1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4/* ethtool support for igb */
5
6#include <linux/vmalloc.h>
7#include <linux/netdevice.h>
8#include <linux/pci.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/if_ether.h>
12#include <linux/ethtool.h>
13#include <linux/sched.h>
14#include <linux/slab.h>
15#include <linux/pm_runtime.h>
16#include <linux/highmem.h>
17#include <linux/mdio.h>
18
19#include "igb.h"
20
21struct igb_stats {
22	char stat_string[ETH_GSTRING_LEN];
23	int sizeof_stat;
24	int stat_offset;
25};
26
27#define IGB_STAT(_name, _stat) { \
28	.stat_string = _name, \
29	.sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
30	.stat_offset = offsetof(struct igb_adapter, _stat) \
31}
32static const struct igb_stats igb_gstrings_stats[] = {
33	IGB_STAT("rx_packets", stats.gprc),
34	IGB_STAT("tx_packets", stats.gptc),
35	IGB_STAT("rx_bytes", stats.gorc),
36	IGB_STAT("tx_bytes", stats.gotc),
37	IGB_STAT("rx_broadcast", stats.bprc),
38	IGB_STAT("tx_broadcast", stats.bptc),
39	IGB_STAT("rx_multicast", stats.mprc),
40	IGB_STAT("tx_multicast", stats.mptc),
41	IGB_STAT("multicast", stats.mprc),
42	IGB_STAT("collisions", stats.colc),
43	IGB_STAT("rx_crc_errors", stats.crcerrs),
44	IGB_STAT("rx_no_buffer_count", stats.rnbc),
45	IGB_STAT("rx_missed_errors", stats.mpc),
46	IGB_STAT("tx_aborted_errors", stats.ecol),
47	IGB_STAT("tx_carrier_errors", stats.tncrs),
48	IGB_STAT("tx_window_errors", stats.latecol),
49	IGB_STAT("tx_abort_late_coll", stats.latecol),
50	IGB_STAT("tx_deferred_ok", stats.dc),
51	IGB_STAT("tx_single_coll_ok", stats.scc),
52	IGB_STAT("tx_multi_coll_ok", stats.mcc),
53	IGB_STAT("tx_timeout_count", tx_timeout_count),
54	IGB_STAT("rx_long_length_errors", stats.roc),
55	IGB_STAT("rx_short_length_errors", stats.ruc),
56	IGB_STAT("rx_align_errors", stats.algnerrc),
57	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61	IGB_STAT("tx_flow_control_xon", stats.xontxc),
62	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63	IGB_STAT("rx_long_byte_count", stats.gorc),
64	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65	IGB_STAT("tx_smbus", stats.mgptc),
66	IGB_STAT("rx_smbus", stats.mgprc),
67	IGB_STAT("dropped_smbus", stats.mgpdc),
68	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
75};
76
77#define IGB_NETDEV_STAT(_net_stat) { \
78	.stat_string = __stringify(_net_stat), \
79	.sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
80	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
81}
82static const struct igb_stats igb_gstrings_net_stats[] = {
83	IGB_NETDEV_STAT(rx_errors),
84	IGB_NETDEV_STAT(tx_errors),
85	IGB_NETDEV_STAT(tx_dropped),
86	IGB_NETDEV_STAT(rx_length_errors),
87	IGB_NETDEV_STAT(rx_over_errors),
88	IGB_NETDEV_STAT(rx_frame_errors),
89	IGB_NETDEV_STAT(rx_fifo_errors),
90	IGB_NETDEV_STAT(tx_fifo_errors),
91	IGB_NETDEV_STAT(tx_heartbeat_errors)
92};
93
94#define IGB_GLOBAL_STATS_LEN	\
95	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96#define IGB_NETDEV_STATS_LEN	\
97	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98#define IGB_RX_QUEUE_STATS_LEN \
99	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
100
101#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
102
103#define IGB_QUEUE_STATS_LEN \
104	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105	  IGB_RX_QUEUE_STATS_LEN) + \
106	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107	  IGB_TX_QUEUE_STATS_LEN))
108#define IGB_STATS_LEN \
109	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
110
111enum igb_diagnostics_results {
112	TEST_REG = 0,
113	TEST_EEP,
114	TEST_IRQ,
115	TEST_LOOP,
116	TEST_LINK
117};
118
119static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120	[TEST_REG]  = "Register test  (offline)",
121	[TEST_EEP]  = "Eeprom test    (offline)",
122	[TEST_IRQ]  = "Interrupt test (offline)",
123	[TEST_LOOP] = "Loopback test  (offline)",
124	[TEST_LINK] = "Link test   (on/offline)"
125};
126#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
127
128static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129#define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
130	"legacy-rx",
131};
132
133#define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
134
135static int igb_get_link_ksettings(struct net_device *netdev,
136				  struct ethtool_link_ksettings *cmd)
137{
138	struct igb_adapter *adapter = netdev_priv(netdev);
139	struct e1000_hw *hw = &adapter->hw;
140	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142	u32 status;
143	u32 speed;
144	u32 supported, advertising;
145
146	status = pm_runtime_suspended(&adapter->pdev->dev) ?
147		 0 : rd32(E1000_STATUS);
148	if (hw->phy.media_type == e1000_media_type_copper) {
149
150		supported = (SUPPORTED_10baseT_Half |
151			     SUPPORTED_10baseT_Full |
152			     SUPPORTED_100baseT_Half |
153			     SUPPORTED_100baseT_Full |
154			     SUPPORTED_1000baseT_Full|
155			     SUPPORTED_Autoneg |
156			     SUPPORTED_TP |
157			     SUPPORTED_Pause);
158		advertising = ADVERTISED_TP;
159
160		if (hw->mac.autoneg == 1) {
161			advertising |= ADVERTISED_Autoneg;
162			/* the e1000 autoneg seems to match ethtool nicely */
163			advertising |= hw->phy.autoneg_advertised;
164		}
165
166		cmd->base.port = PORT_TP;
167		cmd->base.phy_address = hw->phy.addr;
168	} else {
169		supported = (SUPPORTED_FIBRE |
170			     SUPPORTED_1000baseKX_Full |
171			     SUPPORTED_Autoneg |
172			     SUPPORTED_Pause);
173		advertising = (ADVERTISED_FIBRE |
174			       ADVERTISED_1000baseKX_Full);
175		if (hw->mac.type == e1000_i354) {
176			if ((hw->device_id ==
177			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
179				supported |= SUPPORTED_2500baseX_Full;
180				supported &= ~SUPPORTED_1000baseKX_Full;
181				advertising |= ADVERTISED_2500baseX_Full;
182				advertising &= ~ADVERTISED_1000baseKX_Full;
183			}
184		}
185		if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
186			supported |= SUPPORTED_100baseT_Full;
187			advertising |= ADVERTISED_100baseT_Full;
188		}
189		if (hw->mac.autoneg == 1)
190			advertising |= ADVERTISED_Autoneg;
191
192		cmd->base.port = PORT_FIBRE;
193	}
194	if (hw->mac.autoneg != 1)
195		advertising &= ~(ADVERTISED_Pause |
196				 ADVERTISED_Asym_Pause);
197
198	switch (hw->fc.requested_mode) {
199	case e1000_fc_full:
200		advertising |= ADVERTISED_Pause;
201		break;
202	case e1000_fc_rx_pause:
203		advertising |= (ADVERTISED_Pause |
204				ADVERTISED_Asym_Pause);
205		break;
206	case e1000_fc_tx_pause:
207		advertising |=  ADVERTISED_Asym_Pause;
208		break;
209	default:
210		advertising &= ~(ADVERTISED_Pause |
211				 ADVERTISED_Asym_Pause);
212	}
213	if (status & E1000_STATUS_LU) {
214		if ((status & E1000_STATUS_2P5_SKU) &&
215		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
216			speed = SPEED_2500;
217		} else if (status & E1000_STATUS_SPEED_1000) {
218			speed = SPEED_1000;
219		} else if (status & E1000_STATUS_SPEED_100) {
220			speed = SPEED_100;
221		} else {
222			speed = SPEED_10;
223		}
224		if ((status & E1000_STATUS_FD) ||
225		    hw->phy.media_type != e1000_media_type_copper)
226			cmd->base.duplex = DUPLEX_FULL;
227		else
228			cmd->base.duplex = DUPLEX_HALF;
229	} else {
230		speed = SPEED_UNKNOWN;
231		cmd->base.duplex = DUPLEX_UNKNOWN;
232	}
233	cmd->base.speed = speed;
234	if ((hw->phy.media_type == e1000_media_type_fiber) ||
235	    hw->mac.autoneg)
236		cmd->base.autoneg = AUTONEG_ENABLE;
237	else
238		cmd->base.autoneg = AUTONEG_DISABLE;
239
240	/* MDI-X => 2; MDI =>1; Invalid =>0 */
241	if (hw->phy.media_type == e1000_media_type_copper)
242		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
243						      ETH_TP_MDI;
244	else
245		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
246
247	if (hw->phy.mdix == AUTO_ALL_MODES)
248		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
249	else
250		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
251
252	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
253						supported);
254	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
255						advertising);
256
257	return 0;
258}
259
260static int igb_set_link_ksettings(struct net_device *netdev,
261				  const struct ethtool_link_ksettings *cmd)
262{
263	struct igb_adapter *adapter = netdev_priv(netdev);
264	struct e1000_hw *hw = &adapter->hw;
265	u32 advertising;
266
267	/* When SoL/IDER sessions are active, autoneg/speed/duplex
268	 * cannot be changed
269	 */
270	if (igb_check_reset_block(hw)) {
271		dev_err(&adapter->pdev->dev,
272			"Cannot change link characteristics when SoL/IDER is active.\n");
273		return -EINVAL;
274	}
275
276	/* MDI setting is only allowed when autoneg enabled because
277	 * some hardware doesn't allow MDI setting when speed or
278	 * duplex is forced.
279	 */
280	if (cmd->base.eth_tp_mdix_ctrl) {
281		if (hw->phy.media_type != e1000_media_type_copper)
282			return -EOPNOTSUPP;
283
284		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
286			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287			return -EINVAL;
288		}
289	}
290
291	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
292		usleep_range(1000, 2000);
293
294	ethtool_convert_link_mode_to_legacy_u32(&advertising,
295						cmd->link_modes.advertising);
296
297	if (cmd->base.autoneg == AUTONEG_ENABLE) {
298		hw->mac.autoneg = 1;
299		if (hw->phy.media_type == e1000_media_type_fiber) {
300			hw->phy.autoneg_advertised = advertising |
301						     ADVERTISED_FIBRE |
302						     ADVERTISED_Autoneg;
303			switch (adapter->link_speed) {
304			case SPEED_2500:
305				hw->phy.autoneg_advertised =
306					ADVERTISED_2500baseX_Full;
307				break;
308			case SPEED_1000:
309				hw->phy.autoneg_advertised =
310					ADVERTISED_1000baseT_Full;
311				break;
312			case SPEED_100:
313				hw->phy.autoneg_advertised =
314					ADVERTISED_100baseT_Full;
315				break;
316			default:
317				break;
318			}
319		} else {
320			hw->phy.autoneg_advertised = advertising |
321						     ADVERTISED_TP |
322						     ADVERTISED_Autoneg;
323		}
324		advertising = hw->phy.autoneg_advertised;
325		if (adapter->fc_autoneg)
326			hw->fc.requested_mode = e1000_fc_default;
327	} else {
328		u32 speed = cmd->base.speed;
329		/* calling this overrides forced MDI setting */
330		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
331			clear_bit(__IGB_RESETTING, &adapter->state);
332			return -EINVAL;
333		}
334	}
335
336	/* MDI-X => 2; MDI => 1; Auto => 3 */
337	if (cmd->base.eth_tp_mdix_ctrl) {
338		/* fix up the value for auto (3 => 0) as zero is mapped
339		 * internally to auto
340		 */
341		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
342			hw->phy.mdix = AUTO_ALL_MODES;
343		else
344			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
345	}
346
347	/* reset the link */
348	if (netif_running(adapter->netdev)) {
349		igb_down(adapter);
350		igb_up(adapter);
351	} else
352		igb_reset(adapter);
353
354	clear_bit(__IGB_RESETTING, &adapter->state);
355	return 0;
356}
357
358static u32 igb_get_link(struct net_device *netdev)
359{
360	struct igb_adapter *adapter = netdev_priv(netdev);
361	struct e1000_mac_info *mac = &adapter->hw.mac;
362
363	/* If the link is not reported up to netdev, interrupts are disabled,
364	 * and so the physical link state may have changed since we last
365	 * looked. Set get_link_status to make sure that the true link
366	 * state is interrogated, rather than pulling a cached and possibly
367	 * stale link state from the driver.
