, j, ret;
7665	u32 mac_up, mac_down;
7666	u64 val64 = 0, tmp64 = 0;
7667	struct XENA_dev_config __iomem *bar0 = NULL;
7668	u16 subid;
7669	struct config_param *config;
7670	struct mac_info *mac_control;
7671	int mode;
7672	u8 dev_intr_type = intr_type;
7673	u8 dev_multiq = 0;
7674
7675	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7676	if (ret)
7677		return ret;
7678
7679	ret = pci_enable_device(pdev);
7680	if (ret) {
7681		DBG_PRINT(ERR_DBG,
7682			  "%s: pci_enable_device failed\n", __func__);
7683		return ret;
7684	}
7685
7686	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
7687		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7688	} else {
7689		pci_disable_device(pdev);
7690		return -ENOMEM;
7691	}
7692	ret = pci_request_regions(pdev, s2io_driver_name);
7693	if (ret) {
7694		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7695			  __func__, ret);
7696		pci_disable_device(pdev);
7697		return -ENODEV;
7698	}
7699	if (dev_multiq)
7700		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7701	else
7702		dev = alloc_etherdev(sizeof(struct s2io_nic));
7703	if (dev == NULL) {
7704		pci_disable_device(pdev);
7705		pci_release_regions(pdev);
7706		return -ENODEV;
7707	}
7708
7709	pci_set_master(pdev);
7710	pci_set_drvdata(pdev, dev);
7711	SET_NETDEV_DEV(dev, &pdev->dev);
7712
7713	/*  Private member variable initialized to s2io NIC structure */
7714	sp = netdev_priv(dev);
7715	sp->dev = dev;
7716	sp->pdev = pdev;
7717	sp->device_enabled_once = false;
7718	if (rx_ring_mode == 1)
7719		sp->rxd_mode = RXD_MODE_1;
7720	if (rx_ring_mode == 2)
7721		sp->rxd_mode = RXD_MODE_3B;
7722
7723	sp->config.intr_type = dev_intr_type;
7724
7725	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7726	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7727		sp->device_type = XFRAME_II_DEVICE;
7728	else
7729		sp->device_type = XFRAME_I_DEVICE;
7730
7731
7732	/* Initialize some PCI/PCI-X fields of the NIC. */
7733	s2io_init_pci(sp);
7734
7735	/*
7736	 * Setting the device configuration parameters.
7737	 * Most of these parameters can be specified by the user during
7738	 * module insertion as they are module loadable parameters. If
7739	 * these parameters are not specified during load time, they
7740	 * are initialized with default values.
7741	 */
7742	config = &sp->config;
7743	mac_control = &sp->mac_control;
7744
7745	config->napi = napi;
7746	config->tx_steering_type = tx_steering_type;
7747
7748	/* Tx side parameters. */
7749	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7750		config->tx_fifo_num = MAX_TX_FIFOS;
7751	else
7752		config->tx_fifo_num = tx_fifo_num;
7753
7754	/* Initialize the fifos used for tx steering */
7755	if (config->tx_fifo_num < 5) {
7756		if (config->tx_fifo_num  == 1)
7757			sp->total_tcp_fifos = 1;
7758		else
7759			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7760		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7761		sp->total_udp_fifos = 1;
7762		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7763	} else {
7764		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7765				       FIFO_OTHER_MAX_NUM);
7766		sp->udp_fifo_idx = sp->total_tcp_fifos;
7767		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7768		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7769	}
7770
7771	config->multiq = dev_multiq;
7772	for (i = 0; i < config->tx_fifo_num; i++) {
7773		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7774
7775		tx_cfg->fifo_len = tx_fifo_len[i];
7776		tx_cfg->fifo_priority = i;
7777	}
7778
7779	/* mapping the QoS priority to the configured fifos */
7780	for (i = 0; i < MAX_TX_FIFOS; i++)
7781		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7782
7783	/* map the hashing selector table to the configured fifos */
7784	for (i = 0; i < config->tx_fifo_num; i++)
7785		sp->fifo_selector[i] = fifo_selector[i];
7786
7787
7788	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7789	for (i = 0; i < config->tx_fifo_num; i++) {
7790		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7791
7792		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7793		if (tx_cfg->fifo_len < 65) {
