1// SPDX-License-Identifier: GPL-2.0+
2/* Microchip Sparx5 Switch driver
3 *
4 * Copyright (c) 2021 Microchip Technology Inc. and its subsidiaries.
5 *
6 * The Sparx5 Chip Register Model can be browsed at this location:
7 * https://github.com/microchip-ung/sparx-5_reginfo
8 */
9
10#include <linux/types.h>
11#include <linux/skbuff.h>
12#include <linux/netdevice.h>
13#include <linux/interrupt.h>
14#include <linux/ip.h>
15#include <linux/dma-mapping.h>
16
17#include "sparx5_main_regs.h"
18#include "sparx5_main.h"
19#include "sparx5_port.h"
20
21#define FDMA_XTR_CHANNEL		6
22#define FDMA_INJ_CHANNEL		0
23
24#define FDMA_DCB_INFO_DATAL(x)		((x) & GENMASK(15, 0))
25#define FDMA_DCB_INFO_TOKEN		BIT(17)
26#define FDMA_DCB_INFO_INTR		BIT(18)
27#define FDMA_DCB_INFO_SW(x)		(((x) << 24) & GENMASK(31, 24))
28
29#define FDMA_DCB_STATUS_BLOCKL(x)	((x) & GENMASK(15, 0))
30#define FDMA_DCB_STATUS_SOF		BIT(16)
31#define FDMA_DCB_STATUS_EOF		BIT(17)
32#define FDMA_DCB_STATUS_INTR		BIT(18)
33#define FDMA_DCB_STATUS_DONE		BIT(19)
34#define FDMA_DCB_STATUS_BLOCKO(x)	(((x) << 20) & GENMASK(31, 20))
35#define FDMA_DCB_INVALID_DATA		0x1
36
37#define FDMA_XTR_BUFFER_SIZE		2048
38#define FDMA_WEIGHT			4
39
40/* Frame DMA DCB format
41 *
42 * +---------------------------+
43 * |         Next Ptr          |
44 * +---------------------------+
45 * |   Reserved  |    Info     |
46 * +---------------------------+
47 * |         Data0 Ptr         |
48 * +---------------------------+
49 * |   Reserved  |    Status0  |
50 * +---------------------------+
51 * |         Data1 Ptr         |
52 * +---------------------------+
53 * |   Reserved  |    Status1  |
54 * +---------------------------+
55 * |         Data2 Ptr         |
56 * +---------------------------+
57 * |   Reserved  |    Status2  |
58 * |-------------|-------------|
59 * |                           |
60 * |                           |
61 * |                           |
62 * |                           |
63 * |                           |
64 * |---------------------------|
65 * |         Data14 Ptr        |
66 * +-------------|-------------+
67 * |   Reserved  |    Status14 |
68 * +-------------|-------------+
69 */
70
71/* For each hardware DB there is an entry in this list and when the HW DB
72 * entry is used, this SW DB entry is moved to the back of the list
73 */
74struct sparx5_db {
75	struct list_head list;
76	void *cpu_addr;
77};
78
79static void sparx5_fdma_rx_add_dcb(struct sparx5_rx *rx,
80				   struct sparx5_rx_dcb_hw *dcb,
81				   u64 nextptr)
82{
83	int idx = 0;
84
85	/* Reset the status of the DB */
86	for (idx = 0; idx < FDMA_RX_DCB_MAX_DBS; ++idx) {
87		struct sparx5_db_hw *db = &dcb->db[idx];
88
89		db->status = FDMA_DCB_STATUS_INTR;
90	}
91	dcb->nextptr = FDMA_DCB_INVALID_DATA;
92	dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE);
93	rx->last_entry->nextptr = nextptr;
94	rx->last_entry = dcb;
95}
96
97static void sparx5_fdma_tx_add_dcb(struct sparx5_tx *tx,
98				   struct sparx5_tx_dcb_hw *dcb,
99				   u64 nextptr)
100{
101	int idx = 0;
102
103	/* Reset the status of the DB */
104	for (idx = 0; idx < FDMA_TX_DCB_MAX_DBS; ++idx) {
105		struct sparx5_db_hw *db = &dcb->db[idx];
106
107		db->status = FDMA_DCB_STATUS_DONE;
108	}
109	dcb->nextptr = FDMA_DCB_INVALID_DATA;