368	 */
369	if (!netif_carrier_ok(netdev))
370		mac->get_link_status = 1;
371
372	return igb_has_link(adapter);
373}
374
375static void igb_get_pauseparam(struct net_device *netdev,
376			       struct ethtool_pauseparam *pause)
377{
378	struct igb_adapter *adapter = netdev_priv(netdev);
379	struct e1000_hw *hw = &adapter->hw;
380
381	pause->autoneg =
382		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
383
384	if (hw->fc.current_mode == e1000_fc_rx_pause)
385		pause->rx_pause = 1;
386	else if (hw->fc.current_mode == e1000_fc_tx_pause)
387		pause->tx_pause = 1;
388	else if (hw->fc.current_mode == e1000_fc_full) {
389		pause->rx_pause = 1;
390		pause->tx_pause = 1;
391	}
392}
393
394static int igb_set_pauseparam(struct net_device *netdev,
395			      struct ethtool_pauseparam *pause)
396{
397	struct igb_adapter *adapter = netdev_priv(netdev);
398	struct e1000_hw *hw = &adapter->hw;
399	int retval = 0;
400	int i;
401
402	/* 100basefx does not support setting link flow control */
403	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
404		return -EINVAL;
405
406	adapter->fc_autoneg = pause->autoneg;
407
408	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
409		usleep_range(1000, 2000);
410
411	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
412		hw->fc.requested_mode = e1000_fc_default;
413		if (netif_running(adapter->netdev)) {
414			igb_down(adapter);
415			igb_up(adapter);
416		} else {
417			igb_reset(adapter);
418		}
419	} else {
420		if (pause->rx_pause && pause->tx_pause)
421			hw->fc.requested_mode = e1000_fc_full;
422		else if (pause->rx_pause && !pause->tx_pause)
423			hw->fc.requested_mode = e1000_fc_rx_pause;
424		else if (!pause->rx_pause && pause->tx_pause)
425			hw->fc.requested_mode = e1000_fc_tx_pause;
426		else if (!pause->rx_pause && !pause->tx_pause)
427			hw->fc.requested_mode = e1000_fc_none;
428
429		hw->fc.current_mode = hw->fc.requested_mode;
430
431		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
432			  igb_force_mac_fc(hw) : igb_setup_link(hw));
433
434		/* Make sure SRRCTL considers new fc settings for each ring */
435		for (i = 0; i < adapter->num_rx_queues; i++) {
436			struct igb_ring *ring = adapter->rx_ring[i];
437
438			igb_setup_srrctl(adapter, ring);
439		}
440	}
441
442	clear_bit(__IGB_RESETTING, &adapter->state);
443	return retval;
444}
445
446static u32 igb_get_msglevel(struct net_device *netdev)
447{
448	struct igb_adapter *adapter = netdev_priv(netdev);
449	return adapter->msg_enable;
450}
451
452static void igb_set_msglevel(struct net_device *netdev, u32 data)
453{
454	struct igb_adapter *adapter = netdev_priv(netdev);
455	adapter->msg_enable = data;
456}
457
458static int igb_get_regs_len(struct net_device *netdev)
459{
460#define IGB_REGS_LEN 740
461	return IGB_REGS_LEN * sizeof(u32);
462}
463
464static void igb_get_regs(struct net_device *netdev,
465			 struct ethtool_regs *regs, void *p)
466{
467	struct igb_adapter *adapter = netdev_priv(netdev);
468	struct e1000_hw *hw = &adapter->hw;
469	u32 *regs_buff = p;
470	u8 i;
471
472	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
473
474	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
475
476	/* General Registers */
477	regs_buff[0] = rd32(E1000_CTRL);
478	regs_buff[1] = rd32(E1000_STATUS);
479	regs_buff[2] = rd32(E1000_CTRL_EXT);
480	regs_buff[3] = rd32(E1000_MDIC);
481	regs_buff[4] = rd32(E1000_SCTL);
482	regs_buff[5] = rd32(E1000_CONNSW);
483	regs_buff[6] = rd32(E1000_VET);
484	regs_buff[7] = rd32(E1000_LEDCTL);
485	regs_buff[8] = rd32(E1000_PBA);
486	regs_buff[9] = rd32(E1000_PBS);
487	regs_buff[10] = rd32(E1000_FRTIMER);
488	regs_buff[11] = rd32(E1000_TCPTIMER);
489
490	/* NVM Register */
491	regs_buff[12] = rd32(E1000_EECD);
492
493	/* Interrupt */
494	/* Reading EICS for EICR because they read the
495	 * same but EICS does not clear on read
496	 */
497	regs_buff[13] = rd32(E1000_EICS);
498	regs_buff[14] = rd32(E1000_EICS);
499	regs_buff[15] = rd32(E1000_EIMS);
500	regs_buff[16] = rd32(E1000_EIMC);
501	regs_buff[17] = rd32(E1000_EIAC);
502	regs_buff[18] = rd32(E1000_EIAM);
503	/* Reading ICS for ICR because they read the
504	 * same but ICS does not clear on read
505	 */
506	regs_buff[19] = rd32(E1000_ICS);
507	regs_buff[20] = rd32(E1000_ICS);
508	regs_buff[21] = rd32(E1000_IMS);
509	regs_buff[22] = rd32(E1000_IMC);
510	regs_buff[23] = rd32(E1000_IAC);
511	regs_buff[24] = rd32(E1000_IAM);
512	regs_buff[25] = rd32(E1000_IMIRVP);
513
514	/* Flow Control */
515	regs_buff[26] = rd32(E1000_FCAL);
516	regs_buff[27] = rd32(E1000_FCAH);
517	regs_buff[28] = rd32(E1000_FCTTV);
518	regs_buff[29] = rd32(E1000_FCRTL);
519	regs_buff[30] = rd32(E1000_FCRTH);
520	regs_buff[31] = rd32(E1000_FCRTV);
521
522	/* Receive */
523	regs_buff[32] = rd32(E1000_RCTL);
524	regs_buff[33] = rd32(E1000_RXCSUM);
525	regs_buff[34] = rd32(E1000_RLPML);
526	regs_buff[35] = rd32(E1000_RFCTL);
527	regs_buff[36] = rd32(E1000_MRQC);
528	regs_buff[37] = rd32(E1000_VT_CTL);
529
530	/* Transmit */
531	regs_buff[38] = rd32(E1000_TCTL);
532	regs_buff[39] = rd32(E1000_TCTL_EXT);
533	regs_buff[40] = rd32(E1000_TIPG);
534	regs_buff[41] = rd32(E1000_DTXCTL);
535
536	/* Wake Up */
537	regs_buff[42] = rd32(E1000_WUC);
538	regs_buff[43] = rd32(E1000_WUFC);
539	regs_buff[44] = rd32(E1000_WUS);
540	regs_buff[45] = rd32(E1000_IPAV);
541	regs_buff[46] = rd32(E1000_WUPL);
542
543	/* MAC */
544	regs_buff[47] = rd32(E1000_PCS_CFG0);
545	regs_buff[48] = rd32(E1000_PCS_LCTL);
546	regs_buff[49] = rd32(E1000_PCS_LSTAT);
547	regs_buff[50] = rd32(E1000_PCS_ANADV);
548	regs_buff[51] = rd32(E1000_PCS_LPAB);
549	regs_buff[52] = rd32(E1000_PCS_NPTX);
550	regs_buff[53] = rd32(E1000_PCS_LPABNP);
551
552	/* Statistics */
553	regs_buff[54] = adapter->stats.crcerrs;
554	regs_buff[55] = adapter->stats.algnerrc;
555	regs_buff[56] = adapter->stats.symerrs;
556	regs_buff[57] = adapter->stats.rxerrc;
557	regs_buff[58] = adapter->stats.mpc;
558	regs_buff[59] = adapter->stats.scc;
559	regs_buff[60] = adapter->stats.ecol;
560	regs_buff[61] = adapter->stats.mcc;
561	regs_buff[62] = adapter->stats.latecol;
562	regs_buff[63] = adapter->stats.colc;
563	regs_buff[64] = adapter->stats.dc;
564	regs_buff[65] = adapter->stats.tncrs;
565	regs_buff[66] = adapter->stats.sec;
566	regs_buff[67] = adapter->stats.htdpmc;
567	regs_buff[68] = adapter->stats.rlec;
568	regs_buff[69] = adapter->stats.xonrxc;
569	regs_buff[70] = adapter->stats.xontxc;
570	regs_buff[71] = adapter->stats.xoffrxc;
571	regs_buff[72] = adapter->stats.xofftxc;
572	regs_buff[73] = adapter->stats.fcruc;
573	regs_buff[74] = adapter->stats.prc64;
574	regs_buff[75] = adapter->stats.prc127;
575	regs_buff[76] = adapter->stats.prc255;
576	regs_buff[77] = adapter->stats.prc511;
577	regs_buff[78] = adapter->stats.prc1023;
578	regs_buff[79] = adapter->stats.prc1522;
579	regs_buff[80] = adapter->stats.gprc;
580	regs_buff[81] = adapter->stats.bprc;
581	regs_buff[82] = adapter->stats.mprc;
582	regs_buff[83] = adapter->stats.gptc;
583	regs_buff[84] = adapter->stats.gorc;
584	regs_buff[86] = adapter->stats.gotc;
585	regs_buff[88] = adapter->stats.rnbc;
586	regs_buff[89] = adapter->stats.ruc;
587	regs_buff[90] = adapter->stats.rfc;
588	regs_buff[91] = adapter->stats.roc;
589	regs_buff[92] = adapter->stats.rjc;
590	regs_buff[93] = adapter->stats.mgprc;
591	regs_buff[94] = adapter->stats.mgpdc;
592	regs_buff[95] = adapter->stats.mgptc;
593	regs_buff[96] = adapter->stats.tor;
594	regs_buff[98] = adapter->stats.tot;
595	regs_buff[100] = adapter->stats.tpr;
596	regs_buff[101] = adapter->stats.tpt;
597	regs_buff[102] = adapter->stats.ptc64;
598	regs_buff[103] = adapter->stats.ptc127;
599	regs_buff[104] = adapter->stats.ptc255;
600	regs_buff[105] = adapter->stats.ptc511;
601	regs_buff[106] = adapter->stats.ptc1023;
602	regs_buff[107] = adapter->stats.ptc1522;
603	regs_buff[108] = adapter->stats.mptc;
604	regs_buff[109] = adapter->stats.bptc;
605	regs_buff[110] = adapter->stats.tsctc;
606	regs_buff[111] = adapter->stats.iac;
607	regs_buff[112] = adapter->stats.rpthc;
608	regs_buff[113] = adapter->stats.hgptc;
609	regs_buff[114] = adapter->stats.hgorc;
610	regs_buff[116] = adapter->stats.hgotc;
611	regs_buff[118] = adapter->stats.lenerrs;
612	regs_buff[119] = adapter->stats.scvpc;
613	regs_buff[120] = adapter->stats.hrmpc;
614
615	for (i = 0; i < 4; i++)
616		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
617	for (i = 0; i < 4; i++)
618		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
619	for (i = 0; i < 4; i++)
620		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
621	for (i = 0; i < 4; i++)
622		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
623	for (i = 0; i < 4; i++)
624		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
625	for (i = 0; i < 4; i++)
626		regs_buff[141 + i] = rd32(E1000_RDH(i));
627	for (i = 0; i < 4; i++)
628		regs_buff[145 + i] = rd32(E1000_RDT(i));
629	for (i = 0; i < 4; i++)
630		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
631
632	for (i = 0; i < 10; i++)
633		regs_buff[153 + i] = rd32(E1000_EITR(i));
634	for (i = 0; i < 8; i++)
635		regs_buff[163 + i] = rd32(E1000_IMIR(i));
636	for (i = 0; i < 8; i++)
637		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
638	for (i = 0; i < 16; i++)
639		regs_buff[179 + i] = rd32(E1000_RAL(i));
640	for (i = 0; i < 16; i++)
641		regs_buff[195 + i] = rd32(E1000_RAH(i));
642
643	for (i = 0; i < 4; i++)
644		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
645	for (i = 0; i < 4; i++)
646		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
647	for (i = 0; i < 4; i++)
648		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
649	for (i = 0; i < 4; i++)
650		regs_buff[223 + i] = rd32(E1000_TDH(i));
651	for (i = 0; i < 4; i++)
652		regs_buff[227 + i] = rd32(E1000_TDT(i));
653	for (i = 0; i < 4; i++)
654		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
655	for (i = 0; i < 4; i++)
656		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
657	for (i = 0; i < 4; i++)
658		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
659	for (i = 0; i < 4; i++)
660		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
661
662	for (i = 0; i < 4; i++)
663		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
664	for (i = 0; i < 4; i++)
665		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
666	for (i = 0; i < 32; i++)
667		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
668	for (i = 0; i < 128; i++)
669		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
670	for (i = 0; i < 128; i++)
671		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
672	for (i = 0; i < 4; i++)
673		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
674
675	regs_buff[547] = rd32(E1000_TDFH);