7794			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7795			break;
7796		}
7797	}
7798	/* + 2 because one Txd for skb->data and one Txd for UFO */
7799	config->max_txds = MAX_SKB_FRAGS + 2;
7800
7801	/* Rx side parameters. */
7802	config->rx_ring_num = rx_ring_num;
7803	for (i = 0; i < config->rx_ring_num; i++) {
7804		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7805		struct ring_info *ring = &mac_control->rings[i];
7806
7807		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7808		rx_cfg->ring_priority = i;
7809		ring->rx_bufs_left = 0;
7810		ring->rxd_mode = sp->rxd_mode;
7811		ring->rxd_count = rxd_count[sp->rxd_mode];
7812		ring->pdev = sp->pdev;
7813		ring->dev = sp->dev;
7814	}
7815
7816	for (i = 0; i < rx_ring_num; i++) {
7817		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7818
7819		rx_cfg->ring_org = RING_ORG_BUFF1;
7820		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7821	}
7822
7823	/*  Setting Mac Control parameters */
7824	mac_control->rmac_pause_time = rmac_pause_time;
7825	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7826	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7827
7828
7829	/*  initialize the shared memory used by the NIC and the host */
7830	if (init_shared_mem(sp)) {
7831		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7832		ret = -ENOMEM;
7833		goto mem_alloc_failed;
7834	}
7835
7836	sp->bar0 = pci_ioremap_bar(pdev, 0);
7837	if (!sp->bar0) {
7838		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7839			  dev->name);
7840		ret = -ENOMEM;
7841		goto bar0_remap_failed;
7842	}
7843
7844	sp->bar1 = pci_ioremap_bar(pdev, 2);
7845	if (!sp->bar1) {
7846		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7847			  dev->name);
7848		ret = -ENOMEM;
7849		goto bar1_remap_failed;
7850	}
7851
7852	/* Initializing the BAR1 address as the start of the FIFO pointer. */
7853	for (j = 0; j < MAX_TX_FIFOS; j++) {
7854		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7855	}
7856
7857	/*  Driver entry points */
7858	dev->netdev_ops = &s2io_netdev_ops;
7859	dev->ethtool_ops = &netdev_ethtool_ops;
7860	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7861		NETIF_F_TSO | NETIF_F_TSO6 |
7862		NETIF_F_RXCSUM | NETIF_F_LRO;
7863	dev->features |= dev->hw_features |
7864		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
7865		NETIF_F_HIGHDMA;
7866	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7867	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7868	INIT_WORK(&sp->set_link_task, s2io_set_link);
7869
7870	pci_save_state(sp->pdev);
7871
7872	/* Setting swapper control on the NIC, for proper reset operation */
7873	if (s2io_set_swapper(sp)) {
7874		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7875			  dev->name);
7876		ret = -EAGAIN;
7877		goto set_swap_failed;
7878	}
7879
7880	/* Verify if the Herc works on the slot its placed into */
7881	if (sp->device_type & XFRAME_II_DEVICE) {
7882		mode = s2io_verify_pci_mode(sp);
7883		if (mode < 0) {
7884			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7885				  __func__);
7886			ret = -EBADSLT;
7887			goto set_swap_failed;
7888		}
7889	}
7890
7891	if (sp->config.intr_type == MSI_X) {
7892		sp->num_entries = config->rx_ring_num + 1;
7893		ret = s2io_enable_msi_x(sp);
7894
7895		if (!ret) {
7896			ret = s2io_test_msi(sp);
7897			/* rollback MSI-X, will re-enable during add_isr() */
7898			remove_msix_isr(sp);
7899		}
7900		if (ret) {
7901
7902			DBG_PRINT(ERR_DBG,
7903				  "MSI-X requested but failed to enable\n");
7904			sp->config.intr_type = INTA;
7905		}
7906	}
7907
7908	if (config->intr_type ==  MSI_X) {
7909		for (i = 0; i < config->rx_ring_num ; i++) {
7910			struct ring_info *ring = &mac_control->rings[i];
7911
7912			netif_napi_add(dev, &ring->napi, s2io_poll_msix);
7913		}
7914	} else {
7915		netif_napi_add(dev, &sp->napi, s2io_poll_inta);
7916	}
7917
7918	/* Not needed for Herc */
7919	if (sp->device_type & XFRAME_I_DEVICE) {
7920		/*
7921		 * Fix for all "FFs" MAC address problems observed on
7922		 * Alpha platforms
7923		 */
7924		fix_mac_address(sp);
7925		s2io_reset(sp);
7926	}
7927
7928	/*
7929	 * MAC address initialization.
