1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include <linux/pci.h>
5#include <linux/delay.h>
6#include <linux/sched.h>
7#include <linux/netdevice.h>
8
9#include "ixgbe.h"
10#include "ixgbe_common.h"
11#include "ixgbe_phy.h"
12
13static int ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14static int ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16static int ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19					u16 count);
20static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24
25static int ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26static int ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27static int ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28					     u16 words, u16 *data);
29static int ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30					      u16 words, u16 *data);
31static int ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32						 u16 offset);
33static int ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
34
35/* Base table for registers values that change by MAC */
36const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37	IXGBE_MVALS_INIT(8259X)
38};
39
40/**
41 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42 *  control
43 *  @hw: pointer to hardware structure
44 *
45 *  There are several phys that do not support autoneg flow control. This
46 *  function check the device id to see if the associated phy supports
47 *  autoneg flow control.
48 **/
49bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50{
51	bool supported = false;
52	ixgbe_link_speed speed;
53	bool link_up;
54
55	switch (hw->phy.media_type) {
56	case ixgbe_media_type_fiber:
57		/* flow control autoneg black list */
58		switch (hw->device_id) {
59		case IXGBE_DEV_ID_X550EM_A_SFP:
60		case IXGBE_DEV_ID_X550EM_A_SFP_N:
61			supported = false;
62			break;
63		default:
64			hw->mac.ops.check_link(hw, &speed, &link_up, false);
65			/* if link is down, assume supported */
66			if (link_up)
67				supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
68			else
69				supported = true;
70		}
71
72		break;
73	case ixgbe_media_type_backplane:
74		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
75			supported = false;
76		else
77			supported = true;
78		break;
79	case ixgbe_media_type_copper:
80		/* only some copper devices support flow control autoneg */
81		switch (hw->device_id) {
82		case IXGBE_DEV_ID_82599_T3_LOM:
83		case IXGBE_DEV_ID_X540T:
84		case IXGBE_DEV_ID_X540T1:
85		case IXGBE_DEV_ID_X550T:
86		case IXGBE_DEV_ID_X550T1:
87		case IXGBE_DEV_ID_X550EM_X_10G_T:
88		case IXGBE_DEV_ID_X550EM_A_10G_T:
89		case IXGBE_DEV_ID_X550EM_A_1G_T:
90		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
91			supported = true;
92			break;
93		default:
94			break;
95		}
96		break;
97	default:
98		break;
99	}
100
101	if (!supported)
102		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
103		       hw->device_id);
104
105	return supported;
106}
107
108/**
109 *  ixgbe_setup_fc_generic - Set up flow control
110 *  @hw: pointer to hardware structure
111 *
112 *  Called at init time to set up flow control.
113 **/
114int ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
115{
116	u32 reg = 0, reg_bp = 0;
117	bool locked = false;
118	int ret_val = 0;
119	u16 reg_cu = 0;
120
121	/*
122	 * Validate the requested mode.  Strict IEEE mode does not allow
123	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
124	 */
125	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
126		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
127		return -EINVAL;
128	}
129
130	/*
131	 * 10gig parts do not have a word in the EEPROM to determine the
132	 * default flow control setting, so we explicitly set it to full.
133	 */
134	if (hw->fc.requested_mode == ixgbe_fc_default)
135		hw->fc.requested_mode = ixgbe_fc_full;
136
137	/*
138	 * Set up the 1G and 10G flow control advertisement registers so the
139	 * HW will be able to do fc autoneg once the cable is plugged in.  If
140	 * we link at 10G, the 1G advertisement is harmless and vice versa.
141	 */
142	switch (hw->phy.media_type) {
143	case ixgbe_media_type_backplane:
144		/* some MAC's need RMW protection on AUTOC */
145		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
146		if (ret_val)
147			return ret_val;
148
149		fallthrough; /* only backplane uses autoc */
150	case ixgbe_media_type_fiber:
151		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
152
153		break;
154	case ixgbe_media_type_copper:
155		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
156					MDIO_MMD_AN, &reg_cu);
157		break;
158	default:
159		break;
160	}
161
162	/*
163	 * The possible values of fc.requested_mode are:
164	 * 0: Flow control is completely disabled
165	 * 1: Rx flow control is enabled (we can receive pause frames,
166	 *    but not send pause frames).
167	 * 2: Tx flow control is enabled (we can send pause frames but
168	 *    we do not support receiving pause frames).
169	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
170	 * other: Invalid.
171	 */
172	switch (hw->fc.requested_mode) {
173	case ixgbe_fc_none:
174		/* Flow control completely disabled by software override. */
175		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
176		if (hw->phy.media_type == ixgbe_media_type_backplane)
177			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
178				    IXGBE_AUTOC_ASM_PAUSE);
179		else if (hw->phy.media_type == ixgbe_media_type_copper)
180			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
181		break;
182	case ixgbe_fc_tx_pause:
183		/*
184		 * Tx Flow control is enabled, and Rx Flow control is
185		 * disabled by software override.
186		 */
187		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
188		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
189		if (hw->phy.media_type == ixgbe_media_type_backplane) {
190			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
191			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
192		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
193			reg_cu |= IXGBE_TAF_ASM_PAUSE;
194			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
195		}
196		break;
197	case ixgbe_fc_rx_pause:
198		/*
199		 * Rx Flow control is enabled and Tx Flow control is
200		 * disabled by software override. Since there really
201		 * isn't a way to advertise that we are capable of RX
202		 * Pause ONLY, we will advertise that we support both
203		 * symmetric and asymmetric Rx PAUSE, as such we fall
204		 * through to the fc_full statement.  Later, we will
205		 * disable the adapter's ability to send PAUSE frames.
206		 */
207	case ixgbe_fc_full:
208		/* Flow control (both Rx and Tx) is enabled by SW override. */
209		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
210		if (hw->phy.media_type == ixgbe_media_type_backplane)
211			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
212				  IXGBE_AUTOC_ASM_PAUSE;
213		else if (hw->phy.media_type == ixgbe_media_type_copper)
214			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
215		break;
216	default:
217		hw_dbg(hw, "Flow control param set incorrectly\n");
218		return -EIO;
219	}
220
221	if (hw->mac.type != ixgbe_mac_X540) {
222		/*
223		 * Enable auto-negotiation between the MAC & PHY;
224		 * the MAC will advertise clause 37 flow control.
225		 */
226		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
227		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
228
229		/* Disable AN timeout */
230		if (hw->fc.strict_ieee)
231			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
232
233		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
234		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
235	}
236
237	/*
238	 * AUTOC restart handles negotiation of 1G and 10G on backplane
239	 * and copper. There is no need to set the PCS1GCTL register.
240	 *
241	 */
242	if (hw->phy.media_type == ixgbe_media_type_backplane) {
243		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
244		 * LESM is on, likewise reset_pipeline requries the lock as
245		 * it also writes AUTOC.
246		 */
247		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
248		if (ret_val)
249			return ret_val;
250
251	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
252		   ixgbe_device_supports_autoneg_fc(hw)) {
253		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
254				      MDIO_MMD_AN, reg_cu);
255	}
256
257	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
258	return ret_val;
259}
260
261/**
262 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
263 *  @hw: pointer to hardware structure
264 *
265 *  Starts the hardware by filling the bus info structure and media type, clears
266 *  all on chip counters, initializes receive address registers, multicast
267 *  table, VLAN filter table, calls routine to set up link and flow control
268 *  settings, and leaves transmit and receive units disabled and uninitialized
269 **/
270int ixgbe_start_hw_generic(struct ixgbe_hw *hw)
271{
272	u16 device_caps;
273	u32 ctrl_ext;
274	int ret_val;
275
276	/* Set the media type */
277	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
278
279	/* Identify the PHY */
280	hw->phy.ops.identify(hw);
281
282	/* Clear the VLAN filter table */
283	hw->mac.ops.clear_vfta(hw);
284
285	/* Clear statistics registers */
286	hw->mac.ops.clear_hw_cntrs(hw);
287
288	/* Set No Snoop Disable */
289	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
290	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
291	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
292	IXGBE_WRITE_FLUSH(hw);
293
294	/* Setup flow control if method for doing so */
295	if (hw->mac.ops.setup_fc) {
296		ret_val = hw->mac.ops.setup_fc(hw);
297		if (ret_val)
298			return ret_val;
299	}
300
301	/* Cashe bit indicating need for crosstalk fix */
302	switch (hw->mac.type) {
303	case ixgbe_mac_82599EB:
304	case ixgbe_mac_X550EM_x:
305	case ixgbe_mac_x550em_a:
306		hw->mac.ops.get_device_caps(hw, &device_caps);
307		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
308			hw->need_crosstalk_fix = false;
309		else
310			hw->need_crosstalk_fix = true;
311		break;
312	default:
313		hw->need_crosstalk_fix = false;
314		break;
315	}
316
317	/* Clear adapter stopped flag */
318	hw->adapter_stopped = false;
319
320	return 0;
321}
322
323/**
324 *  ixgbe_start_hw_gen2 - Init sequence for common device family
325 *  @hw: pointer to hw structure
326 *
327 * Performs the init sequence common to the second generation
328 * of 10 GbE devices.
329 * Devices in the second generation:
330 *     82599
331 *     X540
332 **/
333int ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
334{
335	u32 i;
336
337	/* Clear the rate limiters */
338	for (i = 0; i < hw->mac.max_tx_queues; i++) {
339		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
340		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
341	}
342	IXGBE_WRITE_FLUSH(hw);
343
344	return 0;
345}
346
347/**
348 *  ixgbe_init_hw_generic - Generic hardware initialization
349 *  @hw: pointer to hardware structure
350 *
351 *  Initialize the hardware by resetting the hardware, filling the bus info
352 *  structure and media type, clears all on chip counters, initializes receive
353 *  address registers, multicast table, VLAN filter table, calls routine to set
354 *  up link and flow control settings, and leaves transmit and receive units
355 *  disabled and uninitialized
356 **/
357int ixgbe_init_hw_generic(struct ixgbe_hw *hw)
358{
359	int status;
360
361	/* Reset the hardware */
362	status = hw->mac.ops.reset_hw(hw);
363
364	if (status == 0) {
365		/* Start the HW */
366		status = hw->mac.ops.start_hw(hw);
367	}
368
369	/* Initialize the LED link active for LED blink support */
370	if (hw->mac.ops.init_led_link_act)
371		hw->mac.ops.init_led_link_act(hw);
372
373	return status;
374}
375
376/**
377 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
378 *  @hw: pointer to hardware structure
379 *
380 *  Clears all hardware statistics counters by reading them from the hardware
381 *  Statistics counters are clear on read.
382 **/
383int ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
384{
385	u16 i = 0;
386
387	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
388	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
389	IXGBE_READ_REG(hw, IXGBE_ERRBC);
390	IXGBE_READ_REG(hw, IXGBE_MSPDC);
391	for (i = 0; i < 8; i++)
392		IXGBE_READ_REG(hw, IXGBE_MPC(i));
393
394	IXGBE_READ_REG(hw, IXGBE_MLFC);
395	IXGBE_READ_REG(hw, IXGBE_MRFC);
396	IXGBE_READ_REG(hw, IXGBE_RLEC);
397	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
398	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
399	if (hw->mac.type >= ixgbe_mac_82599EB) {
400		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
401		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
402	} else {
403		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
404		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
405	}
406
407	for (i = 0; i < 8; i++) {
408		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
409		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
410		if (hw->mac.type >= ixgbe_mac_82599EB) {
411			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
412			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
413		} else {
414			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
415			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
416		}
417	}
418	if (hw->mac.type >= ixgbe_mac_82599EB)
419		for (i = 0; i < 8; i++)
420			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
421	IXGBE_READ_REG(hw, IXGBE_PRC64);
422	IXGBE_READ_REG(hw, IXGBE_PRC127);
423	IXGBE_READ_REG(hw, IXGBE_PRC255);
424	IXGBE_READ_REG(hw, IXGBE_PRC511);
425	IXGBE_READ_REG(hw, IXGBE_PRC1023);
426	IXGBE_READ_REG(hw, IXGBE_PRC1522);
427	IXGBE_READ_REG(hw, IXGBE_GPRC);
428	IXGBE_READ_REG(hw, IXGBE_BPRC);
429	IXGBE_READ_REG(hw, IXGBE_MPRC);
430	IXGBE_READ_REG(hw, IXGBE_GPTC);
431	IXGBE_READ_REG(hw, IXGBE_GORCL);
432	IXGBE_READ_REG(hw, IXGBE_GORCH);
433	IXGBE_READ_REG(hw, IXGBE_GOTCL);
434	IXGBE_READ_REG(hw, IXGBE_GOTCH);
435	if (hw->mac.type == ixgbe_mac_82598EB)
436		for (i = 0; i < 8; i++)
437			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
438	IXGBE_READ_REG(hw, IXGBE_RUC);
439	IXGBE_READ_REG(hw, IXGBE_RFC);
440	IXGBE_READ_REG(hw, IXGBE_ROC);
441	IXGBE_READ_REG(hw, IXGBE_RJC);
442	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
443	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
444	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
445	IXGBE_READ_REG(hw, IXGBE_TORL);
446	IXGBE_READ_REG(hw, IXGBE_TORH);
447	IXGBE_READ_REG(hw, IXGBE_TPR);
448	IXGBE_READ_REG(hw, IXGBE_TPT);
449	IXGBE_READ_REG(hw, IXGBE_PTC64);
450	IXGBE_READ_REG(hw, IXGBE_PTC127);
451	IXGBE_READ_REG(hw, IXGBE_PTC255);
452	IXGBE_READ_REG(hw, IXGBE_PTC511);
453	IXGBE_READ_REG(hw, IXGBE_PTC1023);
454	IXGBE_READ_REG(hw, IXGBE_PTC1522);
455	IXGBE_READ_REG(hw, IXGBE_MPTC);
456	IXGBE_READ_REG(hw, IXGBE_BPTC);
457	for (i = 0; i < 16; i++) {
458		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
459		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
460		if (hw->mac.type >= ixgbe_mac_82599EB) {
461			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
462			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
463			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
464			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
465			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
466		} else {
467			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
468			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
469		}
470	}
471
472	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
473		if (hw->phy.id == 0)
474			hw->phy.ops.identify(hw);
475		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
476		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
477		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
478		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
479	}
480
481	return 0;
482}
483
484/**
485 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
486 *  @hw: pointer to hardware structure
487 *  @pba_num: stores the part number string from the EEPROM
488 *  @pba_num_size: part number string buffer length
489 *
490 *  Reads the part number string from the EEPROM.
