1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4 * Ethernet adapters. Based on earlier sk98lin, e100 and
5 * FreeBSD if_sk drivers.
6 *
7 * This driver intentionally does not support all the features
8 * of the original driver such as link fail-over and link management because
9 * those should be done at higher levels.
10 *
11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/in.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/moduleparam.h>
20#include <linux/netdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/ethtool.h>
23#include <linux/pci.h>
24#include <linux/if_vlan.h>
25#include <linux/ip.h>
26#include <linux/delay.h>
27#include <linux/crc32.h>
28#include <linux/dma-mapping.h>
29#include <linux/debugfs.h>
30#include <linux/sched.h>
31#include <linux/seq_file.h>
32#include <linux/mii.h>
33#include <linux/slab.h>
34#include <linux/dmi.h>
35#include <linux/prefetch.h>
36#include <asm/irq.h>
37
38#include "skge.h"
39
40#define DRV_NAME		"skge"
41#define DRV_VERSION		"1.14"
42
43#define DEFAULT_TX_RING_SIZE	128
44#define DEFAULT_RX_RING_SIZE	512
45#define MAX_TX_RING_SIZE	1024
46#define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
47#define MAX_RX_RING_SIZE	4096
48#define RX_COPY_THRESHOLD	128
49#define RX_BUF_SIZE		1536
50#define PHY_RETRIES	        1000
51#define ETH_JUMBO_MTU		9000
52#define TX_WATCHDOG		(5 * HZ)
53#define BLINK_MS		250
54#define LINK_HZ			HZ
55
56#define SKGE_EEPROM_MAGIC	0x9933aabb
57
58
59MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
60MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
61MODULE_LICENSE("GPL");
62MODULE_VERSION(DRV_VERSION);
63
64static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
65				NETIF_MSG_LINK | NETIF_MSG_IFUP |
66				NETIF_MSG_IFDOWN);
67
68static int debug = -1;	/* defaults above */
69module_param(debug, int, 0);
70MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
71
72static const struct pci_device_id skge_id_table[] = {
73	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
74	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
75#ifdef CONFIG_SKGE_GENESIS
76	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
77#endif
78	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
79	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
80	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
81	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
82	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
83	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
84	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
85	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
86	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
87	{ 0 }
88};
89MODULE_DEVICE_TABLE(pci, skge_id_table);
90
91static int skge_up(struct net_device *dev);
92static int skge_down(struct net_device *dev);
93static void skge_phy_reset(struct skge_port *skge);
94static void skge_tx_clean(struct net_device *dev);
95static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97static void genesis_get_stats(struct skge_port *skge, u64 *data);
98static void yukon_get_stats(struct skge_port *skge, u64 *data);
99static void yukon_init(struct skge_hw *hw, int port);
100static void genesis_mac_init(struct skge_hw *hw, int port);
101static void genesis_link_up(struct skge_port *skge);
102static void skge_set_multicast(struct net_device *dev);
103static irqreturn_t skge_intr(int irq, void *dev_id);
104
105/* Avoid conditionals by using array */
106static const int txqaddr[] = { Q_XA1, Q_XA2 };
107static const int rxqaddr[] = { Q_R1, Q_R2 };
108static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
109static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
110static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
111static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
112
113static inline bool is_genesis(const struct skge_hw *hw)
114{
115#ifdef CONFIG_SKGE_GENESIS
116	return hw->chip_id == CHIP_ID_GENESIS;
117#else
118	return false;
119#endif
120}
121
122static int skge_get_regs_len(struct net_device *dev)
123{
124	return 0x4000;
125}
126
127/*
128 * Returns copy of whole control register region
129 * Note: skip RAM address register because accessing it will
130 * 	 cause bus hangs!
131 */
132static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
133			  void *p)
134{
135	const struct skge_port *skge = netdev_priv(dev);
136	const void __iomem *io = skge->hw->regs;
137
138	regs->version = 1;
139	memset(p, 0, regs->len);
140	memcpy_fromio(p, io, B3_RAM_ADDR);
141
142	if (regs->len > B3_RI_WTO_R1) {
143		memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
144			      regs->len - B3_RI_WTO_R1);
145	}
146}
147
148/* Wake on Lan only supported on Yukon chips with rev 1 or above */
149static u32 wol_supported(const struct skge_hw *hw)
150{
151	if (is_genesis(hw))
152		return 0;
153
154	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
155		return 0;
156
157	return WAKE_MAGIC | WAKE_PHY;
158}
159
160static void skge_wol_init(struct skge_port *skge)
161{
162	struct skge_hw *hw = skge->hw;
163	int port = skge->port;
164	u16 ctrl;
165
166	skge_write16(hw, B0_CTST, CS_RST_CLR);
167	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
168
169	/* Turn on Vaux */
170	skge_write8(hw, B0_POWER_CTRL,
171		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
172
173	/* WA code for COMA mode -- clear PHY reset */
174	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
175	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
176		u32 reg = skge_read32(hw, B2_GP_IO);
177		reg |= GP_DIR_9;
178		reg &= ~GP_IO_9;
179		skge_write32(hw, B2_GP_IO, reg);
180	}
181
182	skge_write32(hw, SK_REG(port, GPHY_CTRL),
183		     GPC_DIS_SLEEP |
184		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
185		     GPC_ANEG_1 | GPC_RST_SET);
186
187	skge_write32(hw, SK_REG(port, GPHY_CTRL),
188		     GPC_DIS_SLEEP |
189		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
190		     GPC_ANEG_1 | GPC_RST_CLR);
191
192	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
193
194	/* Force to 10/100 skge_reset will re-enable on resume	 */
195	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
196		     (PHY_AN_100FULL | PHY_AN_100HALF |
197		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
198	/* no 1000 HD/FD */
199	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
200	gm_phy_write(hw, port, PHY_MARV_CTRL,
201		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
202		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
203
204
205	/* Set GMAC to no flow control and auto update for speed/duplex */
206	gma_write16(hw, port, GM_GP_CTRL,
207		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
208		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
209
210	/* Set WOL address */
211	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
212		    skge->netdev->dev_addr, ETH_ALEN);
213
214	/* Turn on appropriate WOL control bits */
215	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
216	ctrl = 0;
217	if (skge->wol & WAKE_PHY)
218		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
219	else
220		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
221
222	if (skge->wol & WAKE_MAGIC)
223		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
224	else
225		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
226
227	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
228	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
229
230	/* block receiver */
231	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
232}
233
234static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
235{
236	struct skge_port *skge = netdev_priv(dev);
237
238	wol->supported = wol_supported(skge->hw);
239	wol->wolopts = skge->wol;
240}
241
242static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
243{
244	struct skge_port *skge = netdev_priv(dev);
245	struct skge_hw *hw = skge->hw;
246
247	if ((wol->wolopts & ~wol_supported(hw)) ||
248	    !device_can_wakeup(&hw->pdev->dev))
249		return -EOPNOTSUPP;
250
251	skge->wol = wol->wolopts;
252
253	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
254
255	return 0;
256}
257
258/* Determine supported/advertised modes based on hardware.
259 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
260 */
261static u32 skge_supported_modes(const struct skge_hw *hw)
262{
263	u32 supported;
264
265	if (hw->copper) {
266		supported = (SUPPORTED_10baseT_Half |
267			     SUPPORTED_10baseT_Full |
268			     SUPPORTED_100baseT_Half |
269			     SUPPORTED_100baseT_Full |
270			     SUPPORTED_1000baseT_Half |
271			     SUPPORTED_1000baseT_Full |
272			     SUPPORTED_Autoneg |
273			     SUPPORTED_TP);
274
275		if (is_genesis(hw))
276			supported &= ~(SUPPORTED_10baseT_Half |
277				       SUPPORTED_10baseT_Full |
278				       SUPPORTED_100baseT_Half |
279				       SUPPORTED_100baseT_Full);
280
281		else if (hw->chip_id == CHIP_ID_YUKON)
282			supported &= ~SUPPORTED_1000baseT_Half;
283	} else
284		supported = (SUPPORTED_1000baseT_Full |
285			     SUPPORTED_1000baseT_Half |
286			     SUPPORTED_FIBRE |
287			     SUPPORTED_Autoneg);
288
289	return supported;
290}
291
292static int skge_get_link_ksettings(struct net_device *dev,
293				   struct ethtool_link_ksettings *cmd)
294{
295	struct skge_port *skge = netdev_priv(dev);
296	struct skge_hw *hw = skge->hw;
297	u32 supported, advertising;
298
299	supported = skge_supported_modes(hw);
300
301	if (hw->copper) {
302		cmd->base.port = PORT_TP;
303		cmd->base.phy_address = hw->phy_addr;
304	} else
305		cmd->base.port = PORT_FIBRE;
306
307	advertising = skge->advertising;
308	cmd->base.autoneg = skge->autoneg;
309	cmd->base.speed = skge->speed;
310	cmd->base.duplex = skge->duplex;
311
312	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
313						supported);
314	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
315						advertising);
316
317	return 0;
318}
319
320static int skge_set_link_ksettings(struct net_device *dev,
321				   const struct ethtool_link_ksettings *cmd)
322{
323	struct skge_port *skge = netdev_priv(dev);
324	const struct skge_hw *hw = skge->hw;
325	u32 supported = skge_supported_modes(hw);
326	int err = 0;
327	u32 advertising;
328
329	ethtool_convert_link_mode_to_legacy_u32(&advertising,
330						cmd->link_modes.advertising);
331
332	if (cmd->base.autoneg == AUTONEG_ENABLE) {
333		advertising = supported;
334		skge->duplex = -1;
335		skge->speed = -1;
336	} else {
337		u32 setting;
338		u32 speed = cmd->base.speed;
339
340		switch (speed) {
341		case SPEED_1000:
342			if (cmd->base.duplex == DUPLEX_FULL)
343				setting = SUPPORTED_1000baseT_Full;
344			else if (cmd->base.duplex == DUPLEX_HALF)
345				setting = SUPPORTED_1000baseT_Half;
346			else
347				return -EINVAL;
348			break;
349		case SPEED_100:
350			if (cmd->base.duplex == DUPLEX_FULL)
351				setting = SUPPORTED_100baseT_Full;
352			else if (cmd->base.duplex == DUPLEX_HALF)
353				setting = SUPPORTED_100baseT_Half;
354			else
355				return -EINVAL;
356			break;
357
358		case SPEED_10:
359			if (cmd->base.duplex == DUPLEX_FULL)
360				setting = SUPPORTED_10baseT_Full;
361			else if (cmd->base.duplex == DUPLEX_HALF)
362				setting = SUPPORTED_10baseT_Half;
363			else
364				return -EINVAL;
365			break;
366		default:
367			return -EINVAL;
368		}
369
370		if ((setting & supported) == 0)
371			return -EINVAL;
372
373		skge->speed = speed;
374		skge->duplex = cmd->base.duplex;
375	}
376
377	skge->autoneg = cmd->base.autoneg;
378	skge->advertising = advertising;
379
380	if (netif_running(dev)) {
381		skge_down(dev);
382		err = skge_up(dev);
383		if (err) {
384			dev_close(dev);
385			return err;
386		}
387	}
388
389	return 0;
390}
391
392static void skge_get_drvinfo(struct net_device *dev,
393			     struct ethtool_drvinfo *info)
394{
395	struct skge_port *skge = netdev_priv(dev);
396
397	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
398	strscpy(info->version, DRV_VERSION, sizeof(info->version));
399	strscpy(info->bus_info, pci_name(skge->hw->pdev),
400		sizeof(info->bus_info));
401}
402
403static const struct skge_stat {
404	char 	   name[ETH_GSTRING_LEN];
405	u16	   xmac_offset;
406	u16	   gma_offset;
407} skge_stats[] = {
408	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
409	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
410
411	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
412	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
413	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
414	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
415	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
416	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
417	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
419
420	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
426
427	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
430	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
432};
433
434static int skge_get_sset_count(struct net_device *dev, int sset)
435{
436	switch (sset) {
437	case ETH_SS_STATS:
438		return ARRAY_SIZE(skge_stats);
439	default:
440		return -EOPNOTSUPP;
441	}
442}
443
444static void skge_get_ethtool_stats(struct net_device *dev,
445				   struct ethtool_stats *stats, u64 *data)
446{
447	struct skge_port *skge = netdev_priv(dev);
448
449	if (is_genesis(skge->hw))
450		genesis_get_stats(skge, data);
451	else
452		yukon_get_stats(skge, data);
453}
454
455/* Use hardware MIB variables for critical path statistics and
456 * transmit feedback not reported at interrupt.
457 * Other errors are accounted for in interrupt handler.