7930	 * For now only one mac address will be read and used.
7931	 */
7932	bar0 = sp->bar0;
7933	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7934		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7935	writeq(val64, &bar0->rmac_addr_cmd_mem);
7936	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7937			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
7938			      S2IO_BIT_RESET, true);
7939	tmp64 = readq(&bar0->rmac_addr_data0_mem);
7940	mac_down = (u32)tmp64;
7941	mac_up = (u32) (tmp64 >> 32);
7942
7943	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7944	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7945	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7946	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7947	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7948	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7949
7950	/*  Set the factory defined MAC address initially   */
7951	dev->addr_len = ETH_ALEN;
7952	eth_hw_addr_set(dev, sp->def_mac_addr[0].mac_addr);
7953
7954	/* initialize number of multicast & unicast MAC entries variables */
7955	if (sp->device_type == XFRAME_I_DEVICE) {
7956		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7957		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7958		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
7959	} else if (sp->device_type == XFRAME_II_DEVICE) {
7960		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
7961		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
7962		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
7963	}
7964
7965	/* MTU range: 46 - 9600 */
7966	dev->min_mtu = MIN_MTU;
7967	dev->max_mtu = S2IO_JUMBO_SIZE;
7968
7969	/* store mac addresses from CAM to s2io_nic structure */
7970	do_s2io_store_unicast_mc(sp);
7971
7972	/* Configure MSIX vector for number of rings configured plus one */
7973	if ((sp->device_type == XFRAME_II_DEVICE) &&
7974	    (config->intr_type == MSI_X))
7975		sp->num_entries = config->rx_ring_num + 1;
7976
7977	/* Store the values of the MSIX table in the s2io_nic structure */
7978	store_xmsi_data(sp);
7979	/* reset Nic and bring it to known state */
7980	s2io_reset(sp);
7981
7982	/*
7983	 * Initialize link state flags
7984	 * and the card state parameter
7985	 */
7986	sp->state = 0;
7987
7988	/* Initialize spinlocks */
7989	for (i = 0; i < sp->config.tx_fifo_num; i++) {
7990		struct fifo_info *fifo = &mac_control->fifos[i];
7991
7992		spin_lock_init(&fifo->tx_lock);
7993	}
7994
7995	/*
7996	 * SXE-002: Configure link and activity LED to init state
7997	 * on driver load.