491 **/
492int ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
493				  u32 pba_num_size)
494{
495	int ret_val;
496	u16 pba_ptr;
497	u16 offset;
498	u16 length;
499	u16 data;
500
501	if (pba_num == NULL) {
502		hw_dbg(hw, "PBA string buffer was null\n");
503		return -EINVAL;
504	}
505
506	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
507	if (ret_val) {
508		hw_dbg(hw, "NVM Read Error\n");
509		return ret_val;
510	}
511
512	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
513	if (ret_val) {
514		hw_dbg(hw, "NVM Read Error\n");
515		return ret_val;
516	}
517
518	/*
519	 * if data is not ptr guard the PBA must be in legacy format which
520	 * means pba_ptr is actually our second data word for the PBA number
521	 * and we can decode it into an ascii string
522	 */
523	if (data != IXGBE_PBANUM_PTR_GUARD) {
524		hw_dbg(hw, "NVM PBA number is not stored as string\n");
525
526		/* we will need 11 characters to store the PBA */
527		if (pba_num_size < 11) {
528			hw_dbg(hw, "PBA string buffer too small\n");
529			return -ENOSPC;
530		}
531
532		/* extract hex string from data and pba_ptr */
533		pba_num[0] = (data >> 12) & 0xF;
534		pba_num[1] = (data >> 8) & 0xF;
535		pba_num[2] = (data >> 4) & 0xF;
536		pba_num[3] = data & 0xF;
537		pba_num[4] = (pba_ptr >> 12) & 0xF;
538		pba_num[5] = (pba_ptr >> 8) & 0xF;
539		pba_num[6] = '-';
540		pba_num[7] = 0;
541		pba_num[8] = (pba_ptr >> 4) & 0xF;
542		pba_num[9] = pba_ptr & 0xF;
543
544		/* put a null character on the end of our string */
545		pba_num[10] = '\0';
546
547		/* switch all the data but the '-' to hex char */
548		for (offset = 0; offset < 10; offset++) {
549			if (pba_num[offset] < 0xA)
550				pba_num[offset] += '0';
551			else if (pba_num[offset] < 0x10)
552				pba_num[offset] += 'A' - 0xA;
553		}
554
555		return 0;
556	}
557
558	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
559	if (ret_val) {
560		hw_dbg(hw, "NVM Read Error\n");
561		return ret_val;
562	}
563
564	if (length == 0xFFFF || length == 0) {
565		hw_dbg(hw, "NVM PBA number section invalid length\n");
566		return -EIO;
567	}
568
569	/* check if pba_num buffer is big enough */
570	if (pba_num_size  < (((u32)length * 2) - 1)) {
571		hw_dbg(hw, "PBA string buffer too small\n");
572		return -ENOSPC;
573	}
574
575	/* trim pba length from start of string */
576	pba_ptr++;
577	length--;
578
579	for (offset = 0; offset < length; offset++) {
580		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
581		if (ret_val) {
582			hw_dbg(hw, "NVM Read Error\n");
583			return ret_val;
584		}
585		pba_num[offset * 2] = (u8)(data >> 8);
586		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
587	}
588	pba_num[offset * 2] = '\0';
589
590	return 0;
591}
592
593/**
594 *  ixgbe_get_mac_addr_generic - Generic get MAC address
595 *  @hw: pointer to hardware structure
596 *  @mac_addr: Adapter MAC address
597 *
598 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
599 *  A reset of the adapter must be performed prior to calling this function
600 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
601 **/
602int ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
603{
604	u32 rar_high;
605	u32 rar_low;
606	u16 i;
607
608	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
609	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
610
611	for (i = 0; i < 4; i++)
612		mac_addr[i] = (u8)(rar_low >> (i*8));
613
614	for (i = 0; i < 2; i++)
615		mac_addr[i+4] = (u8)(rar_high >> (i*8));
616
617	return 0;
618}
619
620enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
621{
622	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
623	case IXGBE_PCI_LINK_WIDTH_1:
624		return ixgbe_bus_width_pcie_x1;
625	case IXGBE_PCI_LINK_WIDTH_2:
626		return ixgbe_bus_width_pcie_x2;
627	case IXGBE_PCI_LINK_WIDTH_4:
628		return ixgbe_bus_width_pcie_x4;
629	case IXGBE_PCI_LINK_WIDTH_8:
630		return ixgbe_bus_width_pcie_x8;
631	default:
632		return ixgbe_bus_width_unknown;
633	}
634}
635
636enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
637{
638	switch (link_status & IXGBE_PCI_LINK_SPEED) {
639	case IXGBE_PCI_LINK_SPEED_2500:
640		return ixgbe_bus_speed_2500;
641	case IXGBE_PCI_LINK_SPEED_5000:
642		return ixgbe_bus_speed_5000;
643	case IXGBE_PCI_LINK_SPEED_8000:
644		return ixgbe_bus_speed_8000;
645	default:
646		return ixgbe_bus_speed_unknown;
647	}
648}
649
650/**
651 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
652 *  @hw: pointer to hardware structure
653 *
654 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
655 **/
656int ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
657{
658	u16 link_status;
659
660	hw->bus.type = ixgbe_bus_type_pci_express;
661
662	/* Get the negotiated link width and speed from PCI config space */
663	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
664
665	hw->bus.width = ixgbe_convert_bus_width(link_status);
666	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
667
668	hw->mac.ops.set_lan_id(hw);
669
670	return 0;
671}
672
673/**
674 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
675 *  @hw: pointer to the HW structure
676 *
677 *  Determines the LAN function id by reading memory-mapped registers
678 *  and swaps the port value if requested.
679 **/
680void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
681{
682	struct ixgbe_bus_info *bus = &hw->bus;
683	u16 ee_ctrl_4;
684	u32 reg;
685
686	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687	bus->func = FIELD_GET(IXGBE_STATUS_LAN_ID, reg);
688	bus->lan_id = bus->func;
689
690	/* check for a port swap */
691	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692	if (reg & IXGBE_FACTPS_LFS)
693		bus->func ^= 0x1;
694
695	/* Get MAC instance from EEPROM for configuring CS4227 */
696	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
697		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
698		bus->instance_id = FIELD_GET(IXGBE_EE_CTRL_4_INST_ID,
699					     ee_ctrl_4);
700	}
701}
702
703/**
704 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
705 *  @hw: pointer to hardware structure
706 *
707 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
708 *  disables transmit and receive units. The adapter_stopped flag is used by
709 *  the shared code and drivers to determine if the adapter is in a stopped
710 *  state and should not touch the hardware.
711 **/
712int ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
713{
714	u32 reg_val;
715	u16 i;
716
717	/*
718	 * Set the adapter_stopped flag so other driver functions stop touching
719	 * the hardware
720	 */
721	hw->adapter_stopped = true;
722
723	/* Disable the receive unit */
724	hw->mac.ops.disable_rx(hw);
725
726	/* Clear interrupt mask to stop interrupts from being generated */
727	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
728
729	/* Clear any pending interrupts, flush previous writes */
730	IXGBE_READ_REG(hw, IXGBE_EICR);
731
732	/* Disable the transmit unit.  Each queue must be disabled. */
733	for (i = 0; i < hw->mac.max_tx_queues; i++)
734		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
735
736	/* Disable the receive unit by stopping each queue */
737	for (i = 0; i < hw->mac.max_rx_queues; i++) {
738		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
739		reg_val &= ~IXGBE_RXDCTL_ENABLE;
740		reg_val |= IXGBE_RXDCTL_SWFLSH;
741		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
742	}
743
744	/* flush all queues disables */
745	IXGBE_WRITE_FLUSH(hw);
746	usleep_range(1000, 2000);
747
748	/*
749	 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
750	 * access and verify no pending requests
751	 */
752	return ixgbe_disable_pcie_primary(hw);
753}
754
755/**
756 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
757 *  @hw: pointer to hardware structure
758 *
759 *  Store the index for the link active LED. This will be used to support
760 *  blinking the LED.
761 **/
762int ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
763{
764	struct ixgbe_mac_info *mac = &hw->mac;
765	u32 led_reg, led_mode;
766	u16 i;
767
768	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
769
770	/* Get LED link active from the LEDCTL register */
771	for (i = 0; i < 4; i++) {
772		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
773
774		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
775		    IXGBE_LED_LINK_ACTIVE) {
776			mac->led_link_act = i;
777			return 0;
778		}
779	}
780
781	/* If LEDCTL register does not have the LED link active set, then use
782	 * known MAC defaults.
783	 */
784	switch (hw->mac.type) {
785	case ixgbe_mac_x550em_a:
786		mac->led_link_act = 0;
787		break;
788	case ixgbe_mac_X550EM_x:
789		mac->led_link_act = 1;
790		break;
791	default:
792		mac->led_link_act = 2;
793	}
794
795	return 0;
796}
797
798/**
799 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
800 *  @hw: pointer to hardware structure
801 *  @index: led number to turn on
802 **/
803int ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
804{
805	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
806
807	if (index > 3)
808		return -EINVAL;
809
810	/* To turn on the LED, set mode to ON. */
811	led_reg &= ~IXGBE_LED_MODE_MASK(index);
812	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
813	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
814	IXGBE_WRITE_FLUSH(hw);
815
816	return 0;
817}
818
819/**
820 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
821 *  @hw: pointer to hardware structure
822 *  @index: led number to turn off
823 **/
824int ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
825{
826	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
827
828	if (index > 3)
829		return -EINVAL;
830
831	/* To turn off the LED, set mode to OFF. */
832	led_reg &= ~IXGBE_LED_MODE_MASK(index);
833	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
834	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
835	IXGBE_WRITE_FLUSH(hw);
836
837	return 0;
838}
839
840/**
841 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
842 *  @hw: pointer to hardware structure
843 *
844 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
845 *  ixgbe_hw struct in order to set up EEPROM access.
846 **/
847int ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
848{
849	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
850	u32 eec;
851	u16 eeprom_size;
852
853	if (eeprom->type == ixgbe_eeprom_uninitialized) {
854		eeprom->type = ixgbe_eeprom_none;
855		/* Set default semaphore delay to 10ms which is a well
856		 * tested value */
857		eeprom->semaphore_delay = 10;
858		/* Clear EEPROM page size, it will be initialized as needed */
859		eeprom->word_page_size = 0;
860
861		/*
862		 * Check for EEPROM present first.
863		 * If not present leave as none
864		 */
865		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
866		if (eec & IXGBE_EEC_PRES) {
867			eeprom->type = ixgbe_eeprom_spi;
868
869			/*
870			 * SPI EEPROM is assumed here.  This code would need to
871			 * change if a future EEPROM is not SPI.
872			 */
873			eeprom_size = FIELD_GET(IXGBE_EEC_SIZE, eec);
874			eeprom->word_size = BIT(eeprom_size +
875						IXGBE_EEPROM_WORD_SIZE_SHIFT);
876		}
877
878		if (eec & IXGBE_EEC_ADDR_SIZE)
879			eeprom->address_bits = 16;
880		else
881			eeprom->address_bits = 8;
882		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
883		       eeprom->type, eeprom->word_size, eeprom->address_bits);
884	}
885
886	return 0;
887}
888
889/**
890 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
891 *  @hw: pointer to hardware structure
892 *  @offset: offset within the EEPROM to write
893 *  @words: number of words
894 *  @data: 16 bit word(s) to write to EEPROM
895 *
896 *  Reads 16 bit word(s) from EEPROM through bit-bang method
897 **/
898int ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
899					       u16 words, u16 *data)
900{
901	u16 i, count;
902	int status;
903
904	hw->eeprom.ops.init_params(hw);
905
906	if (words == 0 || (offset + words > hw->eeprom.word_size))
907		return -EINVAL;
908
909	/*
910	 * The EEPROM page size cannot be queried from the chip. We do lazy
911	 * initialization. It is worth to do that when we write large buffer.
912	 */
913	if ((hw->eeprom.word_page_size == 0) &&
914	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
915		ixgbe_detect_eeprom_page_size_generic(hw, offset);
916
917	/*
918	 * We cannot hold synchronization semaphores for too long
919	 * to avoid other entity starvation. However it is more efficient
920	 * to read in bursts than synchronizing access for each word.
921	 */
922	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
923		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
924			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
925		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
926							    count, &data[i]);
927
928		if (status != 0)
929			break;
930	}
931
932	return status;
933}
934
935/**
936 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
937 *  @hw: pointer to hardware structure
938 *  @offset: offset within the EEPROM to be written to
939 *  @words: number of word(s)
940 *  @data: 16 bit word(s) to be written to the EEPROM
941 *
942 *  If ixgbe_eeprom_update_checksum is not called after this function, the
943 *  EEPROM will most likely contain an invalid checksum.
944 **/
945static int ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
946					      u16 words, u16 *data)
947{
948	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
949	u16 page_size;
950	int status;
951	u16 word;
952	u16 i;
953
954	/* Prepare the EEPROM for writing  */
955	status = ixgbe_acquire_eeprom(hw);
956	if (status)
957		return status;
958
959	if (ixgbe_ready_eeprom(hw) != 0) {
960		ixgbe_release_eeprom(hw);
961		return -EIO;
962	}
963
964	for (i = 0; i < words; i++) {
965		ixgbe_standby_eeprom(hw);
966
967		/* Send the WRITE ENABLE command (8 bit opcode) */
968		ixgbe_shift_out_eeprom_bits(hw,
969					    IXGBE_EEPROM_WREN_OPCODE_SPI,
970					    IXGBE_EEPROM_OPCODE_BITS);
971
972		ixgbe_standby_eeprom(hw);
973
974		/* Some SPI eeproms use the 8th address bit embedded
975		 * in the opcode
976		 */
977		if ((hw->eeprom.address_bits == 8) &&
978		    ((offset + i) >= 128))
979			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
980
981		/* Send the Write command (8-bit opcode + addr) */
982		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
983					    IXGBE_EEPROM_OPCODE_BITS);
984		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
985					    hw->eeprom.address_bits);
986
987		page_size = hw->eeprom.word_page_size;
988
989		/* Send the data in burst via SPI */
990		do {
991			word = data[i];
992			word = (word >> 8) | (word << 8);
993			ixgbe_shift_out_eeprom_bits(hw, word, 16);
994
995			if (page_size == 0)
996				break;
997
998			/* do not wrap around page */
999			if (((offset + i) & (page_size - 1)) ==
1000			    (page_size - 1))
1001				break;
1002		} while (++i < words);
1003
1004		ixgbe_standby_eeprom(hw);
1005		usleep_range(10000, 20000);
1006	}
1007	/* Done with writing - release the EEPROM */
1008	ixgbe_release_eeprom(hw);
1009
1010	return 0;
1011}
1012
1013/**
1014 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1015 *  @hw: pointer to hardware structure
1016 *  @offset: offset within the EEPROM to be written to
1017 *  @data: 16 bit word to be written to the EEPROM
1018 *
1019 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1020 *  EEPROM will most likely contain an invalid checksum.