110	dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE);
111}
112
113static void sparx5_fdma_rx_activate(struct sparx5 *sparx5, struct sparx5_rx *rx)
114{
115	/* Write the buffer address in the LLP and LLP1 regs */
116	spx5_wr(((u64)rx->dma) & GENMASK(31, 0), sparx5,
117		FDMA_DCB_LLP(rx->channel_id));
118	spx5_wr(((u64)rx->dma) >> 32, sparx5, FDMA_DCB_LLP1(rx->channel_id));
119
120	/* Set the number of RX DBs to be used, and DB end-of-frame interrupt */
121	spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_RX_DCB_MAX_DBS) |
122		FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
123		FDMA_CH_CFG_CH_INJ_PORT_SET(XTR_QUEUE),
124		sparx5, FDMA_CH_CFG(rx->channel_id));
125
126	/* Set the RX Watermark to max */
127	spx5_rmw(FDMA_XTR_CFG_XTR_FIFO_WM_SET(31), FDMA_XTR_CFG_XTR_FIFO_WM,
128		 sparx5,
129		 FDMA_XTR_CFG);
130
131	/* Start RX fdma */
132	spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(0), FDMA_PORT_CTRL_XTR_STOP,
133		 sparx5, FDMA_PORT_CTRL(0));
134
135	/* Enable RX channel DB interrupt */
136	spx5_rmw(BIT(rx->channel_id),
137		 BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
138		 sparx5, FDMA_INTR_DB_ENA);
139
140	/* Activate the RX channel */
141	spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_ACTIVATE);
142}
143
144static void sparx5_fdma_rx_deactivate(struct sparx5 *sparx5, struct sparx5_rx *rx)
145{
146	/* Dectivate the RX channel */
147	spx5_rmw(0, BIT(rx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
148		 sparx5, FDMA_CH_ACTIVATE);
149
150	/* Disable RX channel DB interrupt */
151	spx5_rmw(0, BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
152		 sparx5, FDMA_INTR_DB_ENA);
153
154	/* Stop RX fdma */
155	spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(1), FDMA_PORT_CTRL_XTR_STOP,
156		 sparx5, FDMA_PORT_CTRL(0));
157}
158
159static void sparx5_fdma_tx_activate(struct sparx5 *sparx5, struct sparx5_tx *tx)
160{
161	/* Write the buffer address in the LLP and LLP1 regs */
162	spx5_wr(((u64)tx->dma) & GENMASK(31, 0), sparx5,
163		FDMA_DCB_LLP(tx->channel_id));
164	spx5_wr(((u64)tx->dma) >> 32, sparx5, FDMA_DCB_LLP1(tx->channel_id));
165
166	/* Set the number of TX DBs to be used, and DB end-of-frame interrupt */
167	spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_TX_DCB_MAX_DBS) |
168		FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
169		FDMA_CH_CFG_CH_INJ_PORT_SET(INJ_QUEUE),
170		sparx5, FDMA_CH_CFG(tx->channel_id));
171
172	/* Start TX fdma */
173	spx5_rmw(FDMA_PORT_CTRL_INJ_STOP_SET(0), FDMA_PORT_CTRL_INJ_STOP,
174		 sparx5, FDMA_PORT_CTRL(0));
175
176	/* Activate the channel */
177	spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_ACTIVATE);
178}
179
180static void sparx5_fdma_tx_deactivate(struct sparx5 *sparx5, struct sparx5_tx *tx)
181{
182	/* Disable the channel */
183	spx5_rmw(0, BIT(tx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
184		 sparx5, FDMA_CH_ACTIVATE);
185}
186
187static void sparx5_fdma_rx_reload(struct sparx5 *sparx5, struct sparx5_rx *rx)
188{
189	/* Reload the RX channel */
190	spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_RELOAD);
191}
192
193static void sparx5_fdma_tx_reload(struct sparx5 *sparx5, struct sparx5_tx *tx)
194{
195	/* Reload the TX channel */