7998	 */
7999	subid = sp->pdev->subsystem_device;
8000	if ((subid & 0xFF) >= 0x07) {
8001		val64 = readq(&bar0->gpio_control);
8002		val64 |= 0x0000800000000000ULL;
8003		writeq(val64, &bar0->gpio_control);
8004		val64 = 0x0411040400000000ULL;
8005		writeq(val64, (void __iomem *)bar0 + 0x2700);
8006		val64 = readq(&bar0->gpio_control);
8007	}
8008
8009	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8010
8011	if (register_netdev(dev)) {
8012		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8013		ret = -ENODEV;
8014		goto register_failed;
8015	}
8016	s2io_vpd_read(sp);
8017	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8018	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8019		  sp->product_name, pdev->revision);
8020	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8021		  s2io_driver_version);
8022	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8023	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8024	if (sp->device_type & XFRAME_II_DEVICE) {
8025		mode = s2io_print_pci_mode(sp);
8026		if (mode < 0) {
8027			ret = -EBADSLT;
8028			unregister_netdev(dev);
8029			goto set_swap_failed;
8030		}
8031	}
8032	switch (sp->rxd_mode) {
8033	case RXD_MODE_1:
8034		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8035			  dev->name);
8036		break;
8037	case RXD_MODE_3B:
8038		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8039			  dev->name);
8040		break;
8041	}
8042
8043	switch (sp->config.napi) {
8044	case 0:
8045		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8046		break;
8047	case 1:
8048		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8049		break;
8050	}
8051
8052	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8053		  sp->config.tx_fifo_num);
8054
8055	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8056		  sp->config.rx_ring_num);
8057
8058	switch (sp->config.intr_type) {
8059	case INTA:
8060		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8061		break;
8062	case MSI_X:
8063		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8064		break;
8065	}
8066	if (sp->config.multiq) {
8067		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8068			struct fifo_info *fifo = &mac_control->fifos[i];
8069
8070			fifo->multiq = config->multiq;
8071		}
8072		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8073			  dev->name);
8074	} else
8075		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8076			  dev->name);
8077
8078	switch (sp->config.tx_steering_type) {
8079	case NO_STEERING:
8080		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8081			  dev->name);
8082		break;
8083	case TX_PRIORITY_STEERING:
8084		DBG_PRINT(ERR_DBG,
8085			  "%s: Priority steering enabled for transmit\n",
8086			  dev->name);
8087		break;
8088	case TX_DEFAULT_STEERING:
8089		DBG_PRINT(ERR_DBG,
8090			  "%s: Default steering enabled for transmit\n",
8091			  dev->name);
8092	}
8093
8094	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8095		  dev->name);
8096	/* Initialize device name */
8097	snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8098		 sp->product_name);
8099
8100	if (vlan_tag_strip)
8101		sp->vlan_strip_flag = 1;
8102	else
8103		sp->vlan_strip_flag = 0;
8104
8105	/*
8106	 * Make Link state as off at this point, when the Link change
8107	 * interrupt comes the state will be automatically changed to
8108	 * the right state.
8109	 */
8110	netif_carrier_off(dev);
8111
8112	return 0;
8113
8114register_failed:
8115set_swap_failed:
8116	iounmap(sp->bar1);
8117bar1_remap_failed:
8118	iounmap(sp->bar0);
8119bar0_remap_failed:
8120mem_alloc_failed:
8121	free_shared_mem(sp);
8122	pci_disable_device(pdev);
8123	pci_release_regions(pdev);
8124	free_netdev(dev);
8125
8126	return ret;
8127}
8128
8129/**
8130 * s2io_rem_nic - Free the PCI device
8131 * @pdev: structure containing the PCI related information of the device.
8132 * Description: This function is called by the Pci subsystem to release a
8133 * PCI device and free up all resource held up by the device. This could
8134 * be in response to a Hot plug event or when the driver is to be removed
8135 * from memory.
8136 */
8137
8138static void s2io_rem_nic(struct pci_dev *pdev)
8139{
8140	struct net_device *dev = pci_get_drvdata(pdev);
8141	struct s2io_nic *sp;
8142
8143	if (dev == NULL) {
8144		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8145		return;
8146	}
8147
8148	sp = netdev_priv(dev);
8149
8150	cancel_work_sync(&sp->rst_timer_task);
8151	cancel_work_sync(&sp->set_link_task);
8152
8153	unregister_netdev(dev);
8154
8155	free_shared_mem(sp);
8156	iounmap(sp->bar0);
8157	iounmap(sp->bar1);
8158	pci_release_regions(pdev);
8159	free_netdev(dev);
8160	pci_disable_device(pdev);
8161}
8162
8163module_pci_driver(s2io_driver);
8164
8165static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8166				struct tcphdr **tcp, struct RxD_t *rxdp,
8167				struct s2io_nic *sp)
8168{
8169	int ip_off;
8170	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8171
8172	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8173		DBG_PRINT(INIT_DBG,
8174			  "%s: Non-TCP frames not supported for LRO\n",
8175			  __func__);
8176		return -1;
8177	}
8178
8179	/* Checking for DIX type or DIX type with VLAN */
8180	if ((l2_type == 0) || (l2_type == 4)) {
8181		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8182		/*
8183		 * If vlan stripping is disabled and the frame is VLAN tagged,
8184		 * shift the offset by the VLAN header size bytes.