676	regs_buff[548] = rd32(E1000_TDFT);
677	regs_buff[549] = rd32(E1000_TDFHS);
678	regs_buff[550] = rd32(E1000_TDFPC);
679
680	if (hw->mac.type > e1000_82580) {
681		regs_buff[551] = adapter->stats.o2bgptc;
682		regs_buff[552] = adapter->stats.b2ospc;
683		regs_buff[553] = adapter->stats.o2bspc;
684		regs_buff[554] = adapter->stats.b2ogprc;
685	}
686
687	if (hw->mac.type == e1000_82576) {
688		for (i = 0; i < 12; i++)
689			regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
690		for (i = 0; i < 4; i++)
691			regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
692		for (i = 0; i < 12; i++)
693			regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
694		for (i = 0; i < 12; i++)
695			regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
696		for (i = 0; i < 12; i++)
697			regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
698		for (i = 0; i < 12; i++)
699			regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
700		for (i = 0; i < 12; i++)
701			regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
702		for (i = 0; i < 12; i++)
703			regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
704
705		for (i = 0; i < 12; i++)
706			regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
707		for (i = 0; i < 12; i++)
708			regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
709		for (i = 0; i < 12; i++)
710			regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
711		for (i = 0; i < 12; i++)
712			regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
713		for (i = 0; i < 12; i++)
714			regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
715		for (i = 0; i < 12; i++)
716			regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
717		for (i = 0; i < 12; i++)
718			regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
719		for (i = 0; i < 12; i++)
720			regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
721	}
722
723	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
724		regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
725}
726
727static int igb_get_eeprom_len(struct net_device *netdev)
728{
729	struct igb_adapter *adapter = netdev_priv(netdev);
730	return adapter->hw.nvm.word_size * 2;
731}
732
733static int igb_get_eeprom(struct net_device *netdev,
734			  struct ethtool_eeprom *eeprom, u8 *bytes)
735{
736	struct igb_adapter *adapter = netdev_priv(netdev);
737	struct e1000_hw *hw = &adapter->hw;
738	u16 *eeprom_buff;
739	int first_word, last_word;
740	int ret_val = 0;
741	u16 i;
742
743	if (eeprom->len == 0)
744		return -EINVAL;
745
746	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
747
748	first_word = eeprom->offset >> 1;
749	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
750
751	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
752				    GFP_KERNEL);
753	if (!eeprom_buff)
754		return -ENOMEM;
755
756	if (hw->nvm.type == e1000_nvm_eeprom_spi)
757		ret_val = hw->nvm.ops.read(hw, first_word,
758					   last_word - first_word + 1,
759					   eeprom_buff);
760	else {
761		for (i = 0; i < last_word - first_word + 1; i++) {
762			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
763						   &eeprom_buff[i]);
764			if (ret_val)
765				break;
766		}
767	}
768
769	/* Device's eeprom is always little-endian, word addressable */
770	for (i = 0; i < last_word - first_word + 1; i++)
771		le16_to_cpus(&eeprom_buff[i]);
772
773	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
774			eeprom->len);
775	kfree(eeprom_buff);
776
777	return ret_val;
778}
779
780static int igb_set_eeprom(struct net_device *netdev,
781			  struct ethtool_eeprom *eeprom, u8 *bytes)
782{
783	struct igb_adapter *adapter = netdev_priv(netdev);
784	struct e1000_hw *hw = &adapter->hw;
785	u16 *eeprom_buff;
786	void *ptr;
787	int max_len, first_word, last_word, ret_val = 0;
788	u16 i;
789
790	if (eeprom->len == 0)
791		return -EOPNOTSUPP;
792
793	if ((hw->mac.type >= e1000_i210) &&
794	    !igb_get_flash_presence_i210(hw)) {
795		return -EOPNOTSUPP;
796	}
797
798	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
799		return -EFAULT;
800
801	max_len = hw->nvm.word_size * 2;
802
803	first_word = eeprom->offset >> 1;
804	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
805	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
806	if (!eeprom_buff)
807		return -ENOMEM;
808
809	ptr = (void *)eeprom_buff;
810
811	if (eeprom->offset & 1) {
812		/* need read/modify/write of first changed EEPROM word
813		 * only the second byte of the word is being modified
814		 */
815		ret_val = hw->nvm.ops.read(hw, first_word, 1,
816					    &eeprom_buff[0]);
817		ptr++;
818	}
819	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
820		/* need read/modify/write of last changed EEPROM word
821		 * only the first byte of the word is being modified
822		 */
823		ret_val = hw->nvm.ops.read(hw, last_word, 1,
824				   &eeprom_buff[last_word - first_word]);
825		if (ret_val)
826			goto out;
827	}
828
829	/* Device's eeprom is always little-endian, word addressable */
830	for (i = 0; i < last_word - first_word + 1; i++)
831		le16_to_cpus(&eeprom_buff[i]);
832
833	memcpy(ptr, bytes, eeprom->len);
834
835	for (i = 0; i < last_word - first_word + 1; i++)
836		cpu_to_le16s(&eeprom_buff[i]);
837
838	ret_val = hw->nvm.ops.write(hw, first_word,
839				    last_word - first_word + 1, eeprom_buff);
840
841	/* Update the checksum if nvm write succeeded */
842	if (ret_val == 0)
843		hw->nvm.ops.update(hw);
844
845	igb_set_fw_version(adapter);
846out:
847	kfree(eeprom_buff);
848	return ret_val;
849}
850
851static void igb_get_drvinfo(struct net_device *netdev,
852			    struct ethtool_drvinfo *drvinfo)
853{
854	struct igb_adapter *adapter = netdev_priv(netdev);
855
856	strscpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
857
858	/* EEPROM image version # is reported as firmware version # for
859	 * 82575 controllers
860	 */
861	strscpy(drvinfo->fw_version, adapter->fw_version,
862		sizeof(drvinfo->fw_version));
863	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
864		sizeof(drvinfo->bus_info));
865
866	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
867}
868
869static void igb_get_ringparam(struct net_device *netdev,
870			      struct ethtool_ringparam *ring,
871			      struct kernel_ethtool_ringparam *kernel_ring,
872			      struct netlink_ext_ack *extack)
873{
874	struct igb_adapter *adapter = netdev_priv(netdev);
875
876	ring->rx_max_pending = IGB_MAX_RXD;
877	ring->tx_max_pending = IGB_MAX_TXD;
878	ring->rx_pending = adapter->rx_ring_count;
879	ring->tx_pending = adapter->tx_ring_count;
880}
881
882static int igb_set_ringparam(struct net_device *netdev,
883			     struct ethtool_ringparam *ring,
884			     struct kernel_ethtool_ringparam *kernel_ring,
885			     struct netlink_ext_ack *extack)
886{
887	struct igb_adapter *adapter = netdev_priv(netdev);
888	struct igb_ring *temp_ring;
889	int i, err = 0;
890	u16 new_rx_count, new_tx_count;
891
892	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
893		return -EINVAL;
894
895	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
896	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
897	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
898
899	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
900	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
901	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
902
903	if ((new_tx_count == adapter->tx_ring_count) &&
904	    (new_rx_count == adapter->rx_ring_count)) {
905		/* nothing to do */
906		return 0;
907	}
908
909	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
910		usleep_range(1000, 2000);
911
912	if (!netif_running(adapter->netdev)) {
913		for (i = 0; i < adapter->num_tx_queues; i++)
914			adapter->tx_ring[i]->count = new_tx_count;
915		for (i = 0; i < adapter->num_rx_queues; i++)
916			adapter->rx_ring[i]->count = new_rx_count;
917		adapter->tx_ring_count = new_tx_count;
918		adapter->rx_ring_count = new_rx_count;
919		goto clear_reset;
920	}
921
922	if (adapter->num_tx_queues > adapter->num_rx_queues)
923		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
924					       adapter->num_tx_queues));
925	else
926		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
927					       adapter->num_rx_queues));
928
929	if (!temp_ring) {
930		err = -ENOMEM;
931		goto clear_reset;
932	}
933
934	igb_down(adapter);
935
936	/* We can't just free everything and then setup again,
937	 * because the ISRs in MSI-X mode get passed pointers
938	 * to the Tx and Rx ring structs.
939	 */
940	if (new_tx_count != adapter->tx_ring_count) {
941		for (i = 0; i < adapter->num_tx_queues; i++) {
942			memcpy(&temp_ring[i], adapter->tx_ring[i],
943			       sizeof(struct igb_ring));
944
945			temp_ring[i].count = new_tx_count;
946			err = igb_setup_tx_resources(&temp_ring[i]);
947			if (err) {
948				while (i) {
949					i--;
950					igb_free_tx_resources(&temp_ring[i]);
951				}
952				goto err_setup;
953			}
954		}
955
956		for (i = 0; i < adapter->num_tx_queues; i++) {
957			igb_free_tx_resources(adapter->tx_ring[i]);
958
959			memcpy(adapter->tx_ring[i], &temp_ring[i],
960			       sizeof(struct igb_ring));
961		}
962
963		adapter->tx_ring_count = new_tx_count;
964	}
965
966	if (new_rx_count != adapter->rx_ring_count) {
967		for (i = 0; i < adapter->num_rx_queues; i++) {
968			memcpy(&temp_ring[i], adapter->rx_ring[i],
969			       sizeof(struct igb_ring));
970
971			temp_ring[i].count = new_rx_count;
972			err = igb_setup_rx_resources(&temp_ring[i]);
973			if (err) {
974				while (i) {
975					i--;
976					igb_free_rx_resources(&temp_ring[i]);
977				}
978				goto err_setup;
979			}
980
981		}
982
983		for (i = 0; i < adapter->num_rx_queues; i++) {
984			igb_free_rx_resources(adapter->rx_ring[i]);
985
986			memcpy(adapter->rx_ring[i], &temp_ring[i],
987			       sizeof(struct igb_ring));
988		}
989
990		adapter->rx_ring_count = new_rx_count;
991	}
992err_setup:
993	igb_up(adapter);
994	vfree(temp_ring);
995clear_reset:
996	clear_bit(__IGB_RESETTING, &adapter->state);
997	return err;
998}
999
1000/* ethtool register test data */
1001struct igb_reg_test {
1002	u16 reg;
1003	u16 reg_offset;
1004	u16 array_len;
1005	u16 test_type;
1006	u32 mask;
1007	u32 write;
1008};
1009
1010/* In the hardware, registers are laid out either singly, in arrays
1011 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1012 * most tests take place on arrays or single registers (handled
1013 * as a single-element array) and special-case the tables.
1014 * Table tests are always pattern tests.
1015 *
1016 * We also make provision for some required setup steps by specifying
1017 * registers to be written without any read-back testing.
