1// SPDX-License-Identifier: GPL-2.0+
2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4#include <linux/module.h>
5#include <linux/device.h>
6#include <linux/pci.h>
7#include <linux/ptp_classify.h>
8
9#include "igb.h"
10
11#define INCVALUE_MASK		0x7fffffff
12#define ISGN			0x80000000
13
14/* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
16 *
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
21 * register, TIMINCA.
22 *
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
27 *
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits.  As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
34 * TIMINCA register.
35 *
36 *
37 *             SYSTIMH            SYSTIML
38 *        +--------------+   +---+---+------+
39 *  82576 |      32      |   | 8 | 5 |  19  |
40 *        +--------------+   +---+---+------+
41 *         \________ 45 bits _______/  fract
42 *
43 *        +----------+---+   +--------------+
44 *  82580 |    24    | 8 |   |      32      |
45 *        +----------+---+   +--------------+
46 *          reserved  \______ 40 bits _____/
47 *
48 *
49 * The 45 bit 82576 SYSTIM overflows every
50 *   2^45 * 10^-9 / 3600 = 9.77 hours.
51 *
52 * The 40 bit 82580 SYSTIM overflows every
53 *   2^40 * 10^-9 /  60  = 18.3 minutes.
54 *
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
57 * to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, and also the NIC
59 * clock can be adjusted to run up to 6% faster and the system clock
60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
61 * interval in the NIC time is shorter than 9.16 minutes.
62 */
63
64#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
65#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
66#define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
67#define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68#define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
69#define IGB_NBITS_82580			40
70#define IGB_82580_BASE_PERIOD		0x800000000
71
72static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
73static void igb_ptp_sdp_init(struct igb_adapter *adapter);
74
75/* SYSTIM read access for the 82576 */
76static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
77{
78	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
79	struct e1000_hw *hw = &igb->hw;
80	u64 val;
81	u32 lo, hi;
82
83	lo = rd32(E1000_SYSTIML);
84	hi = rd32(E1000_SYSTIMH);
85
86	val = ((u64) hi) << 32;
87	val |= lo;
88
89	return val;
90}
91
92/* SYSTIM read access for the 82580 */
93static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
94{
95	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
96	struct e1000_hw *hw = &igb->hw;
97	u32 lo, hi;
98	u64 val;
99
100	/* The timestamp latches on lowest register read. For the 82580
101	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
102	 * need to provide nanosecond resolution, so we just ignore it.
103	 */
104	rd32(E1000_SYSTIMR);
105	lo = rd32(E1000_SYSTIML);
106	hi = rd32(E1000_SYSTIMH);
107
108	val = ((u64) hi) << 32;
109	val |= lo;
110
111	return val;
112}
113
114/* SYSTIM read access for I210/I211 */
115static void igb_ptp_read_i210(struct igb_adapter *adapter,
116			      struct timespec64 *ts)
117{
118	struct e1000_hw *hw = &adapter->hw;
119	u32 sec, nsec;
120
121	/* The timestamp latches on lowest register read. For I210/I211, the
122	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
123	 * resolution, we can ignore it.
124	 */
125	rd32(E1000_SYSTIMR);
126	nsec = rd32(E1000_SYSTIML);
127	sec = rd32(E1000_SYSTIMH);
128
129	ts->tv_sec = sec;
130	ts->tv_nsec = nsec;
131}
132
133static void igb_ptp_write_i210(struct igb_adapter *adapter,
134			       const struct timespec64 *ts)
135{
136	struct e1000_hw *hw = &adapter->hw;
137
138	/* Writing the SYSTIMR register is not necessary as it only provides
139	 * sub-nanosecond resolution.
140	 */
141	wr32(E1000_SYSTIML, ts->tv_nsec);
142	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
143}
144
145/**
146 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
147 * @adapter: board private structure
148 * @hwtstamps: timestamp structure to update
149 * @systim: unsigned 64bit system time value.
150 *
151 * We need to convert the system time value stored in the RX/TXSTMP registers
152 * into a hwtstamp which can be used by the upper level timestamping functions.
153 *
154 * The 'tmreg_lock' spinlock is used to protect the consistency of the
155 * system time value. This is needed because reading the 64 bit time
156 * value involves reading two (or three) 32 bit registers. The first
157 * read latches the value. Ditto for writing.
158 *
159 * In addition, here have extended the system time with an overflow
160 * counter in software.