196	spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_RELOAD);
197}
198
199static struct sk_buff *sparx5_fdma_rx_alloc_skb(struct sparx5_rx *rx)
200{
201	return __netdev_alloc_skb(rx->ndev, FDMA_XTR_BUFFER_SIZE,
202				  GFP_ATOMIC);
203}
204
205static bool sparx5_fdma_rx_get_frame(struct sparx5 *sparx5, struct sparx5_rx *rx)
206{
207	struct sparx5_db_hw *db_hw;
208	unsigned int packet_size;
209	struct sparx5_port *port;
210	struct sk_buff *new_skb;
211	struct frame_info fi;
212	struct sk_buff *skb;
213	dma_addr_t dma_addr;
214
215	/* Check if the DCB is done */
216	db_hw = &rx->dcb_entries[rx->dcb_index].db[rx->db_index];
217	if (unlikely(!(db_hw->status & FDMA_DCB_STATUS_DONE)))
218		return false;
219	skb = rx->skb[rx->dcb_index][rx->db_index];
220	/* Replace the DB entry with a new SKB */
221	new_skb = sparx5_fdma_rx_alloc_skb(rx);
222	if (unlikely(!new_skb))
223		return false;
224	/* Map the new skb data and set the new skb */
225	dma_addr = virt_to_phys(new_skb->data);
226	rx->skb[rx->dcb_index][rx->db_index] = new_skb;
227	db_hw->dataptr = dma_addr;
228	packet_size = FDMA_DCB_STATUS_BLOCKL(db_hw->status);
229	skb_put(skb, packet_size);
230	/* Now do the normal processing of the skb */
231	sparx5_ifh_parse((u32 *)skb->data, &fi);
232	/* Map to port netdev */
233	port = fi.src_port < SPX5_PORTS ?  sparx5->ports[fi.src_port] : NULL;
234	if (!port || !port->ndev) {
235		dev_err(sparx5->dev, "Data on inactive port %d\n", fi.src_port);
236		sparx5_xtr_flush(sparx5, XTR_QUEUE);
237		return false;
238	}
239	skb->dev = port->ndev;
240	skb_pull(skb, IFH_LEN * sizeof(u32));
241	if (likely(!(skb->dev->features & NETIF_F_RXFCS)))
242		skb_trim(skb, skb->len - ETH_FCS_LEN);
243
244	sparx5_ptp_rxtstamp(sparx5, skb, fi.timestamp);
245	skb->protocol = eth_type_trans(skb, skb->dev);
246	/* Everything we see on an interface that is in the HW bridge
247	 * has already been forwarded
248	 */
249	if (test_bit(port->portno, sparx5->bridge_mask))
250		skb->offload_fwd_mark = 1;
251	skb->dev->stats.rx_bytes += skb->len;
252	skb->dev->stats.rx_packets++;
253	rx->packets++;
254	netif_receive_skb(skb);
255	return true;
256}
257
258static int sparx5_fdma_napi_callback(struct napi_struct *napi, int weight)
259{
260	struct sparx5_rx *rx = container_of(napi, struct sparx5_rx, napi);
261	struct sparx5 *sparx5 = container_of(rx, struct sparx5, rx);
262	int counter = 0;
263
264	while (counter < weight && sparx5_fdma_rx_get_frame(sparx5, rx)) {
265		struct sparx5_rx_dcb_hw *old_dcb;
266
267		rx->db_index++;
268		counter++;
269		/* Check if the DCB can be reused */
270		if (rx->db_index != FDMA_RX_DCB_MAX_DBS)
271			continue;
272		/* As the DCB  can be reused, just advance the dcb_index
273		 * pointer and set the nextptr in the DCB
274		 */
275		rx->db_index = 0;
276		old_dcb = &rx->dcb_entries[rx->dcb_index];
277		rx->dcb_index++;
278		rx->dcb_index &= FDMA_DCB_MAX - 1;
279		sparx5_fdma_rx_add_dcb(rx, old_dcb,
280				       rx->dma +
281				       ((unsigned long)old_dcb -
282					(unsigned long)rx->dcb_entries));
283	}
284	if (counter < weight) {
285		napi_complete_done(&rx->napi, counter);
286		spx5_rmw(BIT(rx->channel_id),
287			 BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
288			 sparx5, FDMA_INTR_DB_ENA);