458 */
459static struct net_device_stats *skge_get_stats(struct net_device *dev)
460{
461	struct skge_port *skge = netdev_priv(dev);
462	u64 data[ARRAY_SIZE(skge_stats)];
463
464	if (is_genesis(skge->hw))
465		genesis_get_stats(skge, data);
466	else
467		yukon_get_stats(skge, data);
468
469	dev->stats.tx_bytes = data[0];
470	dev->stats.rx_bytes = data[1];
471	dev->stats.tx_packets = data[2] + data[4] + data[6];
472	dev->stats.rx_packets = data[3] + data[5] + data[7];
473	dev->stats.multicast = data[3] + data[5];
474	dev->stats.collisions = data[10];
475	dev->stats.tx_aborted_errors = data[12];
476
477	return &dev->stats;
478}
479
480static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
481{
482	int i;
483
484	switch (stringset) {
485	case ETH_SS_STATS:
486		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487			memcpy(data + i * ETH_GSTRING_LEN,
488			       skge_stats[i].name, ETH_GSTRING_LEN);
489		break;
490	}
491}
492
493static void skge_get_ring_param(struct net_device *dev,
494				struct ethtool_ringparam *p,
495				struct kernel_ethtool_ringparam *kernel_p,
496				struct netlink_ext_ack *extack)
497{
498	struct skge_port *skge = netdev_priv(dev);
499
500	p->rx_max_pending = MAX_RX_RING_SIZE;
501	p->tx_max_pending = MAX_TX_RING_SIZE;
502
503	p->rx_pending = skge->rx_ring.count;
504	p->tx_pending = skge->tx_ring.count;
505}
506
507static int skge_set_ring_param(struct net_device *dev,
508			       struct ethtool_ringparam *p,
509			       struct kernel_ethtool_ringparam *kernel_p,
510			       struct netlink_ext_ack *extack)
511{
512	struct skge_port *skge = netdev_priv(dev);
513	int err = 0;
514
515	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
516	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
517		return -EINVAL;
518
519	skge->rx_ring.count = p->rx_pending;
520	skge->tx_ring.count = p->tx_pending;
521
522	if (netif_running(dev)) {
523		skge_down(dev);
524		err = skge_up(dev);
525		if (err)
526			dev_close(dev);
527	}
528
529	return err;
530}
531
532static u32 skge_get_msglevel(struct net_device *netdev)
533{
534	struct skge_port *skge = netdev_priv(netdev);
535	return skge->msg_enable;
536}
537
538static void skge_set_msglevel(struct net_device *netdev, u32 value)
539{
540	struct skge_port *skge = netdev_priv(netdev);
541	skge->msg_enable = value;
542}
543
544static int skge_nway_reset(struct net_device *dev)
545{
546	struct skge_port *skge = netdev_priv(dev);
547
548	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
549		return -EINVAL;
550
551	skge_phy_reset(skge);
552	return 0;
553}
554
555static void skge_get_pauseparam(struct net_device *dev,
556				struct ethtool_pauseparam *ecmd)
557{
558	struct skge_port *skge = netdev_priv(dev);
559
560	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
561			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
562	ecmd->tx_pause = (ecmd->rx_pause ||
563			  (skge->flow_control == FLOW_MODE_LOC_SEND));
564
565	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
566}
567
568static int skge_set_pauseparam(struct net_device *dev,
569			       struct ethtool_pauseparam *ecmd)
570{
571	struct skge_port *skge = netdev_priv(dev);
572	struct ethtool_pauseparam old;
573	int err = 0;
574
575	skge_get_pauseparam(dev, &old);
576
577	if (ecmd->autoneg != old.autoneg)
578		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
579	else {
580		if (ecmd->rx_pause && ecmd->tx_pause)
581			skge->flow_control = FLOW_MODE_SYMMETRIC;
582		else if (ecmd->rx_pause && !ecmd->tx_pause)
583			skge->flow_control = FLOW_MODE_SYM_OR_REM;
584		else if (!ecmd->rx_pause && ecmd->tx_pause)
585			skge->flow_control = FLOW_MODE_LOC_SEND;
586		else
587			skge->flow_control = FLOW_MODE_NONE;
588	}
589
590	if (netif_running(dev)) {
591		skge_down(dev);
592		err = skge_up(dev);
593		if (err) {
594			dev_close(dev);
595			return err;
596		}
597	}
598
599	return 0;
600}
601
602/* Chip internal frequency for clock calculations */
603static inline u32 hwkhz(const struct skge_hw *hw)
604{
605	return is_genesis(hw) ? 53125 : 78125;
606}
607
608/* Chip HZ to microseconds */
609static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
610{
611	return (ticks * 1000) / hwkhz(hw);
612}
613
614/* Microseconds to chip HZ */
615static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
616{
617	return hwkhz(hw) * usec / 1000;
618}
619
620static int skge_get_coalesce(struct net_device *dev,
621			     struct ethtool_coalesce *ecmd,
622			     struct kernel_ethtool_coalesce *kernel_coal,
623			     struct netlink_ext_ack *extack)
624{
625	struct skge_port *skge = netdev_priv(dev);
626	struct skge_hw *hw = skge->hw;
627	int port = skge->port;
628
629	ecmd->rx_coalesce_usecs = 0;
630	ecmd->tx_coalesce_usecs = 0;
631
632	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
633		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
634		u32 msk = skge_read32(hw, B2_IRQM_MSK);
635
636		if (msk & rxirqmask[port])
637			ecmd->rx_coalesce_usecs = delay;
638		if (msk & txirqmask[port])
639			ecmd->tx_coalesce_usecs = delay;
640	}
641
642	return 0;
643}
644
645/* Note: interrupt timer is per board, but can turn on/off per port */
646static int skge_set_coalesce(struct net_device *dev,
647			     struct ethtool_coalesce *ecmd,
648			     struct kernel_ethtool_coalesce *kernel_coal,
649			     struct netlink_ext_ack *extack)
650{
651	struct skge_port *skge = netdev_priv(dev);
652	struct skge_hw *hw = skge->hw;
653	int port = skge->port;
654	u32 msk = skge_read32(hw, B2_IRQM_MSK);
655	u32 delay = 25;
656
657	if (ecmd->rx_coalesce_usecs == 0)
658		msk &= ~rxirqmask[port];
659	else if (ecmd->rx_coalesce_usecs < 25 ||
660		 ecmd->rx_coalesce_usecs > 33333)
661		return -EINVAL;
662	else {
663		msk |= rxirqmask[port];
664		delay = ecmd->rx_coalesce_usecs;
665	}
666
667	if (ecmd->tx_coalesce_usecs == 0)
668		msk &= ~txirqmask[port];
669	else if (ecmd->tx_coalesce_usecs < 25 ||
670		 ecmd->tx_coalesce_usecs > 33333)
671		return -EINVAL;
672	else {
673		msk |= txirqmask[port];
674		delay = min(delay, ecmd->rx_coalesce_usecs);
675	}
676
677	skge_write32(hw, B2_IRQM_MSK, msk);
678	if (msk == 0)
679		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
680	else {
681		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
682		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
683	}
684	return 0;
685}
686
687enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
688static void skge_led(struct skge_port *skge, enum led_mode mode)
689{
690	struct skge_hw *hw = skge->hw;
691	int port = skge->port;
692
693	spin_lock_bh(&hw->phy_lock);
694	if (is_genesis(hw)) {
695		switch (mode) {
696		case LED_MODE_OFF:
697			if (hw->phy_type == SK_PHY_BCOM)
698				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
699			else {
700				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
701				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
702			}
703			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
704			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
705			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
706			break;
707
708		case LED_MODE_ON:
709			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
710			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
711
712			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
713			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
714
715			break;
716
717		case LED_MODE_TST:
718			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
719			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
720			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
721
722			if (hw->phy_type == SK_PHY_BCOM)
723				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
724			else {
725				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
726				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
727				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
728			}
729
730		}
731	} else {
732		switch (mode) {
733		case LED_MODE_OFF:
734			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
735			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
736				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
737				     PHY_M_LED_MO_10(MO_LED_OFF)   |
738				     PHY_M_LED_MO_100(MO_LED_OFF)  |
739				     PHY_M_LED_MO_1000(MO_LED_OFF) |
740				     PHY_M_LED_MO_RX(MO_LED_OFF));
741			break;
742		case LED_MODE_ON:
743			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
744				     PHY_M_LED_PULS_DUR(PULS_170MS) |
745				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
746				     PHY_M_LEDC_TX_CTRL |
747				     PHY_M_LEDC_DP_CTRL);
748
749			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
750				     PHY_M_LED_MO_RX(MO_LED_OFF) |
751				     (skge->speed == SPEED_100 ?
752				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
753			break;
754		case LED_MODE_TST:
755			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
756			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
757				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
758				     PHY_M_LED_MO_10(MO_LED_ON)   |
759				     PHY_M_LED_MO_100(MO_LED_ON)  |
760				     PHY_M_LED_MO_1000(MO_LED_ON) |
761				     PHY_M_LED_MO_RX(MO_LED_ON));
762		}
763	}
764	spin_unlock_bh(&hw->phy_lock);
765}
766
767/* blink LED's for finding board */
768static int skge_set_phys_id(struct net_device *dev,
769			    enum ethtool_phys_id_state state)
770{
771	struct skge_port *skge = netdev_priv(dev);
772
773	switch (state) {
774	case ETHTOOL_ID_ACTIVE:
775		return 2;	/* cycle on/off twice per second */
776
777	case ETHTOOL_ID_ON:
778		skge_led(skge, LED_MODE_TST);
779		break;
780
781	case ETHTOOL_ID_OFF:
782		skge_led(skge, LED_MODE_OFF);
783		break;
784
785	case ETHTOOL_ID_INACTIVE:
786		/* back to regular LED state */
787		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
788	}
789
790	return 0;
791}
792
793static int skge_get_eeprom_len(struct net_device *dev)
794{
795	struct skge_port *skge = netdev_priv(dev);
796	u32 reg2;
797
798	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
799	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
800}
801
802static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
803{
804	u32 val;
805
806	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
807
808	do {
809		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
810	} while (!(offset & PCI_VPD_ADDR_F));
811
812	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
813	return val;
814}
815
816static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
817{
818	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
819	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
820			      offset | PCI_VPD_ADDR_F);
821
822	do {
823		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
824	} while (offset & PCI_VPD_ADDR_F);
825}
826
827static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
828			   u8 *data)
829{
830	struct skge_port *skge = netdev_priv(dev);
831	struct pci_dev *pdev = skge->hw->pdev;
832	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
833	int length = eeprom->len;
834	u16 offset = eeprom->offset;
835
836	if (!cap)
837		return -EINVAL;
838
839	eeprom->magic = SKGE_EEPROM_MAGIC;
840
841	while (length > 0) {
842		u32 val = skge_vpd_read(pdev, cap, offset);
843		int n = min_t(int, length, sizeof(val));
844
845		memcpy(data, &val, n);
846		length -= n;
847		data += n;
848		offset += n;
849	}
850	return 0;
851}
852
853static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
854			   u8 *data)
855{
856	struct skge_port *skge = netdev_priv(dev);
857	struct pci_dev *pdev = skge->hw->pdev;
858	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
859	int length = eeprom->len;
860	u16 offset = eeprom->offset;
861
862	if (!cap)
863		return -EINVAL;
864
865	if (eeprom->magic != SKGE_EEPROM_MAGIC)
866		return -EINVAL;
867
868	while (length > 0) {
869		u32 val;
870		int n = min_t(int, length, sizeof(val));
871
872		if (n < sizeof(val))
873			val = skge_vpd_read(pdev, cap, offset);
874		memcpy(&val, data, n);
875
876		skge_vpd_write(pdev, cap, offset, val);
877
878		length -= n;
879		data += n;
880		offset += n;
881	}
882	return 0;
883}
884
885static const struct ethtool_ops skge_ethtool_ops = {
886	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
887	.get_drvinfo	= skge_get_drvinfo,
888	.get_regs_len	= skge_get_regs_len,
889	.get_regs	= skge_get_regs,
890	.get_wol	= skge_get_wol,
891	.set_wol	= skge_set_wol,
892	.get_msglevel	= skge_get_msglevel,
893	.set_msglevel	= skge_set_msglevel,
894	.nway_reset	= skge_nway_reset,
895	.get_link	= ethtool_op_get_link,
896	.get_eeprom_len	= skge_get_eeprom_len,
897	.get_eeprom	= skge_get_eeprom,
898	.set_eeprom	= skge_set_eeprom,
899	.get_ringparam	= skge_get_ring_param,
900	.set_ringparam	= skge_set_ring_param,
901	.get_pauseparam = skge_get_pauseparam,
902	.set_pauseparam = skge_set_pauseparam,
903	.get_coalesce	= skge_get_coalesce,
904	.set_coalesce	= skge_set_coalesce,
905	.get_strings	= skge_get_strings,
906	.set_phys_id	= skge_set_phys_id,
907	.get_sset_count = skge_get_sset_count,
908	.get_ethtool_stats = skge_get_ethtool_stats,
909	.get_link_ksettings = skge_get_link_ksettings,
910	.set_link_ksettings = skge_set_link_ksettings,
911};
912
913/*
914 * Allocate ring elements and chain them together
915 * One-to-one association of board descriptors with ring elements
916 */
917static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
918{
919	struct skge_tx_desc *d;
920	struct skge_element *e;
921	int i;
922
923	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
924	if (!ring->start)
925		return -ENOMEM;
926
927	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
928		e->desc = d;
929		if (i == ring->count - 1) {
930			e->next = ring->start;
931			d->next_offset = base;
932		} else {
933			e->next = e + 1;
934			d->next_offset = base + (i+1) * sizeof(*d);
935		}
936	}
937	ring->to_use = ring->to_clean = ring->start;
938
939	return 0;
940}
941
942/* Allocate and setup a new buffer for receiving */
943static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
944			 struct sk_buff *skb, unsigned int bufsize)
945{
946	struct skge_rx_desc *rd = e->desc;
947	dma_addr_t map;
948
949	map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
950			     DMA_FROM_DEVICE);
951
952	if (dma_mapping_error(&skge->hw->pdev->dev, map))
953		return -1;
954
955	rd->dma_lo = lower_32_bits(map);
956	rd->dma_hi = upper_32_bits(map);
957	e->skb = skb;
958	rd->csum1_start = ETH_HLEN;
959	rd->csum2_start = ETH_HLEN;
960	rd->csum1 = 0;
961	rd->csum2 = 0;
962
963	wmb();
964
965	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
966	dma_unmap_addr_set(e, mapaddr, map);
967	dma_unmap_len_set(e, maplen, bufsize);
968	return 0;
969}
970
971/* Resume receiving using existing skb,
972 * Note: DMA address is not changed by chip.
973 * 	 MTU not changed while receiver active.
974 */
975static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
976{
977	struct skge_rx_desc *rd = e->desc;
978
979	rd->csum2 = 0;
980	rd->csum2_start = ETH_HLEN;
981
982	wmb();
983
984	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
985}
986
987
988/* Free all  buffers in receive ring, assumes receiver stopped */
989static void skge_rx_clean(struct skge_port *skge)
990{
991	struct skge_hw *hw = skge->hw;
992	struct skge_ring *ring = &skge->rx_ring;
993	struct skge_element *e;
994
995	e = ring->start;
996	do {
997		struct skge_rx_desc *rd = e->desc;
998		rd->control = 0;
999		if (e->skb) {
1000			dma_unmap_single(&hw->pdev->dev,
1001					 dma_unmap_addr(e, mapaddr),
1002					 dma_unmap_len(e, maplen),
1003					 DMA_FROM_DEVICE);
1004			dev_kfree_skb(e->skb);
1005			e->skb = NULL;
1006		}
1007	} while ((e = e->next) != ring->start);
1008}
1009
1010
1011/* Allocate buffers for receive ring
1012 * For receive:  to_clean is next received frame.