161 **/
162static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
163				       struct skb_shared_hwtstamps *hwtstamps,
164				       u64 systim)
165{
166	unsigned long flags;
167	u64 ns;
168
169	memset(hwtstamps, 0, sizeof(*hwtstamps));
170
171	switch (adapter->hw.mac.type) {
172	case e1000_82576:
173	case e1000_82580:
174	case e1000_i354:
175	case e1000_i350:
176		spin_lock_irqsave(&adapter->tmreg_lock, flags);
177		ns = timecounter_cyc2time(&adapter->tc, systim);
178		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
179
180		hwtstamps->hwtstamp = ns_to_ktime(ns);
181		break;
182	case e1000_i210:
183	case e1000_i211:
184		/* Upper 32 bits contain s, lower 32 bits contain ns. */
185		hwtstamps->hwtstamp = ktime_set(systim >> 32,
186						systim & 0xFFFFFFFF);
187		break;
188	default:
189		break;
190	}
191}
192
193/* PTP clock operations */
194static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
195{
196	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197					       ptp_caps);
198	struct e1000_hw *hw = &igb->hw;
199	u64 incvalue;
200
201	incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
202
203	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
204
205	return 0;
206}
207
208static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
209{
210	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
211					       ptp_caps);
212	struct e1000_hw *hw = &igb->hw;
213	bool neg_adj;
214	u64 rate;
215	u32 inca;
216
217	neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate);
218
219	inca = rate & INCVALUE_MASK;
220	if (neg_adj)
221		inca |= ISGN;
222
223	wr32(E1000_TIMINCA, inca);
224
225	return 0;
226}
227
228static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
229{
230	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231					       ptp_caps);
232	unsigned long flags;
233
234	spin_lock_irqsave(&igb->tmreg_lock, flags);
235	timecounter_adjtime(&igb->tc, delta);
236	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
237
238	return 0;
239}
240
241static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
242{
243	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244					       ptp_caps);
245	unsigned long flags;
246	struct timespec64 now, then = ns_to_timespec64(delta);
247
248	spin_lock_irqsave(&igb->tmreg_lock, flags);
249
250	igb_ptp_read_i210(igb, &now);
251	now = timespec64_add(now, then);
252	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
253
254	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
255
256	return 0;
257}
258
259static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
260				  struct timespec64 *ts,
261				  struct ptp_system_timestamp *sts)
262{
263	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264					       ptp_caps);
265	struct e1000_hw *hw = &igb->hw;
266	unsigned long flags;
267	u32 lo, hi;
268	u64 ns;
269
270	spin_lock_irqsave(&igb->tmreg_lock, flags);
271
272	ptp_read_system_prets(sts);
273	lo = rd32(E1000_SYSTIML);
274	ptp_read_system_postts(sts);
275	hi = rd32(E1000_SYSTIMH);
276
277	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
278
279	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
280
281	*ts = ns_to_timespec64(ns);
282
283	return 0;
284}
285
286static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
287				  struct timespec64 *ts,
288				  struct ptp_system_timestamp *sts)
289{
290	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291					       ptp_caps);
292	struct e1000_hw *hw = &igb->hw;
293	unsigned long flags;
294	u32 lo, hi;
295	u64 ns;
296
297	spin_lock_irqsave(&igb->tmreg_lock, flags);
298
299	ptp_read_system_prets(sts);
300	rd32(E1000_SYSTIMR);
301	ptp_read_system_postts(sts);
302	lo = rd32(E1000_SYSTIML);
303	hi = rd32(E1000_SYSTIMH);
304
305	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
306
307	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
308
309	*ts = ns_to_timespec64(ns);
310
311	return 0;
312}
313
314static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
315				 struct timespec64 *ts,
316				 struct ptp_system_timestamp *sts)
317{
318	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
319					       ptp_caps);
320	struct e1000_hw *hw = &igb->hw;
321	unsigned long flags;
322
323	spin_lock_irqsave(&igb->tmreg_lock, flags);
324
325	ptp_read_system_prets(sts);
326	rd32(E1000_SYSTIMR);
327	ptp_read_system_postts(sts);
328	ts->tv_nsec = rd32(E1000_SYSTIML);
329	ts->tv_sec = rd32(E1000_SYSTIMH);
330
331	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
332
333	return 0;
334}
335
336static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
337				 const struct timespec64 *ts)
338{
339	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340					       ptp_caps);
341	unsigned long flags;
342	u64 ns;
343
344	ns = timespec64_to_ns(ts);
345
346	spin_lock_irqsave(&igb->tmreg_lock, flags);
347
348	timecounter_init(&igb->tc, &igb->cc, ns);
349
350	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
351
352	return 0;
353}
354
355static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
356				const struct timespec64 *ts)
357{
358	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
359					       ptp_caps);
360	unsigned long flags;
361
362	spin_lock_irqsave(&igb->tmreg_lock, flags);
363
364	igb_ptp_write_i210(igb, ts);
365
366	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
367
368	return 0;
369}
370
371static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
372{
373	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
374	static const u32 mask[IGB_N_SDP] = {
375		E1000_CTRL_SDP0_DIR,
376		E1000_CTRL_SDP1_DIR,
377		E1000_CTRL_EXT_SDP2_DIR,
378		E1000_CTRL_EXT_SDP3_DIR,
379	};
380
381	if (input)
382		*ptr &= ~mask[pin];
383	else
384		*ptr |= mask[pin];
385}
386
387static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
388{
389	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
390		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
391	};
392	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
393		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
394	};
395	static const u32 ts_sdp_en[IGB_N_SDP] = {
396		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
397	};