289	}
290	if (counter)
291		sparx5_fdma_rx_reload(sparx5, rx);
292	return counter;
293}
294
295static struct sparx5_tx_dcb_hw *sparx5_fdma_next_dcb(struct sparx5_tx *tx,
296						     struct sparx5_tx_dcb_hw *dcb)
297{
298	struct sparx5_tx_dcb_hw *next_dcb;
299
300	next_dcb = dcb;
301	next_dcb++;
302	/* Handle wrap-around */
303	if ((unsigned long)next_dcb >=
304	    ((unsigned long)tx->first_entry + FDMA_DCB_MAX * sizeof(*dcb)))
305		next_dcb = tx->first_entry;
306	return next_dcb;
307}
308
309int sparx5_fdma_xmit(struct sparx5 *sparx5, u32 *ifh, struct sk_buff *skb)
310{
311	struct sparx5_tx_dcb_hw *next_dcb_hw;
312	struct sparx5_tx *tx = &sparx5->tx;
313	static bool first_time = true;
314	struct sparx5_db_hw *db_hw;
315	struct sparx5_db *db;
316
317	next_dcb_hw = sparx5_fdma_next_dcb(tx, tx->curr_entry);
318	db_hw = &next_dcb_hw->db[0];
319	if (!(db_hw->status & FDMA_DCB_STATUS_DONE))
320		return -EINVAL;
321	db = list_first_entry(&tx->db_list, struct sparx5_db, list);
322	list_move_tail(&db->list, &tx->db_list);
323	next_dcb_hw->nextptr = FDMA_DCB_INVALID_DATA;
324	tx->curr_entry->nextptr = tx->dma +
325		((unsigned long)next_dcb_hw -
326		 (unsigned long)tx->first_entry);
327	tx->curr_entry = next_dcb_hw;
328	memset(db->cpu_addr, 0, FDMA_XTR_BUFFER_SIZE);
329	memcpy(db->cpu_addr, ifh, IFH_LEN * 4);
330	memcpy(db->cpu_addr + IFH_LEN * 4, skb->data, skb->len);
331	db_hw->status = FDMA_DCB_STATUS_SOF |
332			FDMA_DCB_STATUS_EOF |
333			FDMA_DCB_STATUS_BLOCKO(0) |
334			FDMA_DCB_STATUS_BLOCKL(skb->len + IFH_LEN * 4 + 4);
335	if (first_time) {
336		sparx5_fdma_tx_activate(sparx5, tx);
337		first_time = false;
338	} else {
339		sparx5_fdma_tx_reload(sparx5, tx);
340	}
341	return NETDEV_TX_OK;
342}
343
344static int sparx5_fdma_rx_alloc(struct sparx5 *sparx5)
345{
346	struct sparx5_rx *rx = &sparx5->rx;
347	struct sparx5_rx_dcb_hw *dcb;
348	int idx, jdx;
349	int size;
350
351	size = sizeof(struct sparx5_rx_dcb_hw) * FDMA_DCB_MAX;
352	size = ALIGN(size, PAGE_SIZE);
353	rx->dcb_entries = devm_kzalloc(sparx5->dev, size, GFP_KERNEL);
354	if (!rx->dcb_entries)
355		return -ENOMEM;
356	rx->dma = virt_to_phys(rx->dcb_entries);
357	rx->last_entry = rx->dcb_entries;
358	rx->db_index = 0;
359	rx->dcb_index = 0;
360	/* Now for each dcb allocate the db */
361	for (idx = 0; idx < FDMA_DCB_MAX; ++idx) {
362		dcb = &rx->dcb_entries[idx];
363		dcb->info = 0;
364		/* For each db allocate an skb and map skb data pointer to the DB
365		 * dataptr. In this way when the frame is received the skb->data
366		 * will contain the frame, so no memcpy is needed
367		 */
368		for (jdx = 0; jdx < FDMA_RX_DCB_MAX_DBS; ++jdx) {
369			struct sparx5_db_hw *db_hw = &dcb->db[jdx];
370			dma_addr_t dma_addr;
371			struct sk_buff *skb;
372
373			skb = sparx5_fdma_rx_alloc_skb(rx);
374			if (!skb)
375				return -ENOMEM;
376
377			dma_addr = virt_to_phys(skb->data);
378			db_hw->dataptr = dma_addr;
379			db_hw->status = 0;
380			rx->skb[idx][jdx] = skb;
381		}
382		sparx5_fdma_rx_add_dcb(rx, dcb, rx->dma + sizeof(*dcb) * idx);
383	}
384	netif_napi_add_weight(rx->ndev, &rx->napi, sparx5_fdma_napi_callback,
385			      FDMA_WEIGHT);
386	napi_enable(&rx->napi);
387	sparx5_fdma_rx_activate(sparx5, rx);
388	return 0;
389}
390