1021 **/
1022int ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1023{
1024	hw->eeprom.ops.init_params(hw);
1025
1026	if (offset >= hw->eeprom.word_size)
1027		return -EINVAL;
1028
1029	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1030}
1031
1032/**
1033 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1034 *  @hw: pointer to hardware structure
1035 *  @offset: offset within the EEPROM to be read
1036 *  @words: number of word(s)
1037 *  @data: read 16 bit words(s) from EEPROM
1038 *
1039 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1040 **/
1041int ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1042					      u16 words, u16 *data)
1043{
1044	u16 i, count;
1045	int status;
1046
1047	hw->eeprom.ops.init_params(hw);
1048
1049	if (words == 0 || (offset + words > hw->eeprom.word_size))
1050		return -EINVAL;
1051
1052	/*
1053	 * We cannot hold synchronization semaphores for too long
1054	 * to avoid other entity starvation. However it is more efficient
1055	 * to read in bursts than synchronizing access for each word.
1056	 */
1057	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1058		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1059			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1060
1061		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1062							   count, &data[i]);
1063
1064		if (status)
1065			return status;
1066	}
1067
1068	return 0;
1069}
1070
1071/**
1072 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1073 *  @hw: pointer to hardware structure
1074 *  @offset: offset within the EEPROM to be read
1075 *  @words: number of word(s)
1076 *  @data: read 16 bit word(s) from EEPROM
1077 *
1078 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1079 **/
1080static int ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1081					     u16 words, u16 *data)
1082{
1083	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1084	u16 word_in;
1085	int status;
1086	u16 i;
1087
1088	/* Prepare the EEPROM for reading  */
1089	status = ixgbe_acquire_eeprom(hw);
1090	if (status)
1091		return status;
1092
1093	if (ixgbe_ready_eeprom(hw) != 0) {
1094		ixgbe_release_eeprom(hw);
1095		return -EIO;
1096	}
1097
1098	for (i = 0; i < words; i++) {
1099		ixgbe_standby_eeprom(hw);
1100		/* Some SPI eeproms use the 8th address bit embedded
1101		 * in the opcode
1102		 */
1103		if ((hw->eeprom.address_bits == 8) &&
1104		    ((offset + i) >= 128))
1105			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1106
1107		/* Send the READ command (opcode + addr) */
1108		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1109					    IXGBE_EEPROM_OPCODE_BITS);
1110		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1111					    hw->eeprom.address_bits);
1112
1113		/* Read the data. */
1114		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1115		data[i] = (word_in >> 8) | (word_in << 8);
1116	}
1117
1118	/* End this read operation */
1119	ixgbe_release_eeprom(hw);
1120
1121	return 0;
1122}
1123
1124/**
1125 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1126 *  @hw: pointer to hardware structure
1127 *  @offset: offset within the EEPROM to be read
1128 *  @data: read 16 bit value from EEPROM
1129 *
1130 *  Reads 16 bit value from EEPROM through bit-bang method
1131 **/
1132int ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1133				       u16 *data)
1134{
1135	hw->eeprom.ops.init_params(hw);
1136
1137	if (offset >= hw->eeprom.word_size)
1138		return -EINVAL;
1139
1140	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1141}
1142
1143/**
1144 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1145 *  @hw: pointer to hardware structure
1146 *  @offset: offset of word in the EEPROM to read
1147 *  @words: number of word(s)
1148 *  @data: 16 bit word(s) from the EEPROM
1149 *
1150 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1151 **/
1152int ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1153				   u16 words, u16 *data)
1154{
1155	int status;
1156	u32 eerd;
1157	u32 i;
1158
1159	hw->eeprom.ops.init_params(hw);
1160
1161	if (words == 0 || offset >= hw->eeprom.word_size)
1162		return -EINVAL;
1163
1164	for (i = 0; i < words; i++) {
1165		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1166		       IXGBE_EEPROM_RW_REG_START;
1167
1168		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1169		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1170
1171		if (status == 0) {
1172			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1173				   IXGBE_EEPROM_RW_REG_DATA);
1174		} else {
1175			hw_dbg(hw, "Eeprom read timed out\n");
1176			return status;
1177		}
1178	}
1179
1180	return 0;
1181}
1182
1183/**
1184 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1185 *  @hw: pointer to hardware structure
1186 *  @offset: offset within the EEPROM to be used as a scratch pad
1187 *
1188 *  Discover EEPROM page size by writing marching data at given offset.
1189 *  This function is called only when we are writing a new large buffer
1190 *  at given offset so the data would be overwritten anyway.
1191 **/
1192static int ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1193						 u16 offset)
1194{
1195	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1196	int status;
1197	u16 i;
1198
1199	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1200		data[i] = i;
1201
1202	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1203	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1204					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1205	hw->eeprom.word_page_size = 0;
1206	if (status)
1207		return status;
1208
1209	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1210	if (status)
1211		return status;
1212
1213	/*
1214	 * When writing in burst more than the actual page size
1215	 * EEPROM address wraps around current page.
1216	 */
1217	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1218
1219	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1220	       hw->eeprom.word_page_size);
1221	return 0;
1222}
1223
1224/**
1225 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1226 *  @hw: pointer to hardware structure
1227 *  @offset: offset of  word in the EEPROM to read
1228 *  @data: word read from the EEPROM
1229 *
1230 *  Reads a 16 bit word from the EEPROM using the EERD register.
1231 **/
1232int ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1233{
1234	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1235}
1236
1237/**
1238 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1239 *  @hw: pointer to hardware structure
1240 *  @offset: offset of  word in the EEPROM to write
1241 *  @words: number of words
1242 *  @data: word(s) write to the EEPROM
1243 *
1244 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1245 **/
1246int ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1247				    u16 words, u16 *data)
1248{
1249	int status;
1250	u32 eewr;
1251	u16 i;
1252
1253	hw->eeprom.ops.init_params(hw);
1254
1255	if (words == 0 || offset >= hw->eeprom.word_size)
1256		return -EINVAL;
1257
1258	for (i = 0; i < words; i++) {
1259		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1260		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1261		       IXGBE_EEPROM_RW_REG_START;
1262
1263		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1264		if (status) {
1265			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1266			return status;
1267		}
1268
1269		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1270
1271		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1272		if (status) {
1273			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1274			return status;
1275		}
1276	}
1277
1278	return 0;
1279}
1280
1281/**
1282 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1283 *  @hw: pointer to hardware structure
1284 *  @offset: offset of  word in the EEPROM to write
1285 *  @data: word write to the EEPROM
1286 *
1287 *  Write a 16 bit word to the EEPROM using the EEWR register.
1288 **/
1289int ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1290{
1291	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1292}
1293
1294/**
1295 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1296 *  @hw: pointer to hardware structure
1297 *  @ee_reg: EEPROM flag for polling
1298 *
1299 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1300 *  read or write is done respectively.
1301 **/
1302static int ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1303{
1304	u32 i;
1305	u32 reg;
1306
1307	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1308		if (ee_reg == IXGBE_NVM_POLL_READ)
1309			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1310		else
1311			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1312
1313		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1314			return 0;
1315		}
1316		udelay(5);
1317	}
1318	return -EIO;
1319}
1320
1321/**
1322 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1323 *  @hw: pointer to hardware structure
1324 *
1325 *  Prepares EEPROM for access using bit-bang method. This function should
1326 *  be called before issuing a command to the EEPROM.
1327 **/
1328static int ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1329{
1330	u32 eec;
1331	u32 i;
1332
1333	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1334		return -EBUSY;
1335
1336	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1337
1338	/* Request EEPROM Access */
1339	eec |= IXGBE_EEC_REQ;
1340	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1341
1342	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1343		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1344		if (eec & IXGBE_EEC_GNT)
1345			break;
1346		udelay(5);
1347	}
1348
1349	/* Release if grant not acquired */
1350	if (!(eec & IXGBE_EEC_GNT)) {
1351		eec &= ~IXGBE_EEC_REQ;
1352		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1353		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1354
1355		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1356		return -EIO;
1357	}
1358
1359	/* Setup EEPROM for Read/Write */
1360	/* Clear CS and SK */
1361	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1362	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1363	IXGBE_WRITE_FLUSH(hw);
1364	udelay(1);
1365	return 0;
1366}
1367
1368/**
1369 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1370 *  @hw: pointer to hardware structure
1371 *
1372 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1373 **/
1374static int ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1375{
1376	u32 timeout = 2000;
1377	u32 i;
1378	u32 swsm;
1379
1380	/* Get SMBI software semaphore between device drivers first */
1381	for (i = 0; i < timeout; i++) {
1382		/*
1383		 * If the SMBI bit is 0 when we read it, then the bit will be
1384		 * set and we have the semaphore
1385		 */
1386		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1387		if (!(swsm & IXGBE_SWSM_SMBI))
1388			break;
1389		usleep_range(50, 100);
1390	}
1391
1392	if (i == timeout) {
1393		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1394		/* this release is particularly important because our attempts
1395		 * above to get the semaphore may have succeeded, and if there
1396		 * was a timeout, we should unconditionally clear the semaphore
1397		 * bits to free the driver to make progress
1398		 */
1399		ixgbe_release_eeprom_semaphore(hw);
1400
1401		usleep_range(50, 100);
1402		/* one last try
1403		 * If the SMBI bit is 0 when we read it, then the bit will be
1404		 * set and we have the semaphore
1405		 */
1406		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1407		if (swsm & IXGBE_SWSM_SMBI) {
1408			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1409			return -EIO;
1410		}
1411	}
1412
1413	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1414	for (i = 0; i < timeout; i++) {
1415		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1416
1417		/* Set the SW EEPROM semaphore bit to request access */
1418		swsm |= IXGBE_SWSM_SWESMBI;
1419		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1420
1421		/* If we set the bit successfully then we got the
1422		 * semaphore.
1423		 */
1424		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1425		if (swsm & IXGBE_SWSM_SWESMBI)
1426			break;
1427
1428		usleep_range(50, 100);
1429	}
1430
1431	/* Release semaphores and return error if SW EEPROM semaphore
1432	 * was not granted because we don't have access to the EEPROM
1433	 */
1434	if (i >= timeout) {
1435		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1436		ixgbe_release_eeprom_semaphore(hw);
1437		return -EIO;
1438	}
1439
1440	return 0;
1441}
1442
1443/**
1444 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1445 *  @hw: pointer to hardware structure
1446 *
1447 *  This function clears hardware semaphore bits.
1448 **/
1449static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1450{
1451	u32 swsm;
1452
1453	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1454
1455	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1456	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1457	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1458	IXGBE_WRITE_FLUSH(hw);
1459}
1460
1461/**
1462 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1463 *  @hw: pointer to hardware structure
1464 **/
1465static int ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1466{
1467	u16 i;
1468	u8 spi_stat_reg;
1469
1470	/*
1471	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1472	 * EEPROM will signal that the command has been completed by clearing
1473	 * bit 0 of the internal status register.  If it's not cleared within
1474	 * 5 milliseconds, then error out.
1475	 */
1476	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1477		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1478					    IXGBE_EEPROM_OPCODE_BITS);
1479		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1480		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1481			break;
1482
1483		udelay(5);
1484		ixgbe_standby_eeprom(hw);
1485	}
1486
1487	/*
1488	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1489	 * devices (and only 0-5mSec on 5V devices)
1490	 */
1491	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1492		hw_dbg(hw, "SPI EEPROM Status error\n");
1493		return -EIO;
1494	}
1495
1496	return 0;
1497}
1498
1499/**
1500 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1501 *  @hw: pointer to hardware structure
1502 **/
1503static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1504{
1505	u32 eec;
1506
1507	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1508
1509	/* Toggle CS to flush commands */
1510	eec |= IXGBE_EEC_CS;
1511	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512	IXGBE_WRITE_FLUSH(hw);
1513	udelay(1);
1514	eec &= ~IXGBE_EEC_CS;
1515	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1516	IXGBE_WRITE_FLUSH(hw);
1517	udelay(1);
1518}
1519
1520/**
1521 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1522 *  @hw: pointer to hardware structure
1523 *  @data: data to send to the EEPROM
1524 *  @count: number of bits to shift out
1525 **/
1526static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1527					u16 count)
1528{
1529	u32 eec;
1530	u32 mask;
1531	u32 i;
1532
1533	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1534
1535	/*
1536	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1537	 * one bit at a time.  Determine the starting bit based on count
1538	 */
1539	mask = BIT(count - 1);
1540
1541	for (i = 0; i < count; i++) {
1542		/*
1543		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1544		 * "1", and then raising and then lowering the clock (the SK
1545		 * bit controls the clock input to the EEPROM).  A "0" is
1546		 * shifted out to the EEPROM by setting "DI" to "0" and then
1547		 * raising and then lowering the clock.
1548		 */
1549		if (data & mask)
1550			eec |= IXGBE_EEC_DI;
1551		else
1552			eec &= ~IXGBE_EEC_DI;
1553
1554		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1555		IXGBE_WRITE_FLUSH(hw);
1556
1557		udelay(1);
1558
1559		ixgbe_raise_eeprom_clk(hw, &eec);
1560		ixgbe_lower_eeprom_clk(hw, &eec);
1561
1562		/*
1563		 * Shift mask to signify next bit of data to shift in to the
1564		 * EEPROM
1565		 */
1566		mask = mask >> 1;
1567	}
1568
1569	/* We leave the "DI" bit set to "0" when we leave this routine. */
1570	eec &= ~IXGBE_EEC_DI;
1571	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1572	IXGBE_WRITE_FLUSH(hw);
1573}
1574
1575/**
1576 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1577 *  @hw: pointer to hardware structure
1578 *  @count: number of bits to shift
1579 **/
1580static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1581{
1582	u32 eec;
1583	u32 i;
1584	u16 data = 0;
1585
1586	/*
1587	 * In order to read a register from the EEPROM, we need to shift
1588	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1589	 * the clock input to the EEPROM (setting the SK bit), and then reading
1590	 * the value of the "DO" bit.  During this "shifting in" process the
1591	 * "DI" bit should always be clear.