398	struct e1000_hw *hw = &igb->hw;
399	u32 ctrl, ctrl_ext, tssdp = 0;
400
401	ctrl = rd32(E1000_CTRL);
402	ctrl_ext = rd32(E1000_CTRL_EXT);
403	tssdp = rd32(E1000_TSSDP);
404
405	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
406
407	/* Make sure this pin is not enabled as an output. */
408	tssdp &= ~ts_sdp_en[pin];
409
410	if (chan == 1) {
411		tssdp &= ~AUX1_SEL_SDP3;
412		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
413	} else {
414		tssdp &= ~AUX0_SEL_SDP3;
415		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
416	}
417
418	wr32(E1000_TSSDP, tssdp);
419	wr32(E1000_CTRL, ctrl);
420	wr32(E1000_CTRL_EXT, ctrl_ext);
421}
422
423static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
424{
425	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
426		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
427	};
428	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
429		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
430	};
431	static const u32 ts_sdp_en[IGB_N_SDP] = {
432		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
433	};
434	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
435		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
436		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
437	};
438	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
439		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
440		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
441	};
442	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
443		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
444		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
445	};
446	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
447		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
448		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
449	};
450	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
451		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
452		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
453	};
454	struct e1000_hw *hw = &igb->hw;
455	u32 ctrl, ctrl_ext, tssdp = 0;
456
457	ctrl = rd32(E1000_CTRL);
458	ctrl_ext = rd32(E1000_CTRL_EXT);
459	tssdp = rd32(E1000_TSSDP);
460
461	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
462
463	/* Make sure this pin is not enabled as an input. */
464	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
465		tssdp &= ~AUX0_TS_SDP_EN;
466
467	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
468		tssdp &= ~AUX1_TS_SDP_EN;
469
470	tssdp &= ~ts_sdp_sel_clr[pin];
471	if (freq) {
472		if (chan == 1)
473			tssdp |= ts_sdp_sel_fc1[pin];
474		else
475			tssdp |= ts_sdp_sel_fc0[pin];
476	} else {
477		if (chan == 1)
478			tssdp |= ts_sdp_sel_tt1[pin];
479		else
480			tssdp |= ts_sdp_sel_tt0[pin];
481	}
482	tssdp |= ts_sdp_en[pin];
483
484	wr32(E1000_TSSDP, tssdp);
485	wr32(E1000_CTRL, ctrl);
486	wr32(E1000_CTRL_EXT, ctrl_ext);
487}
488
489static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
490					struct ptp_clock_request *rq, int on)
491{
492	struct igb_adapter *igb =
493		container_of(ptp, struct igb_adapter, ptp_caps);
494	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
495		systimh, level_mask, level, rem;
496	struct e1000_hw *hw = &igb->hw;
497	struct timespec64 ts, start;
498	unsigned long flags;
499	u64 systim, now;
500	int pin = -1;
501	s64 ns;
502
503	switch (rq->type) {
504	case PTP_CLK_REQ_EXTTS:
505		/* Reject requests with unsupported flags */
506		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
507					PTP_RISING_EDGE |
508					PTP_FALLING_EDGE |
509					PTP_STRICT_FLAGS))
510			return -EOPNOTSUPP;
511
512		if (on) {
513			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
514					   rq->extts.index);
515			if (pin < 0)
516				return -EBUSY;
517		}
518		if (rq->extts.index == 1) {
519			tsauxc_mask = TSAUXC_EN_TS1;
520			tsim_mask = TSINTR_AUTT1;
521		} else {
522			tsauxc_mask = TSAUXC_EN_TS0;
523			tsim_mask = TSINTR_AUTT0;
524		}
525		spin_lock_irqsave(&igb->tmreg_lock, flags);
526		tsauxc = rd32(E1000_TSAUXC);
527		tsim = rd32(E1000_TSIM);
528		if (on) {
529			igb_pin_extts(igb, rq->extts.index, pin);
530			tsauxc |= tsauxc_mask;
531			tsim |= tsim_mask;
532		} else {
533			tsauxc &= ~tsauxc_mask;
534			tsim &= ~tsim_mask;
535		}
536		wr32(E1000_TSAUXC, tsauxc);
537		wr32(E1000_TSIM, tsim);
538		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
539		return 0;
540
541	case PTP_CLK_REQ_PEROUT:
542		/* Reject requests with unsupported flags */
543		if (rq->perout.flags)
544			return -EOPNOTSUPP;
545
546		if (on) {
547			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
548					   rq->perout.index);
549			if (pin < 0)
550				return -EBUSY;
551		}
552		ts.tv_sec = rq->perout.period.sec;
553		ts.tv_nsec = rq->perout.period.nsec;
554		ns = timespec64_to_ns(&ts);
555		ns = ns >> 1;
556		if (on && ns < 8LL)
557			return -EINVAL;
558		ts = ns_to_timespec64(ns);
559		if (rq->perout.index == 1) {
560			tsauxc_mask = TSAUXC_EN_TT1;
561			tsim_mask = TSINTR_TT1;
562			trgttiml = E1000_TRGTTIML1;
563			trgttimh = E1000_TRGTTIMH1;
564		} else {
565			tsauxc_mask = TSAUXC_EN_TT0;
566			tsim_mask = TSINTR_TT0;
567			trgttiml = E1000_TRGTTIML0;
568			trgttimh = E1000_TRGTTIMH0;
569		}
570		spin_lock_irqsave(&igb->tmreg_lock, flags);
571		tsauxc = rd32(E1000_TSAUXC);
572		tsim = rd32(E1000_TSIM);
573		if (rq->perout.index == 1) {
574			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
575			tsim &= ~TSINTR_TT1;
576		} else {
577			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
578			tsim &= ~TSINTR_TT0;
579		}
580		if (on) {
581			int i = rq->perout.index;
582
583			/* read systim registers in sequence */
584			rd32(E1000_SYSTIMR);
585			systiml = rd32(E1000_SYSTIML);
586			systimh = rd32(E1000_SYSTIMH);
587			systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
588			now = timecounter_cyc2time(&igb->tc, systim);
589
590			if (pin < 2) {
591				level_mask = (i == 1) ? 0x80000 : 0x40000;
592				level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
593			} else {
594				level_mask = (i == 1) ? 0x80 : 0x40;
595				level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
596			}
597
598			div_u64_rem(now, ns, &rem);