8185		 */
8186		if ((!sp->vlan_strip_flag) &&
8187		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8188			ip_off += HEADER_VLAN_SIZE;
8189	} else {
8190		/* LLC, SNAP etc are considered non-mergeable */
8191		return -1;
8192	}
8193
8194	*ip = (struct iphdr *)(buffer + ip_off);
8195	ip_len = (u8)((*ip)->ihl);
8196	ip_len <<= 2;
8197	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8198
8199	return 0;
8200}
8201
8202static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8203				  struct tcphdr *tcp)
8204{
8205	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8206	if ((lro->iph->saddr != ip->saddr) ||
8207	    (lro->iph->daddr != ip->daddr) ||
8208	    (lro->tcph->source != tcp->source) ||
8209	    (lro->tcph->dest != tcp->dest))
8210		return -1;
8211	return 0;
8212}
8213
8214static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8215{
8216	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8217}
8218
8219static void initiate_new_session(struct lro *lro, u8 *l2h,
8220				 struct iphdr *ip, struct tcphdr *tcp,
8221				 u32 tcp_pyld_len, u16 vlan_tag)
8222{
8223	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8224	lro->l2h = l2h;
8225	lro->iph = ip;
8226	lro->tcph = tcp;
8227	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8228	lro->tcp_ack = tcp->ack_seq;
8229	lro->sg_num = 1;
8230	lro->total_len = ntohs(ip->tot_len);
8231	lro->frags_len = 0;
8232	lro->vlan_tag = vlan_tag;
8233	/*
8234	 * Check if we saw TCP timestamp.
8235	 * Other consistency checks have already been done.
8236	 */
8237	if (tcp->doff == 8) {
8238		__be32 *ptr;
8239		ptr = (__be32 *)(tcp+1);
8240		lro->saw_ts = 1;
8241		lro->cur_tsval = ntohl(*(ptr+1));
8242		lro->cur_tsecr = *(ptr+2);
8243	}
8244	lro->in_use = 1;
8245}
8246
8247static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8248{
8249	struct iphdr *ip = lro->iph;
8250	struct tcphdr *tcp = lro->tcph;
8251	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8252
8253	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8254
8255	/* Update L3 header */
8256	csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8257	ip->tot_len = htons(lro->total_len);
8258
8259	/* Update L4 header */
8260	tcp->ack_seq = lro->tcp_ack;
8261	tcp->window = lro->window;
8262
8263	/* Update tsecr field if this session has timestamps enabled */
8264	if (lro->saw_ts) {
8265		__be32 *ptr = (__be32 *)(tcp + 1);
8266		*(ptr+2) = lro->cur_tsecr;
8267	}
8268
8269	/* Update counters required for calculation of
8270	 * average no. of packets aggregated.
8271	 */
8272	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8273	swstats->num_aggregations++;
8274}
8275
8276static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8277			     struct tcphdr *tcp, u32 l4_pyld)
8278{
8279	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8280	lro->total_len += l4_pyld;
8281	lro->frags_len += l4_pyld;
8282	lro->tcp_next_seq += l4_pyld;
8283	lro->sg_num++;
8284
8285	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8286	lro->tcp_ack = tcp->ack_seq;
8287	lro->window = tcp->window;
8288
8289	if (lro->saw_ts) {
8290		__be32 *ptr;
8291		/* Update tsecr and tsval from this packet */
8292		ptr = (__be32 *)(tcp+1);
8293		lro->cur_tsval = ntohl(*(ptr+1));
8294		lro->cur_tsecr = *(ptr + 2);
8295	}
8296}
8297
8298static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8299				    struct tcphdr *tcp, u32 tcp_pyld_len)
8300{
8301	u8 *ptr;
8302
8303	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8304
8305	if (!tcp_pyld_len) {
8306		/* Runt frame or a pure ack */
8307		return -1;
8308	}
8309
8310	if (ip->ihl != 5) /* IP has options */
8311		return -1;
8312
8313	/* If we see CE codepoint in IP header, packet is not mergeable */
8314	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8315		return -1;
8316
8317	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8318	if (tcp->urg || tcp->psh || tcp->rst ||
8319	    tcp->syn || tcp->fin ||
8320	    tcp->ece || tcp->cwr || !tcp->ack) {
8321		/*
8322		 * Currently recognize only the ack control word and
8323		 * any other control field being set would result in
8324		 * flushing the LRO session
8325		 */
8326		return -1;
8327	}
8328
8329	/*
8330	 * Allow only one TCP timestamp option. Don't aggregate if
8331	 * any other options are detected.