1013 */
1014static int skge_rx_fill(struct net_device *dev)
1015{
1016	struct skge_port *skge = netdev_priv(dev);
1017	struct skge_ring *ring = &skge->rx_ring;
1018	struct skge_element *e;
1019
1020	e = ring->start;
1021	do {
1022		struct sk_buff *skb;
1023
1024		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1025					 GFP_KERNEL);
1026		if (!skb)
1027			return -ENOMEM;
1028
1029		skb_reserve(skb, NET_IP_ALIGN);
1030		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1031			dev_kfree_skb(skb);
1032			return -EIO;
1033		}
1034	} while ((e = e->next) != ring->start);
1035
1036	ring->to_clean = ring->start;
1037	return 0;
1038}
1039
1040static const char *skge_pause(enum pause_status status)
1041{
1042	switch (status) {
1043	case FLOW_STAT_NONE:
1044		return "none";
1045	case FLOW_STAT_REM_SEND:
1046		return "rx only";
1047	case FLOW_STAT_LOC_SEND:
1048		return "tx_only";
1049	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1050		return "both";
1051	default:
1052		return "indeterminated";
1053	}
1054}
1055
1056
1057static void skge_link_up(struct skge_port *skge)
1058{
1059	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1060		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1061
1062	netif_carrier_on(skge->netdev);
1063	netif_wake_queue(skge->netdev);
1064
1065	netif_info(skge, link, skge->netdev,
1066		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1067		   skge->speed,
1068		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1069		   skge_pause(skge->flow_status));
1070}
1071
1072static void skge_link_down(struct skge_port *skge)
1073{
1074	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1075	netif_carrier_off(skge->netdev);
1076	netif_stop_queue(skge->netdev);
1077
1078	netif_info(skge, link, skge->netdev, "Link is down\n");
1079}
1080
1081static void xm_link_down(struct skge_hw *hw, int port)
1082{
1083	struct net_device *dev = hw->dev[port];
1084	struct skge_port *skge = netdev_priv(dev);
1085
1086	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1087
1088	if (netif_carrier_ok(dev))
1089		skge_link_down(skge);
1090}
1091
1092static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1093{
1094	int i;
1095
1096	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1097	*val = xm_read16(hw, port, XM_PHY_DATA);
1098
1099	if (hw->phy_type == SK_PHY_XMAC)
1100		goto ready;
1101
1102	for (i = 0; i < PHY_RETRIES; i++) {
1103		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1104			goto ready;
1105		udelay(1);
1106	}
1107
1108	return -ETIMEDOUT;
1109 ready:
1110	*val = xm_read16(hw, port, XM_PHY_DATA);
1111
1112	return 0;
1113}
1114
1115static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1116{
1117	u16 v = 0;
1118	if (__xm_phy_read(hw, port, reg, &v))
1119		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1120	return v;
1121}
1122
1123static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1124{
1125	int i;
1126
1127	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1128	for (i = 0; i < PHY_RETRIES; i++) {
1129		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1130			goto ready;
1131		udelay(1);
1132	}
1133	return -EIO;
1134
1135 ready:
1136	xm_write16(hw, port, XM_PHY_DATA, val);
1137	for (i = 0; i < PHY_RETRIES; i++) {
1138		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1139			return 0;
1140		udelay(1);
1141	}
1142	return -ETIMEDOUT;
1143}
1144
1145static void genesis_init(struct skge_hw *hw)
1146{
1147	/* set blink source counter */
1148	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1149	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1150
1151	/* configure mac arbiter */
1152	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1153
1154	/* configure mac arbiter timeout values */
1155	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1156	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1157	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1158	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1159
1160	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1161	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1162	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1163	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1164
1165	/* configure packet arbiter timeout */
1166	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1167	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1168	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1169	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1170	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1171}
1172
1173static void genesis_reset(struct skge_hw *hw, int port)
1174{
1175	static const u8 zero[8]  = { 0 };
1176	u32 reg;
1177
1178	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1179
1180	/* reset the statistics module */
1181	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1182	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1183	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1184	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1185	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1186
1187	/* disable Broadcom PHY IRQ */
1188	if (hw->phy_type == SK_PHY_BCOM)
1189		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1190
1191	xm_outhash(hw, port, XM_HSM, zero);
1192
1193	/* Flush TX and RX fifo */
1194	reg = xm_read32(hw, port, XM_MODE);
1195	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1196	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1197}
1198
1199/* Convert mode to MII values  */
1200static const u16 phy_pause_map[] = {
1201	[FLOW_MODE_NONE] =	0,
1202	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1203	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1204	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1205};
1206
1207/* special defines for FIBER (88E1011S only) */
1208static const u16 fiber_pause_map[] = {
1209	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1210	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1211	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1212	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1213};
1214
1215
1216/* Check status of Broadcom phy link */
1217static void bcom_check_link(struct skge_hw *hw, int port)
1218{
1219	struct net_device *dev = hw->dev[port];
1220	struct skge_port *skge = netdev_priv(dev);
1221	u16 status;
1222
1223	/* read twice because of latch */
1224	xm_phy_read(hw, port, PHY_BCOM_STAT);
1225	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1226
1227	if ((status & PHY_ST_LSYNC) == 0) {
1228		xm_link_down(hw, port);
1229		return;
1230	}
1231
1232	if (skge->autoneg == AUTONEG_ENABLE) {
1233		u16 lpa, aux;
1234
1235		if (!(status & PHY_ST_AN_OVER))
1236			return;
1237
1238		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1239		if (lpa & PHY_B_AN_RF) {
1240			netdev_notice(dev, "remote fault\n");
1241			return;
1242		}
1243
1244		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1245
1246		/* Check Duplex mismatch */
1247		switch (aux & PHY_B_AS_AN_RES_MSK) {
1248		case PHY_B_RES_1000FD:
1249			skge->duplex = DUPLEX_FULL;
1250			break;
1251		case PHY_B_RES_1000HD:
1252			skge->duplex = DUPLEX_HALF;
1253			break;
1254		default:
1255			netdev_notice(dev, "duplex mismatch\n");
1256			return;
1257		}
1258
1259		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1260		switch (aux & PHY_B_AS_PAUSE_MSK) {
1261		case PHY_B_AS_PAUSE_MSK:
1262			skge->flow_status = FLOW_STAT_SYMMETRIC;
1263			break;
1264		case PHY_B_AS_PRR:
1265			skge->flow_status = FLOW_STAT_REM_SEND;
1266			break;
1267		case PHY_B_AS_PRT:
1268			skge->flow_status = FLOW_STAT_LOC_SEND;
1269			break;
1270		default:
1271			skge->flow_status = FLOW_STAT_NONE;
1272		}
1273		skge->speed = SPEED_1000;
1274	}
1275
1276	if (!netif_carrier_ok(dev))
1277		genesis_link_up(skge);
1278}
1279
1280/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1281 * Phy on for 100 or 10Mbit operation
1282 */
1283static void bcom_phy_init(struct skge_port *skge)
1284{
1285	struct skge_hw *hw = skge->hw;
1286	int port = skge->port;
1287	int i;
1288	u16 id1, r, ext, ctl;
1289
1290	/* magic workaround patterns for Broadcom */
1291	static const struct {
1292		u16 reg;
1293		u16 val;
1294	} A1hack[] = {
1295		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1296		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1297		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1298		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1299	}, C0hack[] = {
1300		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1301		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1302	};
1303
1304	/* read Id from external PHY (all have the same address) */
1305	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1306
1307	/* Optimize MDIO transfer by suppressing preamble. */
1308	r = xm_read16(hw, port, XM_MMU_CMD);
1309	r |=  XM_MMU_NO_PRE;
1310	xm_write16(hw, port, XM_MMU_CMD, r);
1311
1312	switch (id1) {
1313	case PHY_BCOM_ID1_C0:
1314		/*
1315		 * Workaround BCOM Errata for the C0 type.
1316		 * Write magic patterns to reserved registers.
1317		 */
1318		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1319			xm_phy_write(hw, port,
1320				     C0hack[i].reg, C0hack[i].val);
1321
1322		break;
1323	case PHY_BCOM_ID1_A1:
1324		/*
1325		 * Workaround BCOM Errata for the A1 type.
1326		 * Write magic patterns to reserved registers.
1327		 */
1328		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1329			xm_phy_write(hw, port,
1330				     A1hack[i].reg, A1hack[i].val);
1331		break;
1332	}
1333
1334	/*
1335	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1336	 * Disable Power Management after reset.
1337	 */
1338	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1339	r |= PHY_B_AC_DIS_PM;
1340	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1341
1342	/* Dummy read */
1343	xm_read16(hw, port, XM_ISRC);
1344
1345	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1346	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1347
1348	if (skge->autoneg == AUTONEG_ENABLE) {
1349		/*
1350		 * Workaround BCOM Errata #1 for the C5 type.
1351		 * 1000Base-T Link Acquisition Failure in Slave Mode
1352		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1353		 */
1354		u16 adv = PHY_B_1000C_RD;
1355		if (skge->advertising & ADVERTISED_1000baseT_Half)
1356			adv |= PHY_B_1000C_AHD;
1357		if (skge->advertising & ADVERTISED_1000baseT_Full)
1358			adv |= PHY_B_1000C_AFD;
1359		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1360
1361		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1362	} else {
1363		if (skge->duplex == DUPLEX_FULL)
1364			ctl |= PHY_CT_DUP_MD;
1365		/* Force to slave */
1366		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1367	}
1368
1369	/* Set autonegotiation pause parameters */
1370	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1371		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1372
1373	/* Handle Jumbo frames */
1374	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1375		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1376			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1377
1378		ext |= PHY_B_PEC_HIGH_LA;
1379
1380	}
1381
1382	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1383	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1384
1385	/* Use link status change interrupt */
1386	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1387}
1388
1389static void xm_phy_init(struct skge_port *skge)
1390{
1391	struct skge_hw *hw = skge->hw;
1392	int port = skge->port;
1393	u16 ctrl = 0;
1394
1395	if (skge->autoneg == AUTONEG_ENABLE) {
1396		if (skge->advertising & ADVERTISED_1000baseT_Half)
1397			ctrl |= PHY_X_AN_HD;
1398		if (skge->advertising & ADVERTISED_1000baseT_Full)
1399			ctrl |= PHY_X_AN_FD;
1400
1401		ctrl |= fiber_pause_map[skge->flow_control];
1402
1403		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1404
1405		/* Restart Auto-negotiation */
1406		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1407	} else {
1408		/* Set DuplexMode in Config register */
1409		if (skge->duplex == DUPLEX_FULL)
1410			ctrl |= PHY_CT_DUP_MD;
1411		/*
1412		 * Do NOT enable Auto-negotiation here. This would hold
1413		 * the link down because no IDLEs are transmitted
1414		 */
1415	}
1416
1417	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1418
1419	/* Poll PHY for status changes */
1420	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1421}
1422
1423static int xm_check_link(struct net_device *dev)
1424{
1425	struct skge_port *skge = netdev_priv(dev);
1426	struct skge_hw *hw = skge->hw;
1427	int port = skge->port;
1428	u16 status;
1429
1430	/* read twice because of latch */
1431	xm_phy_read(hw, port, PHY_XMAC_STAT);
1432	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1433
1434	if ((status & PHY_ST_LSYNC) == 0) {
1435		xm_link_down(hw, port);
1436		return 0;
1437	}
1438
1439	if (skge->autoneg == AUTONEG_ENABLE) {
1440		u16 lpa, res;
1441
1442		if (!(status & PHY_ST_AN_OVER))
1443			return 0;
1444
1445		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1446		if (lpa & PHY_B_AN_RF) {
1447			netdev_notice(dev, "remote fault\n");
1448			return 0;
1449		}
1450
1451		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1452
1453		/* Check Duplex mismatch */
1454		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1455		case PHY_X_RS_FD:
1456			skge->duplex = DUPLEX_FULL;
1457			break;
1458		case PHY_X_RS_HD:
1459			skge->duplex = DUPLEX_HALF;
1460			break;
1461		default:
1462			netdev_notice(dev, "duplex mismatch\n");
1463			return 0;
1464		}
1465
1466		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1467		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1468		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1469		    (lpa & PHY_X_P_SYM_MD))
1470			skge->flow_status = FLOW_STAT_SYMMETRIC;
1471		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1472			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1473			/* Enable PAUSE receive, disable PAUSE transmit */
1474			skge->flow_status  = FLOW_STAT_REM_SEND;
1475		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1476			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1477			/* Disable PAUSE receive, enable PAUSE transmit */
1478			skge->flow_status = FLOW_STAT_LOC_SEND;
1479		else
1480			skge->flow_status = FLOW_STAT_NONE;
1481
1482		skge->speed = SPEED_1000;
1483	}
1484
1485	if (!netif_carrier_ok(dev))
1486		genesis_link_up(skge);
1487	return 1;
1488}
1489
1490/* Poll to check for link coming up.
1491 *
1492 * Since internal PHY is wired to a level triggered pin, can't
1493 * get an interrupt when carrier is detected, need to poll for
1494 * link coming up.
1495 */
1496static void xm_link_timer(struct timer_list *t)
1497{
1498	struct skge_port *skge = from_timer(skge, t, link_timer);
1499	struct net_device *dev = skge->netdev;
1500	struct skge_hw *hw = skge->hw;
1501	int port = skge->port;
1502	int i;
1503	unsigned long flags;
1504
1505	if (!netif_running(dev))
1506		return;
1507
1508	spin_lock_irqsave(&hw->phy_lock, flags);
1509
1510	/*
1511	 * Verify that the link by checking GPIO register three times.
1512	 * This pin has the signal from the link_sync pin connected to it.
1513	 */
1514	for (i = 0; i < 3; i++) {
1515		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1516			goto link_down;
1517	}
1518
1519	/* Re-enable interrupt to detect link down */
1520	if (xm_check_link(dev)) {
1521		u16 msk = xm_read16(hw, port, XM_IMSK);
1522		msk &= ~XM_IS_INP_ASS;
1523		xm_write16(hw, port, XM_IMSK, msk);
1524		xm_read16(hw, port, XM_ISRC);
1525	} else {
1526link_down:
1527		mod_timer(&skge->link_timer,
1528			  round_jiffies(jiffies + LINK_HZ));
1529	}
1530	spin_unlock_irqrestore(&hw->phy_lock, flags);
1531}
1532
1533static void genesis_mac_init(struct skge_hw *hw, int port)
1534{
1535	struct net_device *dev = hw->dev[port];
1536	struct skge_port *skge = netdev_priv(dev);
1537	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1538	int i;
1539	u32 r;
1540	static const u8 zero[6]  = { 0 };
1541
1542	for (i = 0; i < 10; i++) {
1543		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1544			     MFF_SET_MAC_RST);
1545		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1546			goto reset_ok;
1547		udelay(1);
1548	}
1549
1550	netdev_warn(dev, "genesis reset failed\n");
1551
1552 reset_ok:
1553	/* Unreset the XMAC. */
1554	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1555
1556	/*
1557	 * Perform additional initialization for external PHYs,
1558	 * namely for the 1000baseTX cards that use the XMAC's
1559	 * GMII mode.