599			systim = systim + (ns - rem);
600
601			/* synchronize pin level with rising/falling edges */
602			div_u64_rem(now, ns << 1, &rem);
603			if (rem < ns) {
604				/* first half of period */
605				if (level == 0) {
606					/* output is already low, skip this period */
607					systim += ns;
608				}
609			} else {
610				/* second half of period */
611				if (level == 1) {
612					/* output is already high, skip this period */
613					systim += ns;
614				}
615			}
616
617			start = ns_to_timespec64(systim + (ns - rem));
618			igb_pin_perout(igb, i, pin, 0);
619			igb->perout[i].start.tv_sec = start.tv_sec;
620			igb->perout[i].start.tv_nsec = start.tv_nsec;
621			igb->perout[i].period.tv_sec = ts.tv_sec;
622			igb->perout[i].period.tv_nsec = ts.tv_nsec;
623
624			wr32(trgttiml, (u32)systim);
625			wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
626			tsauxc |= tsauxc_mask;
627			tsim |= tsim_mask;
628		}
629		wr32(E1000_TSAUXC, tsauxc);
630		wr32(E1000_TSIM, tsim);
631		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
632		return 0;
633
634	case PTP_CLK_REQ_PPS:
635		return -EOPNOTSUPP;
636	}
637
638	return -EOPNOTSUPP;
639}
640
641static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
642				       struct ptp_clock_request *rq, int on)
643{
644	struct igb_adapter *igb =
645		container_of(ptp, struct igb_adapter, ptp_caps);
646	struct e1000_hw *hw = &igb->hw;
647	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
648	unsigned long flags;
649	struct timespec64 ts;
650	int use_freq = 0, pin = -1;
651	s64 ns;
652
653	switch (rq->type) {
654	case PTP_CLK_REQ_EXTTS:
655		/* Reject requests with unsupported flags */
656		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
657					PTP_RISING_EDGE |
658					PTP_FALLING_EDGE |
659					PTP_STRICT_FLAGS))
660			return -EOPNOTSUPP;
661
662		/* Reject requests failing to enable both edges. */
663		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
664		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
665		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
666			return -EOPNOTSUPP;
667
668		if (on) {
669			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
670					   rq->extts.index);
671			if (pin < 0)
672				return -EBUSY;
673		}
674		if (rq->extts.index == 1) {
675			tsauxc_mask = TSAUXC_EN_TS1;
676			tsim_mask = TSINTR_AUTT1;
677		} else {
678			tsauxc_mask = TSAUXC_EN_TS0;
679			tsim_mask = TSINTR_AUTT0;
680		}
681		spin_lock_irqsave(&igb->tmreg_lock, flags);
682		tsauxc = rd32(E1000_TSAUXC);
683		tsim = rd32(E1000_TSIM);
684		if (on) {
685			igb_pin_extts(igb, rq->extts.index, pin);
686			tsauxc |= tsauxc_mask;
687			tsim |= tsim_mask;
688		} else {
689			tsauxc &= ~tsauxc_mask;
690			tsim &= ~tsim_mask;
691		}
692		wr32(E1000_TSAUXC, tsauxc);
693		wr32(E1000_TSIM, tsim);
694		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
695		return 0;
696
697	case PTP_CLK_REQ_PEROUT:
698		/* Reject requests with unsupported flags */
699		if (rq->perout.flags)
700			return -EOPNOTSUPP;
701
702		if (on) {
703			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
704					   rq->perout.index);
705			if (pin < 0)
706				return -EBUSY;
707		}
708		ts.tv_sec = rq->perout.period.sec;
709		ts.tv_nsec = rq->perout.period.nsec;
710		ns = timespec64_to_ns(&ts);
711		ns = ns >> 1;
712		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
713			   (ns == 250000000LL) || (ns == 500000000LL))) {
714			if (ns < 8LL)
715				return -EINVAL;
716			use_freq = 1;
717		}
718		ts = ns_to_timespec64(ns);
719		if (rq->perout.index == 1) {
720			if (use_freq) {
721				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
722				tsim_mask = 0;
723			} else {
724				tsauxc_mask = TSAUXC_EN_TT1;
725				tsim_mask = TSINTR_TT1;
726			}
727			trgttiml = E1000_TRGTTIML1;
728			trgttimh = E1000_TRGTTIMH1;
729			freqout = E1000_FREQOUT1;
730		} else {
731			if (use_freq) {
732				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
733				tsim_mask = 0;
734			} else {
735				tsauxc_mask = TSAUXC_EN_TT0;
736				tsim_mask = TSINTR_TT0;
737			}
738			trgttiml = E1000_TRGTTIML0;
739			trgttimh = E1000_TRGTTIMH0;
740			freqout = E1000_FREQOUT0;
741		}
742		spin_lock_irqsave(&igb->tmreg_lock, flags);
743		tsauxc = rd32(E1000_TSAUXC);
744		tsim = rd32(E1000_TSIM);
745		if (rq->perout.index == 1) {
746			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
747			tsim &= ~TSINTR_TT1;
748		} else {
749			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
750			tsim &= ~TSINTR_TT0;
751		}
752		if (on) {
753			int i = rq->perout.index;
754			igb_pin_perout(igb, i, pin, use_freq);
755			igb->perout[i].start.tv_sec = rq->perout.start.sec;
756			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
757			igb->perout[i].period.tv_sec = ts.tv_sec;
758			igb->perout[i].period.tv_nsec = ts.tv_nsec;
759			wr32(trgttimh, rq->perout.start.sec);
760			wr32(trgttiml, rq->perout.start.nsec);
761			if (use_freq)
762				wr32(freqout, ns);
763			tsauxc |= tsauxc_mask;
764			tsim |= tsim_mask;
765		}
766		wr32(E1000_TSAUXC, tsauxc);
767		wr32(E1000_TSIM, tsim);
768		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
769		return 0;
770
771	case PTP_CLK_REQ_PPS:
772		spin_lock_irqsave(&igb->tmreg_lock, flags);
773		tsim = rd32(E1000_TSIM);
774		if (on)
775			tsim |= TSINTR_SYS_WRAP;
776		else
777			tsim &= ~TSINTR_SYS_WRAP;
778		igb->pps_sys_wrap_on = !!on;
779		wr32(E1000_TSIM, tsim);
780		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
781		return 0;
782	}
783
784	return -EOPNOTSUPP;
785}
786
787static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
788				  struct ptp_clock_request *rq, int on)
789{
790	return -EOPNOTSUPP;
791}
792
793static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
794			      enum ptp_pin_function func, unsigned int chan)
795{
796	switch (func) {
797	case PTP_PF_NONE:
798	case PTP_PF_EXTTS:
799	case PTP_PF_PEROUT:
800		break;
801	case PTP_PF_PHYSYNC:
802		return -1;
803	}
804	return 0;
805}
806
807/**
808 * igb_ptp_tx_work
809 * @work: pointer to work struct
810 *
811 * This work function polls the TSYNCTXCTL valid bit to determine when a
812 * timestamp has been taken for the current stored skb.