8332	 */
8333	if (tcp->doff != 5 && tcp->doff != 8)
8334		return -1;
8335
8336	if (tcp->doff == 8) {
8337		ptr = (u8 *)(tcp + 1);
8338		while (*ptr == TCPOPT_NOP)
8339			ptr++;
8340		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8341			return -1;
8342
8343		/* Ensure timestamp value increases monotonically */
8344		if (l_lro)
8345			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8346				return -1;
8347
8348		/* timestamp echo reply should be non-zero */
8349		if (*((__be32 *)(ptr+6)) == 0)
8350			return -1;
8351	}
8352
8353	return 0;
8354}
8355
8356static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8357				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8358				 struct RxD_t *rxdp, struct s2io_nic *sp)
8359{
8360	struct iphdr *ip;
8361	struct tcphdr *tcph;
8362	int ret = 0, i;
8363	u16 vlan_tag = 0;
8364	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8365
8366	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8367				   rxdp, sp);
8368	if (ret)
8369		return ret;
8370
8371	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8372
8373	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8374	tcph = (struct tcphdr *)*tcp;
8375	*tcp_len = get_l4_pyld_length(ip, tcph);
8376	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8377		struct lro *l_lro = &ring_data->lro0_n[i];
8378		if (l_lro->in_use) {
8379			if (check_for_socket_match(l_lro, ip, tcph))
8380				continue;
8381			/* Sock pair matched */
8382			*lro = l_lro;
8383
8384			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8385				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8386					  "expected 0x%x, actual 0x%x\n",
8387					  __func__,
8388					  (*lro)->tcp_next_seq,
8389					  ntohl(tcph->seq));
8390
8391				swstats->outof_sequence_pkts++;
8392				ret = 2;
8393				break;
8394			}
8395
8396			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8397						      *tcp_len))
8398				ret = 1; /* Aggregate */
8399			else
8400				ret = 2; /* Flush both */
8401			break;
8402		}
8403	}
8404
8405	if (ret == 0) {
8406		/* Before searching for available LRO objects,
8407		 * check if the pkt is L3/L4 aggregatable. If not
8408		 * don't create new LRO session. Just send this
8409		 * packet up.
