1/* SPDX-License-Identifier: GPL-2.0 */
2/* Marvell RVU Ethernet driver
3 *
4 * Copyright (C) 2020 Marvell.
5 *
6 */
7
8#ifndef OTX2_COMMON_H
9#define OTX2_COMMON_H
10
11#include <linux/ethtool.h>
12#include <linux/pci.h>
13#include <linux/iommu.h>
14#include <linux/net_tstamp.h>
15#include <linux/ptp_clock_kernel.h>
16#include <linux/timecounter.h>
17#include <linux/soc/marvell/octeontx2/asm.h>
18#include <net/macsec.h>
19#include <net/pkt_cls.h>
20#include <net/devlink.h>
21#include <linux/time64.h>
22#include <linux/dim.h>
23#include <uapi/linux/if_macsec.h>
24
25#include <mbox.h>
26#include <npc.h>
27#include "otx2_reg.h"
28#include "otx2_txrx.h"
29#include "otx2_devlink.h"
30#include <rvu_trace.h>
31#include "qos.h"
32
33/* IPv4 flag more fragment bit */
34#define IPV4_FLAG_MORE				0x20
35
36/* PCI device IDs */
37#define PCI_DEVID_OCTEONTX2_RVU_PF              0xA063
38#define PCI_DEVID_OCTEONTX2_RVU_VF		0xA064
39#define PCI_DEVID_OCTEONTX2_RVU_AFVF		0xA0F8
40
41#define PCI_SUBSYS_DEVID_96XX_RVU_PFVF		0xB200
42#define PCI_SUBSYS_DEVID_CN10K_B_RVU_PFVF	0xBD00
43
44/* PCI BAR nos */
45#define PCI_CFG_REG_BAR_NUM                     2
46#define PCI_MBOX_BAR_NUM                        4
47
48#define NAME_SIZE                               32
49
50#ifdef CONFIG_DCB
51/* Max priority supported for PFC */
52#define NIX_PF_PFC_PRIO_MAX			8
53#endif
54
55enum arua_mapped_qtypes {
56	AURA_NIX_RQ,
57	AURA_NIX_SQ,
58};
59
60/* NIX LF interrupts range*/
61#define NIX_LF_QINT_VEC_START			0x00
62#define NIX_LF_CINT_VEC_START			0x40
63#define NIX_LF_GINT_VEC				0x80
64#define NIX_LF_ERR_VEC				0x81
65#define NIX_LF_POISON_VEC			0x82
66
67/* Send skid of 2000 packets required for CQ size of 4K CQEs. */
68#define SEND_CQ_SKID	2000
69
70#define OTX2_GET_RX_STATS(reg) \
71	otx2_read64(pfvf, NIX_LF_RX_STATX(reg))
72#define OTX2_GET_TX_STATS(reg) \
73	otx2_read64(pfvf, NIX_LF_TX_STATX(reg))
74
75struct otx2_lmt_info {
76	u64 lmt_addr;
77	u16 lmt_id;
78};
79/* RSS configuration */
80struct otx2_rss_ctx {
81	u8  ind_tbl[MAX_RSS_INDIR_TBL_SIZE];
82};
83
84struct otx2_rss_info {
85	u8 enable;
86	u32 flowkey_cfg;
87	u16 rss_size;
88#define RSS_HASH_KEY_SIZE	44   /* 352 bit key */
89	u8  key[RSS_HASH_KEY_SIZE];
90	struct otx2_rss_ctx	*rss_ctx[MAX_RSS_GROUPS];
91};
92
93/* NIX (or NPC) RX errors */
94enum otx2_errlvl {
95	NPC_ERRLVL_RE,
96	NPC_ERRLVL_LID_LA,
97	NPC_ERRLVL_LID_LB,
98	NPC_ERRLVL_LID_LC,
99	NPC_ERRLVL_LID_LD,
100	NPC_ERRLVL_LID_LE,
101	NPC_ERRLVL_LID_LF,
102	NPC_ERRLVL_LID_LG,
103	NPC_ERRLVL_LID_LH,
104	NPC_ERRLVL_NIX = 0x0F,
105};
106
107enum otx2_errcodes_re {
108	/* NPC_ERRLVL_RE errcodes */
109	ERRCODE_FCS = 0x7,
110	ERRCODE_FCS_RCV = 0x8,
111	ERRCODE_UNDERSIZE = 0x10,
112	ERRCODE_OVERSIZE = 0x11,
113	ERRCODE_OL2_LEN_MISMATCH = 0x12,
114	/* NPC_ERRLVL_NIX errcodes */
115	ERRCODE_OL3_LEN = 0x10,
116	ERRCODE_OL4_LEN = 0x11,
117	ERRCODE_OL4_CSUM = 0x12,
118	ERRCODE_IL3_LEN = 0x20,
119	ERRCODE_IL4_LEN = 0x21,
120	ERRCODE_IL4_CSUM = 0x22,
121};
122
123/* NIX TX stats */
124enum nix_stat_lf_tx {
125	TX_UCAST	= 0x0,
126	TX_BCAST	= 0x1,
127	TX_MCAST	= 0x2,
128	TX_DROP		= 0x3,
129	TX_OCTS		= 0x4,
130	TX_STATS_ENUM_LAST,
131};
132
133/* NIX RX stats */
134enum nix_stat_lf_rx {
135	RX_OCTS		= 0x0,
136	RX_UCAST	= 0x1,
137	RX_BCAST	= 0x2,
138	RX_MCAST	= 0x3,
139	RX_DROP		= 0x4,
140	RX_DROP_OCTS	= 0x5,
141	RX_FCS		= 0x6,
142	RX_ERR		= 0x7,
143	RX_DRP_BCAST	= 0x8,
144	RX_DRP_MCAST	= 0x9,
145	RX_DRP_L3BCAST	= 0xa,
146	RX_DRP_L3MCAST	= 0xb,
147	RX_STATS_ENUM_LAST,
148};
149
150struct otx2_dev_stats {
151	u64 rx_bytes;
152	u64 rx_frames;
153	u64 rx_ucast_frames;
154	u64 rx_bcast_frames;
155	u64 rx_mcast_frames;
156	u64 rx_drops;
157
158	u64 tx_bytes;
159	u64 tx_frames;
160	u64 tx_ucast_frames;
161	u64 tx_bcast_frames;
162	u64 tx_mcast_frames;
163	u64 tx_drops;
164};
165
166/* Driver counted stats */
167struct otx2_drv_stats {
168	atomic_t rx_fcs_errs;
169	atomic_t rx_oversize_errs;
170	atomic_t rx_undersize_errs;
171	atomic_t rx_csum_errs;
172	atomic_t rx_len_errs;
173	atomic_t rx_other_errs;