1560	 */
1561	if (hw->phy_type != SK_PHY_XMAC) {
1562		/* Take external Phy out of reset */
1563		r = skge_read32(hw, B2_GP_IO);
1564		if (port == 0)
1565			r |= GP_DIR_0|GP_IO_0;
1566		else
1567			r |= GP_DIR_2|GP_IO_2;
1568
1569		skge_write32(hw, B2_GP_IO, r);
1570
1571		/* Enable GMII interface */
1572		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1573	}
1574
1575
1576	switch (hw->phy_type) {
1577	case SK_PHY_XMAC:
1578		xm_phy_init(skge);
1579		break;
1580	case SK_PHY_BCOM:
1581		bcom_phy_init(skge);
1582		bcom_check_link(hw, port);
1583	}
1584
1585	/* Set Station Address */
1586	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1587
1588	/* We don't use match addresses so clear */
1589	for (i = 1; i < 16; i++)
1590		xm_outaddr(hw, port, XM_EXM(i), zero);
1591
1592	/* Clear MIB counters */
1593	xm_write16(hw, port, XM_STAT_CMD,
1594			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1595	/* Clear two times according to Errata #3 */
1596	xm_write16(hw, port, XM_STAT_CMD,
1597			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1598
1599	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1600	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1601
1602	/* We don't need the FCS appended to the packet. */
1603	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1604	if (jumbo)
1605		r |= XM_RX_BIG_PK_OK;
1606
1607	if (skge->duplex == DUPLEX_HALF) {
1608		/*
1609		 * If in manual half duplex mode the other side might be in
1610		 * full duplex mode, so ignore if a carrier extension is not seen
1611		 * on frames received
1612		 */
1613		r |= XM_RX_DIS_CEXT;
1614	}
1615	xm_write16(hw, port, XM_RX_CMD, r);
1616
1617	/* We want short frames padded to 60 bytes. */
1618	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1619
1620	/* Increase threshold for jumbo frames on dual port */
1621	if (hw->ports > 1 && jumbo)
1622		xm_write16(hw, port, XM_TX_THR, 1020);
1623	else
1624		xm_write16(hw, port, XM_TX_THR, 512);
1625
1626	/*
1627	 * Enable the reception of all error frames. This is
1628	 * a necessary evil due to the design of the XMAC. The
1629	 * XMAC's receive FIFO is only 8K in size, however jumbo
1630	 * frames can be up to 9000 bytes in length. When bad
1631	 * frame filtering is enabled, the XMAC's RX FIFO operates
1632	 * in 'store and forward' mode. For this to work, the
1633	 * entire frame has to fit into the FIFO, but that means
1634	 * that jumbo frames larger than 8192 bytes will be
1635	 * truncated. Disabling all bad frame filtering causes
1636	 * the RX FIFO to operate in streaming mode, in which
1637	 * case the XMAC will start transferring frames out of the
1638	 * RX FIFO as soon as the FIFO threshold is reached.
1639	 */
1640	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1641
1642
1643	/*
1644	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1645	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1646	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1647	 */
1648	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1649
1650	/*
1651	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1652	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1653	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1654	 */
1655	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1656
1657	/* Configure MAC arbiter */
1658	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1659
1660	/* configure timeout values */
1661	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1662	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1663	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1664	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1665
1666	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1667	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1668	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1669	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1670
1671	/* Configure Rx MAC FIFO */
1672	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1673	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1674	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1675
1676	/* Configure Tx MAC FIFO */
1677	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1678	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1679	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1680
1681	if (jumbo) {
1682		/* Enable frame flushing if jumbo frames used */
1683		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1684	} else {
1685		/* enable timeout timers if normal frames */
1686		skge_write16(hw, B3_PA_CTRL,
1687			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1688	}
1689}
1690
1691static void genesis_stop(struct skge_port *skge)
1692{
1693	struct skge_hw *hw = skge->hw;
1694	int port = skge->port;
1695	unsigned retries = 1000;
1696	u16 cmd;
1697
1698	/* Disable Tx and Rx */
1699	cmd = xm_read16(hw, port, XM_MMU_CMD);
1700	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1701	xm_write16(hw, port, XM_MMU_CMD, cmd);
1702
1703	genesis_reset(hw, port);
1704
1705	/* Clear Tx packet arbiter timeout IRQ */
1706	skge_write16(hw, B3_PA_CTRL,
1707		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1708
1709	/* Reset the MAC */
1710	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1711	do {
1712		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1713		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1714			break;
1715	} while (--retries > 0);
1716
1717	/* For external PHYs there must be special handling */
1718	if (hw->phy_type != SK_PHY_XMAC) {
1719		u32 reg = skge_read32(hw, B2_GP_IO);
1720		if (port == 0) {
1721			reg |= GP_DIR_0;
1722			reg &= ~GP_IO_0;
1723		} else {
1724			reg |= GP_DIR_2;
1725			reg &= ~GP_IO_2;
1726		}
1727		skge_write32(hw, B2_GP_IO, reg);
1728		skge_read32(hw, B2_GP_IO);
1729	}
1730
1731	xm_write16(hw, port, XM_MMU_CMD,
1732			xm_read16(hw, port, XM_MMU_CMD)
1733			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1734
1735	xm_read16(hw, port, XM_MMU_CMD);
1736}
1737
1738
1739static void genesis_get_stats(struct skge_port *skge, u64 *data)
1740{
1741	struct skge_hw *hw = skge->hw;
1742	int port = skge->port;
1743	int i;
1744	unsigned long timeout = jiffies + HZ;
1745
1746	xm_write16(hw, port,
1747			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1748
1749	/* wait for update to complete */
1750	while (xm_read16(hw, port, XM_STAT_CMD)
1751	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1752		if (time_after(jiffies, timeout))
1753			break;
1754		udelay(10);
1755	}
1756
1757	/* special case for 64 bit octet counter */
1758	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1759		| xm_read32(hw, port, XM_TXO_OK_LO);
1760	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1761		| xm_read32(hw, port, XM_RXO_OK_LO);
1762
1763	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1764		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1765}
1766
1767static void genesis_mac_intr(struct skge_hw *hw, int port)
1768{
1769	struct net_device *dev = hw->dev[port];
1770	struct skge_port *skge = netdev_priv(dev);
1771	u16 status = xm_read16(hw, port, XM_ISRC);
1772
1773	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1774		     "mac interrupt status 0x%x\n", status);
1775
1776	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1777		xm_link_down(hw, port);
1778		mod_timer(&skge->link_timer, jiffies + 1);
1779	}
1780
1781	if (status & XM_IS_TXF_UR) {
1782		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1783		++dev->stats.tx_fifo_errors;
1784	}
1785}
1786
1787static void genesis_link_up(struct skge_port *skge)
1788{
1789	struct skge_hw *hw = skge->hw;
1790	int port = skge->port;
1791	u16 cmd, msk;
1792	u32 mode;
1793
1794	cmd = xm_read16(hw, port, XM_MMU_CMD);
1795
1796	/*
1797	 * enabling pause frame reception is required for 1000BT
1798	 * because the XMAC is not reset if the link is going down
1799	 */
1800	if (skge->flow_status == FLOW_STAT_NONE ||
1801	    skge->flow_status == FLOW_STAT_LOC_SEND)
1802		/* Disable Pause Frame Reception */
1803		cmd |= XM_MMU_IGN_PF;
1804	else
1805		/* Enable Pause Frame Reception */
1806		cmd &= ~XM_MMU_IGN_PF;
1807
1808	xm_write16(hw, port, XM_MMU_CMD, cmd);
1809
1810	mode = xm_read32(hw, port, XM_MODE);
1811	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1812	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1813		/*
1814		 * Configure Pause Frame Generation
1815		 * Use internal and external Pause Frame Generation.
1816		 * Sending pause frames is edge triggered.
1817		 * Send a Pause frame with the maximum pause time if
1818		 * internal oder external FIFO full condition occurs.
1819		 * Send a zero pause time frame to re-start transmission.
1820		 */
1821		/* XM_PAUSE_DA = '010000C28001' (default) */
1822		/* XM_MAC_PTIME = 0xffff (maximum) */
1823		/* remember this value is defined in big endian (!) */
1824		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1825
1826		mode |= XM_PAUSE_MODE;
1827		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1828	} else {
1829		/*
1830		 * disable pause frame generation is required for 1000BT
1831		 * because the XMAC is not reset if the link is going down
1832		 */
1833		/* Disable Pause Mode in Mode Register */
1834		mode &= ~XM_PAUSE_MODE;
1835
1836		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1837	}
1838
1839	xm_write32(hw, port, XM_MODE, mode);
1840
1841	/* Turn on detection of Tx underrun */
1842	msk = xm_read16(hw, port, XM_IMSK);
1843	msk &= ~XM_IS_TXF_UR;
1844	xm_write16(hw, port, XM_IMSK, msk);
1845
1846	xm_read16(hw, port, XM_ISRC);
1847
1848	/* get MMU Command Reg. */
1849	cmd = xm_read16(hw, port, XM_MMU_CMD);
1850	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1851		cmd |= XM_MMU_GMII_FD;
1852
1853	/*
1854	 * Workaround BCOM Errata (#10523) for all BCom Phys
1855	 * Enable Power Management after link up
1856	 */
1857	if (hw->phy_type == SK_PHY_BCOM) {
1858		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1859			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1860			     & ~PHY_B_AC_DIS_PM);
1861		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1862	}
1863
1864	/* enable Rx/Tx */
1865	xm_write16(hw, port, XM_MMU_CMD,
1866			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1867	skge_link_up(skge);
1868}
1869
1870
1871static inline void bcom_phy_intr(struct skge_port *skge)
1872{
1873	struct skge_hw *hw = skge->hw;
1874	int port = skge->port;
1875	u16 isrc;
1876
1877	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1878	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1879		     "phy interrupt status 0x%x\n", isrc);
1880
1881	if (isrc & PHY_B_IS_PSE)
1882		pr_err("%s: uncorrectable pair swap error\n",
1883		       hw->dev[port]->name);
1884
1885	/* Workaround BCom Errata:
1886	 *	enable and disable loopback mode if "NO HCD" occurs.
1887	 */
1888	if (isrc & PHY_B_IS_NO_HDCL) {
1889		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1890		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1891				  ctrl | PHY_CT_LOOP);
1892		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1893				  ctrl & ~PHY_CT_LOOP);
1894	}
1895
1896	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1897		bcom_check_link(hw, port);
1898
1899}
1900
1901static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1902{
1903	int i;
1904
1905	gma_write16(hw, port, GM_SMI_DATA, val);
1906	gma_write16(hw, port, GM_SMI_CTRL,
1907			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1908	for (i = 0; i < PHY_RETRIES; i++) {
1909		udelay(1);
1910
1911		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1912			return 0;
1913	}
1914
1915	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1916	return -EIO;
1917}
1918
1919static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1920{
1921	int i;
1922
1923	gma_write16(hw, port, GM_SMI_CTRL,
1924			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1925			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1926
1927	for (i = 0; i < PHY_RETRIES; i++) {
1928		udelay(1);
1929		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1930			goto ready;
1931	}
1932
1933	return -ETIMEDOUT;
1934 ready:
1935	*val = gma_read16(hw, port, GM_SMI_DATA);
1936	return 0;
1937}
1938
1939static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1940{
1941	u16 v = 0;
1942	if (__gm_phy_read(hw, port, reg, &v))
1943		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1944	return v;
1945}
1946
1947/* Marvell Phy Initialization */
1948static void yukon_init(struct skge_hw *hw, int port)
1949{
1950	struct skge_port *skge = netdev_priv(hw->dev[port]);
1951	u16 ctrl, ct1000, adv;
1952
1953	if (skge->autoneg == AUTONEG_ENABLE) {
1954		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1955
1956		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1957			  PHY_M_EC_MAC_S_MSK);
1958		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1959
1960		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1961
1962		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1963	}
1964
1965	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1966	if (skge->autoneg == AUTONEG_DISABLE)
1967		ctrl &= ~PHY_CT_ANE;
1968
1969	ctrl |= PHY_CT_RESET;
1970	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1971
1972	ctrl = 0;
1973	ct1000 = 0;
1974	adv = PHY_AN_CSMA;
1975
1976	if (skge->autoneg == AUTONEG_ENABLE) {
1977		if (hw->copper) {
1978			if (skge->advertising & ADVERTISED_1000baseT_Full)
1979				ct1000 |= PHY_M_1000C_AFD;
1980			if (skge->advertising & ADVERTISED_1000baseT_Half)
1981				ct1000 |= PHY_M_1000C_AHD;
1982			if (skge->advertising & ADVERTISED_100baseT_Full)
1983				adv |= PHY_M_AN_100_FD;
1984			if (skge->advertising & ADVERTISED_100baseT_Half)
1985				adv |= PHY_M_AN_100_HD;
1986			if (skge->advertising & ADVERTISED_10baseT_Full)
1987				adv |= PHY_M_AN_10_FD;
1988			if (skge->advertising & ADVERTISED_10baseT_Half)
1989				adv |= PHY_M_AN_10_HD;
1990
1991			/* Set Flow-control capabilities */
1992			adv |= phy_pause_map[skge->flow_control];
1993		} else {
1994			if (skge->advertising & ADVERTISED_1000baseT_Full)
1995				adv |= PHY_M_AN_1000X_AFD;
1996			if (skge->advertising & ADVERTISED_1000baseT_Half)
1997				adv |= PHY_M_AN_1000X_AHD;
1998
1999			adv |= fiber_pause_map[skge->flow_control];
2000		}
2001
2002		/* Restart Auto-negotiation */
2003		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2004	} else {
2005		/* forced speed/duplex settings */
2006		ct1000 = PHY_M_1000C_MSE;
2007
2008		if (skge->duplex == DUPLEX_FULL)
2009			ctrl |= PHY_CT_DUP_MD;
2010
2011		switch (skge->speed) {
2012		case SPEED_1000:
2013			ctrl |= PHY_CT_SP1000;
2014			break;
2015		case SPEED_100:
2016			ctrl |= PHY_CT_SP100;
2017			break;
2018		}
2019
2020		ctrl |= PHY_CT_RESET;
2021	}
2022
2023	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2024
2025	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2026	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2027
2028	/* Enable phy interrupt on autonegotiation complete (or link up) */
2029	if (skge->autoneg == AUTONEG_ENABLE)
2030		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2031	else
2032		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2033}
2034
2035static void yukon_reset(struct skge_hw *hw, int port)
2036{
2037	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2038	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2039	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2040	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2041	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2042
2043	gma_write16(hw, port, GM_RX_CTRL,
2044			 gma_read16(hw, port, GM_RX_CTRL)
2045			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2046}
2047
2048/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2049static int is_yukon_lite_a0(struct skge_hw *hw)
2050{
2051	u32 reg;
2052	int ret;
2053
2054	if (hw->chip_id != CHIP_ID_YUKON)
2055		return 0;
2056
2057	reg = skge_read32(hw, B2_FAR);
2058	skge_write8(hw, B2_FAR + 3, 0xff);
2059	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2060	skge_write32(hw, B2_FAR, reg);
2061	return ret;
2062}
2063
2064static void yukon_mac_init(struct skge_hw *hw, int port)
2065{
2066	struct skge_port *skge = netdev_priv(hw->dev[port]);
2067	int i;
2068	u32 reg;
2069	const u8 *addr = hw->dev[port]->dev_addr;
2070
2071	/* WA code for COMA mode -- set PHY reset */
2072	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2073	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2074		reg = skge_read32(hw, B2_GP_IO);
2075		reg |= GP_DIR_9 | GP_IO_9;
2076		skge_write32(hw, B2_GP_IO, reg);
2077	}
2078
2079	/* hard reset */
2080	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2081	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2082
2083	/* WA code for COMA mode -- clear PHY reset */
2084	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2085	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2086		reg = skge_read32(hw, B2_GP_IO);
2087		reg |= GP_DIR_9;
2088		reg &= ~GP_IO_9;
2089		skge_write32(hw, B2_GP_IO, reg);
2090	}
2091
2092	/* Set hardware config mode */
2093	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2094		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2095	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2096
2097	/* Clear GMC reset */
2098	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2099	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2100	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2101
2102	if (skge->autoneg == AUTONEG_DISABLE) {
2103		reg = GM_GPCR_AU_ALL_DIS;
2104		gma_write16(hw, port, GM_GP_CTRL,
2105				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2106
2107		switch (skge->speed) {
2108		case SPEED_1000:
2109			reg &= ~GM_GPCR_SPEED_100;
2110			reg |= GM_GPCR_SPEED_1000;
2111			break;
2112		case SPEED_100:
2113			reg &= ~GM_GPCR_SPEED_1000;
2114			reg |= GM_GPCR_SPEED_100;
2115			break;
2116		case SPEED_10:
2117			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2118			break;
2119		}
2120
2121		if (skge->duplex == DUPLEX_FULL)
2122			reg |= GM_GPCR_DUP_FULL;
2123	} else
2124		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2125
2126	switch (skge->flow_control) {
2127	case FLOW_MODE_NONE:
2128		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2129		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2130		break;
2131	case FLOW_MODE_LOC_SEND:
2132		/* disable Rx flow-control */
2133		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2134		break;
2135	case FLOW_MODE_SYMMETRIC:
2136	case FLOW_MODE_SYM_OR_REM:
2137		/* enable Tx & Rx flow-control */
2138		break;
2139	}
2140
2141	gma_write16(hw, port, GM_GP_CTRL, reg);
2142	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2143
2144	yukon_init(hw, port);
2145
2146	/* MIB clear */
2147	reg = gma_read16(hw, port, GM_PHY_ADDR);
2148	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2149