391static int sparx5_fdma_tx_alloc(struct sparx5 *sparx5)
392{
393	struct sparx5_tx *tx = &sparx5->tx;
394	struct sparx5_tx_dcb_hw *dcb;
395	int idx, jdx;
396	int size;
397
398	size = sizeof(struct sparx5_tx_dcb_hw) * FDMA_DCB_MAX;
399	size = ALIGN(size, PAGE_SIZE);
400	tx->curr_entry = devm_kzalloc(sparx5->dev, size, GFP_KERNEL);
401	if (!tx->curr_entry)
402		return -ENOMEM;
403	tx->dma = virt_to_phys(tx->curr_entry);
404	tx->first_entry = tx->curr_entry;
405	INIT_LIST_HEAD(&tx->db_list);
406	/* Now for each dcb allocate the db */
407	for (idx = 0; idx < FDMA_DCB_MAX; ++idx) {
408		dcb = &tx->curr_entry[idx];
409		dcb->info = 0;
410		/* TX databuffers must be 16byte aligned */
411		for (jdx = 0; jdx < FDMA_TX_DCB_MAX_DBS; ++jdx) {
412			struct sparx5_db_hw *db_hw = &dcb->db[jdx];
413			struct sparx5_db *db;
414			dma_addr_t phys;
415			void *cpu_addr;
416
417			cpu_addr = devm_kzalloc(sparx5->dev,
418						FDMA_XTR_BUFFER_SIZE,
419						GFP_KERNEL);
420			if (!cpu_addr)
421				return -ENOMEM;
422			phys = virt_to_phys(cpu_addr);
423			db_hw->dataptr = phys;
424			db_hw->status = 0;
425			db = devm_kzalloc(sparx5->dev, sizeof(*db), GFP_KERNEL);
426			if (!db)
427				return -ENOMEM;
428			db->cpu_addr = cpu_addr;
429			list_add_tail(&db->list, &tx->db_list);
430		}
431		sparx5_fdma_tx_add_dcb(tx, dcb, tx->dma + sizeof(*dcb) * idx);
432		/* Let the curr_entry to point to the last allocated entry */
433		if (idx == FDMA_DCB_MAX - 1)
434			tx->curr_entry = dcb;
435	}
436	return 0;
437}
438
439static void sparx5_fdma_rx_init(struct sparx5 *sparx5,
440				struct sparx5_rx *rx, int channel)
441{
442	int idx;
443
444	rx->channel_id = channel;
445	/* Fetch a netdev for SKB and NAPI use, any will do */
446	for (idx = 0; idx < SPX5_PORTS; ++idx) {
447		struct sparx5_port *port = sparx5->ports[idx];
448
449		if (port && port->ndev) {
450			rx->ndev = port->ndev;
451			break;
452		}
453	}
454}
455
456static void sparx5_fdma_tx_init(struct sparx5 *sparx5,
457				struct sparx5_tx *tx, int channel)
458{
459	tx->channel_id = channel;
460}
461
462irqreturn_t sparx5_fdma_handler(int irq, void *args)
463{
464	struct sparx5 *sparx5 = args;
465	u32 db = 0, err = 0;
466
467	db = spx5_rd(sparx5, FDMA_INTR_DB);
468	err = spx5_rd(sparx5, FDMA_INTR_ERR);
469	/* Clear interrupt */
470	if (db) {
471		spx5_wr(0, sparx5, FDMA_INTR_DB_ENA);
472		spx5_wr(db, sparx5, FDMA_INTR_DB);
473		napi_schedule(&sparx5->rx.napi);
474	}
475	if (err) {
476		u32 err_type = spx5_rd(sparx5, FDMA_ERRORS);
477
478		dev_err_ratelimited(sparx5->dev,
479				    "ERR: int: %#x, type: %#x\n",
480				    err, err_type);
481		spx5_wr(err, sparx5, FDMA_INTR_ERR);
482		spx5_wr(err_type, sparx5, FDMA_ERRORS);
483	}
484	return IRQ_HANDLED;
485}
486
487static void sparx5_fdma_injection_mode(struct sparx5 *sparx5)
488{
489	const int byte_swap = 1;
490	int portno;
491	int urgency;
492
493	/* Change mode to fdma extraction and injection */
494	spx5_wr(QS_XTR_GRP_CFG_MODE_SET(2) |
495		QS_XTR_GRP_CFG_STATUS_WORD_POS_SET(1) |
496		QS_XTR_GRP_CFG_BYTE_SWAP_SET(byte_swap),
497		sparx5, QS_XTR_GRP_CFG(XTR_QUEUE));
498	spx5_wr(QS_INJ_GRP_CFG_MODE_SET(2) |
499		QS_INJ_GRP_CFG_BYTE_SWAP_SET(byte_swap),
500		sparx5, QS_INJ_GRP_CFG(INJ_QUEUE));
501
502	/* CPU ports capture setup */