174};
175
176struct mbox {
177	struct otx2_mbox	mbox;
178	struct work_struct	mbox_wrk;
179	struct otx2_mbox	mbox_up;
180	struct work_struct	mbox_up_wrk;
181	struct otx2_nic		*pfvf;
182	void			*bbuf_base; /* Bounce buffer for mbox memory */
183	struct mutex		lock;	/* serialize mailbox access */
184	int			num_msgs; /* mbox number of messages */
185	int			up_num_msgs; /* mbox_up number of messages */
186};
187
188/* Egress rate limiting definitions */
189#define MAX_BURST_EXPONENT		0x0FULL
190#define MAX_BURST_MANTISSA		0xFFULL
191#define MAX_BURST_SIZE			130816ULL
192#define MAX_RATE_DIVIDER_EXPONENT	12ULL
193#define MAX_RATE_EXPONENT		0x0FULL
194#define MAX_RATE_MANTISSA		0xFFULL
195
196/* Bitfields in NIX_TLX_PIR register */
197#define TLX_RATE_MANTISSA		GENMASK_ULL(8, 1)
198#define TLX_RATE_EXPONENT		GENMASK_ULL(12, 9)
199#define TLX_RATE_DIVIDER_EXPONENT	GENMASK_ULL(16, 13)
200#define TLX_BURST_MANTISSA		GENMASK_ULL(36, 29)
201#define TLX_BURST_EXPONENT		GENMASK_ULL(40, 37)
202
203struct otx2_hw {
204	struct pci_dev		*pdev;
205	struct otx2_rss_info	rss_info;
206	u16                     rx_queues;
207	u16                     tx_queues;
208	u16                     xdp_queues;
209	u16			tc_tx_queues;
210	u16                     non_qos_queues; /* tx queues plus xdp queues */
211	u16			max_queues;
212	u16			pool_cnt;
213	u16			rqpool_cnt;
214	u16			sqpool_cnt;
215
216#define OTX2_DEFAULT_RBUF_LEN	2048
217	u16			rbuf_len;
218	u32			xqe_size;
219
220	/* NPA */
221	u32			stack_pg_ptrs;  /* No of ptrs per stack page */
222	u32			stack_pg_bytes; /* Size of stack page */
223	u16			sqb_size;
224
225	/* NIX */
226	u8			txschq_link_cfg_lvl;
227	u8			txschq_aggr_lvl_rr_prio;
228	u16			txschq_list[NIX_TXSCH_LVL_CNT][MAX_TXSCHQ_PER_FUNC];
229	u16			matchall_ipolicer;
230	u32			dwrr_mtu;
231	u8			smq_link_type;
232
233	/* HW settings, coalescing etc */
234	u16			rx_chan_base;
235	u16			tx_chan_base;
236	u16			cq_qcount_wait;
237	u16			cq_ecount_wait;
238	u16			rq_skid;
239	u8			cq_time_wait;
240
241	/* Segmentation */
242	u8			lso_tsov4_idx;
243	u8			lso_tsov6_idx;
244	u8			lso_udpv4_idx;
245	u8			lso_udpv6_idx;
246
247	/* RSS */
248	u8			flowkey_alg_idx;
249
250	/* MSI-X */
251	u8			cint_cnt; /* CQ interrupt count */
252	u16			npa_msixoff; /* Offset of NPA vectors */
253	u16			nix_msixoff; /* Offset of NIX vectors */
254	char			*irq_name;
255	cpumask_var_t           *affinity_mask;
256
257	/* Stats */
258	struct otx2_dev_stats	dev_stats;
259	struct otx2_drv_stats	drv_stats;
260	u64			cgx_rx_stats[CGX_RX_STATS_COUNT];
261	u64			cgx_tx_stats[CGX_TX_STATS_COUNT];
262	u64			cgx_fec_corr_blks;
263	u64			cgx_fec_uncorr_blks;
264	u8			cgx_links;  /* No. of CGX links present in HW */
265	u8			lbk_links;  /* No. of LBK links present in HW */
266	u8			tx_link;    /* Transmit channel link number */
267#define HW_TSO			0
268#define CN10K_MBOX		1
269#define CN10K_LMTST		2
270#define CN10K_RPM		3
271#define CN10K_PTP_ONESTEP	4
272#define CN10K_HW_MACSEC		5
273#define QOS_CIR_PIR_SUPPORT	6
274	unsigned long		cap_flag;
275
276#define LMT_LINE_SIZE		128
277#define LMT_BURST_SIZE		32 /* 32 LMTST lines for burst SQE flush */
278	u64			*lmt_base;
279	struct otx2_lmt_info	__percpu *lmt_info;
280};
281
282enum vfperm {
283	OTX2_RESET_VF_PERM,
284	OTX2_TRUSTED_VF,
285};
286
287struct otx2_vf_config {
288	struct otx2_nic *pf;
289	struct delayed_work link_event_work;
290	bool intf_down; /* interface was either configured or not */
291	u8 mac[ETH_ALEN];
292	u16 vlan;
293	int tx_vtag_idx;
294	bool trusted;
295};
296
297struct flr_work {
298	struct work_struct work;
299	struct otx2_nic *pf;
300};
301
302struct refill_work {
303	struct delayed_work pool_refill_work;
304	struct otx2_nic *pf;
305	struct napi_struct *napi;
306};
307
308/* PTPv2 originTimestamp structure */
309struct ptpv2_tstamp {
310	__be16 seconds_msb; /* 16 bits + */
311	__be32 seconds_lsb; /* 32 bits = 48 bits*/
312	__be32 nanoseconds;
313} __packed;
314
315struct otx2_ptp {
316	struct ptp_clock_info ptp_info;
317	struct ptp_clock *ptp_clock;