813 **/
814static void igb_ptp_tx_work(struct work_struct *work)
815{
816	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
817						   ptp_tx_work);
818	struct e1000_hw *hw = &adapter->hw;
819	u32 tsynctxctl;
820
821	if (!adapter->ptp_tx_skb)
822		return;
823
824	if (time_is_before_jiffies(adapter->ptp_tx_start +
825				   IGB_PTP_TX_TIMEOUT)) {
826		dev_kfree_skb_any(adapter->ptp_tx_skb);
827		adapter->ptp_tx_skb = NULL;
828		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
829		adapter->tx_hwtstamp_timeouts++;
830		/* Clear the tx valid bit in TSYNCTXCTL register to enable
831		 * interrupt
832		 */
833		rd32(E1000_TXSTMPH);
834		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
835		return;
836	}
837
838	tsynctxctl = rd32(E1000_TSYNCTXCTL);
839	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
840		igb_ptp_tx_hwtstamp(adapter);
841	else
842		/* reschedule to check later */
843		schedule_work(&adapter->ptp_tx_work);
844}
845
846static void igb_ptp_overflow_check(struct work_struct *work)
847{
848	struct igb_adapter *igb =
849		container_of(work, struct igb_adapter, ptp_overflow_work.work);
850	struct timespec64 ts;
851	u64 ns;
852
853	/* Update the timecounter */
854	ns = timecounter_read(&igb->tc);
855
856	ts = ns_to_timespec64(ns);
857	pr_debug("igb overflow check at %lld.%09lu\n",
858		 (long long) ts.tv_sec, ts.tv_nsec);
859
860	schedule_delayed_work(&igb->ptp_overflow_work,
861			      IGB_SYSTIM_OVERFLOW_PERIOD);
862}
863
864/**
865 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
866 * @adapter: private network adapter structure
867 *
868 * This watchdog task is scheduled to detect error case where hardware has
869 * dropped an Rx packet that was timestamped when the ring is full. The
870 * particular error is rare but leaves the device in a state unable to timestamp
871 * any future packets.
872 **/
873void igb_ptp_rx_hang(struct igb_adapter *adapter)
874{
875	struct e1000_hw *hw = &adapter->hw;
876	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
877	unsigned long rx_event;
878
879	/* Other hardware uses per-packet timestamps */
880	if (hw->mac.type != e1000_82576)
881		return;
882
883	/* If we don't have a valid timestamp in the registers, just update the
884	 * timeout counter and exit
885	 */
886	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
887		adapter->last_rx_ptp_check = jiffies;
888		return;
889	}
890
891	/* Determine the most recent watchdog or rx_timestamp event */
892	rx_event = adapter->last_rx_ptp_check;
893	if (time_after(adapter->last_rx_timestamp, rx_event))
894		rx_event = adapter->last_rx_timestamp;
895
896	/* Only need to read the high RXSTMP register to clear the lock */
897	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
898		rd32(E1000_RXSTMPH);
899		adapter->last_rx_ptp_check = jiffies;
900		adapter->rx_hwtstamp_cleared++;
901		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
902	}
903}
904
905/**
906 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
907 * @adapter: private network adapter structure
908 */
909void igb_ptp_tx_hang(struct igb_adapter *adapter)
910{
911	struct e1000_hw *hw = &adapter->hw;
912	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
913					      IGB_PTP_TX_TIMEOUT);
914
915	if (!adapter->ptp_tx_skb)
916		return;
917
918	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
919		return;
920
921	/* If we haven't received a timestamp within the timeout, it is
922	 * reasonable to assume that it will never occur, so we can unlock the
923	 * timestamp bit when this occurs.
924	 */
925	if (timeout) {
926		cancel_work_sync(&adapter->ptp_tx_work);
927		dev_kfree_skb_any(adapter->ptp_tx_skb);
928		adapter->ptp_tx_skb = NULL;
929		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
930		adapter->tx_hwtstamp_timeouts++;
931		/* Clear the tx valid bit in TSYNCTXCTL register to enable
932		 * interrupt
933		 */
934		rd32(E1000_TXSTMPH);
935		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
936	}
937}
938
939/**
940 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
941 * @adapter: Board private structure.
942 *
943 * If we were asked to do hardware stamping and such a time stamp is
944 * available, then it must have been for this skb here because we only
945 * allow only one such packet into the queue.
946 **/
947static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
948{
949	struct sk_buff *skb = adapter->ptp_tx_skb;
950	struct e1000_hw *hw = &adapter->hw;
951	struct skb_shared_hwtstamps shhwtstamps;
952	u64 regval;
953	int adjust = 0;
954
955	regval = rd32(E1000_TXSTMPL);
956	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
957
958	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
959	/* adjust timestamp for the TX latency based on link speed */
960	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
961		switch (adapter->link_speed) {
962		case SPEED_10:
963			adjust = IGB_I210_TX_LATENCY_10;
964			break;
965		case SPEED_100:
966			adjust = IGB_I210_TX_LATENCY_100;
967			break;
968		case SPEED_1000:
969			adjust = IGB_I210_TX_LATENCY_1000;
970			break;
971		}
972	}
973
974	shhwtstamps.hwtstamp =
975		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
976
977	/* Clear the lock early before calling skb_tstamp_tx so that
978	 * applications are not woken up before the lock bit is clear. We use
979	 * a copy of the skb pointer to ensure other threads can't change it
980	 * while we're notifying the stack.