1018 */
1019
1020#define PATTERN_TEST	1
1021#define SET_READ_TEST	2
1022#define WRITE_NO_TEST	3
1023#define TABLE32_TEST	4
1024#define TABLE64_TEST_LO	5
1025#define TABLE64_TEST_HI	6
1026
1027/* i210 reg test */
1028static struct igb_reg_test reg_test_i210[] = {
1029	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1030	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1031	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1032	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1035	/* RDH is read-only for i210, only test RDT. */
1036	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1037	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1038	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1039	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1040	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1041	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1042	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1043	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1044	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1046	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1047	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1048	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1049						0xFFFFFFFF, 0xFFFFFFFF },
1050	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1051						0x900FFFFF, 0xFFFFFFFF },
1052	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1053						0xFFFFFFFF, 0xFFFFFFFF },
1054	{ 0, 0, 0, 0, 0 }
1055};
1056
1057/* i350 reg test */
1058static struct igb_reg_test reg_test_i350[] = {
1059	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1060	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1061	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1062	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1063	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1067	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1068	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1069	/* RDH is read-only for i350, only test RDT. */
1070	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1071	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1072	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1073	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1074	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1075	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1078	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1079	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1080	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1081	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1082	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1083	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1084	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1085	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1086	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1087	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1088						0xFFFFFFFF, 0xFFFFFFFF },
1089	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1090						0xC3FFFFFF, 0xFFFFFFFF },
1091	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1092						0xFFFFFFFF, 0xFFFFFFFF },
1093	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1094						0xC3FFFFFF, 0xFFFFFFFF },
1095	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1096						0xFFFFFFFF, 0xFFFFFFFF },
1097	{ 0, 0, 0, 0 }
1098};
1099
1100/* 82580 reg test */
1101static struct igb_reg_test reg_test_82580[] = {
1102	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1104	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1105	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1106	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1110	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1111	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1112	/* RDH is read-only for 82580, only test RDT. */
1113	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1114	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1115	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1116	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1117	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1118	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1119	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1121	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1122	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1123	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1124	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1125	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1126	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1127	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1128	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1129	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1130	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1131						0xFFFFFFFF, 0xFFFFFFFF },
1132	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1133						0x83FFFFFF, 0xFFFFFFFF },
1134	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1135						0xFFFFFFFF, 0xFFFFFFFF },
1136	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1137						0x83FFFFFF, 0xFFFFFFFF },
1138	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1139						0xFFFFFFFF, 0xFFFFFFFF },
1140	{ 0, 0, 0, 0 }
1141};
1142
1143/* 82576 reg test */
1144static struct igb_reg_test reg_test_82576[] = {
1145	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1147	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1148	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1149	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1153	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1155	/* Enable all RX queues before testing. */
1156	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1157	  E1000_RXDCTL_QUEUE_ENABLE },
1158	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1159	  E1000_RXDCTL_QUEUE_ENABLE },
1160	/* RDH is read-only for 82576, only test RDT. */
1161	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1162	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1163	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1164	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1165	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1166	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1167	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1168	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1169	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1171	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1172	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1173	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1174	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1175	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1176	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1177	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1178	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1179	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1180	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1181	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1182	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1183	{ 0, 0, 0, 0 }
1184};
1185
1186/* 82575 register test */
1187static struct igb_reg_test reg_test_82575[] = {
1188	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1190	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1191	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1192	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1193	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1194	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1195	/* Enable all four RX queues before testing. */
1196	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1197	  E1000_RXDCTL_QUEUE_ENABLE },
1198	/* RDH is read-only for 82575, only test RDT. */
1199	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1200	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1201	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1202	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1203	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1204	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1205	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1206	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1207	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1208	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1209	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1210	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1211	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1212	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1213	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1214	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1215	{ 0, 0, 0, 0 }
1216};
1217
1218static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1219			     int reg, u32 mask, u32 write)
1220{
1221	struct e1000_hw *hw = &adapter->hw;
1222	u32 pat, val;
1223	static const u32 _test[] = {
1224		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1225	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1226		wr32(reg, (_test[pat] & write));
1227		val = rd32(reg) & mask;
1228		if (val != (_test[pat] & write & mask)) {
1229			dev_err(&adapter->pdev->dev,
1230				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1231				reg, val, (_test[pat] & write & mask));
1232			*data = reg;
1233			return true;
1234		}
1235	}
1236
1237	return false;
1238}
1239
1240static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1241			      int reg, u32 mask, u32 write)
1242{
1243	struct e1000_hw *hw = &adapter->hw;
1244	u32 val;
1245
1246	wr32(reg, write & mask);
1247	val = rd32(reg);
1248	if ((write & mask) != (val & mask)) {
1249		dev_err(&adapter->pdev->dev,
1250			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1251			reg, (val & mask), (write & mask));
1252		*data = reg;
1253		return true;
1254	}
1255
1256	return false;
1257}
1258
1259#define REG_PATTERN_TEST(reg, mask, write) \
1260	do { \
1261		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1262			return 1; \
1263	} while (0)
1264
1265#define REG_SET_AND_CHECK(reg, mask, write) \
1266	do { \
1267		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1268			return 1; \
1269	} while (0)
1270
1271static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1272{
1273	struct e1000_hw *hw = &adapter->hw;
1274	struct igb_reg_test *test;
1275	u32 value, before, after;
1276	u32 i, toggle;
1277
1278	switch (adapter->hw.mac.type) {
1279	case e1000_i350:
1280	case e1000_i354:
1281		test = reg_test_i350;
1282		toggle = 0x7FEFF3FF;
1283		break;
1284	case e1000_i210:
1285	case e1000_i211:
1286		test = reg_test_i210;
1287		toggle = 0x7FEFF3FF;
1288		break;
1289	case e1000_82580:
1290		test = reg_test_82580;
1291		toggle = 0x7FEFF3FF;
1292		break;
1293	case e1000_82576:
1294		test = reg_test_82576;
1295		toggle = 0x7FFFF3FF;
1296		break;
1297	default:
1298		test = reg_test_82575;
1299		toggle = 0x7FFFF3FF;
1300		break;
1301	}
1302
1303	/* Because the status register is such a special case,
1304	 * we handle it separately from the rest of the register
1305	 * tests.  Some bits are read-only, some toggle, and some
1306	 * are writable on newer MACs.
1307	 */
1308	before = rd32(E1000_STATUS);
1309	value = (rd32(E1000_STATUS) & toggle);
1310	wr32(E1000_STATUS, toggle);
1311	after = rd32(E1000_STATUS) & toggle;
1312	if (value != after) {
1313		dev_err(&adapter->pdev->dev,
1314			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1315			after, value);
1316		*data = 1;
1317		return 1;
1318	}
1319	/* restore previous status */
1320	wr32(E1000_STATUS, before);
1321
1322	/* Perform the remainder of the register test, looping through
1323	 * the test table until we either fail or reach the null entry.
1324	 */
1325	while (test->reg) {
1326		for (i = 0; i < test->array_len; i++) {
1327			switch (test->test_type) {
1328			case PATTERN_TEST:
1329				REG_PATTERN_TEST(test->reg +
1330						(i * test->reg_offset),
1331						test->mask,
1332						test->write);
1333				break;
1334			case SET_READ_TEST:
1335				REG_SET_AND_CHECK(test->reg +
1336						(i * test->reg_offset),
1337						test->mask,
1338						test->write);
1339				break;
1340			case WRITE_NO_TEST:
1341				writel(test->write,
1342				    (adapter->hw.hw_addr + test->reg)
1343					+ (i * test->reg_offset));
1344				break;
1345			case TABLE32_TEST:
1346				REG_PATTERN_TEST(test->reg + (i * 4),
1347						test->mask,
1348						test->write);
1349				break;
1350			case TABLE64_TEST_LO:
1351				REG_PATTERN_TEST(test->reg + (i * 8),
1352						test->mask,
1353						test->write);
1354				break;
1355			case TABLE64_TEST_HI:
1356				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1357						test->mask,
1358						test->write);
1359				break;
1360			}
1361		}
1362		test++;
1363	}
1364
1365	*data = 0;
1366	return 0;
1367}
1368
1369static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1370{
1371	struct e1000_hw *hw = &adapter->hw;
1372
1373	*data = 0;
1374
1375	/* Validate eeprom on all parts but flashless */
1376	switch (hw->mac.type) {
1377	case e1000_i210:
1378	case e1000_i211:
1379		if (igb_get_flash_presence_i210(hw)) {
1380			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1381				*data = 2;
1382		}
1383		break;
1384	default:
1385		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1386			*data = 2;
1387		break;
1388	}
1389
1390	return *data;
1391}
1392
1393static irqreturn_t igb_test_intr(int irq, void *data)
1394{
1395	struct igb_adapter *adapter = (struct igb_adapter *) data;
1396	struct e1000_hw *hw = &adapter->hw;
1397
1398	adapter->test_icr |= rd32(E1000_ICR);
1399
1400	return IRQ_HANDLED;
1401}
1402
1403static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1404{
1405	struct e1000_hw *hw = &adapter->hw;
1406	struct net_device *netdev = adapter->netdev;
1407	u32 mask, ics_mask, i = 0, shared_int = true;
1408	u32 irq = adapter->pdev->irq;
1409
1410	*data = 0;
1411
1412	/* Hook up test interrupt handler just for this test */
1413	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1414		if (request_irq(adapter->msix_entries[0].vector,
1415				igb_test_intr, 0, netdev->name, adapter)) {
1416			*data = 1;
1417			return -1;
1418		}
1419		wr32(E1000_IVAR_MISC, E1000_IVAR_VALID << 8);
1420		wr32(E1000_EIMS, BIT(0));
1421	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1422		shared_int = false;
1423		if (request_irq(irq,
1424				igb_test_intr, 0, netdev->name, adapter)) {
1425			*data = 1;
1426			return -1;
1427		}
1428	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1429				netdev->name, adapter)) {
1430		shared_int = false;
1431	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1432		 netdev->name, adapter)) {
1433		*data = 1;
1434		return -1;
1435	}
1436	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1437		(shared_int ? "shared" : "unshared"));
1438
1439	/* Disable all the interrupts */
1440	wr32(E1000_IMC, ~0);
1441	wrfl();
1442	usleep_range(10000, 11000);
1443
1444	/* Define all writable bits for ICS */
1445	switch (hw->mac.type) {
1446	case e1000_82575:
1447		ics_mask = 0x37F47EDD;
1448		break;
1449	case e1000_82576:
1450		ics_mask = 0x77D4FBFD;
1451		break;
1452	case e1000_82580:
1453		ics_mask = 0x77DCFED5;
1454		break;
1455	case e1000_i350:
1456	case e1000_i354:
1457	case e1000_i210:
1458	case e1000_i211:
1459		ics_mask = 0x77DCFED5;
1460		break;
1461	default:
1462		ics_mask = 0x7FFFFFFF;
1463		break;
1464	}
1465
1466	/* Test each interrupt */
1467	for (; i < 31; i++) {
1468		/* Interrupt to test */
1469		mask = BIT(i);
1470
1471		if (!(mask & ics_mask))
1472			continue;
1473
1474		if (!shared_int) {
1475			/* Disable the interrupt to be reported in
1476			 * the cause register and then force the same
1477			 * interrupt and see if one gets posted.  If
1478			 * an interrupt was posted to the bus, the
1479			 * test failed.
1480			 */
1481			adapter->test_icr = 0;
1482
1483			/* Flush any pending interrupts */
1484			wr32(E1000_ICR, ~0);
1485
1486			wr32(E1000_IMC, mask);
1487			wr32(E1000_ICS, mask);
1488			wrfl();
1489			usleep_range(10000, 11000);
1490
1491			if (adapter->test_icr & mask) {
1492				*data = 3;
1493				break;
1494			}
1495		}
1496
1497		/* Enable the interrupt to be reported in
1498		 * the cause register and then force the same
1499		 * interrupt and see if one gets posted.  If
1500		 * an interrupt was not posted to the bus, the
1501		 * test failed.
1502		 */
1503		adapter->test_icr = 0;
1504
1505		/* Flush any pending interrupts */
1506		wr32(E1000_ICR, ~0);
1507
1508		wr32(E1000_IMS, mask);
1509		wr32(E1000_ICS, mask);
1510		wrfl();
1511		usleep_range(10000, 11000);
1512
1513		if (!(adapter->test_icr & mask)) {
1514			*data = 4;
1515			break;
1516		}
1517
1518		if (!shared_int) {
1519			/* Disable the other interrupts to be reported in
1520			 * the cause register and then force the other
1521			 * interrupts and see if any get posted.  If
1522			 * an interrupt was posted to the bus, the
1523			 * test failed.