318	struct otx2_nic *nic;
319
320	struct cyclecounter cycle_counter;
321	struct timecounter time_counter;
322
323	struct delayed_work extts_work;
324	u64 last_extts;
325	u64 thresh;
326
327	struct ptp_pin_desc extts_config;
328	u64 (*convert_rx_ptp_tstmp)(u64 timestamp);
329	u64 (*convert_tx_ptp_tstmp)(u64 timestamp);
330	u64 (*ptp_tstamp2nsec)(const struct timecounter *time_counter, u64 timestamp);
331	struct delayed_work synctstamp_work;
332	u64 tstamp;
333	u32 base_ns;
334};
335
336#define OTX2_HW_TIMESTAMP_LEN	8
337
338struct otx2_mac_table {
339	u8 addr[ETH_ALEN];
340	u16 mcam_entry;
341	bool inuse;
342};
343
344struct otx2_flow_config {
345	u16			*flow_ent;
346	u16			*def_ent;
347	u16			nr_flows;
348#define OTX2_DEFAULT_FLOWCOUNT		16
349#define OTX2_MAX_UNICAST_FLOWS		8
350#define OTX2_MAX_VLAN_FLOWS		1
351#define OTX2_MAX_TC_FLOWS	OTX2_DEFAULT_FLOWCOUNT
352#define OTX2_MCAM_COUNT		(OTX2_DEFAULT_FLOWCOUNT + \
353				 OTX2_MAX_UNICAST_FLOWS + \
354				 OTX2_MAX_VLAN_FLOWS)
355	u16			unicast_offset;
356	u16			rx_vlan_offset;
357	u16			vf_vlan_offset;
358#define OTX2_PER_VF_VLAN_FLOWS	2 /* Rx + Tx per VF */
359#define OTX2_VF_VLAN_RX_INDEX	0
360#define OTX2_VF_VLAN_TX_INDEX	1
361	u32			*bmap_to_dmacindex;
362	unsigned long		*dmacflt_bmap;
363	struct list_head	flow_list;
364	u32			dmacflt_max_flows;
365	u16                     max_flows;
366	struct list_head	flow_list_tc;
367	bool			ntuple;
368};
369
370struct dev_hw_ops {
371	int	(*sq_aq_init)(void *dev, u16 qidx, u16 sqb_aura);
372	void	(*sqe_flush)(void *dev, struct otx2_snd_queue *sq,
373			     int size, int qidx);
374	int	(*refill_pool_ptrs)(void *dev, struct otx2_cq_queue *cq);
375	void	(*aura_freeptr)(void *dev, int aura, u64 buf);
376};
377
378#define CN10K_MCS_SA_PER_SC	4
379
380/* Stats which need to be accumulated in software because
381 * of shared counters in hardware.
382 */
383struct cn10k_txsc_stats {
384	u64 InPktsUntagged;
385	u64 InPktsNoTag;
386	u64 InPktsBadTag;
387	u64 InPktsUnknownSCI;
388	u64 InPktsNoSCI;
389	u64 InPktsOverrun;
390};
391
392struct cn10k_rxsc_stats {
393	u64 InOctetsValidated;
394	u64 InOctetsDecrypted;
395	u64 InPktsUnchecked;
396	u64 InPktsDelayed;
397	u64 InPktsOK;
398	u64 InPktsInvalid;
399	u64 InPktsLate;
400	u64 InPktsNotValid;
401	u64 InPktsNotUsingSA;
402	u64 InPktsUnusedSA;
403};
404
405struct cn10k_mcs_txsc {
406	struct macsec_secy *sw_secy;
407	struct cn10k_txsc_stats stats;
408	struct list_head entry;
409	enum macsec_validation_type last_validate_frames;
410	bool last_replay_protect;
411	u16 hw_secy_id_tx;
412	u16 hw_secy_id_rx;
413	u16 hw_flow_id;
414	u16 hw_sc_id;
415	u16 hw_sa_id[CN10K_MCS_SA_PER_SC];
416	u8 sa_bmap;
417	u8 sa_key[CN10K_MCS_SA_PER_SC][MACSEC_MAX_KEY_LEN];
418	u8 encoding_sa;
419	u8 salt[CN10K_MCS_SA_PER_SC][MACSEC_SALT_LEN];
420	ssci_t ssci[CN10K_MCS_SA_PER_SC];
421	bool vlan_dev; /* macsec running on VLAN ? */
422};
423
424struct cn10k_mcs_rxsc {
425	struct macsec_secy *sw_secy;
426	struct macsec_rx_sc *sw_rxsc;
427	struct cn10k_rxsc_stats stats;
428	struct list_head entry;
429	u16 hw_flow_id;
430	u16 hw_sc_id;
431	u16 hw_sa_id[CN10K_MCS_SA_PER_SC];
432	u8 sa_bmap;
433	u8 sa_key[CN10K_MCS_SA_PER_SC][MACSEC_MAX_KEY_LEN];
434	u8 salt[CN10K_MCS_SA_PER_SC][MACSEC_SALT_LEN];
435	ssci_t ssci[CN10K_MCS_SA_PER_SC];
436};
437
438struct cn10k_mcs_cfg {
439	struct list_head txsc_list;
440	struct list_head rxsc_list;
441};
442
443struct otx2_nic {
444	void __iomem		*reg_base;
445	struct net_device	*netdev;
446	struct dev_hw_ops	*hw_ops;
447	void			*iommu_domain;
448	u16			tx_max_pktlen;
449	u16			rbsize; /* Receive buffer size */
450
451#define OTX2_FLAG_RX_TSTAMP_ENABLED		BIT_ULL(0)
452#define OTX2_FLAG_TX_TSTAMP_ENABLED		BIT_ULL(1)
453#define OTX2_FLAG_INTF_DOWN			BIT_ULL(2)
454#define OTX2_FLAG_MCAM_ENTRIES_ALLOC		BIT_ULL(3)
455#define OTX2_FLAG_NTUPLE_SUPPORT		BIT_ULL(4)
456#define OTX2_FLAG_UCAST_FLTR_SUPPORT		BIT_ULL(5)
457#define OTX2_FLAG_RX_VLAN_SUPPORT		BIT_ULL(6)
458#define OTX2_FLAG_VF_VLAN_SUPPORT		BIT_ULL(7)
459#define OTX2_FLAG_PF_SHUTDOWN			BIT_ULL(8)