2150	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2151		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2152	gma_write16(hw, port, GM_PHY_ADDR, reg);
2153
2154	/* transmit control */
2155	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2156
2157	/* receive control reg: unicast + multicast + no FCS  */
2158	gma_write16(hw, port, GM_RX_CTRL,
2159			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2160
2161	/* transmit flow control */
2162	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2163
2164	/* transmit parameter */
2165	gma_write16(hw, port, GM_TX_PARAM,
2166			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2167			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2168			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2169
2170	/* configure the Serial Mode Register */
2171	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2172		| GM_SMOD_VLAN_ENA
2173		| IPG_DATA_VAL(IPG_DATA_DEF);
2174
2175	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2176		reg |= GM_SMOD_JUMBO_ENA;
2177
2178	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2179
2180	/* physical address: used for pause frames */
2181	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2182	/* virtual address for data */
2183	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2184
2185	/* enable interrupt mask for counter overflows */
2186	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2187	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2188	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2189
2190	/* Initialize Mac Fifo */
2191
2192	/* Configure Rx MAC FIFO */
2193	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2194	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2195
2196	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2197	if (is_yukon_lite_a0(hw))
2198		reg &= ~GMF_RX_F_FL_ON;
2199
2200	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2201	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2202	/*
2203	 * because Pause Packet Truncation in GMAC is not working
2204	 * we have to increase the Flush Threshold to 64 bytes
2205	 * in order to flush pause packets in Rx FIFO on Yukon-1
2206	 */
2207	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2208
2209	/* Configure Tx MAC FIFO */
2210	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2211	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2212}
2213
2214/* Go into power down mode */
2215static void yukon_suspend(struct skge_hw *hw, int port)
2216{
2217	u16 ctrl;
2218
2219	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2220	ctrl |= PHY_M_PC_POL_R_DIS;
2221	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2222
2223	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2224	ctrl |= PHY_CT_RESET;
2225	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2226
2227	/* switch IEEE compatible power down mode on */
2228	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2229	ctrl |= PHY_CT_PDOWN;
2230	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2231}
2232
2233static void yukon_stop(struct skge_port *skge)
2234{
2235	struct skge_hw *hw = skge->hw;
2236	int port = skge->port;
2237
2238	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2239	yukon_reset(hw, port);
2240
2241	gma_write16(hw, port, GM_GP_CTRL,
2242			 gma_read16(hw, port, GM_GP_CTRL)
2243			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2244	gma_read16(hw, port, GM_GP_CTRL);
2245
2246	yukon_suspend(hw, port);
2247
2248	/* set GPHY Control reset */
2249	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2250	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2251}
2252
2253static void yukon_get_stats(struct skge_port *skge, u64 *data)
2254{
2255	struct skge_hw *hw = skge->hw;
2256	int port = skge->port;
2257	int i;
2258
2259	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2260		| gma_read32(hw, port, GM_TXO_OK_LO);
2261	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2262		| gma_read32(hw, port, GM_RXO_OK_LO);
2263
2264	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2265		data[i] = gma_read32(hw, port,
2266					  skge_stats[i].gma_offset);
2267}
2268
2269static void yukon_mac_intr(struct skge_hw *hw, int port)
2270{
2271	struct net_device *dev = hw->dev[port];
2272	struct skge_port *skge = netdev_priv(dev);
2273	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2274
2275	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2276		     "mac interrupt status 0x%x\n", status);
2277
2278	if (status & GM_IS_RX_FF_OR) {
2279		++dev->stats.rx_fifo_errors;
2280		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2281	}
2282
2283	if (status & GM_IS_TX_FF_UR) {
2284		++dev->stats.tx_fifo_errors;
2285		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2286	}
2287
2288}
2289
2290static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2291{
2292	switch (aux & PHY_M_PS_SPEED_MSK) {
2293	case PHY_M_PS_SPEED_1000:
2294		return SPEED_1000;
2295	case PHY_M_PS_SPEED_100:
2296		return SPEED_100;
2297	default:
2298		return SPEED_10;
2299	}
2300}
2301
2302static void yukon_link_up(struct skge_port *skge)
2303{
2304	struct skge_hw *hw = skge->hw;
2305	int port = skge->port;
2306	u16 reg;
2307
2308	/* Enable Transmit FIFO Underrun */
2309	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2310
2311	reg = gma_read16(hw, port, GM_GP_CTRL);
2312	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2313		reg |= GM_GPCR_DUP_FULL;
2314
2315	/* enable Rx/Tx */
2316	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2317	gma_write16(hw, port, GM_GP_CTRL, reg);
2318
2319	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2320	skge_link_up(skge);
2321}
2322
2323static void yukon_link_down(struct skge_port *skge)
2324{
2325	struct skge_hw *hw = skge->hw;
2326	int port = skge->port;
2327	u16 ctrl;
2328
2329	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2330	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2331	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2332
2333	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2334		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2335		ctrl |= PHY_M_AN_ASP;
2336		/* restore Asymmetric Pause bit */
2337		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2338	}
2339
2340	skge_link_down(skge);
2341
2342	yukon_init(hw, port);
2343}
2344
2345static void yukon_phy_intr(struct skge_port *skge)
2346{
2347	struct skge_hw *hw = skge->hw;
2348	int port = skge->port;
2349	const char *reason = NULL;
2350	u16 istatus, phystat;
2351
2352	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2353	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2354
2355	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2356		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2357
2358	if (istatus & PHY_M_IS_AN_COMPL) {
2359		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2360		    & PHY_M_AN_RF) {
2361			reason = "remote fault";
2362			goto failed;
2363		}
2364
2365		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2366			reason = "master/slave fault";
2367			goto failed;
2368		}
2369
2370		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2371			reason = "speed/duplex";
2372			goto failed;
2373		}
2374
2375		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2376			? DUPLEX_FULL : DUPLEX_HALF;
2377		skge->speed = yukon_speed(hw, phystat);
2378
2379		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2380		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2381		case PHY_M_PS_PAUSE_MSK:
2382			skge->flow_status = FLOW_STAT_SYMMETRIC;
2383			break;
2384		case PHY_M_PS_RX_P_EN:
2385			skge->flow_status = FLOW_STAT_REM_SEND;
2386			break;
2387		case PHY_M_PS_TX_P_EN:
2388			skge->flow_status = FLOW_STAT_LOC_SEND;
2389			break;
2390		default:
2391			skge->flow_status = FLOW_STAT_NONE;
2392		}
2393
2394		if (skge->flow_status == FLOW_STAT_NONE ||
2395		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2396			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2397		else
2398			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2399		yukon_link_up(skge);
2400		return;
2401	}
2402
2403	if (istatus & PHY_M_IS_LSP_CHANGE)
2404		skge->speed = yukon_speed(hw, phystat);
2405
2406	if (istatus & PHY_M_IS_DUP_CHANGE)
2407		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2408	if (istatus & PHY_M_IS_LST_CHANGE) {
2409		if (phystat & PHY_M_PS_LINK_UP)
2410			yukon_link_up(skge);
2411		else
2412			yukon_link_down(skge);
2413	}
2414	return;
2415 failed:
2416	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2417
2418	/* XXX restart autonegotiation? */
2419}
2420
2421static void skge_phy_reset(struct skge_port *skge)
2422{
2423	struct skge_hw *hw = skge->hw;
2424	int port = skge->port;
2425	struct net_device *dev = hw->dev[port];
2426
2427	netif_stop_queue(skge->netdev);
2428	netif_carrier_off(skge->netdev);
2429
2430	spin_lock_bh(&hw->phy_lock);
2431	if (is_genesis(hw)) {
2432		genesis_reset(hw, port);
2433		genesis_mac_init(hw, port);
2434	} else {
2435		yukon_reset(hw, port);
2436		yukon_init(hw, port);
2437	}
2438	spin_unlock_bh(&hw->phy_lock);
2439
2440	skge_set_multicast(dev);
2441}
2442
2443/* Basic MII support */
2444static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2445{
2446	struct mii_ioctl_data *data = if_mii(ifr);
2447	struct skge_port *skge = netdev_priv(dev);
2448	struct skge_hw *hw = skge->hw;
2449	int err = -EOPNOTSUPP;
2450
2451	if (!netif_running(dev))
2452		return -ENODEV;	/* Phy still in reset */
2453
2454	switch (cmd) {
2455	case SIOCGMIIPHY:
2456		data->phy_id = hw->phy_addr;
2457
2458		fallthrough;
2459	case SIOCGMIIREG: {
2460		u16 val = 0;
2461		spin_lock_bh(&hw->phy_lock);
2462
2463		if (is_genesis(hw))
2464			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2465		else
2466			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2467		spin_unlock_bh(&hw->phy_lock);
2468		data->val_out = val;
2469		break;
2470	}
2471
2472	case SIOCSMIIREG:
2473		spin_lock_bh(&hw->phy_lock);
2474		if (is_genesis(hw))
2475			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2476				   data->val_in);
2477		else
2478			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2479				   data->val_in);
2480		spin_unlock_bh(&hw->phy_lock);
2481		break;
2482	}
2483	return err;
2484}
2485
2486static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2487{
2488	u32 end;
2489
2490	start /= 8;
2491	len /= 8;
2492	end = start + len - 1;
2493
2494	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2495	skge_write32(hw, RB_ADDR(q, RB_START), start);
2496	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2497	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2498	skge_write32(hw, RB_ADDR(q, RB_END), end);
2499
2500	if (q == Q_R1 || q == Q_R2) {
2501		/* Set thresholds on receive queue's */
2502		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2503			     start + (2*len)/3);
2504		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2505			     start + (len/3));
2506	} else {
2507		/* Enable store & forward on Tx queue's because
2508		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2509		 */
2510		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2511	}
2512
2513	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2514}
2515
2516/* Setup Bus Memory Interface */
2517static void skge_qset(struct skge_port *skge, u16 q,
2518		      const struct skge_element *e)
2519{
2520	struct skge_hw *hw = skge->hw;
2521	u32 watermark = 0x600;
2522	u64 base = skge->dma + (e->desc - skge->mem);
2523
2524	/* optimization to reduce window on 32bit/33mhz */
2525	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2526		watermark /= 2;
2527
2528	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2529	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2530	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2531	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2532}
2533
2534static int skge_up(struct net_device *dev)
2535{
2536	struct skge_port *skge = netdev_priv(dev);
2537	struct skge_hw *hw = skge->hw;
2538	int port = skge->port;
2539	u32 chunk, ram_addr;
2540	size_t rx_size, tx_size;
2541	int err;
2542
2543	if (!is_valid_ether_addr(dev->dev_addr))
2544		return -EINVAL;
2545
2546	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2547
2548	if (dev->mtu > RX_BUF_SIZE)
2549		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2550	else
2551		skge->rx_buf_size = RX_BUF_SIZE;
2552
2553
2554	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2555	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2556	skge->mem_size = tx_size + rx_size;
2557	skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2558				       &skge->dma, GFP_KERNEL);
2559	if (!skge->mem)
2560		return -ENOMEM;
2561
2562	BUG_ON(skge->dma & 7);
2563
2564	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2565		dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2566		err = -EINVAL;
2567		goto free_pci_mem;
2568	}
2569
2570	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2571	if (err)
2572		goto free_pci_mem;
2573
2574	err = skge_rx_fill(dev);
2575	if (err)
2576		goto free_rx_ring;
2577
2578	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2579			      skge->dma + rx_size);
2580	if (err)
2581		goto free_rx_ring;
2582
2583	if (hw->ports == 1) {
2584		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2585				  dev->name, hw);
2586		if (err) {
2587			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2588				   hw->pdev->irq, err);
2589			goto free_tx_ring;
2590		}
2591	}
2592
2593	/* Initialize MAC */
2594	netif_carrier_off(dev);
2595	spin_lock_bh(&hw->phy_lock);
2596	if (is_genesis(hw))
2597		genesis_mac_init(hw, port);
2598	else
2599		yukon_mac_init(hw, port);
2600	spin_unlock_bh(&hw->phy_lock);
2601
2602	/* Configure RAMbuffers - equally between ports and tx/rx */
2603	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2604	ram_addr = hw->ram_offset + 2 * chunk * port;
2605
2606	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2607	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2608
2609	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2610	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2611	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2612
2613	/* Start receiver BMU */
2614	wmb();
2615	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2616	skge_led(skge, LED_MODE_ON);
2617
2618	spin_lock_irq(&hw->hw_lock);
2619	hw->intr_mask |= portmask[port];
2620	skge_write32(hw, B0_IMSK, hw->intr_mask);
2621	skge_read32(hw, B0_IMSK);
2622	spin_unlock_irq(&hw->hw_lock);
2623
2624	napi_enable(&skge->napi);
2625
2626	skge_set_multicast(dev);
2627
2628	return 0;
2629
2630 free_tx_ring:
2631	kfree(skge->tx_ring.start);
2632 free_rx_ring:
2633	skge_rx_clean(skge);
2634	kfree(skge->rx_ring.start);
2635 free_pci_mem:
2636	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2637			  skge->dma);
2638	skge->mem = NULL;
2639
2640	return err;
2641}
2642
2643/* stop receiver */
2644static void skge_rx_stop(struct skge_hw *hw, int port)
2645{
2646	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2647	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2648		     RB_RST_SET|RB_DIS_OP_MD);
2649	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2650}
2651
2652static int skge_down(struct net_device *dev)
2653{
2654	struct skge_port *skge = netdev_priv(dev);
2655	struct skge_hw *hw = skge->hw;
2656	int port = skge->port;
2657
2658	if (!skge->mem)
2659		return 0;
2660
2661	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2662
2663	netif_tx_disable(dev);
2664
2665	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2666		del_timer_sync(&skge->link_timer);
2667
2668	napi_disable(&skge->napi);
2669	netif_carrier_off(dev);
2670
2671	spin_lock_irq(&hw->hw_lock);
2672	hw->intr_mask &= ~portmask[port];
2673	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2674	skge_read32(hw, B0_IMSK);
2675	spin_unlock_irq(&hw->hw_lock);
2676
2677	if (hw->ports == 1)
2678		free_irq(hw->pdev->irq, hw);
2679
2680	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2681	if (is_genesis(hw))
2682		genesis_stop(skge);
2683	else
2684		yukon_stop(skge);
2685
2686	/* Stop transmitter */
2687	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2688	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2689		     RB_RST_SET|RB_DIS_OP_MD);
2690
2691
2692	/* Disable Force Sync bit and Enable Alloc bit */
2693	skge_write8(hw, SK_REG(port, TXA_CTRL),
2694		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2695
2696	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2697	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2698	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2699
2700	/* Reset PCI FIFO */
2701	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2702	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2703
2704	/* Reset the RAM Buffer async Tx queue */
2705	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2706
2707	skge_rx_stop(hw, port);
2708
2709	if (is_genesis(hw)) {
2710		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2711		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2712	} else {
2713		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2714		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2715	}
2716
2717	skge_led(skge, LED_MODE_OFF);
2718
2719	netif_tx_lock_bh(dev);
2720	skge_tx_clean(dev);
2721	netif_tx_unlock_bh(dev);
2722
2723	skge_rx_clean(skge);
2724
2725	kfree(skge->rx_ring.start);
2726	kfree(skge->tx_ring.start);
2727	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2728			  skge->dma);
2729	skge->mem = NULL;
2730	return 0;
2731}
2732
2733static inline int skge_avail(const struct skge_ring *ring)
2734{
2735	smp_mb();
2736	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2737		+ (ring->to_clean - ring->to_use) - 1;
2738}
2739
2740static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2741				   struct net_device *dev)
2742{
2743	struct skge_port *skge = netdev_priv(dev);
2744	struct skge_hw *hw = skge->hw;
2745	struct skge_element *e;
2746	struct skge_tx_desc *td;
2747	int i;
2748	u32 control, len;
2749	dma_addr_t map;
2750
2751	if (skb_padto(skb, ETH_ZLEN))
2752		return NETDEV_TX_OK;
2753
2754	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2755		return NETDEV_TX_BUSY;
2756
2757	e = skge->tx_ring.to_use;
2758	td = e->desc;
2759	BUG_ON(td->control & BMU_OWN);
2760	e->skb = skb;
2761	len = skb_headlen(skb);
2762	map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2763	if (dma_mapping_error(&hw->pdev->dev, map))
2764		goto mapping_error;
2765
2766	dma_unmap_addr_set(e, mapaddr, map);
2767	dma_unmap_len_set(e, maplen, len);
2768
2769	td->dma_lo = lower_32_bits(map);
2770	td->dma_hi = upper_32_bits(map);
2771
2772	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2773		const int offset = skb_checksum_start_offset(skb);
2774
2775		/* This seems backwards, but it is what the sk98lin
2776		 * does.  Looks like hardware is wrong?