1592	 */
1593	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1594
1595	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1596
1597	for (i = 0; i < count; i++) {
1598		data = data << 1;
1599		ixgbe_raise_eeprom_clk(hw, &eec);
1600
1601		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1602
1603		eec &= ~(IXGBE_EEC_DI);
1604		if (eec & IXGBE_EEC_DO)
1605			data |= 1;
1606
1607		ixgbe_lower_eeprom_clk(hw, &eec);
1608	}
1609
1610	return data;
1611}
1612
1613/**
1614 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1615 *  @hw: pointer to hardware structure
1616 *  @eec: EEC register's current value
1617 **/
1618static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1619{
1620	/*
1621	 * Raise the clock input to the EEPROM
1622	 * (setting the SK bit), then delay
1623	 */
1624	*eec = *eec | IXGBE_EEC_SK;
1625	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1626	IXGBE_WRITE_FLUSH(hw);
1627	udelay(1);
1628}
1629
1630/**
1631 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1632 *  @hw: pointer to hardware structure
1633 *  @eec: EEC's current value
1634 **/
1635static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1636{
1637	/*
1638	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1639	 * delay
1640	 */
1641	*eec = *eec & ~IXGBE_EEC_SK;
1642	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1643	IXGBE_WRITE_FLUSH(hw);
1644	udelay(1);
1645}
1646
1647/**
1648 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1649 *  @hw: pointer to hardware structure
1650 **/
1651static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1652{
1653	u32 eec;
1654
1655	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1656
1657	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1658	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1659
1660	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1661	IXGBE_WRITE_FLUSH(hw);
1662
1663	udelay(1);
1664
1665	/* Stop requesting EEPROM access */
1666	eec &= ~IXGBE_EEC_REQ;
1667	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1668
1669	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1670
1671	/*
1672	 * Delay before attempt to obtain semaphore again to allow FW
1673	 * access. semaphore_delay is in ms we need us for usleep_range
1674	 */
1675	usleep_range(hw->eeprom.semaphore_delay * 1000,
1676		     hw->eeprom.semaphore_delay * 2000);
1677}
1678
1679/**
1680 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1681 *  @hw: pointer to hardware structure
1682 **/
1683int ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1684{
1685	u16 i;
1686	u16 j;
1687	u16 checksum = 0;
1688	u16 length = 0;
1689	u16 pointer = 0;
1690	u16 word = 0;
1691
1692	/* Include 0x0-0x3F in the checksum */
1693	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1694		if (hw->eeprom.ops.read(hw, i, &word)) {
1695			hw_dbg(hw, "EEPROM read failed\n");
1696			break;
1697		}
1698		checksum += word;
1699	}
1700
1701	/* Include all data from pointers except for the fw pointer */
1702	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1703		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1704			hw_dbg(hw, "EEPROM read failed\n");
1705			return -EIO;
1706		}
1707
1708		/* If the pointer seems invalid */
1709		if (pointer == 0xFFFF || pointer == 0)
1710			continue;
1711
1712		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1713			hw_dbg(hw, "EEPROM read failed\n");
1714			return -EIO;
1715		}
1716
1717		if (length == 0xFFFF || length == 0)
1718			continue;
1719
1720		for (j = pointer + 1; j <= pointer + length; j++) {
1721			if (hw->eeprom.ops.read(hw, j, &word)) {
1722				hw_dbg(hw, "EEPROM read failed\n");
1723				return -EIO;
1724			}
1725			checksum += word;
1726		}
1727	}
1728
1729	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1730
1731	return (int)checksum;
1732}
1733
1734/**
1735 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1736 *  @hw: pointer to hardware structure
1737 *  @checksum_val: calculated checksum
1738 *
1739 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1740 *  caller does not need checksum_val, the value can be NULL.
1741 **/
1742int ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1743					   u16 *checksum_val)
1744{
1745	u16 read_checksum = 0;
1746	u16 checksum;
1747	int status;
1748
1749	/*
1750	 * Read the first word from the EEPROM. If this times out or fails, do
1751	 * not continue or we could be in for a very long wait while every
1752	 * EEPROM read fails
1753	 */
1754	status = hw->eeprom.ops.read(hw, 0, &checksum);
1755	if (status) {
1756		hw_dbg(hw, "EEPROM read failed\n");
1757		return status;
1758	}
1759
1760	status = hw->eeprom.ops.calc_checksum(hw);
1761	if (status < 0)
1762		return status;
1763
1764	checksum = (u16)(status & 0xffff);
1765
1766	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1767	if (status) {
1768		hw_dbg(hw, "EEPROM read failed\n");
1769		return status;
1770	}
1771
1772	/* Verify read checksum from EEPROM is the same as
1773	 * calculated checksum
1774	 */
1775	if (read_checksum != checksum)
1776		status = -EIO;
1777
1778	/* If the user cares, return the calculated checksum */
1779	if (checksum_val)
1780		*checksum_val = checksum;
1781
1782	return status;
1783}
1784
1785/**
1786 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1787 *  @hw: pointer to hardware structure
1788 **/
1789int ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1790{
1791	u16 checksum;
1792	int status;
1793
1794	/*
1795	 * Read the first word from the EEPROM. If this times out or fails, do
1796	 * not continue or we could be in for a very long wait while every
1797	 * EEPROM read fails
1798	 */
1799	status = hw->eeprom.ops.read(hw, 0, &checksum);
1800	if (status) {
1801		hw_dbg(hw, "EEPROM read failed\n");
1802		return status;
1803	}
1804
1805	status = hw->eeprom.ops.calc_checksum(hw);
1806	if (status < 0)
1807		return status;
1808
1809	checksum = (u16)(status & 0xffff);
1810
1811	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1812
1813	return status;
1814}
1815
1816/**
1817 *  ixgbe_set_rar_generic - Set Rx address register
1818 *  @hw: pointer to hardware structure
1819 *  @index: Receive address register to write
1820 *  @addr: Address to put into receive address register
1821 *  @vmdq: VMDq "set" or "pool" index
1822 *  @enable_addr: set flag that address is active
1823 *
1824 *  Puts an ethernet address into a receive address register.
1825 **/
1826int ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1827			  u32 enable_addr)
1828{
1829	u32 rar_low, rar_high;
1830	u32 rar_entries = hw->mac.num_rar_entries;
1831
1832	/* Make sure we are using a valid rar index range */
1833	if (index >= rar_entries) {
1834		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1835		return -EINVAL;
1836	}
1837
1838	/* setup VMDq pool selection before this RAR gets enabled */
1839	hw->mac.ops.set_vmdq(hw, index, vmdq);
1840
1841	/*
1842	 * HW expects these in little endian so we reverse the byte
1843	 * order from network order (big endian) to little endian
1844	 */
1845	rar_low = ((u32)addr[0] |
1846		   ((u32)addr[1] << 8) |
1847		   ((u32)addr[2] << 16) |
1848		   ((u32)addr[3] << 24));
1849	/*
1850	 * Some parts put the VMDq setting in the extra RAH bits,
1851	 * so save everything except the lower 16 bits that hold part
1852	 * of the address and the address valid bit.
1853	 */
1854	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1855	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1856	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1857
1858	if (enable_addr != 0)
1859		rar_high |= IXGBE_RAH_AV;
1860
1861	/* Record lower 32 bits of MAC address and then make
1862	 * sure that write is flushed to hardware before writing
1863	 * the upper 16 bits and setting the valid bit.
1864	 */
1865	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1866	IXGBE_WRITE_FLUSH(hw);
1867	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1868
1869	return 0;
1870}
1871
1872/**
1873 *  ixgbe_clear_rar_generic - Remove Rx address register
1874 *  @hw: pointer to hardware structure
1875 *  @index: Receive address register to write
1876 *
1877 *  Clears an ethernet address from a receive address register.
1878 **/
1879int ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1880{
1881	u32 rar_high;
1882	u32 rar_entries = hw->mac.num_rar_entries;
1883
1884	/* Make sure we are using a valid rar index range */
1885	if (index >= rar_entries) {
1886		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1887		return -EINVAL;
1888	}
1889
1890	/*
1891	 * Some parts put the VMDq setting in the extra RAH bits,
1892	 * so save everything except the lower 16 bits that hold part
1893	 * of the address and the address valid bit.
1894	 */
1895	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1896	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1897
1898	/* Clear the address valid bit and upper 16 bits of the address
1899	 * before clearing the lower bits. This way we aren't updating
1900	 * a live filter.
1901	 */
1902	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1903	IXGBE_WRITE_FLUSH(hw);
1904	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1905
1906	/* clear VMDq pool/queue selection for this RAR */
1907	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1908
1909	return 0;
1910}
1911
1912/**
1913 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1914 *  @hw: pointer to hardware structure
1915 *
1916 *  Places the MAC address in receive address register 0 and clears the rest
1917 *  of the receive address registers. Clears the multicast table. Assumes
1918 *  the receiver is in reset when the routine is called.
1919 **/
1920int ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1921{
1922	u32 i;
1923	u32 rar_entries = hw->mac.num_rar_entries;
1924
1925	/*
1926	 * If the current mac address is valid, assume it is a software override
1927	 * to the permanent address.
1928	 * Otherwise, use the permanent address from the eeprom.
1929	 */
1930	if (!is_valid_ether_addr(hw->mac.addr)) {
1931		/* Get the MAC address from the RAR0 for later reference */
1932		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1933
1934		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1935	} else {
1936		/* Setup the receive address. */
1937		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1938		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1939
1940		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1941	}
1942
1943	/*  clear VMDq pool/queue selection for RAR 0 */
1944	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1945
1946	hw->addr_ctrl.overflow_promisc = 0;
1947
1948	hw->addr_ctrl.rar_used_count = 1;
1949
1950	/* Zero out the other receive addresses. */
1951	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1952	for (i = 1; i < rar_entries; i++) {
1953		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1954		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1955	}
1956
1957	/* Clear the MTA */
1958	hw->addr_ctrl.mta_in_use = 0;
1959	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1960
1961	hw_dbg(hw, " Clearing MTA\n");
1962	for (i = 0; i < hw->mac.mcft_size; i++)
1963		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1964
1965	if (hw->mac.ops.init_uta_tables)
1966		hw->mac.ops.init_uta_tables(hw);
1967
1968	return 0;
1969}
1970
1971/**
1972 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1973 *  @hw: pointer to hardware structure
1974 *  @mc_addr: the multicast address
1975 *
1976 *  Extracts the 12 bits, from a multicast address, to determine which
1977 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1978 *  incoming rx multicast addresses, to determine the bit-vector to check in
1979 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1980 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1981 *  to mc_filter_type.
1982 **/
1983static int ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1984{
1985	u32 vector = 0;
1986
1987	switch (hw->mac.mc_filter_type) {
1988	case 0:   /* use bits [47:36] of the address */
1989		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1990		break;
1991	case 1:   /* use bits [46:35] of the address */
1992		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1993		break;
1994	case 2:   /* use bits [45:34] of the address */
1995		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1996		break;
1997	case 3:   /* use bits [43:32] of the address */
1998		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1999		break;
2000	default:  /* Invalid mc_filter_type */
2001		hw_dbg(hw, "MC filter type param set incorrectly\n");
2002		break;
2003	}
2004
2005	/* vector can only be 12-bits or boundary will be exceeded */
2006	vector &= 0xFFF;
2007	return vector;
2008}
2009
2010/**
2011 *  ixgbe_set_mta - Set bit-vector in multicast table
2012 *  @hw: pointer to hardware structure
2013 *  @mc_addr: Multicast address
2014 *
2015 *  Sets the bit-vector in the multicast table.
2016 **/
2017static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2018{
2019	u32 vector;
2020	u32 vector_bit;
2021	u32 vector_reg;
2022
2023	hw->addr_ctrl.mta_in_use++;
2024
2025	vector = ixgbe_mta_vector(hw, mc_addr);
2026	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2027
2028	/*
2029	 * The MTA is a register array of 128 32-bit registers. It is treated
2030	 * like an array of 4096 bits.  We want to set bit
2031	 * BitArray[vector_value]. So we figure out what register the bit is
2032	 * in, read it, OR in the new bit, then write back the new value.  The
2033	 * register is determined by the upper 7 bits of the vector value and
2034	 * the bit within that register are determined by the lower 5 bits of
2035	 * the value.
2036	 */
2037	vector_reg = (vector >> 5) & 0x7F;
2038	vector_bit = vector & 0x1F;
2039	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2040}
2041
2042/**
2043 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2044 *  @hw: pointer to hardware structure
2045 *  @netdev: pointer to net device structure
2046 *
2047 *  The given list replaces any existing list. Clears the MC addrs from receive
2048 *  address registers and the multicast table. Uses unused receive address
2049 *  registers for the first multicast addresses, and hashes the rest into the
2050 *  multicast table.
2051 **/
2052int ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2053				      struct net_device *netdev)
2054{
2055	struct netdev_hw_addr *ha;
2056	u32 i;
2057
2058	/*
2059	 * Set the new number of MC addresses that we are being requested to
2060	 * use.
2061	 */
2062	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2063	hw->addr_ctrl.mta_in_use = 0;
2064
2065	/* Clear mta_shadow */
2066	hw_dbg(hw, " Clearing MTA\n");
2067	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2068
2069	/* Update mta shadow */
2070	netdev_for_each_mc_addr(ha, netdev) {
2071		hw_dbg(hw, " Adding the multicast addresses:\n");
2072		ixgbe_set_mta(hw, ha->addr);
2073	}
2074
2075	/* Enable mta */
2076	for (i = 0; i < hw->mac.mcft_size; i++)
2077		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2078				      hw->mac.mta_shadow[i]);
2079
2080	if (hw->addr_ctrl.mta_in_use > 0)
2081		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2082				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2083
2084	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2085	return 0;
2086}
2087
2088/**
2089 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2090 *  @hw: pointer to hardware structure
2091 *
2092 *  Enables multicast address in RAR and the use of the multicast hash table.
2093 **/
2094int ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2095{
2096	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2097
2098	if (a->mta_in_use > 0)
2099		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2100				hw->mac.mc_filter_type);
2101
2102	return 0;
2103}
2104
2105/**
2106 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2107 *  @hw: pointer to hardware structure
2108 *
2109 *  Disables multicast address in RAR and the use of the multicast hash table.
2110 **/
2111int ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2112{
2113	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2114
2115	if (a->mta_in_use > 0)
2116		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2117
2118	return 0;
2119}
2120
2121/**
2122 *  ixgbe_fc_enable_generic - Enable flow control
2123 *  @hw: pointer to hardware structure
2124 *
2125 *  Enable flow control according to the current settings.
2126 **/
2127int ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2128{
2129	u32 mflcn_reg, fccfg_reg;
2130	u32 reg;
2131	u32 fcrtl, fcrth;
2132	int i;
2133
2134	/* Validate the water mark configuration. */
2135	if (!hw->fc.pause_time)
2136		return -EINVAL;
2137
2138	/* Low water mark of zero causes XOFF floods */
2139	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2140		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2141		    hw->fc.high_water[i]) {
2142			if (!hw->fc.low_water[i] ||
2143			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2144				hw_dbg(hw, "Invalid water mark configuration\n");
2145				return -EINVAL;
2146			}
2147		}
2148	}
2149
2150	/* Negotiate the fc mode to use */
2151	hw->mac.ops.fc_autoneg(hw);
2152
2153	/* Disable any previous flow control settings */
2154	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2155	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2156
2157	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2158	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2159
2160	/*
2161	 * The possible values of fc.current_mode are:
2162	 * 0: Flow control is completely disabled
2163	 * 1: Rx flow control is enabled (we can receive pause frames,
2164	 *    but not send pause frames).
2165	 * 2: Tx flow control is enabled (we can send pause frames but
2166	 *    we do not support receiving pause frames).
2167	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2168	 * other: Invalid.
2169	 */
2170	switch (hw->fc.current_mode) {
2171	case ixgbe_fc_none:
2172		/*
2173		 * Flow control is disabled by software override or autoneg.
2174		 * The code below will actually disable it in the HW.