460#define OTX2_FLAG_RX_PAUSE_ENABLED		BIT_ULL(9)
461#define OTX2_FLAG_TX_PAUSE_ENABLED		BIT_ULL(10)
462#define OTX2_FLAG_TC_FLOWER_SUPPORT		BIT_ULL(11)
463#define OTX2_FLAG_TC_MATCHALL_EGRESS_ENABLED	BIT_ULL(12)
464#define OTX2_FLAG_TC_MATCHALL_INGRESS_ENABLED	BIT_ULL(13)
465#define OTX2_FLAG_DMACFLTR_SUPPORT		BIT_ULL(14)
466#define OTX2_FLAG_PTP_ONESTEP_SYNC		BIT_ULL(15)
467#define OTX2_FLAG_ADPTV_INT_COAL_ENABLED BIT_ULL(16)
468	u64			flags;
469	u64			*cq_op_addr;
470
471	struct bpf_prog		*xdp_prog;
472	struct otx2_qset	qset;
473	struct otx2_hw		hw;
474	struct pci_dev		*pdev;
475	struct device		*dev;
476
477	/* Mbox */
478	struct mbox		mbox;
479	struct mbox		*mbox_pfvf;
480	struct workqueue_struct *mbox_wq;
481	struct workqueue_struct *mbox_pfvf_wq;
482
483	u8			total_vfs;
484	u16			pcifunc; /* RVU PF_FUNC */
485	u16			bpid[NIX_MAX_BPID_CHAN];
486	struct otx2_vf_config	*vf_configs;
487	struct cgx_link_user_info linfo;
488
489	/* NPC MCAM */
490	struct otx2_flow_config	*flow_cfg;
491	struct otx2_mac_table	*mac_table;
492
493	u64			reset_count;
494	struct work_struct	reset_task;
495	struct workqueue_struct	*flr_wq;
496	struct flr_work		*flr_wrk;
497	struct refill_work	*refill_wrk;
498	struct workqueue_struct	*otx2_wq;
499	struct work_struct	rx_mode_work;
500
501	/* Ethtool stuff */
502	u32			msg_enable;
503
504	/* Block address of NIX either BLKADDR_NIX0 or BLKADDR_NIX1 */
505	int			nix_blkaddr;
506	/* LMTST Lines info */
507	struct qmem		*dync_lmt;
508	u16			tot_lmt_lines;
509	u16			npa_lmt_lines;
510	u32			nix_lmt_size;
511
512	struct otx2_ptp		*ptp;
513	struct hwtstamp_config	tstamp;
514
515	unsigned long		rq_bmap;
516
517	/* Devlink */
518	struct otx2_devlink	*dl;
519#ifdef CONFIG_DCB
520	/* PFC */
521	u8			pfc_en;
522	u8			*queue_to_pfc_map;
523	u16			pfc_schq_list[NIX_TXSCH_LVL_CNT][MAX_TXSCHQ_PER_FUNC];
524	bool			pfc_alloc_status[NIX_PF_PFC_PRIO_MAX];
525#endif
526	/* qos */
527	struct otx2_qos		qos;
528
529	/* napi event count. It is needed for adaptive irq coalescing. */
530	u32 napi_events;
531
532#if IS_ENABLED(CONFIG_MACSEC)
533	struct cn10k_mcs_cfg	*macsec_cfg;
534#endif
535};
536
537static inline bool is_otx2_lbkvf(struct pci_dev *pdev)
538{
539	return pdev->device == PCI_DEVID_OCTEONTX2_RVU_AFVF;
540}
541
542static inline bool is_96xx_A0(struct pci_dev *pdev)
543{
544	return (pdev->revision == 0x00) &&
545		(pdev->subsystem_device == PCI_SUBSYS_DEVID_96XX_RVU_PFVF);
546}
547
548static inline bool is_96xx_B0(struct pci_dev *pdev)
549{
550	return (pdev->revision == 0x01) &&
551		(pdev->subsystem_device == PCI_SUBSYS_DEVID_96XX_RVU_PFVF);
552}
553
554/* REVID for PCIe devices.
555 * Bits 0..1: minor pass, bit 3..2: major pass
556 * bits 7..4: midr id
557 */
558#define PCI_REVISION_ID_96XX		0x00
559#define PCI_REVISION_ID_95XX		0x10
560#define PCI_REVISION_ID_95XXN		0x20
561#define PCI_REVISION_ID_98XX		0x30
562#define PCI_REVISION_ID_95XXMM		0x40
563#define PCI_REVISION_ID_95XXO		0xE0
564
565static inline bool is_dev_otx2(struct pci_dev *pdev)
566{
567	u8 midr = pdev->revision & 0xF0;
568
569	return (midr == PCI_REVISION_ID_96XX || midr == PCI_REVISION_ID_95XX ||
570		midr == PCI_REVISION_ID_95XXN || midr == PCI_REVISION_ID_98XX ||
571		midr == PCI_REVISION_ID_95XXMM || midr == PCI_REVISION_ID_95XXO);
572}
573
574static inline bool is_dev_cn10kb(struct pci_dev *pdev)
575{
576	return pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_B_RVU_PFVF;
577}
578
579static inline void otx2_setup_dev_hw_settings(struct otx2_nic *pfvf)
580{
581	struct otx2_hw *hw = &pfvf->hw;
582
583	pfvf->hw.cq_time_wait = CQ_TIMER_THRESH_DEFAULT;
584	pfvf->hw.cq_ecount_wait = CQ_CQE_THRESH_DEFAULT;
585	pfvf->hw.cq_qcount_wait = CQ_QCOUNT_DEFAULT;
586
587	__set_bit(HW_TSO, &hw->cap_flag);
588
589	if (is_96xx_A0(pfvf->pdev)) {
590		__clear_bit(HW_TSO, &hw->cap_flag);
591
592		/* Time based irq coalescing is not supported */
593		pfvf->hw.cq_qcount_wait = 0x0;
594
595		/* Due to HW issue previous silicons required minimum
596		 * 600 unused CQE to avoid CQ overflow.