2777		 */
2778		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2779		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2780			control = BMU_TCP_CHECK;
2781		else
2782			control = BMU_UDP_CHECK;
2783
2784		td->csum_offs = 0;
2785		td->csum_start = offset;
2786		td->csum_write = offset + skb->csum_offset;
2787	} else
2788		control = BMU_CHECK;
2789
2790	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2791		control |= BMU_EOF | BMU_IRQ_EOF;
2792	else {
2793		struct skge_tx_desc *tf = td;
2794
2795		control |= BMU_STFWD;
2796		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2797			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2798
2799			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2800					       skb_frag_size(frag), DMA_TO_DEVICE);
2801			if (dma_mapping_error(&hw->pdev->dev, map))
2802				goto mapping_unwind;
2803
2804			e = e->next;
2805			e->skb = skb;
2806			tf = e->desc;
2807			BUG_ON(tf->control & BMU_OWN);
2808
2809			tf->dma_lo = lower_32_bits(map);
2810			tf->dma_hi = upper_32_bits(map);
2811			dma_unmap_addr_set(e, mapaddr, map);
2812			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2813
2814			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2815		}
2816		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2817	}
2818	/* Make sure all the descriptors written */
2819	wmb();
2820	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2821	wmb();
2822
2823	netdev_sent_queue(dev, skb->len);
2824
2825	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2826
2827	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2828		     "tx queued, slot %td, len %d\n",
2829		     e - skge->tx_ring.start, skb->len);
2830
2831	skge->tx_ring.to_use = e->next;
2832	smp_wmb();
2833
2834	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2835		netdev_dbg(dev, "transmit queue full\n");
2836		netif_stop_queue(dev);
2837	}
2838
2839	return NETDEV_TX_OK;
2840
2841mapping_unwind:
2842	e = skge->tx_ring.to_use;
2843	dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2844			 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2845	while (i-- > 0) {
2846		e = e->next;
2847		dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2848			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2849	}
2850
2851mapping_error:
2852	if (net_ratelimit())
2853		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2854	dev_kfree_skb_any(skb);
2855	return NETDEV_TX_OK;
2856}
2857
2858
2859/* Free resources associated with this reing element */
2860static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2861				 u32 control)
2862{
2863	/* skb header vs. fragment */
2864	if (control & BMU_STF)
2865		dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2866				 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2867	else
2868		dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2869			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2870}
2871
2872/* Free all buffers in transmit ring */
2873static void skge_tx_clean(struct net_device *dev)
2874{
2875	struct skge_port *skge = netdev_priv(dev);
2876	struct skge_element *e;
2877
2878	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2879		struct skge_tx_desc *td = e->desc;
2880
2881		skge_tx_unmap(skge->hw->pdev, e, td->control);
2882
2883		if (td->control & BMU_EOF)
2884			dev_kfree_skb(e->skb);
2885		td->control = 0;
2886	}
2887
2888	netdev_reset_queue(dev);
2889	skge->tx_ring.to_clean = e;
2890}
2891
2892static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2893{
2894	struct skge_port *skge = netdev_priv(dev);
2895
2896	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2897
2898	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2899	skge_tx_clean(dev);
2900	netif_wake_queue(dev);
2901}
2902
2903static int skge_change_mtu(struct net_device *dev, int new_mtu)
2904{
2905	int err;
2906
2907	if (!netif_running(dev)) {
2908		dev->mtu = new_mtu;
2909		return 0;
2910	}
2911
2912	skge_down(dev);
2913
2914	dev->mtu = new_mtu;
2915
2916	err = skge_up(dev);
2917	if (err)
2918		dev_close(dev);
2919
2920	return err;
2921}
2922
2923static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2924
2925static void genesis_add_filter(u8 filter[8], const u8 *addr)
2926{
2927	u32 crc, bit;
2928
2929	crc = ether_crc_le(ETH_ALEN, addr);
2930	bit = ~crc & 0x3f;
2931	filter[bit/8] |= 1 << (bit%8);
2932}
2933
2934static void genesis_set_multicast(struct net_device *dev)
2935{
2936	struct skge_port *skge = netdev_priv(dev);
2937	struct skge_hw *hw = skge->hw;
2938	int port = skge->port;
2939	struct netdev_hw_addr *ha;
2940	u32 mode;
2941	u8 filter[8];
2942
2943	mode = xm_read32(hw, port, XM_MODE);
2944	mode |= XM_MD_ENA_HASH;
2945	if (dev->flags & IFF_PROMISC)
2946		mode |= XM_MD_ENA_PROM;
2947	else
2948		mode &= ~XM_MD_ENA_PROM;
2949
2950	if (dev->flags & IFF_ALLMULTI)
2951		memset(filter, 0xff, sizeof(filter));
2952	else {
2953		memset(filter, 0, sizeof(filter));
2954
2955		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2956		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2957			genesis_add_filter(filter, pause_mc_addr);
2958
2959		netdev_for_each_mc_addr(ha, dev)
2960			genesis_add_filter(filter, ha->addr);
2961	}
2962
2963	xm_write32(hw, port, XM_MODE, mode);
2964	xm_outhash(hw, port, XM_HSM, filter);
2965}
2966
2967static void yukon_add_filter(u8 filter[8], const u8 *addr)
2968{
2969	u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2970
2971	filter[bit / 8] |= 1 << (bit % 8);
2972}
2973
2974static void yukon_set_multicast(struct net_device *dev)
2975{
2976	struct skge_port *skge = netdev_priv(dev);
2977	struct skge_hw *hw = skge->hw;
2978	int port = skge->port;
2979	struct netdev_hw_addr *ha;
2980	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2981			skge->flow_status == FLOW_STAT_SYMMETRIC);
2982	u16 reg;
2983	u8 filter[8];
2984
2985	memset(filter, 0, sizeof(filter));
2986
2987	reg = gma_read16(hw, port, GM_RX_CTRL);
2988	reg |= GM_RXCR_UCF_ENA;
2989
2990	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2991		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2992	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2993		memset(filter, 0xff, sizeof(filter));
2994	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2995		reg &= ~GM_RXCR_MCF_ENA;
2996	else {
2997		reg |= GM_RXCR_MCF_ENA;
2998
2999		if (rx_pause)
3000			yukon_add_filter(filter, pause_mc_addr);
3001
3002		netdev_for_each_mc_addr(ha, dev)
3003			yukon_add_filter(filter, ha->addr);
3004	}
3005
3006
3007	gma_write16(hw, port, GM_MC_ADDR_H1,
3008			 (u16)filter[0] | ((u16)filter[1] << 8));
3009	gma_write16(hw, port, GM_MC_ADDR_H2,
3010			 (u16)filter[2] | ((u16)filter[3] << 8));
3011	gma_write16(hw, port, GM_MC_ADDR_H3,
3012			 (u16)filter[4] | ((u16)filter[5] << 8));
3013	gma_write16(hw, port, GM_MC_ADDR_H4,
3014			 (u16)filter[6] | ((u16)filter[7] << 8));
3015
3016	gma_write16(hw, port, GM_RX_CTRL, reg);
3017}
3018
3019static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3020{
3021	if (is_genesis(hw))
3022		return status >> XMR_FS_LEN_SHIFT;
3023	else
3024		return status >> GMR_FS_LEN_SHIFT;
3025}
3026
3027static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3028{
3029	if (is_genesis(hw))
3030		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3031	else
3032		return (status & GMR_FS_ANY_ERR) ||
3033			(status & GMR_FS_RX_OK) == 0;
3034}
3035
3036static void skge_set_multicast(struct net_device *dev)
3037{
3038	struct skge_port *skge = netdev_priv(dev);
3039
3040	if (is_genesis(skge->hw))
3041		genesis_set_multicast(dev);
3042	else
3043		yukon_set_multicast(dev);
3044
3045}
3046
3047
3048/* Get receive buffer from descriptor.
3049 * Handles copy of small buffers and reallocation failures
3050 */
3051static struct sk_buff *skge_rx_get(struct net_device *dev,
3052				   struct skge_element *e,
3053				   u32 control, u32 status, u16 csum)
3054{
3055	struct skge_port *skge = netdev_priv(dev);
3056	struct sk_buff *skb;
3057	u16 len = control & BMU_BBC;
3058
3059	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3060		     "rx slot %td status 0x%x len %d\n",
3061		     e - skge->rx_ring.start, status, len);
3062
3063	if (len > skge->rx_buf_size)
3064		goto error;
3065
3066	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3067		goto error;
3068
3069	if (bad_phy_status(skge->hw, status))
3070		goto error;
3071
3072	if (phy_length(skge->hw, status) != len)
3073		goto error;
3074
3075	if (len < RX_COPY_THRESHOLD) {
3076		skb = netdev_alloc_skb_ip_align(dev, len);
3077		if (!skb)
3078			goto resubmit;
3079
3080		dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3081					dma_unmap_addr(e, mapaddr),
3082					dma_unmap_len(e, maplen),
3083					DMA_FROM_DEVICE);
3084		skb_copy_from_linear_data(e->skb, skb->data, len);
3085		dma_sync_single_for_device(&skge->hw->pdev->dev,
3086					   dma_unmap_addr(e, mapaddr),
3087					   dma_unmap_len(e, maplen),
3088					   DMA_FROM_DEVICE);
3089		skge_rx_reuse(e, skge->rx_buf_size);
3090	} else {
3091		struct skge_element ee;
3092		struct sk_buff *nskb;
3093
3094		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3095		if (!nskb)
3096			goto resubmit;
3097
3098		ee = *e;
3099
3100		skb = ee.skb;
3101		prefetch(skb->data);
3102
3103		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3104			dev_kfree_skb(nskb);
3105			goto resubmit;
3106		}
3107
3108		dma_unmap_single(&skge->hw->pdev->dev,
3109				 dma_unmap_addr(&ee, mapaddr),
3110				 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3111	}
3112
3113	skb_put(skb, len);
3114
3115	if (dev->features & NETIF_F_RXCSUM) {
3116		skb->csum = le16_to_cpu(csum);
3117		skb->ip_summed = CHECKSUM_COMPLETE;
3118	}
3119
3120	skb->protocol = eth_type_trans(skb, dev);
3121
3122	return skb;
3123error:
3124
3125	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3126		     "rx err, slot %td control 0x%x status 0x%x\n",
3127		     e - skge->rx_ring.start, control, status);
3128
3129	if (is_genesis(skge->hw)) {
3130		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3131			dev->stats.rx_length_errors++;
3132		if (status & XMR_FS_FRA_ERR)
3133			dev->stats.rx_frame_errors++;
3134		if (status & XMR_FS_FCS_ERR)
3135			dev->stats.rx_crc_errors++;
3136	} else {
3137		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3138			dev->stats.rx_length_errors++;
3139		if (status & GMR_FS_FRAGMENT)
3140			dev->stats.rx_frame_errors++;
3141		if (status & GMR_FS_CRC_ERR)
3142			dev->stats.rx_crc_errors++;
3143	}
3144
3145resubmit:
3146	skge_rx_reuse(e, skge->rx_buf_size);
3147	return NULL;
3148}
3149
3150/* Free all buffers in Tx ring which are no longer owned by device */
3151static void skge_tx_done(struct net_device *dev)
3152{
3153	struct skge_port *skge = netdev_priv(dev);
3154	struct skge_ring *ring = &skge->tx_ring;
3155	struct skge_element *e;
3156	unsigned int bytes_compl = 0, pkts_compl = 0;
3157
3158	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3159
3160	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3161		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3162
3163		if (control & BMU_OWN)
3164			break;
3165
3166		skge_tx_unmap(skge->hw->pdev, e, control);
3167
3168		if (control & BMU_EOF) {
3169			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3170				     "tx done slot %td\n",
3171				     e - skge->tx_ring.start);
3172
3173			pkts_compl++;
3174			bytes_compl += e->skb->len;
3175
3176			dev_consume_skb_any(e->skb);
3177		}
3178	}
3179	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3180	skge->tx_ring.to_clean = e;
3181
3182	/* Can run lockless until we need to synchronize to restart queue. */
3183	smp_mb();
3184
3185	if (unlikely(netif_queue_stopped(dev) &&
3186		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3187		netif_tx_lock(dev);
3188		if (unlikely(netif_queue_stopped(dev) &&
3189			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3190			netif_wake_queue(dev);
3191
3192		}
3193		netif_tx_unlock(dev);
3194	}
3195}
3196
3197static int skge_poll(struct napi_struct *napi, int budget)
3198{
3199	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3200	struct net_device *dev = skge->netdev;
3201	struct skge_hw *hw = skge->hw;
3202	struct skge_ring *ring = &skge->rx_ring;
3203	struct skge_element *e;
3204	int work_done = 0;
3205
3206	skge_tx_done(dev);
3207
3208	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3209
3210	for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3211		struct skge_rx_desc *rd = e->desc;
3212		struct sk_buff *skb;
3213		u32 control;
3214
3215		rmb();
3216		control = rd->control;
3217		if (control & BMU_OWN)
3218			break;
3219
3220		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3221		if (likely(skb)) {
3222			napi_gro_receive(napi, skb);
3223			++work_done;
3224		}
3225	}
3226	ring->to_clean = e;
3227
3228	/* restart receiver */
3229	wmb();
3230	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3231
3232	if (work_done < budget && napi_complete_done(napi, work_done)) {
3233		unsigned long flags;
3234
3235		spin_lock_irqsave(&hw->hw_lock, flags);
3236		hw->intr_mask |= napimask[skge->port];
3237		skge_write32(hw, B0_IMSK, hw->intr_mask);
3238		skge_read32(hw, B0_IMSK);
3239		spin_unlock_irqrestore(&hw->hw_lock, flags);
3240	}
3241
3242	return work_done;
3243}
3244
3245/* Parity errors seem to happen when Genesis is connected to a switch
3246 * with no other ports present. Heartbeat error??