981	 */
982	adapter->ptp_tx_skb = NULL;
983	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
984
985	/* Notify the stack and free the skb after we've unlocked */
986	skb_tstamp_tx(skb, &shhwtstamps);
987	dev_kfree_skb_any(skb);
988}
989
990/**
991 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
992 * @q_vector: Pointer to interrupt specific structure
993 * @va: Pointer to address containing Rx buffer
994 * @timestamp: Pointer where timestamp will be stored
995 *
996 * This function is meant to retrieve a timestamp from the first buffer of an
997 * incoming frame.  The value is stored in little endian format starting on
998 * byte 8
999 *
1000 * Returns: The timestamp header length or 0 if not available
1001 **/
1002int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1003			ktime_t *timestamp)
1004{
1005	struct igb_adapter *adapter = q_vector->adapter;
1006	struct e1000_hw *hw = &adapter->hw;
1007	struct skb_shared_hwtstamps ts;
1008	__le64 *regval = (__le64 *)va;
1009	int adjust = 0;
1010
1011	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1012		return 0;
1013
1014	/* The timestamp is recorded in little endian format.
1015	 * DWORD: 0        1        2        3
1016	 * Field: Reserved Reserved SYSTIML  SYSTIMH
1017	 */
1018
1019	/* check reserved dwords are zero, be/le doesn't matter for zero */
1020	if (regval[0])
1021		return 0;
1022
1023	igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1024
1025	/* adjust timestamp for the RX latency based on link speed */
1026	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1027		switch (adapter->link_speed) {
1028		case SPEED_10:
1029			adjust = IGB_I210_RX_LATENCY_10;
1030			break;
1031		case SPEED_100:
1032			adjust = IGB_I210_RX_LATENCY_100;
1033			break;
1034		case SPEED_1000:
1035			adjust = IGB_I210_RX_LATENCY_1000;
1036			break;
1037		}
1038	}
1039
1040	*timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1041
1042	return IGB_TS_HDR_LEN;
1043}
1044
1045/**
1046 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1047 * @q_vector: Pointer to interrupt specific structure
1048 * @skb: Buffer containing timestamp and packet
1049 *
1050 * This function is meant to retrieve a timestamp from the internal registers
1051 * of the adapter and store it in the skb.
1052 **/
1053void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1054{
1055	struct igb_adapter *adapter = q_vector->adapter;
1056	struct e1000_hw *hw = &adapter->hw;
1057	int adjust = 0;
1058	u64 regval;
1059
1060	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1061		return;
1062
1063	/* If this bit is set, then the RX registers contain the time stamp. No
1064	 * other packet will be time stamped until we read these registers, so
1065	 * read the registers to make them available again. Because only one
1066	 * packet can be time stamped at a time, we know that the register
1067	 * values must belong to this one here and therefore we don't need to
1068	 * compare any of the additional attributes stored for it.
1069	 *
1070	 * If nothing went wrong, then it should have a shared tx_flags that we
1071	 * can turn into a skb_shared_hwtstamps.
1072	 */
1073	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1074		return;
1075
1076	regval = rd32(E1000_RXSTMPL);
1077	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1078
1079	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1080
1081	/* adjust timestamp for the RX latency based on link speed */
1082	if (adapter->hw.mac.type == e1000_i210) {
1083		switch (adapter->link_speed) {
1084		case SPEED_10:
1085			adjust = IGB_I210_RX_LATENCY_10;
1086			break;
1087		case SPEED_100:
1088			adjust = IGB_I210_RX_LATENCY_100;
1089			break;
1090		case SPEED_1000:
1091			adjust = IGB_I210_RX_LATENCY_1000;
1092			break;
1093		}
1094	}
1095	skb_hwtstamps(skb)->hwtstamp =
1096		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1097
1098	/* Update the last_rx_timestamp timer in order to enable watchdog check
1099	 * for error case of latched timestamp on a dropped packet.
1100	 */
1101	adapter->last_rx_timestamp = jiffies;
1102}
1103
1104/**
1105 * igb_ptp_get_ts_config - get hardware time stamping config
1106 * @netdev: netdev struct
1107 * @ifr: interface struct
1108 *
1109 * Get the hwtstamp_config settings to return to the user. Rather than attempt
1110 * to deconstruct the settings from the registers, just return a shadow copy
1111 * of the last known settings.
1112 **/
1113int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1114{
1115	struct igb_adapter *adapter = netdev_priv(netdev);
1116	struct hwtstamp_config *config = &adapter->tstamp_config;
1117
1118	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1119		-EFAULT : 0;
1120}
1121
1122/**
1123 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1124 * @adapter: networking device structure
1125 * @config: hwtstamp configuration
1126 *
1127 * Outgoing time stamping can be enabled and disabled. Play nice and
1128 * disable it when requested, although it shouldn't case any overhead
1129 * when no packet needs it. At most one packet in the queue may be
1130 * marked for time stamping, otherwise it would be impossible to tell
1131 * for sure to which packet the hardware time stamp belongs.
1132 *
1133 * Incoming time stamping has to be configured via the hardware
1134 * filters. Not all combinations are supported, in particular event
1135 * type has to be specified. Matching the kind of event packet is
1136 * not supported, with the exception of "all V2 events regardless of
1137 * level 2 or 4".