1524			 */
1525			adapter->test_icr = 0;
1526
1527			/* Flush any pending interrupts */
1528			wr32(E1000_ICR, ~0);
1529
1530			wr32(E1000_IMC, ~mask);
1531			wr32(E1000_ICS, ~mask);
1532			wrfl();
1533			usleep_range(10000, 11000);
1534
1535			if (adapter->test_icr & mask) {
1536				*data = 5;
1537				break;
1538			}
1539		}
1540	}
1541
1542	/* Disable all the interrupts */
1543	wr32(E1000_IMC, ~0);
1544	wrfl();
1545	usleep_range(10000, 11000);
1546
1547	/* Unhook test interrupt handler */
1548	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1549		free_irq(adapter->msix_entries[0].vector, adapter);
1550	else
1551		free_irq(irq, adapter);
1552
1553	return *data;
1554}
1555
1556static void igb_free_desc_rings(struct igb_adapter *adapter)
1557{
1558	igb_free_tx_resources(&adapter->test_tx_ring);
1559	igb_free_rx_resources(&adapter->test_rx_ring);
1560}
1561
1562static int igb_setup_desc_rings(struct igb_adapter *adapter)
1563{
1564	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1565	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1566	struct e1000_hw *hw = &adapter->hw;
1567	int ret_val;
1568
1569	/* Setup Tx descriptor ring and Tx buffers */
1570	tx_ring->count = IGB_DEFAULT_TXD;
1571	tx_ring->dev = &adapter->pdev->dev;
1572	tx_ring->netdev = adapter->netdev;
1573	tx_ring->reg_idx = adapter->vfs_allocated_count;
1574
1575	if (igb_setup_tx_resources(tx_ring)) {
1576		ret_val = 1;
1577		goto err_nomem;
1578	}
1579
1580	igb_setup_tctl(adapter);
1581	igb_configure_tx_ring(adapter, tx_ring);
1582
1583	/* Setup Rx descriptor ring and Rx buffers */
1584	rx_ring->count = IGB_DEFAULT_RXD;
1585	rx_ring->dev = &adapter->pdev->dev;
1586	rx_ring->netdev = adapter->netdev;
1587	rx_ring->reg_idx = adapter->vfs_allocated_count;
1588
1589	if (igb_setup_rx_resources(rx_ring)) {
1590		ret_val = 3;
1591		goto err_nomem;
1592	}
1593
1594	/* set the default queue to queue 0 of PF */
1595	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1596
1597	/* enable receive ring */
1598	igb_setup_rctl(adapter);
1599	igb_configure_rx_ring(adapter, rx_ring);
1600
1601	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1602
1603	return 0;
1604
1605err_nomem:
1606	igb_free_desc_rings(adapter);
1607	return ret_val;
1608}
1609
1610static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1611{
1612	struct e1000_hw *hw = &adapter->hw;
1613
1614	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1615	igb_write_phy_reg(hw, 29, 0x001F);
1616	igb_write_phy_reg(hw, 30, 0x8FFC);
1617	igb_write_phy_reg(hw, 29, 0x001A);
1618	igb_write_phy_reg(hw, 30, 0x8FF0);
1619}
1620
1621static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1622{
1623	struct e1000_hw *hw = &adapter->hw;
1624	u32 ctrl_reg = 0;
1625
1626	hw->mac.autoneg = false;
1627
1628	if (hw->phy.type == e1000_phy_m88) {
1629		if (hw->phy.id != I210_I_PHY_ID) {
1630			/* Auto-MDI/MDIX Off */
1631			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1632			/* reset to update Auto-MDI/MDIX */
1633			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1634			/* autoneg off */
1635			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1636		} else {
1637			/* force 1000, set loopback  */
1638			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1639			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1640		}
1641	} else if (hw->phy.type == e1000_phy_82580) {
1642		/* enable MII loopback */
1643		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1644	}
1645
1646	/* add small delay to avoid loopback test failure */
1647	msleep(50);
1648
1649	/* force 1000, set loopback */
1650	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1651
1652	/* Now set up the MAC to the same speed/duplex as the PHY. */
1653	ctrl_reg = rd32(E1000_CTRL);
1654	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1655	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1656		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1657		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1658		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1659		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1660
1661	if (hw->phy.type == e1000_phy_m88)
1662		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1663
1664	wr32(E1000_CTRL, ctrl_reg);
1665
1666	/* Disable the receiver on the PHY so when a cable is plugged in, the
1667	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1668	 */
1669	if (hw->phy.type == e1000_phy_m88)
1670		igb_phy_disable_receiver(adapter);
1671
1672	msleep(500);
1673	return 0;
1674}
1675
1676static int igb_set_phy_loopback(struct igb_adapter *adapter)
1677{
1678	return igb_integrated_phy_loopback(adapter);
1679}
1680
1681static int igb_setup_loopback_test(struct igb_adapter *adapter)
1682{
1683	struct e1000_hw *hw = &adapter->hw;
1684	u32 reg;
1685
1686	reg = rd32(E1000_CTRL_EXT);
1687
1688	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1689	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1690		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1691		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1692		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1693		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1694		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1695		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1696			/* Enable DH89xxCC MPHY for near end loopback */
1697			reg = rd32(E1000_MPHY_ADDR_CTL);
1698			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1699			E1000_MPHY_PCS_CLK_REG_OFFSET;
1700			wr32(E1000_MPHY_ADDR_CTL, reg);
1701
1702			reg = rd32(E1000_MPHY_DATA);
1703			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1704			wr32(E1000_MPHY_DATA, reg);
1705		}
1706
1707		reg = rd32(E1000_RCTL);
1708		reg |= E1000_RCTL_LBM_TCVR;
1709		wr32(E1000_RCTL, reg);
1710
1711		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1712
1713		reg = rd32(E1000_CTRL);
1714		reg &= ~(E1000_CTRL_RFCE |
1715			 E1000_CTRL_TFCE |
1716			 E1000_CTRL_LRST);
1717		reg |= E1000_CTRL_SLU |
1718		       E1000_CTRL_FD;
1719		wr32(E1000_CTRL, reg);
1720
1721		/* Unset switch control to serdes energy detect */
1722		reg = rd32(E1000_CONNSW);
1723		reg &= ~E1000_CONNSW_ENRGSRC;
1724		wr32(E1000_CONNSW, reg);
1725
1726		/* Unset sigdetect for SERDES loopback on
1727		 * 82580 and newer devices.
1728		 */
1729		if (hw->mac.type >= e1000_82580) {
1730			reg = rd32(E1000_PCS_CFG0);
1731			reg |= E1000_PCS_CFG_IGN_SD;
1732			wr32(E1000_PCS_CFG0, reg);
1733		}
1734
1735		/* Set PCS register for forced speed */
1736		reg = rd32(E1000_PCS_LCTL);
1737		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1738		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1739		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1740		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1741		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1742		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1743		wr32(E1000_PCS_LCTL, reg);
1744
1745		return 0;
1746	}
1747
1748	return igb_set_phy_loopback(adapter);
1749}
1750
1751static void igb_loopback_cleanup(struct igb_adapter *adapter)
1752{
1753	struct e1000_hw *hw = &adapter->hw;
1754	u32 rctl;
1755	u16 phy_reg;
1756
1757	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1758	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1759	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1760	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1761	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1762		u32 reg;
1763
1764		/* Disable near end loopback on DH89xxCC */
1765		reg = rd32(E1000_MPHY_ADDR_CTL);
1766		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1767		E1000_MPHY_PCS_CLK_REG_OFFSET;
1768		wr32(E1000_MPHY_ADDR_CTL, reg);
1769
1770		reg = rd32(E1000_MPHY_DATA);
1771		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1772		wr32(E1000_MPHY_DATA, reg);
1773	}
1774
1775	rctl = rd32(E1000_RCTL);
1776	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1777	wr32(E1000_RCTL, rctl);
1778
1779	hw->mac.autoneg = true;
1780	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1781	if (phy_reg & MII_CR_LOOPBACK) {
1782		phy_reg &= ~MII_CR_LOOPBACK;
1783		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1784		igb_phy_sw_reset(hw);
1785	}
1786}
1787
1788static void igb_create_lbtest_frame(struct sk_buff *skb,
1789				    unsigned int frame_size)
1790{
1791	memset(skb->data, 0xFF, frame_size);
1792	frame_size /= 2;
1793	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1794	skb->data[frame_size + 10] = 0xBE;
1795	skb->data[frame_size + 12] = 0xAF;
1796}
1797
1798static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1799				  unsigned int frame_size)
1800{
1801	unsigned char *data;
1802	bool match = true;
1803
1804	frame_size >>= 1;
1805
1806	data = kmap_local_page(rx_buffer->page);
1807
1808	if (data[3] != 0xFF ||
1809	    data[frame_size + 10] != 0xBE ||
1810	    data[frame_size + 12] != 0xAF)
1811		match = false;
1812
1813	kunmap_local(data);
1814
1815	return match;
1816}
1817
1818static int igb_clean_test_rings(struct igb_ring *rx_ring,
1819				struct igb_ring *tx_ring,
1820				unsigned int size)
1821{
1822	union e1000_adv_rx_desc *rx_desc;
1823	struct igb_rx_buffer *rx_buffer_info;
1824	struct igb_tx_buffer *tx_buffer_info;
1825	u16 rx_ntc, tx_ntc, count = 0;
1826
1827	/* initialize next to clean and descriptor values */
1828	rx_ntc = rx_ring->next_to_clean;
1829	tx_ntc = tx_ring->next_to_clean;
1830	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1831
1832	while (rx_desc->wb.upper.length) {
1833		/* check Rx buffer */
1834		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1835
1836		/* sync Rx buffer for CPU read */
1837		dma_sync_single_for_cpu(rx_ring->dev,
1838					rx_buffer_info->dma,
1839					size,
1840					DMA_FROM_DEVICE);
1841
1842		/* verify contents of skb */
1843		if (igb_check_lbtest_frame(rx_buffer_info, size))
1844			count++;
1845
1846		/* sync Rx buffer for device write */
1847		dma_sync_single_for_device(rx_ring->dev,
1848					   rx_buffer_info->dma,
1849					   size,
1850					   DMA_FROM_DEVICE);
1851
1852		/* unmap buffer on Tx side */
1853		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1854
1855		/* Free all the Tx ring sk_buffs */
1856		dev_kfree_skb_any(tx_buffer_info->skb);
1857
1858		/* unmap skb header data */
1859		dma_unmap_single(tx_ring->dev,
1860				 dma_unmap_addr(tx_buffer_info, dma),
1861				 dma_unmap_len(tx_buffer_info, len),
1862				 DMA_TO_DEVICE);
1863		dma_unmap_len_set(tx_buffer_info, len, 0);
1864
1865		/* increment Rx/Tx next to clean counters */
1866		rx_ntc++;
1867		if (rx_ntc == rx_ring->count)
1868			rx_ntc = 0;
1869		tx_ntc++;
1870		if (tx_ntc == tx_ring->count)
1871			tx_ntc = 0;
1872
1873		/* fetch next descriptor */
1874		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1875	}
1876
1877	netdev_tx_reset_queue(txring_txq(tx_ring));
1878
1879	/* re-map buffers to ring, store next to clean values */
1880	igb_alloc_rx_buffers(rx_ring, count);
1881	rx_ring->next_to_clean = rx_ntc;
1882	tx_ring->next_to_clean = tx_ntc;
1883
1884	return count;
1885}
1886
1887static int igb_run_loopback_test(struct igb_adapter *adapter)
1888{
1889	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1890	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1891	u16 i, j, lc, good_cnt;
1892	int ret_val = 0;
1893	unsigned int size = IGB_RX_HDR_LEN;
1894	netdev_tx_t tx_ret_val;
1895	struct sk_buff *skb;
1896
1897	/* allocate test skb */
1898	skb = alloc_skb(size, GFP_KERNEL);
1899	if (!skb)
1900		return 11;
1901
1902	/* place data into test skb */
1903	igb_create_lbtest_frame(skb, size);
1904	skb_put(skb, size);
1905
1906	/* Calculate the loop count based on the largest descriptor ring
1907	 * The idea is to wrap the largest ring a number of times using 64
1908	 * send/receive pairs during each loop
1909	 */
1910
1911	if (rx_ring->count <= tx_ring->count)
1912		lc = ((tx_ring->count / 64) * 2) + 1;
1913	else
1914		lc = ((rx_ring->count / 64) * 2) + 1;
1915
1916	for (j = 0; j <= lc; j++) { /* loop count loop */
1917		/* reset count of good packets */
1918		good_cnt = 0;
1919
1920		/* place 64 packets on the transmit queue*/
1921		for (i = 0; i < 64; i++) {
1922			skb_get(skb);
1923			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1924			if (tx_ret_val == NETDEV_TX_OK)
1925				good_cnt++;
1926		}
1927
1928		if (good_cnt != 64) {
1929			ret_val = 12;
1930			break;
1931		}
1932
1933		/* allow 200 milliseconds for packets to go from Tx to Rx */
1934		msleep(200);
1935
1936		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1937		if (good_cnt != 64) {
1938			ret_val = 13;
1939			break;
1940		}
1941	} /* end loop count loop */
1942
1943	/* free the original skb */
1944	kfree_skb(skb);
1945
1946	return ret_val;
1947}
1948
1949static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1950{
1951	/* PHY loopback cannot be performed if SoL/IDER
1952	 * sessions are active
1953	 */
1954	if (igb_check_reset_block(&adapter->hw)) {
1955		dev_err(&adapter->pdev->dev,
1956			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1957		*data = 0;
1958		goto out;
1959	}
1960
1961	if (adapter->hw.mac.type == e1000_i354) {
1962		dev_info(&adapter->pdev->dev,
1963			"Loopback test not supported on i354.\n");
1964		*data = 0;
1965		goto out;
1966	}
1967	*data = igb_setup_desc_rings(adapter);
1968	if (*data)
1969		goto out;
1970	*data = igb_setup_loopback_test(adapter);
1971	if (*data)
1972		goto err_loopback;
1973	*data = igb_run_loopback_test(adapter);
1974	igb_loopback_cleanup(adapter);
1975
1976err_loopback:
1977	igb_free_desc_rings(adapter);
1978out:
1979	return *data;
1980}
1981
1982static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1983{
1984	struct e1000_hw *hw = &adapter->hw;
1985	*data = 0;
1986	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1987		int i = 0;
1988
1989		hw->mac.serdes_has_link = false;
1990
1991		/* On some blade server designs, link establishment
1992		 * could take as long as 2-3 minutes
1993		 */
1994		do {
1995			hw->mac.ops.check_for_link(&adapter->hw);