3247 */
3248static void skge_mac_parity(struct skge_hw *hw, int port)
3249{
3250	struct net_device *dev = hw->dev[port];
3251
3252	++dev->stats.tx_heartbeat_errors;
3253
3254	if (is_genesis(hw))
3255		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3256			     MFF_CLR_PERR);
3257	else
3258		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3259		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3260			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3261			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3262}
3263
3264static void skge_mac_intr(struct skge_hw *hw, int port)
3265{
3266	if (is_genesis(hw))
3267		genesis_mac_intr(hw, port);
3268	else
3269		yukon_mac_intr(hw, port);
3270}
3271
3272/* Handle device specific framing and timeout interrupts */
3273static void skge_error_irq(struct skge_hw *hw)
3274{
3275	struct pci_dev *pdev = hw->pdev;
3276	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3277
3278	if (is_genesis(hw)) {
3279		/* clear xmac errors */
3280		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3281			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3282		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3283			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3284	} else {
3285		/* Timestamp (unused) overflow */
3286		if (hwstatus & IS_IRQ_TIST_OV)
3287			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3288	}
3289
3290	if (hwstatus & IS_RAM_RD_PAR) {
3291		dev_err(&pdev->dev, "Ram read data parity error\n");
3292		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3293	}
3294
3295	if (hwstatus & IS_RAM_WR_PAR) {
3296		dev_err(&pdev->dev, "Ram write data parity error\n");
3297		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3298	}
3299
3300	if (hwstatus & IS_M1_PAR_ERR)
3301		skge_mac_parity(hw, 0);
3302
3303	if (hwstatus & IS_M2_PAR_ERR)
3304		skge_mac_parity(hw, 1);
3305
3306	if (hwstatus & IS_R1_PAR_ERR) {
3307		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3308			hw->dev[0]->name);
3309		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3310	}
3311
3312	if (hwstatus & IS_R2_PAR_ERR) {
3313		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3314			hw->dev[1]->name);
3315		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3316	}
3317
3318	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3319		u16 pci_status, pci_cmd;
3320
3321		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3322		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3323
3324		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3325			pci_cmd, pci_status);
3326
3327		/* Write the error bits back to clear them. */
3328		pci_status &= PCI_STATUS_ERROR_BITS;
3329		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3330		pci_write_config_word(pdev, PCI_COMMAND,
3331				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3332		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3333		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3334
3335		/* if error still set then just ignore it */
3336		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3337		if (hwstatus & IS_IRQ_STAT) {
3338			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3339			hw->intr_mask &= ~IS_HW_ERR;
3340		}
3341	}
3342}
3343
3344/*
3345 * Interrupt from PHY are handled in tasklet (softirq)
3346 * because accessing phy registers requires spin wait which might
3347 * cause excess interrupt latency.
3348 */
3349static void skge_extirq(struct tasklet_struct *t)
3350{
3351	struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3352	int port;
3353
3354	for (port = 0; port < hw->ports; port++) {
3355		struct net_device *dev = hw->dev[port];
3356
3357		if (netif_running(dev)) {
3358			struct skge_port *skge = netdev_priv(dev);
3359
3360			spin_lock(&hw->phy_lock);
3361			if (!is_genesis(hw))
3362				yukon_phy_intr(skge);
3363			else if (hw->phy_type == SK_PHY_BCOM)
3364				bcom_phy_intr(skge);
3365			spin_unlock(&hw->phy_lock);
3366		}
3367	}
3368
3369	spin_lock_irq(&hw->hw_lock);
3370	hw->intr_mask |= IS_EXT_REG;
3371	skge_write32(hw, B0_IMSK, hw->intr_mask);
3372	skge_read32(hw, B0_IMSK);
3373	spin_unlock_irq(&hw->hw_lock);
3374}
3375
3376static irqreturn_t skge_intr(int irq, void *dev_id)
3377{
3378	struct skge_hw *hw = dev_id;
3379	u32 status;
3380	int handled = 0;
3381
3382	spin_lock(&hw->hw_lock);
3383	/* Reading this register masks IRQ */
3384	status = skge_read32(hw, B0_SP_ISRC);
3385	if (status == 0 || status == ~0)
3386		goto out;
3387
3388	handled = 1;
3389	status &= hw->intr_mask;
3390	if (status & IS_EXT_REG) {
3391		hw->intr_mask &= ~IS_EXT_REG;
3392		tasklet_schedule(&hw->phy_task);
3393	}
3394
3395	if (status & (IS_XA1_F|IS_R1_F)) {
3396		struct skge_port *skge = netdev_priv(hw->dev[0]);
3397		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3398		napi_schedule(&skge->napi);
3399	}
3400
3401	if (status & IS_PA_TO_TX1)
3402		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3403
3404	if (status & IS_PA_TO_RX1) {
3405		++hw->dev[0]->stats.rx_over_errors;
3406		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3407	}
3408
3409
3410	if (status & IS_MAC1)
3411		skge_mac_intr(hw, 0);
3412
3413	if (hw->dev[1]) {
3414		struct skge_port *skge = netdev_priv(hw->dev[1]);
3415
3416		if (status & (IS_XA2_F|IS_R2_F)) {
3417			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3418			napi_schedule(&skge->napi);
3419		}
3420
3421		if (status & IS_PA_TO_RX2) {
3422			++hw->dev[1]->stats.rx_over_errors;
3423			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3424		}
3425
3426		if (status & IS_PA_TO_TX2)
3427			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3428
3429		if (status & IS_MAC2)
3430			skge_mac_intr(hw, 1);
3431	}
3432
3433	if (status & IS_HW_ERR)
3434		skge_error_irq(hw);
3435out:
3436	skge_write32(hw, B0_IMSK, hw->intr_mask);
3437	skge_read32(hw, B0_IMSK);
3438	spin_unlock(&hw->hw_lock);
3439
3440	return IRQ_RETVAL(handled);
3441}
3442
3443#ifdef CONFIG_NET_POLL_CONTROLLER
3444static void skge_netpoll(struct net_device *dev)
3445{
3446	struct skge_port *skge = netdev_priv(dev);
3447
3448	disable_irq(dev->irq);
3449	skge_intr(dev->irq, skge->hw);
3450	enable_irq(dev->irq);
3451}
3452#endif
3453
3454static int skge_set_mac_address(struct net_device *dev, void *p)
3455{
3456	struct skge_port *skge = netdev_priv(dev);
3457	struct skge_hw *hw = skge->hw;
3458	unsigned port = skge->port;
3459	const struct sockaddr *addr = p;
3460	u16 ctrl;
3461
3462	if (!is_valid_ether_addr(addr->sa_data))
3463		return -EADDRNOTAVAIL;
3464
3465	eth_hw_addr_set(dev, addr->sa_data);
3466
3467	if (!netif_running(dev)) {
3468		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3469		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3470	} else {
3471		/* disable Rx */
3472		spin_lock_bh(&hw->phy_lock);
3473		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3474		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3475
3476		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3477		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3478
3479		if (is_genesis(hw))
3480			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3481		else {
3482			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3483			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3484		}
3485
3486		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3487		spin_unlock_bh(&hw->phy_lock);
3488	}
3489
3490	return 0;
3491}
3492
3493static const struct {
3494	u8 id;
3495	const char *name;
3496} skge_chips[] = {
3497	{ CHIP_ID_GENESIS,	"Genesis" },
3498	{ CHIP_ID_YUKON,	 "Yukon" },
3499	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3500	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3501};
3502
3503static const char *skge_board_name(const struct skge_hw *hw)
3504{
3505	int i;
3506	static char buf[16];
3507
3508	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3509		if (skge_chips[i].id == hw->chip_id)
3510			return skge_chips[i].name;
3511
3512	snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3513	return buf;
3514}
3515
3516
3517/*
3518 * Setup the board data structure, but don't bring up
3519 * the port(s)
3520 */
3521static int skge_reset(struct skge_hw *hw)
3522{
3523	u32 reg;
3524	u16 ctst, pci_status;
3525	u8 t8, mac_cfg, pmd_type;
3526	int i;
3527
3528	ctst = skge_read16(hw, B0_CTST);
3529
3530	/* do a SW reset */
3531	skge_write8(hw, B0_CTST, CS_RST_SET);
3532	skge_write8(hw, B0_CTST, CS_RST_CLR);
3533
3534	/* clear PCI errors, if any */
3535	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3536	skge_write8(hw, B2_TST_CTRL2, 0);
3537
3538	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3539	pci_write_config_word(hw->pdev, PCI_STATUS,
3540			      pci_status | PCI_STATUS_ERROR_BITS);
3541	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3542	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3543
3544	/* restore CLK_RUN bits (for Yukon-Lite) */
3545	skge_write16(hw, B0_CTST,
3546		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3547
3548	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3549	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3550	pmd_type = skge_read8(hw, B2_PMD_TYP);
3551	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3552
3553	switch (hw->chip_id) {
3554	case CHIP_ID_GENESIS:
3555#ifdef CONFIG_SKGE_GENESIS
3556		switch (hw->phy_type) {
3557		case SK_PHY_XMAC:
3558			hw->phy_addr = PHY_ADDR_XMAC;
3559			break;
3560		case SK_PHY_BCOM:
3561			hw->phy_addr = PHY_ADDR_BCOM;
3562			break;
3563		default:
3564			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3565			       hw->phy_type);
3566			return -EOPNOTSUPP;
3567		}
3568		break;
3569#else
3570		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3571		return -EOPNOTSUPP;
3572#endif
3573
3574	case CHIP_ID_YUKON:
3575	case CHIP_ID_YUKON_LITE:
3576	case CHIP_ID_YUKON_LP:
3577		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3578			hw->copper = 1;
3579
3580		hw->phy_addr = PHY_ADDR_MARV;
3581		break;
3582
3583	default:
3584		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3585		       hw->chip_id);
3586		return -EOPNOTSUPP;
3587	}
3588
3589	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3590	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3591	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3592
3593	/* read the adapters RAM size */
3594	t8 = skge_read8(hw, B2_E_0);
3595	if (is_genesis(hw)) {
3596		if (t8 == 3) {
3597			/* special case: 4 x 64k x 36, offset = 0x80000 */
3598			hw->ram_size = 0x100000;
3599			hw->ram_offset = 0x80000;
3600		} else
3601			hw->ram_size = t8 * 512;
3602	} else if (t8 == 0)
3603		hw->ram_size = 0x20000;
3604	else
3605		hw->ram_size = t8 * 4096;
3606
3607	hw->intr_mask = IS_HW_ERR;
3608
3609	/* Use PHY IRQ for all but fiber based Genesis board */
3610	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3611		hw->intr_mask |= IS_EXT_REG;
3612
3613	if (is_genesis(hw))
3614		genesis_init(hw);
3615	else {
3616		/* switch power to VCC (WA for VAUX problem) */
3617		skge_write8(hw, B0_POWER_CTRL,
3618			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3619
3620		/* avoid boards with stuck Hardware error bits */
3621		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3622		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3623			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3624			hw->intr_mask &= ~IS_HW_ERR;
3625		}
3626
3627		/* Clear PHY COMA */
3628		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3629		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3630		reg &= ~PCI_PHY_COMA;
3631		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3632		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3633
3634
3635		for (i = 0; i < hw->ports; i++) {
3636			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3637			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3638		}
3639	}
3640
3641	/* turn off hardware timer (unused) */
3642	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3643	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3644	skge_write8(hw, B0_LED, LED_STAT_ON);
3645
3646	/* enable the Tx Arbiters */
3647	for (i = 0; i < hw->ports; i++)
3648		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3649
3650	/* Initialize ram interface */
3651	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3652
3653	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3654	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3655	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3656	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3657	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3658	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3659	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3660	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3661	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3662	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3663	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3664	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3665
3666	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3667
3668	/* Set interrupt moderation for Transmit only
3669	 * Receive interrupts avoided by NAPI
3670	 */
3671	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3672	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3673	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3674
3675	/* Leave irq disabled until first port is brought up. */