1138 */
1139static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1140				      struct hwtstamp_config *config)
1141{
1142	struct e1000_hw *hw = &adapter->hw;
1143	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1144	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1145	u32 tsync_rx_cfg = 0;
1146	bool is_l4 = false;
1147	bool is_l2 = false;
1148	u32 regval;
1149
1150	switch (config->tx_type) {
1151	case HWTSTAMP_TX_OFF:
1152		tsync_tx_ctl = 0;
1153		break;
1154	case HWTSTAMP_TX_ON:
1155		break;
1156	default:
1157		return -ERANGE;
1158	}
1159
1160	switch (config->rx_filter) {
1161	case HWTSTAMP_FILTER_NONE:
1162		tsync_rx_ctl = 0;
1163		break;
1164	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1165		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1166		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1167		is_l4 = true;
1168		break;
1169	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1170		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1171		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1172		is_l4 = true;
1173		break;
1174	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1175	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1176	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1177	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1178	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1179	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1180	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1181	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1182	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1183		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1184		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1185		is_l2 = true;
1186		is_l4 = true;
1187		break;
1188	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1189	case HWTSTAMP_FILTER_NTP_ALL:
1190	case HWTSTAMP_FILTER_ALL:
1191		/* 82576 cannot timestamp all packets, which it needs to do to
1192		 * support both V1 Sync and Delay_Req messages
1193		 */
1194		if (hw->mac.type != e1000_82576) {
1195			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1196			config->rx_filter = HWTSTAMP_FILTER_ALL;
1197			break;
1198		}
1199		fallthrough;
1200	default:
1201		config->rx_filter = HWTSTAMP_FILTER_NONE;
1202		return -ERANGE;
1203	}
1204
1205	if (hw->mac.type == e1000_82575) {
1206		if (tsync_rx_ctl | tsync_tx_ctl)
1207			return -EINVAL;
1208		return 0;
1209	}
1210
1211	/* Per-packet timestamping only works if all packets are
1212	 * timestamped, so enable timestamping in all packets as
1213	 * long as one Rx filter was configured.
1214	 */
1215	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1216		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1217		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1218		config->rx_filter = HWTSTAMP_FILTER_ALL;
1219		is_l2 = true;
1220		is_l4 = true;
1221
1222		if ((hw->mac.type == e1000_i210) ||
1223		    (hw->mac.type == e1000_i211)) {
1224			regval = rd32(E1000_RXPBS);
1225			regval |= E1000_RXPBS_CFG_TS_EN;
1226			wr32(E1000_RXPBS, regval);
1227		}
1228	}
1229
1230	/* enable/disable TX */
1231	regval = rd32(E1000_TSYNCTXCTL);
1232	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1233	regval |= tsync_tx_ctl;
1234	wr32(E1000_TSYNCTXCTL, regval);
1235
1236	/* enable/disable RX */
1237	regval = rd32(E1000_TSYNCRXCTL);
1238	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1239	regval |= tsync_rx_ctl;
1240	wr32(E1000_TSYNCRXCTL, regval);
1241
1242	/* define which PTP packets are time stamped */
1243	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1244
1245	/* define ethertype filter for timestamped packets */
1246	if (is_l2)
1247		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1248		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1249		      E1000_ETQF_1588 | /* enable timestamping */
1250		      ETH_P_1588));     /* 1588 eth protocol type */
1251	else
1252		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1253
1254	/* L4 Queue Filter[3]: filter by destination port and protocol */
1255	if (is_l4) {
1256		u32 ftqf = (IPPROTO_UDP /* UDP */
1257			| E1000_FTQF_VF_BP /* VF not compared */
1258			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1259			| E1000_FTQF_MASK); /* mask all inputs */
1260		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1261
1262		wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1263		wr32(E1000_IMIREXT(3),
1264		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1265		if (hw->mac.type == e1000_82576) {
1266			/* enable source port check */
1267			wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1268			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1269		}
1270		wr32(E1000_FTQF(3), ftqf);
1271	} else {
1272		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1273	}
1274	wrfl();
1275
1276	/* clear TX/RX time stamp registers, just to be sure */
1277	regval = rd32(E1000_TXSTMPL);
1278	regval = rd32(E1000_TXSTMPH);
1279	regval = rd32(E1000_RXSTMPL);
1280	regval = rd32(E1000_RXSTMPH);
1281
1282	return 0;
1283}
1284
1285/**
1286 * igb_ptp_set_ts_config - set hardware time stamping config
1287 * @netdev: netdev struct
1288 * @ifr: interface struct
1289 *
1290 **/
1291int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1292{
1293	struct igb_adapter *adapter = netdev_priv(netdev);
1294	struct hwtstamp_config config;
1295	int err;
1296
1297	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1298		return -EFAULT;
1299
1300	err = igb_ptp_set_timestamp_mode(adapter, &config);
1301	if (err)
1302		return err;
1303
1304	/* save these settings for future reference */
1305	memcpy(&adapter->tstamp_config, &config,
1306	       sizeof(adapter->tstamp_config));
1307
1308	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1309		-EFAULT : 0;
1310}
1311
1312/**
1313 * igb_ptp_init - Initialize PTP functionality
1314 * @adapter: Board private structure
1315 *
1316 * This function is called at device probe to initialize the PTP
1317 * functionality.