597		 */
598		pfvf->hw.rq_skid = 600;
599		pfvf->qset.rqe_cnt = Q_COUNT(Q_SIZE_1K);
600	}
601	if (is_96xx_B0(pfvf->pdev))
602		__clear_bit(HW_TSO, &hw->cap_flag);
603
604	if (!is_dev_otx2(pfvf->pdev)) {
605		__set_bit(CN10K_MBOX, &hw->cap_flag);
606		__set_bit(CN10K_LMTST, &hw->cap_flag);
607		__set_bit(CN10K_RPM, &hw->cap_flag);
608		__set_bit(CN10K_PTP_ONESTEP, &hw->cap_flag);
609		__set_bit(QOS_CIR_PIR_SUPPORT, &hw->cap_flag);
610	}
611
612	if (is_dev_cn10kb(pfvf->pdev))
613		__set_bit(CN10K_HW_MACSEC, &hw->cap_flag);
614}
615
616/* Register read/write APIs */
617static inline void __iomem *otx2_get_regaddr(struct otx2_nic *nic, u64 offset)
618{
619	u64 blkaddr;
620
621	switch ((offset >> RVU_FUNC_BLKADDR_SHIFT) & RVU_FUNC_BLKADDR_MASK) {
622	case BLKTYPE_NIX:
623		blkaddr = nic->nix_blkaddr;
624		break;
625	case BLKTYPE_NPA:
626		blkaddr = BLKADDR_NPA;
627		break;
628	default:
629		blkaddr = BLKADDR_RVUM;
630		break;
631	}
632
633	offset &= ~(RVU_FUNC_BLKADDR_MASK << RVU_FUNC_BLKADDR_SHIFT);
634	offset |= (blkaddr << RVU_FUNC_BLKADDR_SHIFT);
635
636	return nic->reg_base + offset;
637}
638
639static inline void otx2_write64(struct otx2_nic *nic, u64 offset, u64 val)
640{
641	void __iomem *addr = otx2_get_regaddr(nic, offset);
642
643	writeq(val, addr);
644}
645
646static inline u64 otx2_read64(struct otx2_nic *nic, u64 offset)
647{
648	void __iomem *addr = otx2_get_regaddr(nic, offset);
649
650	return readq(addr);
651}
652
653/* Mbox bounce buffer APIs */
654static inline int otx2_mbox_bbuf_init(struct mbox *mbox, struct pci_dev *pdev)
655{
656	struct otx2_mbox *otx2_mbox;
657	struct otx2_mbox_dev *mdev;
658
659	mbox->bbuf_base = devm_kmalloc(&pdev->dev, MBOX_SIZE, GFP_KERNEL);
660	if (!mbox->bbuf_base)
661		return -ENOMEM;
662
663	/* Overwrite mbox mbase to point to bounce buffer, so that PF/VF
664	 * prepare all mbox messages in bounce buffer instead of directly
665	 * in hw mbox memory.
666	 */
667	otx2_mbox = &mbox->mbox;
668	mdev = &otx2_mbox->dev[0];
669	mdev->mbase = mbox->bbuf_base;
670
671	otx2_mbox = &mbox->mbox_up;
672	mdev = &otx2_mbox->dev[0];
673	mdev->mbase = mbox->bbuf_base;
674	return 0;
675}
676
677static inline void otx2_sync_mbox_bbuf(struct otx2_mbox *mbox, int devid)
678{
679	u16 msgs_offset = ALIGN(sizeof(struct mbox_hdr), MBOX_MSG_ALIGN);
680	void *hw_mbase = mbox->hwbase + (devid * MBOX_SIZE);
681	struct otx2_mbox_dev *mdev = &mbox->dev[devid];
682	struct mbox_hdr *hdr;
683	u64 msg_size;
684
685	if (mdev->mbase == hw_mbase)
686		return;
687
688	hdr = hw_mbase + mbox->rx_start;
689	msg_size = hdr->msg_size;
690
691	if (msg_size > mbox->rx_size - msgs_offset)
692		msg_size = mbox->rx_size - msgs_offset;
693
694	/* Copy mbox messages from mbox memory to bounce buffer */
695	memcpy(mdev->mbase + mbox->rx_start,
696	       hw_mbase + mbox->rx_start, msg_size + msgs_offset);
697}
698
699/* With the absence of API for 128-bit IO memory access for arm64,
700 * implement required operations at place.
701 */
702#if defined(CONFIG_ARM64)
703static inline void otx2_write128(u64 lo, u64 hi, void __iomem *addr)
704{
705	__asm__ volatile("stp %x[x0], %x[x1], [%x[p1],#0]!"