3676	skge_write32(hw, B0_IMSK, 0);
3677
3678	for (i = 0; i < hw->ports; i++) {
3679		if (is_genesis(hw))
3680			genesis_reset(hw, i);
3681		else
3682			yukon_reset(hw, i);
3683	}
3684
3685	return 0;
3686}
3687
3688
3689#ifdef CONFIG_SKGE_DEBUG
3690
3691static struct dentry *skge_debug;
3692
3693static int skge_debug_show(struct seq_file *seq, void *v)
3694{
3695	struct net_device *dev = seq->private;
3696	const struct skge_port *skge = netdev_priv(dev);
3697	const struct skge_hw *hw = skge->hw;
3698	const struct skge_element *e;
3699
3700	if (!netif_running(dev))
3701		return -ENETDOWN;
3702
3703	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3704		   skge_read32(hw, B0_IMSK));
3705
3706	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3707	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3708		const struct skge_tx_desc *t = e->desc;
3709		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3710			   t->control, t->dma_hi, t->dma_lo, t->status,
3711			   t->csum_offs, t->csum_write, t->csum_start);
3712	}
3713
3714	seq_puts(seq, "\nRx Ring:\n");
3715	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3716		const struct skge_rx_desc *r = e->desc;
3717
3718		if (r->control & BMU_OWN)
3719			break;
3720
3721		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3722			   r->control, r->dma_hi, r->dma_lo, r->status,
3723			   r->timestamp, r->csum1, r->csum1_start);
3724	}
3725
3726	return 0;
3727}
3728DEFINE_SHOW_ATTRIBUTE(skge_debug);
3729
3730/*
3731 * Use network device events to create/remove/rename
3732 * debugfs file entries
3733 */
3734static int skge_device_event(struct notifier_block *unused,
3735			     unsigned long event, void *ptr)
3736{
3737	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3738	struct skge_port *skge;
3739
3740	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3741		goto done;
3742
3743	skge = netdev_priv(dev);
3744	switch (event) {
3745	case NETDEV_CHANGENAME:
3746		if (skge->debugfs)
3747			skge->debugfs = debugfs_rename(skge_debug,
3748						       skge->debugfs,
3749						       skge_debug, dev->name);
3750		break;
3751
3752	case NETDEV_GOING_DOWN:
3753		debugfs_remove(skge->debugfs);
3754		skge->debugfs = NULL;
3755		break;
3756
3757	case NETDEV_UP:
3758		skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3759						    dev, &skge_debug_fops);
3760		break;
3761	}
3762
3763done:
3764	return NOTIFY_DONE;
3765}
3766
3767static struct notifier_block skge_notifier = {
3768	.notifier_call = skge_device_event,
3769};
3770
3771
3772static __init void skge_debug_init(void)
3773{
3774	skge_debug = debugfs_create_dir("skge", NULL);
3775
3776	register_netdevice_notifier(&skge_notifier);
3777}
3778
3779static __exit void skge_debug_cleanup(void)
3780{
3781	if (skge_debug) {
3782		unregister_netdevice_notifier(&skge_notifier);
3783		debugfs_remove(skge_debug);
3784		skge_debug = NULL;
3785	}
3786}
3787
3788#else
3789#define skge_debug_init()
3790#define skge_debug_cleanup()
3791#endif
3792
3793static const struct net_device_ops skge_netdev_ops = {
3794	.ndo_open		= skge_up,
3795	.ndo_stop		= skge_down,
3796	.ndo_start_xmit		= skge_xmit_frame,
3797	.ndo_eth_ioctl		= skge_ioctl,
3798	.ndo_get_stats		= skge_get_stats,
3799	.ndo_tx_timeout		= skge_tx_timeout,
3800	.ndo_change_mtu		= skge_change_mtu,
3801	.ndo_validate_addr	= eth_validate_addr,
3802	.ndo_set_rx_mode	= skge_set_multicast,
3803	.ndo_set_mac_address	= skge_set_mac_address,
3804#ifdef CONFIG_NET_POLL_CONTROLLER
3805	.ndo_poll_controller	= skge_netpoll,
3806#endif
3807};
3808
3809
3810/* Initialize network device */
3811static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3812				       int highmem)
3813{
3814	struct skge_port *skge;
3815	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3816	u8 addr[ETH_ALEN];
3817
3818	if (!dev)
3819		return NULL;
3820
3821	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3822	dev->netdev_ops = &skge_netdev_ops;
3823	dev->ethtool_ops = &skge_ethtool_ops;
3824	dev->watchdog_timeo = TX_WATCHDOG;
3825	dev->irq = hw->pdev->irq;
3826
3827	/* MTU range: 60 - 9000 */
3828	dev->min_mtu = ETH_ZLEN;
3829	dev->max_mtu = ETH_JUMBO_MTU;
3830
3831	if (highmem)
3832		dev->features |= NETIF_F_HIGHDMA;
3833
3834	skge = netdev_priv(dev);
3835	netif_napi_add(dev, &skge->napi, skge_poll);
3836	skge->netdev = dev;
3837	skge->hw = hw;
3838	skge->msg_enable = netif_msg_init(debug, default_msg);
3839
3840	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3841	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3842
3843	/* Auto speed and flow control */
3844	skge->autoneg = AUTONEG_ENABLE;
3845	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3846	skge->duplex = -1;
3847	skge->speed = -1;
3848	skge->advertising = skge_supported_modes(hw);
3849
3850	if (device_can_wakeup(&hw->pdev->dev)) {
3851		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3852		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3853	}
3854
3855	hw->dev[port] = dev;
3856
3857	skge->port = port;
3858
3859	/* Only used for Genesis XMAC */
3860	if (is_genesis(hw))
3861		timer_setup(&skge->link_timer, xm_link_timer, 0);
3862	else {
3863		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3864		                   NETIF_F_RXCSUM;
3865		dev->features |= dev->hw_features;
3866	}
3867
3868	/* read the mac address */
3869	memcpy_fromio(addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3870	eth_hw_addr_set(dev, addr);
3871
3872	return dev;
3873}
3874
3875static void skge_show_addr(struct net_device *dev)
3876{
3877	const struct skge_port *skge = netdev_priv(dev);
3878
3879	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3880}
3881
3882static int only_32bit_dma;
3883
3884static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3885{
3886	struct net_device *dev, *dev1;
3887	struct skge_hw *hw;
3888	int err, using_dac = 0;
3889
3890	err = pci_enable_device(pdev);
3891	if (err) {
3892		dev_err(&pdev->dev, "cannot enable PCI device\n");
3893		goto err_out;
3894	}
3895
3896	err = pci_request_regions(pdev, DRV_NAME);
3897	if (err) {
3898		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3899		goto err_out_disable_pdev;
3900	}
3901
3902	pci_set_master(pdev);
3903
3904	if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3905		using_dac = 1;
3906		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3907	} else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3908		using_dac = 0;
3909		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3910	}
3911
3912	if (err) {
3913		dev_err(&pdev->dev, "no usable DMA configuration\n");
3914		goto err_out_free_regions;
3915	}
3916
3917#ifdef __BIG_ENDIAN
3918	/* byte swap descriptors in hardware */
3919	{
3920		u32 reg;
3921
3922		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3923		reg |= PCI_REV_DESC;
3924		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3925	}
3926#endif
3927
3928	err = -ENOMEM;
3929	/* space for skge@pci:0000:04:00.0 */
3930	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3931		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3932	if (!hw)
3933		goto err_out_free_regions;
3934
3935	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3936
3937	hw->pdev = pdev;
3938	spin_lock_init(&hw->hw_lock);
3939	spin_lock_init(&hw->phy_lock);
3940	tasklet_setup(&hw->phy_task, skge_extirq);
3941
3942	hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3943	if (!hw->regs) {
3944		dev_err(&pdev->dev, "cannot map device registers\n");
3945		goto err_out_free_hw;
3946	}
3947
3948	err = skge_reset(hw);
3949	if (err)
3950		goto err_out_iounmap;
3951
3952	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3953		DRV_VERSION,
3954		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3955		skge_board_name(hw), hw->chip_rev);
3956
3957	dev = skge_devinit(hw, 0, using_dac);
3958	if (!dev) {
3959		err = -ENOMEM;
3960		goto err_out_led_off;
3961	}
3962
3963	/* Some motherboards are broken and has zero in ROM. */
3964	if (!is_valid_ether_addr(dev->dev_addr))
3965		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3966
3967	err = register_netdev(dev);
3968	if (err) {
3969		dev_err(&pdev->dev, "cannot register net device\n");
3970		goto err_out_free_netdev;
3971	}
3972
3973	skge_show_addr(dev);
3974
3975	if (hw->ports > 1) {
3976		dev1 = skge_devinit(hw, 1, using_dac);
3977		if (!dev1) {
3978			err = -ENOMEM;
3979			goto err_out_unregister;
3980		}
3981
3982		err = register_netdev(dev1);
3983		if (err) {
3984			dev_err(&pdev->dev, "cannot register second net device\n");
3985			goto err_out_free_dev1;
3986		}
3987
3988		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3989				  hw->irq_name, hw);
3990		if (err) {
3991			dev_err(&pdev->dev, "cannot assign irq %d\n",
3992				pdev->irq);
3993			goto err_out_unregister_dev1;
3994		}
3995
3996		skge_show_addr(dev1);
3997	}
3998	pci_set_drvdata(pdev, hw);
3999
4000	return 0;
4001
4002err_out_unregister_dev1:
4003	unregister_netdev(dev1);
4004err_out_free_dev1:
4005	free_netdev(dev1);
4006err_out_unregister:
4007	unregister_netdev(dev);
4008err_out_free_netdev:
4009	free_netdev(dev);
4010err_out_led_off:
4011	skge_write16(hw, B0_LED, LED_STAT_OFF);
4012err_out_iounmap:
4013	iounmap(hw->regs);
4014err_out_free_hw:
4015	kfree(hw);
4016err_out_free_regions:
4017	pci_release_regions(pdev);
4018err_out_disable_pdev:
4019	pci_disable_device(pdev);
4020err_out:
4021	return err;
4022}
4023
4024static void skge_remove(struct pci_dev *pdev)
4025{
4026	struct skge_hw *hw  = pci_get_drvdata(pdev);
4027	struct net_device *dev0, *dev1;
4028
4029	if (!hw)
4030		return;
4031
4032	dev1 = hw->dev[1];
4033	if (dev1)
4034		unregister_netdev(dev1);
4035	dev0 = hw->dev[0];
4036	unregister_netdev(dev0);
4037
4038	tasklet_kill(&hw->phy_task);
4039
4040	spin_lock_irq(&hw->hw_lock);
4041	hw->intr_mask = 0;
4042
4043	if (hw->ports > 1) {
4044		skge_write32(hw, B0_IMSK, 0);
4045		skge_read32(hw, B0_IMSK);
4046	}
4047	spin_unlock_irq(&hw->hw_lock);
4048
4049	skge_write16(hw, B0_LED, LED_STAT_OFF);
4050	skge_write8(hw, B0_CTST, CS_RST_SET);
4051
4052	if (hw->ports > 1)
4053		free_irq(pdev->irq, hw);
4054	pci_release_regions(pdev);
4055	pci_disable_device(pdev);
4056	if (dev1)
4057		free_netdev(dev1);
4058	free_netdev(dev0);
4059
4060	iounmap(hw->regs);
4061	kfree(hw);
4062}
4063
4064#ifdef CONFIG_PM_SLEEP
4065static int skge_suspend(struct device *dev)
4066{
4067	struct skge_hw *hw  = dev_get_drvdata(dev);
4068	int i;
4069
4070	if (!hw)
4071		return 0;
4072
4073	for (i = 0; i < hw->ports; i++) {
4074		struct net_device *dev = hw->dev[i];
4075		struct skge_port *skge = netdev_priv(dev);
4076
4077		if (netif_running(dev))
4078			skge_down(dev);
4079
4080		if (skge->wol)
4081			skge_wol_init(skge);
4082	}
4083
4084	skge_write32(hw, B0_IMSK, 0);
4085
4086	return 0;
4087}
4088
4089static int skge_resume(struct device *dev)
4090{
4091	struct skge_hw *hw  = dev_get_drvdata(dev);
4092	int i, err;
4093
4094	if (!hw)
4095		return 0;
4096
4097	err = skge_reset(hw);
4098	if (err)
4099		goto out;
4100
4101	for (i = 0; i < hw->ports; i++) {
4102		struct net_device *dev = hw->dev[i];
4103
4104		if (netif_running(dev)) {
4105			err = skge_up(dev);
4106
4107			if (err) {
4108				netdev_err(dev, "could not up: %d\n", err);
4109				dev_close(dev);
4110				goto out;
4111			}
4112		}
4113	}
4114out:
4115	return err;
4116}
4117
4118static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4119#define SKGE_PM_OPS (&skge_pm_ops)
4120
4121#else
4122
4123#define SKGE_PM_OPS NULL
4124#endif /* CONFIG_PM_SLEEP */
4125
4126static void skge_shutdown(struct pci_dev *pdev)
4127{
4128	struct skge_hw *hw  = pci_get_drvdata(pdev);
4129	int i;
4130
4131	if (!hw)
4132		return;
4133
4134	for (i = 0; i < hw->ports; i++) {
4135		struct net_device *dev = hw->dev[i];
4136		struct skge_port *skge = netdev_priv(dev);
4137
4138		if (skge->wol)
4139			skge_wol_init(skge);
4140	}
4141
4142	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4143	pci_set_power_state(pdev, PCI_D3hot);
4144}
4145
4146static struct pci_driver skge_driver = {
4147	.name =         DRV_NAME,
4148	.id_table =     skge_id_table,
4149	.probe =        skge_probe,
4150	.remove =       skge_remove,
4151	.shutdown =	skge_shutdown,
4152	.driver.pm =	SKGE_PM_OPS,
4153};
4154
4155static const struct dmi_system_id skge_32bit_dma_boards[] = {
4156	{
4157		.ident = "Gigabyte nForce boards",
4158		.matches = {
4159			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4160			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4161		},
4162	},
4163	{
4164		.ident = "ASUS P5NSLI",
4165		.matches = {
4166			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4167			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4168		},
4169	},
4170	{
4171		.ident = "FUJITSU SIEMENS A8NE-FM",
4172		.matches = {
4173			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4174			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4175		},
4176	},
4177	{}
4178};
4179
4180static int __init skge_init_module(void)
4181{
4182	if (dmi_check_system(skge_32bit_dma_boards))
4183		only_32bit_dma = 1;
4184	skge_debug_init();
4185	return pci_register_driver(&skge_driver);
4186}
4187
4188static void __exit skge_cleanup_module(void)
4189{
4190	pci_unregister_driver(&skge_driver);
4191	skge_debug_cleanup();
4192}
4193
4194module_init(skge_init_module);
4195module_exit(skge_cleanup_module);
4196