1318 */
1319void igb_ptp_init(struct igb_adapter *adapter)
1320{
1321	struct e1000_hw *hw = &adapter->hw;
1322	struct net_device *netdev = adapter->netdev;
1323
1324	switch (hw->mac.type) {
1325	case e1000_82576:
1326		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1327		adapter->ptp_caps.owner = THIS_MODULE;
1328		adapter->ptp_caps.max_adj = 999999881;
1329		adapter->ptp_caps.n_ext_ts = 0;
1330		adapter->ptp_caps.pps = 0;
1331		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1332		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1333		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1334		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1335		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1336		adapter->cc.read = igb_ptp_read_82576;
1337		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1338		adapter->cc.mult = 1;
1339		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1340		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1341		break;
1342	case e1000_82580:
1343	case e1000_i354:
1344	case e1000_i350:
1345		igb_ptp_sdp_init(adapter);
1346		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1347		adapter->ptp_caps.owner = THIS_MODULE;
1348		adapter->ptp_caps.max_adj = 62499999;
1349		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1350		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1351		adapter->ptp_caps.n_pins = IGB_N_SDP;
1352		adapter->ptp_caps.pps = 0;
1353		adapter->ptp_caps.pin_config = adapter->sdp_config;
1354		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1355		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1356		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1357		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1358		adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1359		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1360		adapter->cc.read = igb_ptp_read_82580;
1361		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1362		adapter->cc.mult = 1;
1363		adapter->cc.shift = 0;
1364		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1365		break;
1366	case e1000_i210:
1367	case e1000_i211:
1368		igb_ptp_sdp_init(adapter);
1369		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1370		adapter->ptp_caps.owner = THIS_MODULE;
1371		adapter->ptp_caps.max_adj = 62499999;
1372		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1373		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1374		adapter->ptp_caps.n_pins = IGB_N_SDP;
1375		adapter->ptp_caps.pps = 1;
1376		adapter->ptp_caps.pin_config = adapter->sdp_config;
1377		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1378		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1379		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1380		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1381		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1382		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1383		break;
1384	default:
1385		adapter->ptp_clock = NULL;
1386		return;
1387	}
1388
1389	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1390						&adapter->pdev->dev);
1391	if (IS_ERR(adapter->ptp_clock)) {
1392		adapter->ptp_clock = NULL;
1393		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1394	} else if (adapter->ptp_clock) {
1395		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1396			 adapter->netdev->name);
1397		adapter->ptp_flags |= IGB_PTP_ENABLED;
1398
1399		spin_lock_init(&adapter->tmreg_lock);
1400		INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1401
1402		if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1403			INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1404					  igb_ptp_overflow_check);
1405
1406		adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1407		adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1408
1409		igb_ptp_reset(adapter);
1410	}
1411}
1412
1413/**
1414 * igb_ptp_sdp_init - utility function which inits the SDP config structs
1415 * @adapter: Board private structure.
1416 **/
1417void igb_ptp_sdp_init(struct igb_adapter *adapter)
1418{
1419	int i;
1420
1421	for (i = 0; i < IGB_N_SDP; i++) {
1422		struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1423
1424		snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1425		ppd->index = i;
1426		ppd->func = PTP_PF_NONE;
1427	}
1428}
1429
1430/**
1431 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1432 * @adapter: Board private structure
1433 *
1434 * This function stops the overflow check work and PTP Tx timestamp work, and
1435 * will prepare the device for OS suspend.
1436 */
1437void igb_ptp_suspend(struct igb_adapter *adapter)
1438{
1439	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1440		return;
1441
1442	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1443		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1444
1445	cancel_work_sync(&adapter->ptp_tx_work);
1446	if (adapter->ptp_tx_skb) {
1447		dev_kfree_skb_any(adapter->ptp_tx_skb);
1448		adapter->ptp_tx_skb = NULL;
1449		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1450	}
1451}
1452
1453/**
1454 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1455 * @adapter: Board private structure.
1456 *
1457 * This function stops the PTP support and cancels the delayed work.
1458 **/
1459void igb_ptp_stop(struct igb_adapter *adapter)
1460{
1461	igb_ptp_suspend(adapter);
1462
1463	if (adapter->ptp_clock) {
1464		ptp_clock_unregister(adapter->ptp_clock);
1465		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1466			 adapter->netdev->name);
1467		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1468	}
1469}
1470
1471/**
1472 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1473 * @adapter: Board private structure.
1474 *
1475 * This function handles the reset work required to re-enable the PTP device.
1476 **/
1477void igb_ptp_reset(struct igb_adapter *adapter)
1478{
1479	struct e1000_hw *hw = &adapter->hw;
1480	unsigned long flags;
1481
1482	/* reset the tstamp_config */
1483	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1484
1485	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1486
1487	switch (adapter->hw.mac.type) {
1488	case e1000_82576:
1489		/* Dial the nominal frequency. */
1490		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1491		break;
1492	case e1000_82580:
1493	case e1000_i354:
1494	case e1000_i350:
1495	case e1000_i210:
1496	case e1000_i211:
1497		wr32(E1000_TSAUXC, 0x0);
1498		wr32(E1000_TSSDP, 0x0);
1499		wr32(E1000_TSIM,
1500		     TSYNC_INTERRUPTS |
1501		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1502		wr32(E1000_IMS, E1000_IMS_TS);
1503		break;
1504	default:
1505		/* No work to do. */
1506		goto out;
1507	}
1508
1509	/* Re-initialize the timer. */
1510	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1511		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1512
1513		igb_ptp_write_i210(adapter, &ts);
1514	} else {
1515		timecounter_init(&adapter->tc, &adapter->cc,
1516				 ktime_to_ns(ktime_get_real()));
1517	}
1518out:
1519	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1520
1521	wrfl();
1522
1523	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1524		schedule_delayed_work(&adapter->ptp_overflow_work,
1525				      IGB_SYSTIM_OVERFLOW_PERIOD);
1526}
1527