8410		 */
8411		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8412			return 5;
8413
8414		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8415			struct lro *l_lro = &ring_data->lro0_n[i];
8416			if (!(l_lro->in_use)) {
8417				*lro = l_lro;
8418				ret = 3; /* Begin anew */
8419				break;
8420			}
8421		}
8422	}
8423
8424	if (ret == 0) { /* sessions exceeded */
8425		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8426			  __func__);
8427		*lro = NULL;
8428		return ret;
8429	}
8430
8431	switch (ret) {
8432	case 3:
8433		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8434				     vlan_tag);
8435		break;
8436	case 2:
8437		update_L3L4_header(sp, *lro);
8438		break;
8439	case 1:
8440		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8441		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8442			update_L3L4_header(sp, *lro);
8443			ret = 4; /* Flush the LRO */
8444		}
8445		break;
8446	default:
8447		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8448		break;
8449	}
8450
8451	return ret;
8452}
8453
8454static void clear_lro_session(struct lro *lro)
8455{
8456	static u16 lro_struct_size = sizeof(struct lro);
8457
8458	memset(lro, 0, lro_struct_size);
8459}
8460
8461static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8462{
8463	struct net_device *dev = skb->dev;
8464	struct s2io_nic *sp = netdev_priv(dev);
8465
8466	skb->protocol = eth_type_trans(skb, dev);
8467	if (vlan_tag && sp->vlan_strip_flag)
8468		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8469	if (sp->config.napi)
8470		netif_receive_skb(skb);
8471	else
8472		netif_rx(skb);
8473}
8474
8475static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8476			   struct sk_buff *skb, u32 tcp_len)
8477{
8478	struct sk_buff *first = lro->parent;
8479	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8480
8481	first->len += tcp_len;
8482	first->data_len = lro->frags_len;
8483	skb_pull(skb, (skb->len - tcp_len));
8484	if (skb_shinfo(first)->frag_list)
8485		lro->last_frag->next = skb;
8486	else
8487		skb_shinfo(first)->frag_list = skb;
8488	first->truesize += skb->truesize;
8489	lro->last_frag = skb;
8490	swstats->clubbed_frms_cnt++;
8491}
8492
8493/**
8494 * s2io_io_error_detected - called when PCI error is detected
8495 * @pdev: Pointer to PCI device
8496 * @state: The current pci connection state
8497 *
8498 * This function is called after a PCI bus error affecting
8499 * this device has been detected.
8500 */
8501static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8502					       pci_channel_state_t state)
8503{
8504	struct net_device *netdev = pci_get_drvdata(pdev);
8505	struct s2io_nic *sp = netdev_priv(netdev);
8506
8507	netif_device_detach(netdev);
8508
8509	if (state == pci_channel_io_perm_failure)
8510		return PCI_ERS_RESULT_DISCONNECT;
8511
8512	if (netif_running(netdev)) {
8513		/* Bring down the card, while avoiding PCI I/O */
8514		do_s2io_card_down(sp, 0);
8515	}
8516	pci_disable_device(pdev);
8517
8518	return PCI_ERS_RESULT_NEED_RESET;
8519}
8520
8521/**
8522 * s2io_io_slot_reset - called after the pci bus has been reset.
8523 * @pdev: Pointer to PCI device
8524 *
8525 * Restart the card from scratch, as if from a cold-boot.
8526 * At this point, the card has exprienced a hard reset,
8527 * followed by fixups by BIOS, and has its config space
8528 * set up identically to what it was at cold boot.
8529 */
8530static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8531{
8532	struct net_device *netdev = pci_get_drvdata(pdev);
8533	struct s2io_nic *sp = netdev_priv(netdev);
8534
8535	if (pci_enable_device(pdev)) {
8536		pr_err("Cannot re-enable PCI device after reset.\n");
8537		return PCI_ERS_RESULT_DISCONNECT;
8538	}
8539
8540	pci_set_master(pdev);
8541	s2io_reset(sp);
8542
8543	return PCI_ERS_RESULT_RECOVERED;
8544}
8545
8546/**
8547 * s2io_io_resume - called when traffic can start flowing again.
8548 * @pdev: Pointer to PCI device
8549 *
8550 * This callback is called when the error recovery driver tells
8551 * us that its OK to resume normal operation.
8552 */
8553static void s2io_io_resume(struct pci_dev *pdev)
8554{
8555	struct net_device *netdev = pci_get_drvdata(pdev);
8556	struct s2io_nic *sp = netdev_priv(netdev);
8557
8558	if (netif_running(netdev)) {
8559		if (s2io_card_up(sp)) {
8560			pr_err("Can't bring device back up after reset.\n");
8561			return;
8562		}
8563
8564		if (do_s2io_prog_unicast(netdev, netdev->dev_addr) == FAILURE) {
8565			s2io_card_down(sp);
8566			pr_err("Can't restore mac addr after reset.\n");
8567			return;
8568		}
8569	}
8570
8571	netif_device_attach(netdev);
8572	netif_tx_wake_all_queues(netdev);
8573}
8574