2175		 */
2176		break;
2177	case ixgbe_fc_rx_pause:
2178		/*
2179		 * Rx Flow control is enabled and Tx Flow control is
2180		 * disabled by software override. Since there really
2181		 * isn't a way to advertise that we are capable of RX
2182		 * Pause ONLY, we will advertise that we support both
2183		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2184		 * disable the adapter's ability to send PAUSE frames.
2185		 */
2186		mflcn_reg |= IXGBE_MFLCN_RFCE;
2187		break;
2188	case ixgbe_fc_tx_pause:
2189		/*
2190		 * Tx Flow control is enabled, and Rx Flow control is
2191		 * disabled by software override.
2192		 */
2193		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2194		break;
2195	case ixgbe_fc_full:
2196		/* Flow control (both Rx and Tx) is enabled by SW override. */
2197		mflcn_reg |= IXGBE_MFLCN_RFCE;
2198		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2199		break;
2200	default:
2201		hw_dbg(hw, "Flow control param set incorrectly\n");
2202		return -EIO;
2203	}
2204
2205	/* Set 802.3x based flow control settings. */
2206	mflcn_reg |= IXGBE_MFLCN_DPF;
2207	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2208	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2209
2210	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2211	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2212		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2213		    hw->fc.high_water[i]) {
2214			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2215			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2216			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2217		} else {
2218			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2219			/*
2220			 * In order to prevent Tx hangs when the internal Tx
2221			 * switch is enabled we must set the high water mark
2222			 * to the Rx packet buffer size - 24KB.  This allows
2223			 * the Tx switch to function even under heavy Rx
2224			 * workloads.
2225			 */
2226			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2227		}
2228
2229		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2230	}
2231
2232	/* Configure pause time (2 TCs per register) */
2233	reg = hw->fc.pause_time * 0x00010001U;
2234	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2235		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2236
2237	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2238
2239	return 0;
2240}
2241
2242/**
2243 *  ixgbe_negotiate_fc - Negotiate flow control
2244 *  @hw: pointer to hardware structure
2245 *  @adv_reg: flow control advertised settings
2246 *  @lp_reg: link partner's flow control settings
2247 *  @adv_sym: symmetric pause bit in advertisement
2248 *  @adv_asm: asymmetric pause bit in advertisement
2249 *  @lp_sym: symmetric pause bit in link partner advertisement
2250 *  @lp_asm: asymmetric pause bit in link partner advertisement
2251 *
2252 *  Find the intersection between advertised settings and link partner's
2253 *  advertised settings
2254 **/
2255int ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2256		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2257{
2258	if ((!(adv_reg)) ||  (!(lp_reg)))
2259		return -EINVAL;
2260
2261	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2262		/*
2263		 * Now we need to check if the user selected Rx ONLY
2264		 * of pause frames.  In this case, we had to advertise
2265		 * FULL flow control because we could not advertise RX
2266		 * ONLY. Hence, we must now check to see if we need to
2267		 * turn OFF the TRANSMISSION of PAUSE frames.
2268		 */
2269		if (hw->fc.requested_mode == ixgbe_fc_full) {
2270			hw->fc.current_mode = ixgbe_fc_full;
2271			hw_dbg(hw, "Flow Control = FULL.\n");
2272		} else {
2273			hw->fc.current_mode = ixgbe_fc_rx_pause;
2274			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2275		}
2276	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2277		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2278		hw->fc.current_mode = ixgbe_fc_tx_pause;
2279		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2280	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2281		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2282		hw->fc.current_mode = ixgbe_fc_rx_pause;
2283		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2284	} else {
2285		hw->fc.current_mode = ixgbe_fc_none;
2286		hw_dbg(hw, "Flow Control = NONE.\n");
2287	}
2288	return 0;
2289}
2290
2291/**
2292 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2293 *  @hw: pointer to hardware structure
2294 *
2295 *  Enable flow control according on 1 gig fiber.
2296 **/
2297static int ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2298{
2299	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2300	int ret_val;
2301
2302	/*
2303	 * On multispeed fiber at 1g, bail out if
2304	 * - link is up but AN did not complete, or if
2305	 * - link is up and AN completed but timed out
2306	 */
2307
2308	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2309	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2310	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2311		return -EIO;
2312
2313	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2314	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2315
2316	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2317			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2318			       IXGBE_PCS1GANA_ASM_PAUSE,
2319			       IXGBE_PCS1GANA_SYM_PAUSE,
2320			       IXGBE_PCS1GANA_ASM_PAUSE);
2321
2322	return ret_val;
2323}
2324
2325/**
2326 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2327 *  @hw: pointer to hardware structure
2328 *
2329 *  Enable flow control according to IEEE clause 37.
2330 **/
2331static int ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2332{
2333	u32 links2, anlp1_reg, autoc_reg, links;
2334	int ret_val;
2335
2336	/*
2337	 * On backplane, bail out if
2338	 * - backplane autoneg was not completed, or if
2339	 * - we are 82599 and link partner is not AN enabled
2340	 */
2341	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2342	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2343		return -EIO;
2344
2345	if (hw->mac.type == ixgbe_mac_82599EB) {
2346		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2347		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2348			return -EIO;
2349	}
2350	/*
2351	 * Read the 10g AN autoc and LP ability registers and resolve
2352	 * local flow control settings accordingly
2353	 */
2354	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2355	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2356
2357	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2358		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2359		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2360
2361	return ret_val;
2362}
2363
2364/**
2365 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2366 *  @hw: pointer to hardware structure
2367 *
2368 *  Enable flow control according to IEEE clause 37.
2369 **/
2370static int ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2371{
2372	u16 technology_ability_reg = 0;
2373	u16 lp_technology_ability_reg = 0;
2374
2375	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2376			     MDIO_MMD_AN,
2377			     &technology_ability_reg);
2378	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2379			     MDIO_MMD_AN,
2380			     &lp_technology_ability_reg);
2381
2382	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2383				  (u32)lp_technology_ability_reg,
2384				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2385				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2386}
2387
2388/**
2389 *  ixgbe_fc_autoneg - Configure flow control
2390 *  @hw: pointer to hardware structure
2391 *
2392 *  Compares our advertised flow control capabilities to those advertised by
2393 *  our link partner, and determines the proper flow control mode to use.
2394 **/
2395void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2396{
2397	ixgbe_link_speed speed;
2398	int ret_val = -EIO;
2399	bool link_up;
2400
2401	/*
2402	 * AN should have completed when the cable was plugged in.
2403	 * Look for reasons to bail out.  Bail out if:
2404	 * - FC autoneg is disabled, or if
2405	 * - link is not up.
2406	 *
2407	 * Since we're being called from an LSC, link is already known to be up.
2408	 * So use link_up_wait_to_complete=false.
2409	 */
2410	if (hw->fc.disable_fc_autoneg)
2411		goto out;
2412
2413	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2414	if (!link_up)
2415		goto out;
2416
2417	switch (hw->phy.media_type) {
2418	/* Autoneg flow control on fiber adapters */
2419	case ixgbe_media_type_fiber:
2420		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2421			ret_val = ixgbe_fc_autoneg_fiber(hw);
2422		break;
2423
2424	/* Autoneg flow control on backplane adapters */
2425	case ixgbe_media_type_backplane:
2426		ret_val = ixgbe_fc_autoneg_backplane(hw);
2427		break;
2428
2429	/* Autoneg flow control on copper adapters */
2430	case ixgbe_media_type_copper:
2431		if (ixgbe_device_supports_autoneg_fc(hw))
2432			ret_val = ixgbe_fc_autoneg_copper(hw);
2433		break;
2434
2435	default:
2436		break;
2437	}
2438
2439out:
2440	if (ret_val == 0) {
2441		hw->fc.fc_was_autonegged = true;
2442	} else {
2443		hw->fc.fc_was_autonegged = false;
2444		hw->fc.current_mode = hw->fc.requested_mode;
2445	}
2446}
2447
2448/**
2449 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2450 * @hw: pointer to hardware structure
2451 *
2452 * System-wide timeout range is encoded in PCIe Device Control2 register.
2453 *
2454 *  Add 10% to specified maximum and return the number of times to poll for
2455 *  completion timeout, in units of 100 microsec.  Never return less than
2456 *  800 = 80 millisec.
2457 **/
2458static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2459{
2460	s16 devctl2;
2461	u32 pollcnt;
2462
2463	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2464	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2465
2466	switch (devctl2) {
2467	case IXGBE_PCIDEVCTRL2_65_130ms:
2468		 pollcnt = 1300;         /* 130 millisec */
2469		break;
2470	case IXGBE_PCIDEVCTRL2_260_520ms:
2471		pollcnt = 5200;         /* 520 millisec */
2472		break;
2473	case IXGBE_PCIDEVCTRL2_1_2s:
2474		pollcnt = 20000;        /* 2 sec */
2475		break;
2476	case IXGBE_PCIDEVCTRL2_4_8s:
2477		pollcnt = 80000;        /* 8 sec */
2478		break;
2479	case IXGBE_PCIDEVCTRL2_17_34s:
2480		pollcnt = 34000;        /* 34 sec */
2481		break;
2482	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2483	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2484	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2485	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2486	default:
2487		pollcnt = 800;          /* 80 millisec minimum */
2488		break;
2489	}
2490
2491	/* add 10% to spec maximum */
2492	return (pollcnt * 11) / 10;
2493}
2494
2495/**
2496 *  ixgbe_disable_pcie_primary - Disable PCI-express primary access
2497 *  @hw: pointer to hardware structure
2498 *
2499 *  Disables PCI-Express primary access and verifies there are no pending
2500 *  requests. -EALREADY is returned if primary disable
2501 *  bit hasn't caused the primary requests to be disabled, else 0
2502 *  is returned signifying primary requests disabled.
2503 **/
2504static int ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2505{
2506	u32 i, poll;
2507	u16 value;
2508
2509	/* Always set this bit to ensure any future transactions are blocked */
2510	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2511
2512	/* Poll for bit to read as set */
2513	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2514		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2515			break;
2516		usleep_range(100, 120);
2517	}
2518	if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2519		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2520		goto gio_disable_fail;
2521	}
2522
2523	/* Exit if primary requests are blocked */
2524	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2525	    ixgbe_removed(hw->hw_addr))
2526		return 0;
2527
2528	/* Poll for primary request bit to clear */
2529	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2530		udelay(100);
2531		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2532			return 0;
2533	}
2534
2535	/*
2536	 * Two consecutive resets are required via CTRL.RST per datasheet
2537	 * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
2538	 * of this need.  The first reset prevents new primary requests from
2539	 * being issued by our device.  We then must wait 1usec or more for any
2540	 * remaining completions from the PCIe bus to trickle in, and then reset
2541	 * again to clear out any effects they may have had on our device.
2542	 */
2543	hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2544gio_disable_fail:
2545	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2546
2547	if (hw->mac.type >= ixgbe_mac_X550)
2548		return 0;
2549
2550	/*
2551	 * Before proceeding, make sure that the PCIe block does not have
2552	 * transactions pending.
2553	 */
2554	poll = ixgbe_pcie_timeout_poll(hw);
2555	for (i = 0; i < poll; i++) {
2556		udelay(100);
2557		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2558		if (ixgbe_removed(hw->hw_addr))
2559			return 0;
2560		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2561			return 0;
2562	}
2563
2564	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2565	return -EALREADY;
2566}
2567
2568/**
2569 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2570 *  @hw: pointer to hardware structure
2571 *  @mask: Mask to specify which semaphore to acquire
2572 *
2573 *  Acquires the SWFW semaphore through the GSSR register for the specified
2574 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2575 **/
2576int ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2577{
2578	u32 gssr = 0;
2579	u32 swmask = mask;
2580	u32 fwmask = mask << 5;
2581	u32 timeout = 200;
2582	u32 i;
2583
2584	for (i = 0; i < timeout; i++) {
2585		/*
2586		 * SW NVM semaphore bit is used for access to all
2587		 * SW_FW_SYNC bits (not just NVM)
2588		 */
2589		if (ixgbe_get_eeprom_semaphore(hw))
2590			return -EBUSY;
2591
2592		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2593		if (!(gssr & (fwmask | swmask))) {
2594			gssr |= swmask;
2595			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2596			ixgbe_release_eeprom_semaphore(hw);
2597			return 0;
2598		} else {
2599			/* Resource is currently in use by FW or SW */
2600			ixgbe_release_eeprom_semaphore(hw);
2601			usleep_range(5000, 10000);
2602		}
2603	}
2604
2605	/* If time expired clear the bits holding the lock and retry */
2606	if (gssr & (fwmask | swmask))
2607		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2608
2609	usleep_range(5000, 10000);
2610	return -EBUSY;
2611}
2612
2613/**
2614 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2615 *  @hw: pointer to hardware structure
2616 *  @mask: Mask to specify which semaphore to release
2617 *
2618 *  Releases the SWFW semaphore through the GSSR register for the specified
2619 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2620 **/
2621void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2622{
2623	u32 gssr;
2624	u32 swmask = mask;
2625
2626	ixgbe_get_eeprom_semaphore(hw);
2627
2628	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2629	gssr &= ~swmask;
2630	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2631
2632	ixgbe_release_eeprom_semaphore(hw);
2633}
2634
2635/**
2636 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2637 * @hw: pointer to hardware structure
2638 * @reg_val: Value we read from AUTOC
2639 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2640 *	    true in this the generic case.
2641 *
2642 * The default case requires no protection so just to the register read.
2643 **/
2644int prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2645{
2646	*locked = false;
2647	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2648	return 0;
2649}
2650
2651/**
2652 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2653 * @hw: pointer to hardware structure
2654 * @reg_val: value to write to AUTOC
2655 * @locked: bool to indicate whether the SW/FW lock was already taken by
2656 *	    previous read.
2657 **/
2658int prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2659{
2660	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2661	return 0;
2662}
2663
2664/**
2665 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2666 *  @hw: pointer to hardware structure
2667 *
2668 *  Stops the receive data path and waits for the HW to internally
2669 *  empty the Rx security block.
2670 **/
2671int ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2672{
2673#define IXGBE_MAX_SECRX_POLL 40
2674	int i;
2675	int secrxreg;
2676
2677	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2678	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2679	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2680	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2681		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2682		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2683			break;
2684		else
2685			/* Use interrupt-safe sleep just in case */
2686			udelay(1000);
2687	}
2688
2689	/* For informational purposes only */
2690	if (i >= IXGBE_MAX_SECRX_POLL)
2691		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2692
2693	return 0;
2694
2695}
2696
2697/**
2698 *  ixgbe_enable_rx_buff_generic - Enables the receive data path
2699 *  @hw: pointer to hardware structure
2700 *
2701 *  Enables the receive data path
2702 **/
2703int ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2704{
2705	u32 secrxreg;
2706
2707	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2708	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2709	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2710	IXGBE_WRITE_FLUSH(hw);
2711
2712	return 0;
2713}
2714
2715/**
2716 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2717 *  @hw: pointer to hardware structure
2718 *  @regval: register value to write to RXCTRL
2719 *
2720 *  Enables the Rx DMA unit
2721 **/
2722int ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2723{
2724	if (regval & IXGBE_RXCTRL_RXEN)
2725		hw->mac.ops.enable_rx(hw);
2726	else
2727		hw->mac.ops.disable_rx(hw);
2728
2729	return 0;
2730}
2731
2732/**
2733 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2734 *  @hw: pointer to hardware structure
2735 *  @index: led number to blink
2736 **/
2737int ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2738{
2739	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2740	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2741	ixgbe_link_speed speed = 0;
2742	bool link_up = false;
2743	bool locked = false;
2744	int ret_val;
2745
2746	if (index > 3)
2747		return -EINVAL;
2748
2749	/*
2750	 * Link must be up to auto-blink the LEDs;
2751	 * Force it if link is down.