706			 ::[x0]"r"(lo), [x1]"r"(hi), [p1]"r"(addr));
707}
708
709static inline u64 otx2_atomic64_add(u64 incr, u64 *ptr)
710{
711	u64 result;
712
713	__asm__ volatile(".cpu   generic+lse\n"
714			 "ldadd %x[i], %x[r], [%[b]]"
715			 : [r]"=r"(result), "+m"(*ptr)
716			 : [i]"r"(incr), [b]"r"(ptr)
717			 : "memory");
718	return result;
719}
720
721#else
722#define otx2_write128(lo, hi, addr)		writeq((hi) | (lo), addr)
723#define otx2_atomic64_add(incr, ptr)		({ *ptr += incr; })
724#endif
725
726static inline void __cn10k_aura_freeptr(struct otx2_nic *pfvf, u64 aura,
727					u64 *ptrs, u64 num_ptrs)
728{
729	struct otx2_lmt_info *lmt_info;
730	u64 size = 0, count_eot = 0;
731	u64 tar_addr, val = 0;
732
733	lmt_info = per_cpu_ptr(pfvf->hw.lmt_info, smp_processor_id());
734	tar_addr = (__force u64)otx2_get_regaddr(pfvf, NPA_LF_AURA_BATCH_FREE0);
735	/* LMTID is same as AURA Id */
736	val = (lmt_info->lmt_id & 0x7FF) | BIT_ULL(63);
737	/* Set if [127:64] of last 128bit word has a valid pointer */
738	count_eot = (num_ptrs % 2) ? 0ULL : 1ULL;
739	/* Set AURA ID to free pointer */
740	ptrs[0] = (count_eot << 32) | (aura & 0xFFFFF);
741	/* Target address for LMTST flush tells HW how many 128bit
742	 * words are valid from NPA_LF_AURA_BATCH_FREE0.
743	 *
744	 * tar_addr[6:4] is LMTST size-1 in units of 128b.
745	 */
746	if (num_ptrs > 2) {
747		size = (sizeof(u64) * num_ptrs) / 16;
748		if (!count_eot)
749			size++;
750		tar_addr |=  ((size - 1) & 0x7) << 4;
751	}
752	dma_wmb();
753	memcpy((u64 *)lmt_info->lmt_addr, ptrs, sizeof(u64) * num_ptrs);
754	/* Perform LMTST flush */
755	cn10k_lmt_flush(val, tar_addr);
756}
757
758static inline void cn10k_aura_freeptr(void *dev, int aura, u64 buf)
759{
760	struct otx2_nic *pfvf = dev;
761	u64 ptrs[2];
762
763	ptrs[1] = buf;
764	get_cpu();
765	/* Free only one buffer at time during init and teardown */
766	__cn10k_aura_freeptr(pfvf, aura, ptrs, 2);
767	put_cpu();
768}
769
770/* Alloc pointer from pool/aura */
771static inline u64 otx2_aura_allocptr(struct otx2_nic *pfvf, int aura)
772{
773	u64 *ptr = (__force u64 *)otx2_get_regaddr(pfvf, NPA_LF_AURA_OP_ALLOCX(0));
774	u64 incr = (u64)aura | BIT_ULL(63);
775
776	return otx2_atomic64_add(incr, ptr);
777}
778
779/* Free pointer to a pool/aura */
780static inline void otx2_aura_freeptr(void *dev, int aura, u64 buf)
781{
782	struct otx2_nic *pfvf = dev;
783	void __iomem *addr = otx2_get_regaddr(pfvf, NPA_LF_AURA_OP_FREE0);
784
785	otx2_write128(buf, (u64)aura | BIT_ULL(63), addr);
786}
787
788static inline int otx2_get_pool_idx(struct otx2_nic *pfvf, int type, int idx)
789{
790	if (type == AURA_NIX_SQ)
791		return pfvf->hw.rqpool_cnt + idx;
792
793	 /* AURA_NIX_RQ */
794	return idx;
795}
796
797/* Mbox APIs */
798static inline int otx2_sync_mbox_msg(struct mbox *mbox)
799{
800	int err;
801
802	if (!otx2_mbox_nonempty(&mbox->mbox, 0))
803		return 0;
804	otx2_mbox_msg_send(&mbox->mbox, 0);
805	err = otx2_mbox_wait_for_rsp(&mbox->mbox, 0);
806	if (err)
807		return err;
808
809	return otx2_mbox_check_rsp_msgs(&mbox->mbox, 0);
810}
811
812static inline int otx2_sync_mbox_up_msg(struct mbox *mbox, int devid)
813{
814	int err;
815
816	if (!otx2_mbox_nonempty(&mbox->mbox_up, devid))
817		return 0;
818	otx2_mbox_msg_send_up(&mbox->mbox_up, devid);
819	err = otx2_mbox_wait_for_rsp(&mbox->mbox_up, devid);
820	if (err)
821		return err;
822
823	return otx2_mbox_check_rsp_msgs(&mbox->mbox_up, devid);
824}
825
826/* Use this API to send mbox msgs in atomic context
827 * where sleeping is not allowed
828 */
829static inline int otx2_sync_mbox_msg_busy_poll(struct mbox *mbox)
830{
831	int err;
832
833	if (!otx2_mbox_nonempty(&mbox->mbox, 0))
834		return 0;
835	otx2_mbox_msg_send(&mbox->mbox, 0);
836	err = otx2_mbox_busy_poll_for_rsp(&mbox->mbox, 0);
837	if (err)
838		return err;
839
840	return otx2_mbox_check_rsp_msgs(&mbox->mbox, 0);
841}
842
843#define M(_name, _id, _fn_name, _req_type, _rsp_type)                   \
844static struct _req_type __maybe_unused					\
845*otx2_mbox_alloc_msg_ ## _fn_name(struct mbox *mbox)                    \
846{									\
847	struct _req_type *req;						\
848									\
849	req = (struct _req_type *)otx2_mbox_alloc_msg_rsp(		\
850		&mbox->mbox, 0, sizeof(struct _req_type),		\
851		sizeof(struct _rsp_type));				\
852	if (!req)							\
853		return NULL;						\
854	req->hdr.sig = OTX2_MBOX_REQ_SIG;				\
855	req->hdr.id = _id;						\
856	trace_otx2_msg_alloc(mbox->mbox.pdev, _id, sizeof(*req));	\
857	return req;							\
858}
859
860MBOX_MESSAGES
861#undef M
862
863#define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
864int									\
865otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf,		\
866				struct _req_type *req,			\
867				struct _rsp_type *rsp);			\
868
869MBOX_UP_CGX_MESSAGES
870MBOX_UP_MCS_MESSAGES
871#undef M
872
873/* Time to wait before watchdog kicks off */
874#define OTX2_TX_TIMEOUT		(100 * HZ)
875
876#define	RVU_PFVF_PF_SHIFT	10
877#define	RVU_PFVF_PF_MASK	0x3F
878#define	RVU_PFVF_FUNC_SHIFT	0
879#define	RVU_PFVF_FUNC_MASK	0x3FF
880
881static inline bool is_otx2_vf(u16 pcifunc)
882{
883	return !!(pcifunc & RVU_PFVF_FUNC_MASK);