1996			if (hw->mac.serdes_has_link)
1997				return *data;
1998			msleep(20);
1999		} while (i++ < 3750);
2000
2001		*data = 1;
2002	} else {
2003		hw->mac.ops.check_for_link(&adapter->hw);
2004		if (hw->mac.autoneg)
2005			msleep(5000);
2006
2007		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2008			*data = 1;
2009	}
2010	return *data;
2011}
2012
2013static void igb_diag_test(struct net_device *netdev,
2014			  struct ethtool_test *eth_test, u64 *data)
2015{
2016	struct igb_adapter *adapter = netdev_priv(netdev);
2017	u16 autoneg_advertised;
2018	u8 forced_speed_duplex, autoneg;
2019	bool if_running = netif_running(netdev);
2020
2021	set_bit(__IGB_TESTING, &adapter->state);
2022
2023	/* can't do offline tests on media switching devices */
2024	if (adapter->hw.dev_spec._82575.mas_capable)
2025		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2026	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2027		/* Offline tests */
2028
2029		/* save speed, duplex, autoneg settings */
2030		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2031		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2032		autoneg = adapter->hw.mac.autoneg;
2033
2034		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2035
2036		/* power up link for link test */
2037		igb_power_up_link(adapter);
2038
2039		/* Link test performed before hardware reset so autoneg doesn't
2040		 * interfere with test result
2041		 */
2042		if (igb_link_test(adapter, &data[TEST_LINK]))
2043			eth_test->flags |= ETH_TEST_FL_FAILED;
2044
2045		if (if_running)
2046			/* indicate we're in test mode */
2047			igb_close(netdev);
2048		else
2049			igb_reset(adapter);
2050
2051		if (igb_reg_test(adapter, &data[TEST_REG]))
2052			eth_test->flags |= ETH_TEST_FL_FAILED;
2053
2054		igb_reset(adapter);
2055		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2056			eth_test->flags |= ETH_TEST_FL_FAILED;
2057
2058		igb_reset(adapter);
2059		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2060			eth_test->flags |= ETH_TEST_FL_FAILED;
2061
2062		igb_reset(adapter);
2063		/* power up link for loopback test */
2064		igb_power_up_link(adapter);
2065		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2066			eth_test->flags |= ETH_TEST_FL_FAILED;
2067
2068		/* restore speed, duplex, autoneg settings */
2069		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2070		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2071		adapter->hw.mac.autoneg = autoneg;
2072
2073		/* force this routine to wait until autoneg complete/timeout */
2074		adapter->hw.phy.autoneg_wait_to_complete = true;
2075		igb_reset(adapter);
2076		adapter->hw.phy.autoneg_wait_to_complete = false;
2077
2078		clear_bit(__IGB_TESTING, &adapter->state);
2079		if (if_running)
2080			igb_open(netdev);
2081	} else {
2082		dev_info(&adapter->pdev->dev, "online testing starting\n");
2083
2084		/* PHY is powered down when interface is down */
2085		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2086			eth_test->flags |= ETH_TEST_FL_FAILED;
2087		else
2088			data[TEST_LINK] = 0;
2089
2090		/* Online tests aren't run; pass by default */
2091		data[TEST_REG] = 0;
2092		data[TEST_EEP] = 0;
2093		data[TEST_IRQ] = 0;
2094		data[TEST_LOOP] = 0;
2095
2096		clear_bit(__IGB_TESTING, &adapter->state);
2097	}
2098	msleep_interruptible(4 * 1000);
2099}
2100
2101static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2102{
2103	struct igb_adapter *adapter = netdev_priv(netdev);
2104
2105	wol->wolopts = 0;
2106
2107	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2108		return;
2109
2110	wol->supported = WAKE_UCAST | WAKE_MCAST |
2111			 WAKE_BCAST | WAKE_MAGIC |
2112			 WAKE_PHY;
2113
2114	/* apply any specific unsupported masks here */
2115	switch (adapter->hw.device_id) {
2116	default:
2117		break;
2118	}
2119
2120	if (adapter->wol & E1000_WUFC_EX)
2121		wol->wolopts |= WAKE_UCAST;
2122	if (adapter->wol & E1000_WUFC_MC)
2123		wol->wolopts |= WAKE_MCAST;
2124	if (adapter->wol & E1000_WUFC_BC)
2125		wol->wolopts |= WAKE_BCAST;
2126	if (adapter->wol & E1000_WUFC_MAG)
2127		wol->wolopts |= WAKE_MAGIC;
2128	if (adapter->wol & E1000_WUFC_LNKC)
2129		wol->wolopts |= WAKE_PHY;
2130}
2131
2132static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2133{
2134	struct igb_adapter *adapter = netdev_priv(netdev);
2135
2136	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2137		return -EOPNOTSUPP;
2138
2139	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2140		return wol->wolopts ? -EOPNOTSUPP : 0;
2141
2142	/* these settings will always override what we currently have */
2143	adapter->wol = 0;
2144
2145	if (wol->wolopts & WAKE_UCAST)
2146		adapter->wol |= E1000_WUFC_EX;
2147	if (wol->wolopts & WAKE_MCAST)
2148		adapter->wol |= E1000_WUFC_MC;
2149	if (wol->wolopts & WAKE_BCAST)
2150		adapter->wol |= E1000_WUFC_BC;
2151	if (wol->wolopts & WAKE_MAGIC)
2152		adapter->wol |= E1000_WUFC_MAG;
2153	if (wol->wolopts & WAKE_PHY)
2154		adapter->wol |= E1000_WUFC_LNKC;
2155	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2156
2157	return 0;
2158}
2159
2160/* bit defines for adapter->led_status */
2161#define IGB_LED_ON		0
2162
2163static int igb_set_phys_id(struct net_device *netdev,
2164			   enum ethtool_phys_id_state state)
2165{
2166	struct igb_adapter *adapter = netdev_priv(netdev);
2167	struct e1000_hw *hw = &adapter->hw;
2168
2169	switch (state) {
2170	case ETHTOOL_ID_ACTIVE:
2171		igb_blink_led(hw);
2172		return 2;
2173	case ETHTOOL_ID_ON:
2174		igb_blink_led(hw);
2175		break;
2176	case ETHTOOL_ID_OFF:
2177		igb_led_off(hw);
2178		break;
2179	case ETHTOOL_ID_INACTIVE:
2180		igb_led_off(hw);
2181		clear_bit(IGB_LED_ON, &adapter->led_status);
2182		igb_cleanup_led(hw);
2183		break;
2184	}
2185
2186	return 0;
2187}
2188
2189static int igb_set_coalesce(struct net_device *netdev,
2190			    struct ethtool_coalesce *ec,
2191			    struct kernel_ethtool_coalesce *kernel_coal,
2192			    struct netlink_ext_ack *extack)
2193{
2194	struct igb_adapter *adapter = netdev_priv(netdev);
2195	int i;
2196
2197	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2198	    ((ec->rx_coalesce_usecs > 3) &&
2199	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2200	    (ec->rx_coalesce_usecs == 2))
2201		return -EINVAL;
2202
2203	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2204	    ((ec->tx_coalesce_usecs > 3) &&
2205	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2206	    (ec->tx_coalesce_usecs == 2))
2207		return -EINVAL;
2208
2209	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2210		return -EINVAL;
2211
2212	/* If ITR is disabled, disable DMAC */
2213	if (ec->rx_coalesce_usecs == 0) {
2214		if (adapter->flags & IGB_FLAG_DMAC)
2215			adapter->flags &= ~IGB_FLAG_DMAC;
2216	}
2217
2218	/* convert to rate of irq's per second */
2219	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2220		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2221	else
2222		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2223
2224	/* convert to rate of irq's per second */
2225	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2226		adapter->tx_itr_setting = adapter->rx_itr_setting;
2227	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2228		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2229	else
2230		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2231
2232	for (i = 0; i < adapter->num_q_vectors; i++) {
2233		struct igb_q_vector *q_vector = adapter->q_vector[i];
2234		q_vector->tx.work_limit = adapter->tx_work_limit;
2235		if (q_vector->rx.ring)
2236			q_vector->itr_val = adapter->rx_itr_setting;
2237		else
2238			q_vector->itr_val = adapter->tx_itr_setting;
2239		if (q_vector->itr_val && q_vector->itr_val <= 3)
2240			q_vector->itr_val = IGB_START_ITR;
2241		q_vector->set_itr = 1;
2242	}
2243
2244	return 0;
2245}
2246
2247static int igb_get_coalesce(struct net_device *netdev,
2248			    struct ethtool_coalesce *ec,
2249			    struct kernel_ethtool_coalesce *kernel_coal,
2250			    struct netlink_ext_ack *extack)
2251{
2252	struct igb_adapter *adapter = netdev_priv(netdev);
2253
2254	if (adapter->rx_itr_setting <= 3)
2255		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2256	else
2257		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2258
2259	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2260		if (adapter->tx_itr_setting <= 3)
2261			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2262		else
2263			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2264	}
2265
2266	return 0;
2267}
2268
2269static int igb_nway_reset(struct net_device *netdev)
2270{
2271	struct igb_adapter *adapter = netdev_priv(netdev);
2272	if (netif_running(netdev))
2273		igb_reinit_locked(adapter);
2274	return 0;
2275}
2276
2277static int igb_get_sset_count(struct net_device *netdev, int sset)
2278{
2279	switch (sset) {
2280	case ETH_SS_STATS:
2281		return IGB_STATS_LEN;
2282	case ETH_SS_TEST:
2283		return IGB_TEST_LEN;
2284	case ETH_SS_PRIV_FLAGS:
2285		return IGB_PRIV_FLAGS_STR_LEN;
2286	default:
2287		return -ENOTSUPP;
2288	}
2289}
2290
2291static void igb_get_ethtool_stats(struct net_device *netdev,
2292				  struct ethtool_stats *stats, u64 *data)
2293{
2294	struct igb_adapter *adapter = netdev_priv(netdev);
2295	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2296	unsigned int start;
2297	struct igb_ring *ring;
2298	int i, j;
2299	char *p;
2300
2301	spin_lock(&adapter->stats64_lock);
2302	igb_update_stats(adapter);
2303
2304	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2305		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2306		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2307			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2308	}
2309	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2310		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2311		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2312			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2313	}
2314	for (j = 0; j < adapter->num_tx_queues; j++) {
2315		u64	restart2;
2316
2317		ring = adapter->tx_ring[j];
2318		do {
2319			start = u64_stats_fetch_begin(&ring->tx_syncp);
2320			data[i]   = ring->tx_stats.packets;
2321			data[i+1] = ring->tx_stats.bytes;
2322			data[i+2] = ring->tx_stats.restart_queue;
2323		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
2324		do {
2325			start = u64_stats_fetch_begin(&ring->tx_syncp2);
2326			restart2  = ring->tx_stats.restart_queue2;
2327		} while (u64_stats_fetch_retry(&ring->tx_syncp2, start));
2328		data[i+2] += restart2;
2329
2330		i += IGB_TX_QUEUE_STATS_LEN;
2331	}
2332	for (j = 0; j < adapter->num_rx_queues; j++) {
2333		ring = adapter->rx_ring[j];
2334		do {
2335			start = u64_stats_fetch_begin(&ring->rx_syncp);
2336			data[i]   = ring->rx_stats.packets;
2337			data[i+1] = ring->rx_stats.bytes;
2338			data[i+2] = ring->rx_stats.drops;
2339			data[i+3] = ring->rx_stats.csum_err;
2340			data[i+4] = ring->rx_stats.alloc_failed;
2341		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
2342		i += IGB_RX_QUEUE_STATS_LEN;
2343	}
2344	spin_unlock(&adapter->stats64_lock);
2345}
2346
2347static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2348{
2349	struct igb_adapter *adapter = netdev_priv(netdev);
2350	u8 *p = data;
2351	int i;
2352
2353	switch (stringset) {
2354	case ETH_SS_TEST:
2355		memcpy(data, igb_gstrings_test, sizeof(igb_gstrings_test));
2356		break;
2357	case ETH_SS_STATS:
2358		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++)
2359			ethtool_puts(&p, igb_gstrings_stats[i].stat_string);
2360		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++)
2361			ethtool_puts(&p, igb_gstrings_net_stats[i].stat_string);
2362		for (i = 0; i < adapter->num_tx_queues; i++) {
2363			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
2364			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
2365			ethtool_sprintf(&p, "tx_queue_%u_restart", i);
2366		}
2367		for (i = 0; i < adapter->num_rx_queues; i++) {
2368			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
2369			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
2370			ethtool_sprintf(&p, "rx_queue_%u_drops", i);
2371			ethtool_sprintf(&p, "rx_queue_%u_csum_err", i);
2372			ethtool_sprintf(&p, "rx_queue_%u_alloc_failed", i);
2373		}
2374		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2375		break;
2376	case ETH_SS_PRIV_FLAGS:
2377		memcpy(data, igb_priv_flags_strings,
2378		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2379		break;
2380	}
2381}
2382
2383static int igb_get_ts_info(struct net_device *dev,
2384			   struct ethtool_ts_info *info)
2385{
2386	struct igb_adapter *adapter = netdev_priv(dev);
2387
2388	if (adapter->ptp_clock)
2389		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2390	else
2391		info->phc_index = -1;
2392
2393	switch (adapter->hw.mac.type) {
2394	case e1000_82575:
2395		info->so_timestamping =
2396			SOF_TIMESTAMPING_TX_SOFTWARE |
2397			SOF_TIMESTAMPING_RX_SOFTWARE |
2398			SOF_TIMESTAMPING_SOFTWARE;
2399		return 0;
2400	case e1000_82576:
2401	case e1000_82580:
2402	case e1000_i350:
2403	case e1000_i354:
2404	case e1000_i210:
2405	case e1000_i211:
2406		info->so_timestamping =
2407			SOF_TIMESTAMPING_TX_SOFTWARE |
2408			SOF_TIMESTAMPING_RX_SOFTWARE |
2409			SOF_TIMESTAMPING_SOFTWARE |
2410			SOF_TIMESTAMPING_TX_HARDWARE |
2411			SOF_TIMESTAMPING_RX_HARDWARE |
2412			SOF_TIMESTAMPING_RAW_HARDWARE;
2413
2414		info->tx_types =
2415			BIT(HWTSTAMP_TX_OFF) |
2416			BIT(HWTSTAMP_TX_ON);
2417
2418		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2419
2420		/* 82576 does not support timestamping all packets. */
2421		if (adapter->hw.mac.type >= e1000_82580)
2422			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2423		else
2424			info->rx_filters |=
2425				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2426				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2427				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2428
2429		return 0;
2430	default:
2431		return -EOPNOTSUPP;
2432	}
2433}
2434