2752	 */
2753	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2754
2755	if (!link_up) {
2756		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2757		if (ret_val)
2758			return ret_val;
2759
2760		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2761		autoc_reg |= IXGBE_AUTOC_FLU;
2762
2763		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2764		if (ret_val)
2765			return ret_val;
2766
2767		IXGBE_WRITE_FLUSH(hw);
2768
2769		usleep_range(10000, 20000);
2770	}
2771
2772	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2773	led_reg |= IXGBE_LED_BLINK(index);
2774	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2775	IXGBE_WRITE_FLUSH(hw);
2776
2777	return 0;
2778}
2779
2780/**
2781 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2782 *  @hw: pointer to hardware structure
2783 *  @index: led number to stop blinking
2784 **/
2785int ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2786{
2787	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2788	bool locked = false;
2789	u32 autoc_reg = 0;
2790	int ret_val;
2791
2792	if (index > 3)
2793		return -EINVAL;
2794
2795	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2796	if (ret_val)
2797		return ret_val;
2798
2799	autoc_reg &= ~IXGBE_AUTOC_FLU;
2800	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2801
2802	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2803	if (ret_val)
2804		return ret_val;
2805
2806	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2807	led_reg &= ~IXGBE_LED_BLINK(index);
2808	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2809	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2810	IXGBE_WRITE_FLUSH(hw);
2811
2812	return 0;
2813}
2814
2815/**
2816 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2817 *  @hw: pointer to hardware structure
2818 *  @san_mac_offset: SAN MAC address offset
2819 *
2820 *  This function will read the EEPROM location for the SAN MAC address
2821 *  pointer, and returns the value at that location.  This is used in both
2822 *  get and set mac_addr routines.
2823 **/
2824static int ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2825					 u16 *san_mac_offset)
2826{
2827	int ret_val;
2828
2829	/*
2830	 * First read the EEPROM pointer to see if the MAC addresses are
2831	 * available.
2832	 */
2833	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2834				      san_mac_offset);
2835	if (ret_val)
2836		hw_err(hw, "eeprom read at offset %d failed\n",
2837		       IXGBE_SAN_MAC_ADDR_PTR);
2838
2839	return ret_val;
2840}
2841
2842/**
2843 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2844 *  @hw: pointer to hardware structure
2845 *  @san_mac_addr: SAN MAC address
2846 *
2847 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2848 *  per-port, so set_lan_id() must be called before reading the addresses.
2849 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2850 *  upon for non-SFP connections, so we must call it here.
2851 **/
2852int ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2853{
2854	u16 san_mac_data, san_mac_offset;
2855	int ret_val;
2856	u8 i;
2857
2858	/*
2859	 * First read the EEPROM pointer to see if the MAC addresses are
2860	 * available.  If they're not, no point in calling set_lan_id() here.
2861	 */
2862	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2863	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2864
2865		goto san_mac_addr_clr;
2866
2867	/* make sure we know which port we need to program */
2868	hw->mac.ops.set_lan_id(hw);
2869	/* apply the port offset to the address offset */
2870	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2871			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2872	for (i = 0; i < 3; i++) {
2873		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2874					      &san_mac_data);
2875		if (ret_val) {
2876			hw_err(hw, "eeprom read at offset %d failed\n",
2877			       san_mac_offset);
2878			goto san_mac_addr_clr;
2879		}
2880		san_mac_addr[i * 2] = (u8)(san_mac_data);
2881		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2882		san_mac_offset++;
2883	}
2884	return 0;
2885
2886san_mac_addr_clr:
2887	/* No addresses available in this EEPROM.  It's not necessarily an
2888	 * error though, so just wipe the local address and return.
2889	 */
2890	for (i = 0; i < 6; i++)
2891		san_mac_addr[i] = 0xFF;
2892	return ret_val;
2893}
2894
2895/**
2896 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2897 *  @hw: pointer to hardware structure
2898 *
2899 *  Read PCIe configuration space, and get the MSI-X vector count from
2900 *  the capabilities table.
2901 **/
2902u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2903{
2904	u16 msix_count;
2905	u16 max_msix_count;
2906	u16 pcie_offset;
2907
2908	switch (hw->mac.type) {
2909	case ixgbe_mac_82598EB:
2910		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2911		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2912		break;
2913	case ixgbe_mac_82599EB:
2914	case ixgbe_mac_X540:
2915	case ixgbe_mac_X550:
2916	case ixgbe_mac_X550EM_x:
2917	case ixgbe_mac_x550em_a:
2918		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2919		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2920		break;
2921	default:
2922		return 1;
2923	}
2924
2925	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2926	if (ixgbe_removed(hw->hw_addr))
2927		msix_count = 0;
2928	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2929
2930	/* MSI-X count is zero-based in HW */
2931	msix_count++;
2932
2933	if (msix_count > max_msix_count)
2934		msix_count = max_msix_count;
2935
2936	return msix_count;
2937}
2938
2939/**
2940 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2941 *  @hw: pointer to hardware struct
2942 *  @rar: receive address register index to disassociate
2943 *  @vmdq: VMDq pool index to remove from the rar
2944 **/
2945int ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2946{
2947	u32 mpsar_lo, mpsar_hi;
2948	u32 rar_entries = hw->mac.num_rar_entries;
2949
2950	/* Make sure we are using a valid rar index range */
2951	if (rar >= rar_entries) {
2952		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2953		return -EINVAL;
2954	}
2955
2956	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2957	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2958
2959	if (ixgbe_removed(hw->hw_addr))
2960		return 0;
2961
2962	if (!mpsar_lo && !mpsar_hi)
2963		return 0;
2964
2965	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2966		if (mpsar_lo) {
2967			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2968			mpsar_lo = 0;
2969		}
2970		if (mpsar_hi) {
2971			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2972			mpsar_hi = 0;
2973		}
2974	} else if (vmdq < 32) {
2975		mpsar_lo &= ~BIT(vmdq);
2976		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2977	} else {
2978		mpsar_hi &= ~BIT(vmdq - 32);
2979		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2980	}
2981
2982	/* was that the last pool using this rar? */
2983	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2984	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2985		hw->mac.ops.clear_rar(hw, rar);
2986
2987	return 0;
2988}
2989
2990/**
2991 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2992 *  @hw: pointer to hardware struct
2993 *  @rar: receive address register index to associate with a VMDq index
2994 *  @vmdq: VMDq pool index
2995 **/
2996int ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2997{
2998	u32 mpsar;
2999	u32 rar_entries = hw->mac.num_rar_entries;
3000
3001	/* Make sure we are using a valid rar index range */
3002	if (rar >= rar_entries) {
3003		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3004		return -EINVAL;
3005	}
3006
3007	if (vmdq < 32) {
3008		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3009		mpsar |= BIT(vmdq);
3010		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3011	} else {
3012		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3013		mpsar |= BIT(vmdq - 32);
3014		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3015	}
3016	return 0;
3017}
3018
3019/**
3020 *  ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3021 *  @hw: pointer to hardware struct
3022 *  @vmdq: VMDq pool index
3023 *
3024 *  This function should only be involved in the IOV mode.
3025 *  In IOV mode, Default pool is next pool after the number of
3026 *  VFs advertized and not 0.
3027 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3028 **/
3029int ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3030{
3031	u32 rar = hw->mac.san_mac_rar_index;
3032
3033	if (vmdq < 32) {
3034		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3035		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3036	} else {
3037		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3038		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3039	}
3040
3041	return 0;
3042}
3043
3044/**
3045 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3046 *  @hw: pointer to hardware structure
3047 **/
3048int ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3049{
3050	int i;
3051
3052	for (i = 0; i < 128; i++)
3053		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3054
3055	return 0;
3056}
3057
3058/**
3059 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3060 *  @hw: pointer to hardware structure
3061 *  @vlan: VLAN id to write to VLAN filter
3062 *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3063 *		  vlanid not found
3064 *
3065 *  return the VLVF index where this VLAN id should be placed
3066 *
3067 **/
3068static int ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3069{
3070	int regindex, first_empty_slot;
3071	u32 bits;
3072
3073	/* short cut the special case */
3074	if (vlan == 0)
3075		return 0;
3076
3077	/* if vlvf_bypass is set we don't want to use an empty slot, we
3078	 * will simply bypass the VLVF if there are no entries present in the
3079	 * VLVF that contain our VLAN
3080	 */
3081	first_empty_slot = vlvf_bypass ? -ENOSPC : 0;
3082
3083	/* add VLAN enable bit for comparison */
3084	vlan |= IXGBE_VLVF_VIEN;
3085
3086	/* Search for the vlan id in the VLVF entries. Save off the first empty
3087	 * slot found along the way.
3088	 *
3089	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3090	 */
3091	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3092		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3093		if (bits == vlan)
3094			return regindex;
3095		if (!first_empty_slot && !bits)
3096			first_empty_slot = regindex;
3097	}
3098
3099	/* If we are here then we didn't find the VLAN.  Return first empty
3100	 * slot we found during our search, else error.
3101	 */
3102	if (!first_empty_slot)
3103		hw_dbg(hw, "No space in VLVF.\n");
3104
3105	return first_empty_slot ? : -ENOSPC;
3106}
3107
3108/**
3109 *  ixgbe_set_vfta_generic - Set VLAN filter table
3110 *  @hw: pointer to hardware structure
3111 *  @vlan: VLAN id to write to VLAN filter
3112 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3113 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3114 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3115 *
3116 *  Turn on/off specified VLAN in the VLAN filter table.
3117 **/
3118int ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3119			   bool vlan_on, bool vlvf_bypass)
3120{
3121	u32 regidx, vfta_delta, vfta, bits;
3122	int vlvf_index;
3123
3124	if ((vlan > 4095) || (vind > 63))
3125		return -EINVAL;
3126
3127	/*
3128	 * this is a 2 part operation - first the VFTA, then the
3129	 * VLVF and VLVFB if VT Mode is set
3130	 * We don't write the VFTA until we know the VLVF part succeeded.
3131	 */
3132
3133	/* Part 1
3134	 * The VFTA is a bitstring made up of 128 32-bit registers
3135	 * that enable the particular VLAN id, much like the MTA:
3136	 *    bits[11-5]: which register
3137	 *    bits[4-0]:  which bit in the register
3138	 */
3139	regidx = vlan / 32;
3140	vfta_delta = BIT(vlan % 32);
3141	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3142
3143	/* vfta_delta represents the difference between the current value
3144	 * of vfta and the value we want in the register.  Since the diff
3145	 * is an XOR mask we can just update vfta using an XOR.
3146	 */
3147	vfta_delta &= vlan_on ? ~vfta : vfta;
3148	vfta ^= vfta_delta;
3149
3150	/* Part 2
3151	 * If VT Mode is set
3152	 *   Either vlan_on
3153	 *     make sure the vlan is in VLVF
3154	 *     set the vind bit in the matching VLVFB
3155	 *   Or !vlan_on
3156	 *     clear the pool bit and possibly the vind
3157	 */
3158	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3159		goto vfta_update;
3160
3161	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3162	if (vlvf_index < 0) {
3163		if (vlvf_bypass)
3164			goto vfta_update;
3165		return vlvf_index;
3166	}
3167
3168	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3169
3170	/* set the pool bit */
3171	bits |= BIT(vind % 32);
3172	if (vlan_on)
3173		goto vlvf_update;
3174
3175	/* clear the pool bit */
3176	bits ^= BIT(vind % 32);
3177
3178	if (!bits &&
3179	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3180		/* Clear VFTA first, then disable VLVF.  Otherwise
3181		 * we run the risk of stray packets leaking into
3182		 * the PF via the default pool
3183		 */
3184		if (vfta_delta)
3185			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3186
3187		/* disable VLVF and clear remaining bit from pool */
3188		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3189		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3190
3191		return 0;
3192	}
3193
3194	/* If there are still bits set in the VLVFB registers
3195	 * for the VLAN ID indicated we need to see if the
3196	 * caller is requesting that we clear the VFTA entry bit.
3197	 * If the caller has requested that we clear the VFTA
3198	 * entry bit but there are still pools/VFs using this VLAN
3199	 * ID entry then ignore the request.  We're not worried
3200	 * about the case where we're turning the VFTA VLAN ID
3201	 * entry bit on, only when requested to turn it off as
3202	 * there may be multiple pools and/or VFs using the
3203	 * VLAN ID entry.  In that case we cannot clear the
3204	 * VFTA bit until all pools/VFs using that VLAN ID have also
3205	 * been cleared.  This will be indicated by "bits" being
3206	 * zero.
3207	 */
3208	vfta_delta = 0;
3209
3210vlvf_update:
3211	/* record pool change and enable VLAN ID if not already enabled */
3212	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3213	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3214
3215vfta_update:
3216	/* Update VFTA now that we are ready for traffic */
3217	if (vfta_delta)
3218		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3219
3220	return 0;
3221}
3222
3223/**
3224 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3225 *  @hw: pointer to hardware structure
3226 *
3227 *  Clears the VLAN filter table, and the VMDq index associated with the filter
3228 **/
3229int ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3230{
3231	u32 offset;
3232
3233	for (offset = 0; offset < hw->mac.vft_size; offset++)
3234		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3235
3236	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3237		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3238		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3239		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3240	}
3241
3242	return 0;
3243}
3244
3245/**
3246 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3247 *  @hw: pointer to hardware structure
3248 *
3249 *  Contains the logic to identify if we need to verify link for the
3250 *  crosstalk fix
3251 **/
3252static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3253{
3254	/* Does FW say we need the fix */
3255	if (!hw->need_crosstalk_fix)
3256		return false;
3257
3258	/* Only consider SFP+ PHYs i.e. media type fiber */
3259	switch (hw->mac.ops.get_media_type(hw)) {
3260	case ixgbe_media_type_fiber:
3261	case ixgbe_media_type_fiber_qsfp:
3262		break;
3263	default:
3264		return false;
3265	}
3266
3267	return true;
3268}
3269
3270/**
3271 *  ixgbe_check_mac_link_generic - Determine link and speed status
3272 *  @hw: pointer to hardware structure
3273 *  @speed: pointer to link speed
3274 *  @link_up: true when link is up
3275 *  @link_up_wait_to_complete: bool used to wait for link up or not
3276 *
3277 *  Reads the links register to determine if link is up and the current speed
3278 **/
3279int ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3280				 bool *link_up, bool link_up_wait_to_complete)
3281{
3282	bool crosstalk_fix_active = ixgbe_need_crosstalk_fix(hw);
3283	u32 links_reg, links_orig;
3284	u32 i;
3285
3286	/* If Crosstalk fix enabled do the sanity check of making sure
3287	 * the SFP+ cage is full.