884}
885
886static inline int rvu_get_pf(u16 pcifunc)
887{
888	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
889}
890
891static inline dma_addr_t otx2_dma_map_page(struct otx2_nic *pfvf,
892					   struct page *page,
893					   size_t offset, size_t size,
894					   enum dma_data_direction dir)
895{
896	dma_addr_t iova;
897
898	iova = dma_map_page_attrs(pfvf->dev, page,
899				  offset, size, dir, DMA_ATTR_SKIP_CPU_SYNC);
900	if (unlikely(dma_mapping_error(pfvf->dev, iova)))
901		return (dma_addr_t)NULL;
902	return iova;
903}
904
905static inline void otx2_dma_unmap_page(struct otx2_nic *pfvf,
906				       dma_addr_t addr, size_t size,
907				       enum dma_data_direction dir)
908{
909	dma_unmap_page_attrs(pfvf->dev, addr, size,
910			     dir, DMA_ATTR_SKIP_CPU_SYNC);
911}
912
913static inline u16 otx2_get_smq_idx(struct otx2_nic *pfvf, u16 qidx)
914{
915	u16 smq;
916#ifdef CONFIG_DCB
917	if (qidx < NIX_PF_PFC_PRIO_MAX && pfvf->pfc_alloc_status[qidx])
918		return pfvf->pfc_schq_list[NIX_TXSCH_LVL_SMQ][qidx];
919#endif
920	/* check if qidx falls under QOS queues */
921	if (qidx >= pfvf->hw.non_qos_queues)
922		smq = pfvf->qos.qid_to_sqmap[qidx - pfvf->hw.non_qos_queues];
923	else
924		smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
925
926	return smq;
927}
928
929static inline u16 otx2_get_total_tx_queues(struct otx2_nic *pfvf)
930{
931	return pfvf->hw.non_qos_queues + pfvf->hw.tc_tx_queues;
932}
933
934static inline u64 otx2_convert_rate(u64 rate)
935{
936	u64 converted_rate;
937
938	/* Convert bytes per second to Mbps */
939	converted_rate = rate * 8;
940	converted_rate = max_t(u64, converted_rate / 1000000, 1);
941
942	return converted_rate;
943}
944
945static inline int otx2_tc_flower_rule_cnt(struct otx2_nic *pfvf)
946{
947	/* return here if MCAM entries not allocated */
948	if (!pfvf->flow_cfg)
949		return 0;
950
951	return pfvf->flow_cfg->nr_flows;
952}
953
954/* MSI-X APIs */
955void otx2_free_cints(struct otx2_nic *pfvf, int n);
956void otx2_set_cints_affinity(struct otx2_nic *pfvf);
957int otx2_set_mac_address(struct net_device *netdev, void *p);
958int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu);
959void otx2_tx_timeout(struct net_device *netdev, unsigned int txq);
960void otx2_get_mac_from_af(struct net_device *netdev);
961void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx);
962int otx2_config_pause_frm(struct otx2_nic *pfvf);
963void otx2_setup_segmentation(struct otx2_nic *pfvf);
964
965/* RVU block related APIs */
966int otx2_attach_npa_nix(struct otx2_nic *pfvf);
967int otx2_detach_resources(struct mbox *mbox);
968int otx2_config_npa(struct otx2_nic *pfvf);
969int otx2_sq_aura_pool_init(struct otx2_nic *pfvf);
970int otx2_rq_aura_pool_init(struct otx2_nic *pfvf);
971void otx2_aura_pool_free(struct otx2_nic *pfvf);
972void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type);
973void otx2_sq_free_sqbs(struct otx2_nic *pfvf);
974int otx2_config_nix(struct otx2_nic *pfvf);
975int otx2_config_nix_queues(struct otx2_nic *pfvf);
976int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool pfc_en);
977int otx2_txsch_alloc(struct otx2_nic *pfvf);
978void otx2_txschq_stop(struct otx2_nic *pfvf);
979void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq);
980void otx2_free_pending_sqe(struct otx2_nic *pfvf);
981void otx2_sqb_flush(struct otx2_nic *pfvf);
982int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
983		    dma_addr_t *dma);
984int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable);
985void otx2_ctx_disable(struct mbox *mbox, int type, bool npa);
986int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable);
987void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, int qidx);
988void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq);
989int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura);
990int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura);
991int cn10k_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura);
992int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
993		      dma_addr_t *dma);
994int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
995		   int stack_pages, int numptrs, int buf_size, int type);
996int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
997		   int pool_id, int numptrs);
998
999/* RSS configuration APIs*/
1000int otx2_rss_init(struct otx2_nic *pfvf);
1001int otx2_set_flowkey_cfg(struct otx2_nic *pfvf);
1002void otx2_set_rss_key(struct otx2_nic *pfvf);
1003int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id);
1004
1005/* Mbox handlers */
1006void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1007			      struct msix_offset_rsp *rsp);
1008void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1009			       struct npa_lf_alloc_rsp *rsp);
1010void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1011			       struct nix_lf_alloc_rsp *rsp);
1012void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
1013				  struct nix_txsch_alloc_rsp *rsp);
1014void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1015			    struct cgx_stats_rsp *rsp);