2435#define ETHER_TYPE_FULL_MASK cpu_to_be16(FIELD_MAX(U16_MAX))
2436static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2437				     struct ethtool_rxnfc *cmd)
2438{
2439	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2440	struct igb_nfc_filter *rule = NULL;
2441
2442	/* report total rule count */
2443	cmd->data = IGB_MAX_RXNFC_FILTERS;
2444
2445	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2446		if (fsp->location <= rule->sw_idx)
2447			break;
2448	}
2449
2450	if (!rule || fsp->location != rule->sw_idx)
2451		return -EINVAL;
2452
2453	if (rule->filter.match_flags) {
2454		fsp->flow_type = ETHER_FLOW;
2455		fsp->ring_cookie = rule->action;
2456		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2457			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2458			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2459		}
2460		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2461			fsp->flow_type |= FLOW_EXT;
2462			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2463			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2464		}
2465		if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2466			ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2467					rule->filter.dst_addr);
2468			/* As we only support matching by the full
2469			 * mask, return the mask to userspace
2470			 */
2471			eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2472		}
2473		if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2474			ether_addr_copy(fsp->h_u.ether_spec.h_source,
2475					rule->filter.src_addr);
2476			/* As we only support matching by the full
2477			 * mask, return the mask to userspace
2478			 */
2479			eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2480		}
2481
2482		return 0;
2483	}
2484	return -EINVAL;
2485}
2486
2487static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2488				   struct ethtool_rxnfc *cmd,
2489				   u32 *rule_locs)
2490{
2491	struct igb_nfc_filter *rule;
2492	int cnt = 0;
2493
2494	/* report total rule count */
2495	cmd->data = IGB_MAX_RXNFC_FILTERS;
2496
2497	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2498		if (cnt == cmd->rule_cnt)
2499			return -EMSGSIZE;
2500		rule_locs[cnt] = rule->sw_idx;
2501		cnt++;
2502	}
2503
2504	cmd->rule_cnt = cnt;
2505
2506	return 0;
2507}
2508
2509static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2510				 struct ethtool_rxnfc *cmd)
2511{
2512	cmd->data = 0;
2513
2514	/* Report default options for RSS on igb */
2515	switch (cmd->flow_type) {
2516	case TCP_V4_FLOW:
2517		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2518		fallthrough;
2519	case UDP_V4_FLOW:
2520		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2521			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2522		fallthrough;
2523	case SCTP_V4_FLOW:
2524	case AH_ESP_V4_FLOW:
2525	case AH_V4_FLOW:
2526	case ESP_V4_FLOW:
2527	case IPV4_FLOW:
2528		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2529		break;
2530	case TCP_V6_FLOW:
2531		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2532		fallthrough;
2533	case UDP_V6_FLOW:
2534		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2535			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2536		fallthrough;
2537	case SCTP_V6_FLOW:
2538	case AH_ESP_V6_FLOW:
2539	case AH_V6_FLOW:
2540	case ESP_V6_FLOW:
2541	case IPV6_FLOW:
2542		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2543		break;
2544	default:
2545		return -EINVAL;
2546	}
2547
2548	return 0;
2549}
2550
2551static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2552			 u32 *rule_locs)
2553{
2554	struct igb_adapter *adapter = netdev_priv(dev);
2555	int ret = -EOPNOTSUPP;
2556
2557	switch (cmd->cmd) {
2558	case ETHTOOL_GRXRINGS:
2559		cmd->data = adapter->num_rx_queues;
2560		ret = 0;
2561		break;
2562	case ETHTOOL_GRXCLSRLCNT:
2563		cmd->rule_cnt = adapter->nfc_filter_count;
2564		ret = 0;
2565		break;
2566	case ETHTOOL_GRXCLSRULE:
2567		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2568		break;
2569	case ETHTOOL_GRXCLSRLALL:
2570		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2571		break;
2572	case ETHTOOL_GRXFH:
2573		ret = igb_get_rss_hash_opts(adapter, cmd);
2574		break;
2575	default:
2576		break;
2577	}
2578
2579	return ret;
2580}
2581
2582#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2583		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2584static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2585				struct ethtool_rxnfc *nfc)
2586{
2587	u32 flags = adapter->flags;
2588
2589	/* RSS does not support anything other than hashing
2590	 * to queues on src and dst IPs and ports
2591	 */
2592	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2593			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2594		return -EINVAL;
2595
2596	switch (nfc->flow_type) {
2597	case TCP_V4_FLOW:
2598	case TCP_V6_FLOW:
2599		if (!(nfc->data & RXH_IP_SRC) ||
2600		    !(nfc->data & RXH_IP_DST) ||
2601		    !(nfc->data & RXH_L4_B_0_1) ||
2602		    !(nfc->data & RXH_L4_B_2_3))
2603			return -EINVAL;
2604		break;
2605	case UDP_V4_FLOW:
2606		if (!(nfc->data & RXH_IP_SRC) ||
2607		    !(nfc->data & RXH_IP_DST))
2608			return -EINVAL;
2609		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2610		case 0:
2611			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2612			break;
2613		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2614			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2615			break;
2616		default:
2617			return -EINVAL;
2618		}
2619		break;
2620	case UDP_V6_FLOW:
2621		if (!(nfc->data & RXH_IP_SRC) ||
2622		    !(nfc->data & RXH_IP_DST))
2623			return -EINVAL;
2624		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2625		case 0:
2626			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2627			break;
2628		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2629			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2630			break;
2631		default:
2632			return -EINVAL;
2633		}
2634		break;
2635	case AH_ESP_V4_FLOW:
2636	case AH_V4_FLOW:
2637	case ESP_V4_FLOW:
2638	case SCTP_V4_FLOW:
2639	case AH_ESP_V6_FLOW:
2640	case AH_V6_FLOW:
2641	case ESP_V6_FLOW:
2642	case SCTP_V6_FLOW:
2643		if (!(nfc->data & RXH_IP_SRC) ||
2644		    !(nfc->data & RXH_IP_DST) ||
2645		    (nfc->data & RXH_L4_B_0_1) ||
2646		    (nfc->data & RXH_L4_B_2_3))
2647			return -EINVAL;
2648		break;
2649	default:
2650		return -EINVAL;
2651	}
2652
2653	/* if we changed something we need to update flags */
2654	if (flags != adapter->flags) {
2655		struct e1000_hw *hw = &adapter->hw;
2656		u32 mrqc = rd32(E1000_MRQC);
2657
2658		if ((flags & UDP_RSS_FLAGS) &&
2659		    !(adapter->flags & UDP_RSS_FLAGS))
2660			dev_err(&adapter->pdev->dev,
2661				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2662
2663		adapter->flags = flags;
2664
2665		/* Perform hash on these packet types */
2666		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2667			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2668			E1000_MRQC_RSS_FIELD_IPV6 |
2669			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2670
2671		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2672			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2673
2674		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2675			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2676
2677		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2678			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2679
2680		wr32(E1000_MRQC, mrqc);
2681	}
2682
2683	return 0;
2684}
2685
2686static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2687					struct igb_nfc_filter *input)
2688{
2689	struct e1000_hw *hw = &adapter->hw;
2690	u8 i;
2691	u32 etqf;
2692	u16 etype;
2693
2694	/* find an empty etype filter register */
2695	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2696		if (!adapter->etype_bitmap[i])
2697			break;
2698	}
2699	if (i == MAX_ETYPE_FILTER) {
2700		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2701		return -EINVAL;
2702	}
2703
2704	adapter->etype_bitmap[i] = true;
2705
2706	etqf = rd32(E1000_ETQF(i));
2707	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2708
2709	etqf |= E1000_ETQF_FILTER_ENABLE;
2710	etqf &= ~E1000_ETQF_ETYPE_MASK;
2711	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2712
2713	etqf &= ~E1000_ETQF_QUEUE_MASK;
2714	etqf |= FIELD_PREP(E1000_ETQF_QUEUE_MASK, input->action);
2715	etqf |= E1000_ETQF_QUEUE_ENABLE;
2716
2717	wr32(E1000_ETQF(i), etqf);
2718
2719	input->etype_reg_index = i;
2720
2721	return 0;
2722}
2723
2724static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2725					    struct igb_nfc_filter *input)
2726{
2727	struct e1000_hw *hw = &adapter->hw;
2728	u8 vlan_priority;
2729	u16 queue_index;
2730	u32 vlapqf;
2731
2732	vlapqf = rd32(E1000_VLAPQF);
2733	vlan_priority = FIELD_GET(VLAN_PRIO_MASK,
2734				  ntohs(input->filter.vlan_tci));
2735	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2736
2737	/* check whether this vlan prio is already set */
2738	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2739	    (queue_index != input->action)) {
2740		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2741		return -EEXIST;
2742	}
2743
2744	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2745	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2746
2747	wr32(E1000_VLAPQF, vlapqf);
2748
2749	return 0;
2750}
2751
2752int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2753{
2754	struct e1000_hw *hw = &adapter->hw;
2755	int err = -EINVAL;
2756
2757	if (hw->mac.type == e1000_i210 &&
2758	    !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2759		dev_err(&adapter->pdev->dev,
2760			"i210 doesn't support flow classification rules specifying only source addresses.\n");
2761		return -EOPNOTSUPP;
2762	}
2763
2764	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2765		err = igb_rxnfc_write_etype_filter(adapter, input);
2766		if (err)
2767			return err;
2768	}
2769
2770	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2771		err = igb_add_mac_steering_filter(adapter,
2772						  input->filter.dst_addr,
2773						  input->action, 0);
2774		err = min_t(int, err, 0);
2775		if (err)
2776			return err;
2777	}
2778
2779	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2780		err = igb_add_mac_steering_filter(adapter,
2781						  input->filter.src_addr,
2782						  input->action,
2783						  IGB_MAC_STATE_SRC_ADDR);
2784		err = min_t(int, err, 0);
2785		if (err)
2786			return err;
2787	}
2788
2789	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2790		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2791
2792	return err;
2793}
2794
2795static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2796					u16 reg_index)
2797{
2798	struct e1000_hw *hw = &adapter->hw;
2799	u32 etqf = rd32(E1000_ETQF(reg_index));
2800
2801	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2802	etqf &= ~E1000_ETQF_QUEUE_MASK;
2803	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2804
2805	wr32(E1000_ETQF(reg_index), etqf);
2806
2807	adapter->etype_bitmap[reg_index] = false;
2808}
2809
2810static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2811				       u16 vlan_tci)
2812{
2813	struct e1000_hw *hw = &adapter->hw;
2814	u8 vlan_priority;
2815	u32 vlapqf;
2816
2817	vlan_priority = FIELD_GET(VLAN_PRIO_MASK, vlan_tci);
2818
2819	vlapqf = rd32(E1000_VLAPQF);
2820	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2821	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2822						E1000_VLAPQF_QUEUE_MASK);
2823
2824	wr32(E1000_VLAPQF, vlapqf);
2825}
2826
2827int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2828{
2829	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2830		igb_clear_etype_filter_regs(adapter,
2831					    input->etype_reg_index);
2832
2833	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2834		igb_clear_vlan_prio_filter(adapter,
2835					   ntohs(input->filter.vlan_tci));
2836
2837	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2838		igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2839					    input->action,
2840					    IGB_MAC_STATE_SRC_ADDR);
2841
2842	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2843		igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2844					    input->action, 0);
2845
2846	return 0;
2847}
2848
2849static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2850					struct igb_nfc_filter *input,
2851					u16 sw_idx)
2852{
2853	struct igb_nfc_filter *rule, *parent;
2854	int err = -EINVAL;
2855
2856	parent = NULL;
2857	rule = NULL;
2858
2859	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2860		/* hash found, or no matching entry */
2861		if (rule->sw_idx >= sw_idx)
2862			break;
2863		parent = rule;
2864	}
2865
2866	/* if there is an old rule occupying our place remove it */
2867	if (rule && (rule->sw_idx == sw_idx)) {
2868		if (!input)
2869			err = igb_erase_filter(adapter, rule);
2870
2871		hlist_del(&rule->nfc_node);
2872		kfree(rule);
2873		adapter->nfc_filter_count--;
2874	}
2875
2876	/* If no input this was a delete, err should be 0 if a rule was
2877	 * successfully found and removed from the list else -EINVAL
2878	 */
2879	if (!input)
2880		return err;
2881
2882	/* initialize node */
2883	INIT_HLIST_NODE(&input->nfc_node);
2884
2885	/* add filter to the list */
2886	if (parent)
2887		hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2888	else
2889		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2890
2891	/* update counts */
2892	adapter->nfc_filter_count++;
2893
2894	return 0;
2895}
2896
2897static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2898				     struct ethtool_rxnfc *cmd)
2899{
2900	struct net_device *netdev = adapter->netdev;
2901	struct ethtool_rx_flow_spec *fsp =
2902		(struct ethtool_rx_flow_spec *)&cmd->fs;
2903	struct igb_nfc_filter *input, *rule;
2904	int err = 0;
2905
2906	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2907		return -EOPNOTSUPP;
2908
2909	/* Don't allow programming if the action is a queue greater than
2910	 * the number of online Rx queues.