3288	 */
3289	if (crosstalk_fix_active) {
3290		u32 sfp_cage_full;
3291
3292		switch (hw->mac.type) {
3293		case ixgbe_mac_82599EB:
3294			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3295					IXGBE_ESDP_SDP2;
3296			break;
3297		case ixgbe_mac_X550EM_x:
3298		case ixgbe_mac_x550em_a:
3299			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3300					IXGBE_ESDP_SDP0;
3301			break;
3302		default:
3303			/* sanity check - No SFP+ devices here */
3304			sfp_cage_full = false;
3305			break;
3306		}
3307
3308		if (!sfp_cage_full) {
3309			*link_up = false;
3310			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3311			return 0;
3312		}
3313	}
3314
3315	/* clear the old state */
3316	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3317
3318	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3319
3320	if (links_orig != links_reg) {
3321		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3322		       links_orig, links_reg);
3323	}
3324
3325	if (link_up_wait_to_complete) {
3326		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3327			if (links_reg & IXGBE_LINKS_UP) {
3328				*link_up = true;
3329				break;
3330			} else {
3331				*link_up = false;
3332			}
3333			msleep(100);
3334			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3335		}
3336	} else {
3337		if (links_reg & IXGBE_LINKS_UP) {
3338			if (crosstalk_fix_active) {
3339				/* Check the link state again after a delay
3340				 * to filter out spurious link up
3341				 * notifications.
3342				 */
3343				mdelay(5);
3344				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3345				if (!(links_reg & IXGBE_LINKS_UP)) {
3346					*link_up = false;
3347					*speed = IXGBE_LINK_SPEED_UNKNOWN;
3348					return 0;
3349				}
3350			}
3351			*link_up = true;
3352		} else {
3353			*link_up = false;
3354		}
3355	}
3356
3357	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3358	case IXGBE_LINKS_SPEED_10G_82599:
3359		if ((hw->mac.type >= ixgbe_mac_X550) &&
3360		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3361			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3362		else
3363			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3364		break;
3365	case IXGBE_LINKS_SPEED_1G_82599:
3366		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3367		break;
3368	case IXGBE_LINKS_SPEED_100_82599:
3369		if ((hw->mac.type >= ixgbe_mac_X550) &&
3370		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3371			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3372		else
3373			*speed = IXGBE_LINK_SPEED_100_FULL;
3374		break;
3375	case IXGBE_LINKS_SPEED_10_X550EM_A:
3376		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3377		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3378		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3379			*speed = IXGBE_LINK_SPEED_10_FULL;
3380		}
3381		break;
3382	default:
3383		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3384	}
3385
3386	return 0;
3387}
3388
3389/**
3390 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3391 *  the EEPROM
3392 *  @hw: pointer to hardware structure
3393 *  @wwnn_prefix: the alternative WWNN prefix
3394 *  @wwpn_prefix: the alternative WWPN prefix
3395 *
3396 *  This function will read the EEPROM from the alternative SAN MAC address
3397 *  block to check the support for the alternative WWNN/WWPN prefix support.
3398 **/
3399int ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3400				 u16 *wwpn_prefix)
3401{
3402	u16 offset, caps;
3403	u16 alt_san_mac_blk_offset;
3404
3405	/* clear output first */
3406	*wwnn_prefix = 0xFFFF;
3407	*wwpn_prefix = 0xFFFF;
3408
3409	/* check if alternative SAN MAC is supported */
3410	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3411	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3412		goto wwn_prefix_err;
3413
3414	if ((alt_san_mac_blk_offset == 0) ||
3415	    (alt_san_mac_blk_offset == 0xFFFF))
3416		return 0;
3417
3418	/* check capability in alternative san mac address block */
3419	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3420	if (hw->eeprom.ops.read(hw, offset, &caps))
3421		goto wwn_prefix_err;
3422	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3423		return 0;
3424
3425	/* get the corresponding prefix for WWNN/WWPN */
3426	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3427	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3428		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3429
3430	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3431	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3432		goto wwn_prefix_err;
3433
3434	return 0;
3435
3436wwn_prefix_err:
3437	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3438	return 0;
3439}
3440
3441/**
3442 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3443 *  @hw: pointer to hardware structure
3444 *  @enable: enable or disable switch for MAC anti-spoofing
3445 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3446 *
3447 **/
3448void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3449{
3450	int vf_target_reg = vf >> 3;
3451	int vf_target_shift = vf % 8;
3452	u32 pfvfspoof;
3453
3454	if (hw->mac.type == ixgbe_mac_82598EB)
3455		return;
3456
3457	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3458	if (enable)
3459		pfvfspoof |= BIT(vf_target_shift);
3460	else
3461		pfvfspoof &= ~BIT(vf_target_shift);
3462	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3463}
3464
3465/**
3466 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3467 *  @hw: pointer to hardware structure
3468 *  @enable: enable or disable switch for VLAN anti-spoofing
3469 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3470 *
3471 **/
3472void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3473{
3474	int vf_target_reg = vf >> 3;
3475	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3476	u32 pfvfspoof;
3477
3478	if (hw->mac.type == ixgbe_mac_82598EB)
3479		return;
3480
3481	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3482	if (enable)
3483		pfvfspoof |= BIT(vf_target_shift);
3484	else
3485		pfvfspoof &= ~BIT(vf_target_shift);
3486	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3487}
3488
3489/**
3490 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3491 *  @hw: pointer to hardware structure
3492 *  @device_caps: the EEPROM word with the extra device capabilities
3493 *
3494 *  This function will read the EEPROM location for the device capabilities,
3495 *  and return the word through device_caps.
3496 **/
3497int ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3498{
3499	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3500
3501	return 0;
3502}
3503
3504/**
3505 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3506 * @hw: pointer to hardware structure
3507 * @num_pb: number of packet buffers to allocate
3508 * @headroom: reserve n KB of headroom
3509 * @strategy: packet buffer allocation strategy
3510 **/
3511void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3512			     int num_pb,
3513			     u32 headroom,
3514			     int strategy)
3515{
3516	u32 pbsize = hw->mac.rx_pb_size;
3517	int i = 0;
3518	u32 rxpktsize, txpktsize, txpbthresh;
3519
3520	/* Reserve headroom */
3521	pbsize -= headroom;
3522
3523	if (!num_pb)
3524		num_pb = 1;
3525
3526	/* Divide remaining packet buffer space amongst the number
3527	 * of packet buffers requested using supplied strategy.
3528	 */
3529	switch (strategy) {
3530	case (PBA_STRATEGY_WEIGHTED):
3531		/* pba_80_48 strategy weight first half of packet buffer with
3532		 * 5/8 of the packet buffer space.
3533		 */
3534		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3535		pbsize -= rxpktsize * (num_pb / 2);
3536		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3537		for (; i < (num_pb / 2); i++)
3538			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3539		fallthrough; /* configure remaining packet buffers */
3540	case (PBA_STRATEGY_EQUAL):
3541		/* Divide the remaining Rx packet buffer evenly among the TCs */
3542		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3543		for (; i < num_pb; i++)
3544			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3545		break;
3546	default:
3547		break;
3548	}
3549
3550	/*
3551	 * Setup Tx packet buffer and threshold equally for all TCs
3552	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3553	 * 10 since the largest packet we support is just over 9K.
3554	 */
3555	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3556	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3557	for (i = 0; i < num_pb; i++) {
3558		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3559		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3560	}
3561
3562	/* Clear unused TCs, if any, to zero buffer size*/
3563	for (; i < IXGBE_MAX_PB; i++) {
3564		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3565		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3566		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3567	}
3568}
3569
3570/**
3571 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3572 *  @buffer: pointer to EEPROM
3573 *  @length: size of EEPROM to calculate a checksum for
3574 *
3575 *  Calculates the checksum for some buffer on a specified length.  The
3576 *  checksum calculated is returned.
3577 **/
3578u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3579{
3580	u32 i;
3581	u8 sum = 0;
3582
3583	if (!buffer)
3584		return 0;
3585
3586	for (i = 0; i < length; i++)
3587		sum += buffer[i];
3588
3589	return (u8) (0 - sum);
3590}
3591
3592/**
3593 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3594 *  @hw: pointer to the HW structure
3595 *  @buffer: command to write and where the return status will be placed
3596 *  @length: length of buffer, must be multiple of 4 bytes
3597 *  @timeout: time in ms to wait for command completion
3598 *
3599 *  Communicates with the manageability block. On success return 0
3600 *  else returns semaphore error when encountering an error acquiring
3601 *  semaphore, -EINVAL when incorrect parameters passed or -EIO when
3602 *  command fails.
3603 *
3604 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3605 *  by the caller.
3606 **/
3607int ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3608		       u32 timeout)
3609{
3610	u32 hicr, i, fwsts;
3611	u16 dword_len;
3612
3613	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3614		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3615		return -EINVAL;
3616	}
3617
3618	/* Set bit 9 of FWSTS clearing FW reset indication */
3619	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3620	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3621
3622	/* Check that the host interface is enabled. */
3623	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3624	if (!(hicr & IXGBE_HICR_EN)) {
3625		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3626		return -EIO;
3627	}
3628
3629	/* Calculate length in DWORDs. We must be DWORD aligned */
3630	if (length % sizeof(u32)) {
3631		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3632		return -EINVAL;
3633	}
3634
3635	dword_len = length >> 2;
3636
3637	/* The device driver writes the relevant command block
3638	 * into the ram area.
3639	 */
3640	for (i = 0; i < dword_len; i++)
3641		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3642				      i, (__force u32)cpu_to_le32(buffer[i]));
3643
3644	/* Setting this bit tells the ARC that a new command is pending. */
3645	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3646
3647	for (i = 0; i < timeout; i++) {
3648		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3649		if (!(hicr & IXGBE_HICR_C))
3650			break;
3651		usleep_range(1000, 2000);
3652	}
3653
3654	/* Check command successful completion. */
3655	if ((timeout && i == timeout) ||
3656	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3657		return -EIO;
3658
3659	return 0;
3660}
3661
3662/**
3663 *  ixgbe_host_interface_command - Issue command to manageability block
3664 *  @hw: pointer to the HW structure
3665 *  @buffer: contains the command to write and where the return status will
3666 *           be placed
3667 *  @length: length of buffer, must be multiple of 4 bytes
3668 *  @timeout: time in ms to wait for command completion
3669 *  @return_data: read and return data from the buffer (true) or not (false)
3670 *  Needed because FW structures are big endian and decoding of
3671 *  these fields can be 8 bit or 16 bit based on command. Decoding
3672 *  is not easily understood without making a table of commands.
3673 *  So we will leave this up to the caller to read back the data
3674 *  in these cases.
3675 *
3676 *  Communicates with the manageability block.  On success return 0
3677 *  else return -EIO or -EINVAL.
3678 **/
3679int ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3680				 u32 length, u32 timeout,
3681				 bool return_data)
3682{
3683	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3684	struct ixgbe_hic_hdr *hdr = buffer;
3685	u16 buf_len, dword_len;
3686	u32 *u32arr = buffer;
3687	int status;
3688	u32 bi;
3689
3690	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3691		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3692		return -EINVAL;
3693	}
3694	/* Take management host interface semaphore */
3695	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3696	if (status)
3697		return status;
3698
3699	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3700	if (status)
3701		goto rel_out;
3702
3703	if (!return_data)
3704		goto rel_out;
3705
3706	/* Calculate length in DWORDs */
3707	dword_len = hdr_size >> 2;
3708
3709	/* first pull in the header so we know the buffer length */
3710	for (bi = 0; bi < dword_len; bi++) {
3711		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3712		le32_to_cpus(&u32arr[bi]);
3713	}
3714
3715	/* If there is any thing in data position pull it in */
3716	buf_len = hdr->buf_len;
3717	if (!buf_len)
3718		goto rel_out;
3719
3720	if (length < round_up(buf_len, 4) + hdr_size) {
3721		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3722		status = -EIO;
3723		goto rel_out;
3724	}
3725
3726	/* Calculate length in DWORDs, add 3 for odd lengths */
3727	dword_len = (buf_len + 3) >> 2;
3728
3729	/* Pull in the rest of the buffer (bi is where we left off) */
3730	for (; bi <= dword_len; bi++) {
3731		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3732		le32_to_cpus(&u32arr[bi]);
3733	}
3734
3735rel_out:
3736	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3737
3738	return status;
3739}
3740
3741/**
3742 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3743 *  @hw: pointer to the HW structure
3744 *  @maj: driver version major number
3745 *  @min: driver version minor number
3746 *  @build: driver version build number
3747 *  @sub: driver version sub build number
3748 *  @len: length of driver_ver string
3749 *  @driver_ver: driver string
3750 *
3751 *  Sends driver version number to firmware through the manageability
3752 *  block.  On success return 0
3753 *  else returns -EBUSY when encountering an error acquiring
3754 *  semaphore or -EIO when command fails.
3755 **/
3756int ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3757				 u8 build, u8 sub, __always_unused u16 len,
3758				 __always_unused const char *driver_ver)
3759{
3760	struct ixgbe_hic_drv_info fw_cmd;
3761	int ret_val;
3762	int i;
3763
3764	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3765	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3766	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3767	fw_cmd.port_num = hw->bus.func;
3768	fw_cmd.ver_maj = maj;
3769	fw_cmd.ver_min = min;
3770	fw_cmd.ver_build = build;
3771	fw_cmd.ver_sub = sub;
3772	fw_cmd.hdr.checksum = 0;
3773	fw_cmd.pad = 0;
3774	fw_cmd.pad2 = 0;
3775	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3776				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3777
3778	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3779		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3780						       sizeof(fw_cmd),
3781						       IXGBE_HI_COMMAND_TIMEOUT,
3782						       true);
3783		if (ret_val != 0)
3784			continue;
3785
3786		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3787		    FW_CEM_RESP_STATUS_SUCCESS)
3788			ret_val = 0;
3789		else
3790			ret_val = -EIO;
3791
3792		break;
3793	}
3794
3795	return ret_val;
3796}
3797
3798/**
3799 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3800 * @hw: pointer to the hardware structure
3801 *
3802 * The 82599 and x540 MACs can experience issues if TX work is still pending
3803 * when a reset occurs.  This function prevents this by flushing the PCIe
3804 * buffers on the system.