1016void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1017				struct cgx_fec_stats_rsp *rsp);
1018void otx2_set_fec_stats_count(struct otx2_nic *pfvf);
1019void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1020				struct nix_bp_cfg_rsp *rsp);
1021
1022/* Device stats APIs */
1023void otx2_get_dev_stats(struct otx2_nic *pfvf);
1024void otx2_get_stats64(struct net_device *netdev,
1025		      struct rtnl_link_stats64 *stats);
1026void otx2_update_lmac_stats(struct otx2_nic *pfvf);
1027void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf);
1028int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx);
1029int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx);
1030void otx2_set_ethtool_ops(struct net_device *netdev);
1031void otx2vf_set_ethtool_ops(struct net_device *netdev);
1032
1033int otx2_open(struct net_device *netdev);
1034int otx2_stop(struct net_device *netdev);
1035int otx2_set_real_num_queues(struct net_device *netdev,
1036			     int tx_queues, int rx_queues);
1037int otx2_ioctl(struct net_device *netdev, struct ifreq *req, int cmd);
1038int otx2_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr);
1039
1040/* MCAM filter related APIs */
1041int otx2_mcam_flow_init(struct otx2_nic *pf);
1042int otx2vf_mcam_flow_init(struct otx2_nic *pfvf);
1043int otx2_alloc_mcam_entries(struct otx2_nic *pfvf, u16 count);
1044void otx2_mcam_flow_del(struct otx2_nic *pf);
1045int otx2_destroy_ntuple_flows(struct otx2_nic *pf);
1046int otx2_destroy_mcam_flows(struct otx2_nic *pfvf);
1047int otx2_get_flow(struct otx2_nic *pfvf,
1048		  struct ethtool_rxnfc *nfc, u32 location);
1049int otx2_get_all_flows(struct otx2_nic *pfvf,
1050		       struct ethtool_rxnfc *nfc, u32 *rule_locs);
1051int otx2_add_flow(struct otx2_nic *pfvf,
1052		  struct ethtool_rxnfc *nfc);
1053int otx2_remove_flow(struct otx2_nic *pfvf, u32 location);
1054int otx2_get_maxflows(struct otx2_flow_config *flow_cfg);
1055void otx2_rss_ctx_flow_del(struct otx2_nic *pfvf, int ctx_id);
1056int otx2_del_macfilter(struct net_device *netdev, const u8 *mac);
1057int otx2_add_macfilter(struct net_device *netdev, const u8 *mac);
1058int otx2_enable_rxvlan(struct otx2_nic *pf, bool enable);
1059int otx2_install_rxvlan_offload_flow(struct otx2_nic *pfvf);
1060bool otx2_xdp_sq_append_pkt(struct otx2_nic *pfvf, u64 iova, int len, u16 qidx);
1061u16 otx2_get_max_mtu(struct otx2_nic *pfvf);
1062int otx2_handle_ntuple_tc_features(struct net_device *netdev,
1063				   netdev_features_t features);
1064int otx2_smq_flush(struct otx2_nic *pfvf, int smq);
1065void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool,
1066		    u64 iova, int size);
1067
1068/* tc support */
1069int otx2_init_tc(struct otx2_nic *nic);
1070void otx2_shutdown_tc(struct otx2_nic *nic);
1071int otx2_setup_tc(struct net_device *netdev, enum tc_setup_type type,
1072		  void *type_data);
1073void otx2_tc_apply_ingress_police_rules(struct otx2_nic *nic);
1074
1075/* CGX/RPM DMAC filters support */
1076int otx2_dmacflt_get_max_cnt(struct otx2_nic *pf);
1077int otx2_dmacflt_add(struct otx2_nic *pf, const u8 *mac, u32 bit_pos);
1078int otx2_dmacflt_remove(struct otx2_nic *pf, const u8 *mac, u32 bit_pos);
1079int otx2_dmacflt_update(struct otx2_nic *pf, u8 *mac, u32 bit_pos);
1080void otx2_dmacflt_reinstall_flows(struct otx2_nic *pf);
1081void otx2_dmacflt_update_pfmac_flow(struct otx2_nic *pfvf);
1082
1083#ifdef CONFIG_DCB
1084/* DCB support*/
1085void otx2_update_bpid_in_rqctx(struct otx2_nic *pfvf, int vlan_prio, int qidx, bool pfc_enable);
1086int otx2_config_priority_flow_ctrl(struct otx2_nic *pfvf);
1087int otx2_dcbnl_set_ops(struct net_device *dev);
1088/* PFC support */
1089int otx2_pfc_txschq_config(struct otx2_nic *pfvf);
1090int otx2_pfc_txschq_alloc(struct otx2_nic *pfvf);
1091int otx2_pfc_txschq_update(struct otx2_nic *pfvf);
1092int otx2_pfc_txschq_stop(struct otx2_nic *pfvf);
1093#endif
1094
1095#if IS_ENABLED(CONFIG_MACSEC)
1096/* MACSEC offload support */
1097int cn10k_mcs_init(struct otx2_nic *pfvf);
1098void cn10k_mcs_free(struct otx2_nic *pfvf);
1099void cn10k_handle_mcs_event(struct otx2_nic *pfvf, struct mcs_intr_info *event);
1100#else
1101static inline int cn10k_mcs_init(struct otx2_nic *pfvf) { return 0; }
1102static inline void cn10k_mcs_free(struct otx2_nic *pfvf) {}
1103static inline void cn10k_handle_mcs_event(struct otx2_nic *pfvf,
1104					  struct mcs_intr_info *event)
1105{}
1106#endif /* CONFIG_MACSEC */
1107
1108/* qos support */
1109static inline void otx2_qos_init(struct otx2_nic *pfvf, int qos_txqs)
1110{
1111	struct otx2_hw *hw = &pfvf->hw;
1112
1113	hw->tc_tx_queues = qos_txqs;
1114	INIT_LIST_HEAD(&pfvf->qos.qos_tree);
1115	mutex_init(&pfvf->qos.qos_lock);
1116}
1117
1118static inline void otx2_shutdown_qos(struct otx2_nic *pfvf)
1119{
1120	mutex_destroy(&pfvf->qos.qos_lock);
1121}
1122
1123u16 otx2_select_queue(struct net_device *netdev, struct sk_buff *skb,
1124		      struct net_device *sb_dev);
1125int otx2_get_txq_by_classid(struct otx2_nic *pfvf, u16 classid);
1126void otx2_qos_config_txschq(struct otx2_nic *pfvf);
1127void otx2_clean_qos_queues(struct otx2_nic *pfvf);
1128#endif /* OTX2_COMMON_H */
1129