503	for (portno = SPX5_PORT_CPU_0; portno <= SPX5_PORT_CPU_1; portno++) {
504		/* ASM CPU port: No preamble, IFH, enable padding */
505		spx5_wr(ASM_PORT_CFG_PAD_ENA_SET(1) |
506			ASM_PORT_CFG_NO_PREAMBLE_ENA_SET(1) |
507			ASM_PORT_CFG_INJ_FORMAT_CFG_SET(1), /* 1 = IFH */
508			sparx5, ASM_PORT_CFG(portno));
509
510		/* Reset WM cnt to unclog queued frames */
511		spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR_SET(1),
512			 DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR,
513			 sparx5,
514			 DSM_DEV_TX_STOP_WM_CFG(portno));
515
516		/* Set Disassembler Stop Watermark level */
517		spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM_SET(100),
518			 DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM,
519			 sparx5,
520			 DSM_DEV_TX_STOP_WM_CFG(portno));
521
522		/* Enable port in queue system */
523		urgency = sparx5_port_fwd_urg(sparx5, SPEED_2500);
524		spx5_rmw(QFWD_SWITCH_PORT_MODE_PORT_ENA_SET(1) |
525			 QFWD_SWITCH_PORT_MODE_FWD_URGENCY_SET(urgency),
526			 QFWD_SWITCH_PORT_MODE_PORT_ENA |
527			 QFWD_SWITCH_PORT_MODE_FWD_URGENCY,
528			 sparx5,
529			 QFWD_SWITCH_PORT_MODE(portno));
530
531		/* Disable Disassembler buffer underrun watchdog
532		 * to avoid truncated packets in XTR
533		 */
534		spx5_rmw(DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS_SET(1),
535			 DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS,
536			 sparx5,
537			 DSM_BUF_CFG(portno));
538
539		/* Disabling frame aging */
540		spx5_rmw(HSCH_PORT_MODE_AGE_DIS_SET(1),
541			 HSCH_PORT_MODE_AGE_DIS,
542			 sparx5,
543			 HSCH_PORT_MODE(portno));
544	}
545}
546
547int sparx5_fdma_start(struct sparx5 *sparx5)
548{
549	int err;
550
551	/* Reset FDMA state */
552	spx5_wr(FDMA_CTRL_NRESET_SET(0), sparx5, FDMA_CTRL);
553	spx5_wr(FDMA_CTRL_NRESET_SET(1), sparx5, FDMA_CTRL);
554
555	/* Force ACP caching but disable read/write allocation */
556	spx5_rmw(CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA_SET(1) |
557		 CPU_PROC_CTRL_ACP_AWCACHE_SET(0) |
558		 CPU_PROC_CTRL_ACP_ARCACHE_SET(0),
559		 CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA |
560		 CPU_PROC_CTRL_ACP_AWCACHE |
561		 CPU_PROC_CTRL_ACP_ARCACHE,
562		 sparx5, CPU_PROC_CTRL);
563
564	sparx5_fdma_injection_mode(sparx5);
565	sparx5_fdma_rx_init(sparx5, &sparx5->rx, FDMA_XTR_CHANNEL);
566	sparx5_fdma_tx_init(sparx5, &sparx5->tx, FDMA_INJ_CHANNEL);
567	err = sparx5_fdma_rx_alloc(sparx5);
568	if (err) {
569		dev_err(sparx5->dev, "Could not allocate RX buffers: %d\n", err);
570		return err;
571	}
572	err = sparx5_fdma_tx_alloc(sparx5);
573	if (err) {
574		dev_err(sparx5->dev, "Could not allocate TX buffers: %d\n", err);
575		return err;
576	}
577	return err;
578}
579
580static u32 sparx5_fdma_port_ctrl(struct sparx5 *sparx5)
581{
582	return spx5_rd(sparx5, FDMA_PORT_CTRL(0));
583}
584
585int sparx5_fdma_stop(struct sparx5 *sparx5)
586{
587	u32 val;
588
589	napi_disable(&sparx5->rx.napi);
590	/* Stop the fdma and channel interrupts */
591	sparx5_fdma_rx_deactivate(sparx5, &sparx5->rx);
592	sparx5_fdma_tx_deactivate(sparx5, &sparx5->tx);
593	/* Wait for the RX channel to stop */
594	read_poll_timeout(sparx5_fdma_port_ctrl, val,
595			  FDMA_PORT_CTRL_XTR_BUF_IS_EMPTY_GET(val) == 0,
596			  500, 10000, 0, sparx5);
597	return 0;
598}
599