3805 **/
3806void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3807{
3808	u32 gcr_ext, hlreg0, i, poll;
3809	u16 value;
3810
3811	/*
3812	 * If double reset is not requested then all transactions should
3813	 * already be clear and as such there is no work to do
3814	 */
3815	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3816		return;
3817
3818	/*
3819	 * Set loopback enable to prevent any transmits from being sent
3820	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3821	 * has already been cleared.
3822	 */
3823	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3824	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3825
3826	/* wait for a last completion before clearing buffers */
3827	IXGBE_WRITE_FLUSH(hw);
3828	usleep_range(3000, 6000);
3829
3830	/* Before proceeding, make sure that the PCIe block does not have
3831	 * transactions pending.
3832	 */
3833	poll = ixgbe_pcie_timeout_poll(hw);
3834	for (i = 0; i < poll; i++) {
3835		usleep_range(100, 200);
3836		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3837		if (ixgbe_removed(hw->hw_addr))
3838			break;
3839		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3840			break;
3841	}
3842
3843	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3844	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3845	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3846			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3847
3848	/* Flush all writes and allow 20usec for all transactions to clear */
3849	IXGBE_WRITE_FLUSH(hw);
3850	udelay(20);
3851
3852	/* restore previous register values */
3853	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3854	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3855}
3856
3857static const u8 ixgbe_emc_temp_data[4] = {
3858	IXGBE_EMC_INTERNAL_DATA,
3859	IXGBE_EMC_DIODE1_DATA,
3860	IXGBE_EMC_DIODE2_DATA,
3861	IXGBE_EMC_DIODE3_DATA
3862};
3863static const u8 ixgbe_emc_therm_limit[4] = {
3864	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3865	IXGBE_EMC_DIODE1_THERM_LIMIT,
3866	IXGBE_EMC_DIODE2_THERM_LIMIT,
3867	IXGBE_EMC_DIODE3_THERM_LIMIT
3868};
3869
3870/**
3871 *  ixgbe_get_ets_data - Extracts the ETS bit data
3872 *  @hw: pointer to hardware structure
3873 *  @ets_cfg: extected ETS data
3874 *  @ets_offset: offset of ETS data
3875 *
3876 *  Returns error code.
3877 **/
3878static int ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3879			      u16 *ets_offset)
3880{
3881	int status;
3882
3883	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3884	if (status)
3885		return status;
3886
3887	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3888		return -EOPNOTSUPP;
3889
3890	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3891	if (status)
3892		return status;
3893
3894	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3895		return -EOPNOTSUPP;
3896
3897	return 0;
3898}
3899
3900/**
3901 *  ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3902 *  @hw: pointer to hardware structure
3903 *
3904 *  Returns the thermal sensor data structure
3905 **/
3906int ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3907{
3908	u16 ets_offset;
3909	u16 ets_sensor;
3910	u8  num_sensors;
3911	u16 ets_cfg;
3912	int status;
3913	u8  i;
3914	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3915
3916	/* Only support thermal sensors attached to physical port 0 */
3917	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3918		return -EOPNOTSUPP;
3919
3920	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3921	if (status)
3922		return status;
3923
3924	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3925	if (num_sensors > IXGBE_MAX_SENSORS)
3926		num_sensors = IXGBE_MAX_SENSORS;
3927
3928	for (i = 0; i < num_sensors; i++) {
3929		u8  sensor_index;
3930		u8  sensor_location;
3931
3932		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3933					     &ets_sensor);
3934		if (status)
3935			return status;
3936
3937		sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3938					 ets_sensor);
3939		sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
3940					    ets_sensor);
3941
3942		if (sensor_location != 0) {
3943			status = hw->phy.ops.read_i2c_byte(hw,
3944					ixgbe_emc_temp_data[sensor_index],
3945					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3946					&data->sensor[i].temp);
3947			if (status)
3948				return status;
3949		}
3950	}
3951
3952	return 0;
3953}
3954
3955/**
3956 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3957 * @hw: pointer to hardware structure
3958 *
3959 * Inits the thermal sensor thresholds according to the NVM map
3960 * and save off the threshold and location values into mac.thermal_sensor_data
3961 **/
3962int ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3963{
3964	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3965	u8  low_thresh_delta;
3966	u8  num_sensors;
3967	u8  therm_limit;
3968	u16 ets_sensor;
3969	u16 ets_offset;
3970	u16 ets_cfg;
3971	int status;
3972	u8  i;
3973
3974	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3975
3976	/* Only support thermal sensors attached to physical port 0 */
3977	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3978		return -EOPNOTSUPP;
3979
3980	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3981	if (status)
3982		return status;
3983
3984	low_thresh_delta = FIELD_GET(IXGBE_ETS_LTHRES_DELTA_MASK, ets_cfg);
3985	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3986	if (num_sensors > IXGBE_MAX_SENSORS)
3987		num_sensors = IXGBE_MAX_SENSORS;
3988
3989	for (i = 0; i < num_sensors; i++) {
3990		u8  sensor_index;
3991		u8  sensor_location;
3992
3993		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3994			hw_err(hw, "eeprom read at offset %d failed\n",
3995			       ets_offset + 1 + i);
3996			continue;
3997		}
3998		sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3999					 ets_sensor);
4000		sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
4001					    ets_sensor);
4002		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4003
4004		hw->phy.ops.write_i2c_byte(hw,
4005			ixgbe_emc_therm_limit[sensor_index],
4006			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4007
4008		if (sensor_location == 0)
4009			continue;
4010
4011		data->sensor[i].location = sensor_location;
4012		data->sensor[i].caution_thresh = therm_limit;
4013		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4014	}
4015
4016	return 0;
4017}
4018
4019/**
4020 *  ixgbe_get_orom_version - Return option ROM from EEPROM
4021 *
4022 *  @hw: pointer to hardware structure
4023 *  @nvm_ver: pointer to output structure
4024 *
4025 *  if valid option ROM version, nvm_ver->or_valid set to true
4026 *  else nvm_ver->or_valid is false.
4027 **/
4028void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4029			    struct ixgbe_nvm_version *nvm_ver)
4030{
4031	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4032
4033	nvm_ver->or_valid = false;
4034	/* Option Rom may or may not be present.  Start with pointer */
4035	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4036
4037	/* make sure offset is valid */
4038	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4039		return;
4040
4041	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4042	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4043
4044	/* option rom exists and is valid */
4045	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4046	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4047	    eeprom_cfg_blkh == NVM_VER_INVALID)
4048		return;
4049
4050	nvm_ver->or_valid = true;
4051	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4052	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4053			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4054	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4055}
4056
4057/**
4058 *  ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4059 *  @hw: pointer to hardware structure
4060 *  @nvm_ver: pointer to output structure
4061 *
4062 *  if valid OEM product version, nvm_ver->oem_valid set to true
4063 *  else nvm_ver->oem_valid is false.
4064 **/
4065void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4066				struct ixgbe_nvm_version *nvm_ver)
4067{
4068	u16 rel_num, prod_ver, mod_len, cap, offset;
4069
4070	nvm_ver->oem_valid = false;
4071	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4072
4073	/* Return is offset to OEM Product Version block is invalid */
4074	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4075		return;
4076
4077	/* Read product version block */
4078	hw->eeprom.ops.read(hw, offset, &mod_len);
4079	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4080
4081	/* Return if OEM product version block is invalid */
4082	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4083	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4084		return;
4085
4086	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4087	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4088
4089	/* Return if version is invalid */
4090	if ((rel_num | prod_ver) == 0x0 ||
4091	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4092		return;
4093
4094	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4095	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4096	nvm_ver->oem_release = rel_num;
4097	nvm_ver->oem_valid = true;
4098}
4099
4100/**
4101 *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4102 *
4103 *  @hw: pointer to hardware structure
4104 *  @nvm_ver: pointer to output structure
4105 *
4106 *  word read errors will return 0xFFFF
4107 **/
4108void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4109		      struct ixgbe_nvm_version *nvm_ver)
4110{
4111	u16 etk_id_l, etk_id_h;
4112
4113	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4114		etk_id_l = NVM_VER_INVALID;
4115	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4116		etk_id_h = NVM_VER_INVALID;
4117
4118	/* The word order for the version format is determined by high order
4119	 * word bit 15.
4120	 */
4121	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4122		nvm_ver->etk_id = etk_id_h;
4123		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4124	} else {
4125		nvm_ver->etk_id = etk_id_l;
4126		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4127	}
4128}
4129
4130void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4131{
4132	u32 rxctrl;
4133
4134	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4135	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4136		if (hw->mac.type != ixgbe_mac_82598EB) {
4137			u32 pfdtxgswc;
4138
4139			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4140			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4141				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4142				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4143				hw->mac.set_lben = true;
4144			} else {
4145				hw->mac.set_lben = false;
4146			}
4147		}
4148		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4149		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4150	}
4151}
4152
4153void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4154{
4155	u32 rxctrl;
4156
4157	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4158	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4159
4160	if (hw->mac.type != ixgbe_mac_82598EB) {
4161		if (hw->mac.set_lben) {
4162			u32 pfdtxgswc;
4163
4164			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4165			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4166			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4167			hw->mac.set_lben = false;
4168		}
4169	}
4170}
4171
4172/** ixgbe_mng_present - returns true when management capability is present
4173 * @hw: pointer to hardware structure
4174 **/
4175bool ixgbe_mng_present(struct ixgbe_hw *hw)
4176{
4177	u32 fwsm;
4178
4179	if (hw->mac.type < ixgbe_mac_82599EB)
4180		return false;
4181
4182	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4183
4184	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4185}
4186
4187/**
4188 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4189 *  @hw: pointer to hardware structure
4190 *  @speed: new link speed
4191 *  @autoneg_wait_to_complete: true when waiting for completion is needed
4192 *
4193 *  Set the link speed in the MAC and/or PHY register and restarts link.
4194 */
4195int ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4196					  ixgbe_link_speed speed,
4197					  bool autoneg_wait_to_complete)
4198{
4199	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4200	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4201	bool autoneg, link_up = false;
4202	u32 speedcnt = 0;
4203	int status = 0;
4204	u32 i = 0;
4205
4206	/* Mask off requested but non-supported speeds */
4207	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4208	if (status)
4209		return status;
4210
4211	speed &= link_speed;
4212
4213	/* Try each speed one by one, highest priority first.  We do this in
4214	 * software because 10Gb fiber doesn't support speed autonegotiation.
4215	 */
4216	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4217		speedcnt++;
4218		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4219
4220		/* Set the module link speed */
4221		switch (hw->phy.media_type) {
4222		case ixgbe_media_type_fiber:
4223			hw->mac.ops.set_rate_select_speed(hw,
4224						    IXGBE_LINK_SPEED_10GB_FULL);
4225			break;
4226		case ixgbe_media_type_fiber_qsfp:
4227			/* QSFP module automatically detects MAC link speed */
4228			break;
4229		default:
4230			hw_dbg(hw, "Unexpected media type\n");
4231			break;
4232		}
4233
4234		/* Allow module to change analog characteristics (1G->10G) */
4235		msleep(40);
4236
4237		status = hw->mac.ops.setup_mac_link(hw,
4238						    IXGBE_LINK_SPEED_10GB_FULL,
4239						    autoneg_wait_to_complete);
4240		if (status)
4241			return status;
4242
4243		/* Flap the Tx laser if it has not already been done */
4244		if (hw->mac.ops.flap_tx_laser)
4245			hw->mac.ops.flap_tx_laser(hw);
4246
4247		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4248		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4249		 * attempted.  82599 uses the same timing for 10g SFI.
4250		 */
4251		for (i = 0; i < 5; i++) {
4252			/* Wait for the link partner to also set speed */
4253			msleep(100);
4254
4255			/* If we have link, just jump out */
4256			status = hw->mac.ops.check_link(hw, &link_speed,
4257							&link_up, false);
4258			if (status)
4259				return status;
4260
4261			if (link_up)
4262				goto out;
4263		}
4264	}
4265
4266	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4267		speedcnt++;
4268		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4269			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4270
4271		/* Set the module link speed */
4272		switch (hw->phy.media_type) {
4273		case ixgbe_media_type_fiber:
4274			hw->mac.ops.set_rate_select_speed(hw,
4275						     IXGBE_LINK_SPEED_1GB_FULL);
4276			break;
4277		case ixgbe_media_type_fiber_qsfp:
4278			/* QSFP module automatically detects link speed */
4279			break;
4280		default:
4281			hw_dbg(hw, "Unexpected media type\n");
4282			break;
4283		}
4284
4285		/* Allow module to change analog characteristics (10G->1G) */
4286		msleep(40);
4287
4288		status = hw->mac.ops.setup_mac_link(hw,
4289						    IXGBE_LINK_SPEED_1GB_FULL,
4290						    autoneg_wait_to_complete);
4291		if (status)
4292			return status;
4293
4294		/* Flap the Tx laser if it has not already been done */
4295		if (hw->mac.ops.flap_tx_laser)
4296			hw->mac.ops.flap_tx_laser(hw);
4297
4298		/* Wait for the link partner to also set speed */
4299		msleep(100);
4300
4301		/* If we have link, just jump out */
4302		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4303						false);
4304		if (status)
4305			return status;
4306
4307		if (link_up)
4308			goto out;
4309	}
4310
4311	/* We didn't get link.  Configure back to the highest speed we tried,
4312	 * (if there was more than one).  We call ourselves back with just the
4313	 * single highest speed that the user requested.
4314	 */
4315	if (speedcnt > 1)
4316		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4317						      highest_link_speed,
4318						      autoneg_wait_to_complete);
4319
4320out:
4321	/* Set autoneg_advertised value based on input link speed */
4322	hw->phy.autoneg_advertised = 0;
4323
4324	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4325		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4326
4327	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4328		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4329
4330	return status;
4331}
4332
4333/**
4334 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4335 *  @hw: pointer to hardware structure
4336 *  @speed: link speed to set
4337 *
4338 *  Set module link speed via the soft rate select.
4339 */
4340void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4341				      ixgbe_link_speed speed)
4342{
4343	u8 rs, eeprom_data;
4344	int status;
4345
4346	switch (speed) {
4347	case IXGBE_LINK_SPEED_10GB_FULL:
4348		/* one bit mask same as setting on */
4349		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4350		break;
4351	case IXGBE_LINK_SPEED_1GB_FULL:
4352		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4353		break;
4354	default:
4355		hw_dbg(hw, "Invalid fixed module speed\n");
4356		return;
4357	}
4358
4359	/* Set RS0 */
4360	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4361					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4362					   &eeprom_data);
4363	if (status) {
4364		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4365		return;
4366	}
4367
4368	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4369
4370	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4371					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4372					    eeprom_data);
4373	if (status) {
4374		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4375		return;
4376	}
4377
4378	/* Set RS1 */
4379	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4380					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4381					   &eeprom_data);
4382	if (status) {
4383		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4384		return;
4385	}
4386
4387	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4388
4389	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4390					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4391					    eeprom_data);
4392	if (status) {
4393		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4394		return;
4395	}
4396}
4397