2911	 */
2912	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2913	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2914		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2915		return -EINVAL;
2916	}
2917
2918	/* Don't allow indexes to exist outside of available space */
2919	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2920		dev_err(&adapter->pdev->dev, "Location out of range\n");
2921		return -EINVAL;
2922	}
2923
2924	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2925		return -EINVAL;
2926
2927	input = kzalloc(sizeof(*input), GFP_KERNEL);
2928	if (!input)
2929		return -ENOMEM;
2930
2931	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2932		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2933		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2934	}
2935
2936	/* Only support matching addresses by the full mask */
2937	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2938		input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2939		ether_addr_copy(input->filter.src_addr,
2940				fsp->h_u.ether_spec.h_source);
2941	}
2942
2943	/* Only support matching addresses by the full mask */
2944	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2945		input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2946		ether_addr_copy(input->filter.dst_addr,
2947				fsp->h_u.ether_spec.h_dest);
2948	}
2949
2950	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2951		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2952			err = -EINVAL;
2953			goto err_out;
2954		}
2955		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2956		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2957	}
2958
2959	input->action = fsp->ring_cookie;
2960	input->sw_idx = fsp->location;
2961
2962	spin_lock(&adapter->nfc_lock);
2963
2964	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2965		if (!memcmp(&input->filter, &rule->filter,
2966			    sizeof(input->filter))) {
2967			err = -EEXIST;
2968			dev_err(&adapter->pdev->dev,
2969				"ethtool: this filter is already set\n");
2970			goto err_out_w_lock;
2971		}
2972	}
2973
2974	err = igb_add_filter(adapter, input);
2975	if (err)
2976		goto err_out_w_lock;
2977
2978	err = igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2979	if (err)
2980		goto err_out_input_filter;
2981
2982	spin_unlock(&adapter->nfc_lock);
2983	return 0;
2984
2985err_out_input_filter:
2986	igb_erase_filter(adapter, input);
2987err_out_w_lock:
2988	spin_unlock(&adapter->nfc_lock);
2989err_out:
2990	kfree(input);
2991	return err;
2992}
2993
2994static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2995				     struct ethtool_rxnfc *cmd)
2996{
2997	struct ethtool_rx_flow_spec *fsp =
2998		(struct ethtool_rx_flow_spec *)&cmd->fs;
2999	int err;
3000
3001	spin_lock(&adapter->nfc_lock);
3002	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3003	spin_unlock(&adapter->nfc_lock);
3004
3005	return err;
3006}
3007
3008static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3009{
3010	struct igb_adapter *adapter = netdev_priv(dev);
3011	int ret = -EOPNOTSUPP;
3012
3013	switch (cmd->cmd) {
3014	case ETHTOOL_SRXFH:
3015		ret = igb_set_rss_hash_opt(adapter, cmd);
3016		break;
3017	case ETHTOOL_SRXCLSRLINS:
3018		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3019		break;
3020	case ETHTOOL_SRXCLSRLDEL:
3021		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3022		break;
3023	default:
3024		break;
3025	}
3026
3027	return ret;
3028}
3029
3030static int igb_get_eee(struct net_device *netdev, struct ethtool_keee *edata)
3031{
3032	struct igb_adapter *adapter = netdev_priv(netdev);
3033	struct e1000_hw *hw = &adapter->hw;
3034	u32 ret_val;
3035	u16 phy_data;
3036
3037	if ((hw->mac.type < e1000_i350) ||
3038	    (hw->phy.media_type != e1000_media_type_copper))
3039		return -EOPNOTSUPP;
3040
3041	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3042			 edata->supported);
3043	linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
3044			 edata->supported);
3045	if (!hw->dev_spec._82575.eee_disable)
3046		mii_eee_cap1_mod_linkmode_t(edata->advertised,
3047					    adapter->eee_advert);
3048
3049	/* The IPCNFG and EEER registers are not supported on I354. */
3050	if (hw->mac.type == e1000_i354) {
3051		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3052	} else {
3053		u32 eeer;
3054
3055		eeer = rd32(E1000_EEER);
3056
3057		/* EEE status on negotiated link */
3058		if (eeer & E1000_EEER_EEE_NEG)
3059			edata->eee_active = true;
3060
3061		if (eeer & E1000_EEER_TX_LPI_EN)
3062			edata->tx_lpi_enabled = true;
3063	}
3064
3065	/* EEE Link Partner Advertised */
3066	switch (hw->mac.type) {
3067	case e1000_i350:
3068		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3069					   &phy_data);
3070		if (ret_val)
3071			return -ENODATA;
3072
3073		mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data);
3074		break;
3075	case e1000_i354:
3076	case e1000_i210:
3077	case e1000_i211:
3078		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3079					     E1000_EEE_LP_ADV_DEV_I210,
3080					     &phy_data);
3081		if (ret_val)
3082			return -ENODATA;
3083
3084		mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data);
3085
3086		break;
3087	default:
3088		break;
3089	}
3090
3091	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3092
3093	if ((hw->mac.type == e1000_i354) &&
3094	    (edata->eee_enabled))
3095		edata->tx_lpi_enabled = true;
3096
3097	/* Report correct negotiated EEE status for devices that
3098	 * wrongly report EEE at half-duplex
3099	 */
3100	if (adapter->link_duplex == HALF_DUPLEX) {
3101		edata->eee_enabled = false;
3102		edata->eee_active = false;
3103		edata->tx_lpi_enabled = false;
3104		linkmode_zero(edata->advertised);
3105	}
3106
3107	return 0;
3108}
3109
3110static int igb_set_eee(struct net_device *netdev,
3111		       struct ethtool_keee *edata)
3112{
3113	struct igb_adapter *adapter = netdev_priv(netdev);
3114	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {};
3115	__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {};
3116	struct e1000_hw *hw = &adapter->hw;
3117	struct ethtool_keee eee_curr;
3118	bool adv1g_eee = true, adv100m_eee = true;
3119	s32 ret_val;
3120
3121	if ((hw->mac.type < e1000_i350) ||
3122	    (hw->phy.media_type != e1000_media_type_copper))
3123		return -EOPNOTSUPP;
3124
3125	memset(&eee_curr, 0, sizeof(struct ethtool_keee));
3126
3127	ret_val = igb_get_eee(netdev, &eee_curr);
3128	if (ret_val)
3129		return ret_val;
3130
3131	if (eee_curr.eee_enabled) {
3132		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3133			dev_err(&adapter->pdev->dev,
3134				"Setting EEE tx-lpi is not supported\n");
3135			return -EINVAL;
3136		}
3137
3138		/* Tx LPI timer is not implemented currently */
3139		if (edata->tx_lpi_timer) {
3140			dev_err(&adapter->pdev->dev,
3141				"Setting EEE Tx LPI timer is not supported\n");
3142			return -EINVAL;
3143		}
3144
3145		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3146				 supported);
3147		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
3148				 supported);
3149		if (linkmode_andnot(tmp, edata->advertised, supported)) {
3150			dev_err(&adapter->pdev->dev,
3151				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3152			return -EINVAL;
3153		}
3154		adv100m_eee = linkmode_test_bit(
3155			ETHTOOL_LINK_MODE_100baseT_Full_BIT,
3156			edata->advertised);
3157		adv1g_eee = linkmode_test_bit(
3158			ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3159			edata->advertised);
3160
3161	} else if (!edata->eee_enabled) {
3162		dev_err(&adapter->pdev->dev,
3163			"Setting EEE options are not supported with EEE disabled\n");
3164		return -EINVAL;
3165	}
3166
3167	adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised);
3168	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3169		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3170		adapter->flags |= IGB_FLAG_EEE;
3171
3172		/* reset link */
3173		if (netif_running(netdev))
3174			igb_reinit_locked(adapter);
3175		else
3176			igb_reset(adapter);
3177	}
3178
3179	if (hw->mac.type == e1000_i354)
3180		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3181	else
3182		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3183
3184	if (ret_val) {
3185		dev_err(&adapter->pdev->dev,
3186			"Problem setting EEE advertisement options\n");
3187		return -EINVAL;
3188	}
3189
3190	return 0;
3191}
3192
3193static int igb_get_module_info(struct net_device *netdev,
3194			       struct ethtool_modinfo *modinfo)
3195{
3196	struct igb_adapter *adapter = netdev_priv(netdev);
3197	struct e1000_hw *hw = &adapter->hw;
3198	u32 status = 0;
3199	u16 sff8472_rev, addr_mode;
3200	bool page_swap = false;
3201
3202	if ((hw->phy.media_type == e1000_media_type_copper) ||
3203	    (hw->phy.media_type == e1000_media_type_unknown))
3204		return -EOPNOTSUPP;
3205
3206	/* Check whether we support SFF-8472 or not */
3207	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3208	if (status)
3209		return -EIO;
3210
3211	/* addressing mode is not supported */
3212	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3213	if (status)
3214		return -EIO;
3215
3216	/* addressing mode is not supported */
3217	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3218		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3219		page_swap = true;
3220	}
3221
3222	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3223		/* We have an SFP, but it does not support SFF-8472 */
3224		modinfo->type = ETH_MODULE_SFF_8079;
3225		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3226	} else {
3227		/* We have an SFP which supports a revision of SFF-8472 */
3228		modinfo->type = ETH_MODULE_SFF_8472;
3229		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3230	}
3231
3232	return 0;
3233}
3234
3235static int igb_get_module_eeprom(struct net_device *netdev,
3236				 struct ethtool_eeprom *ee, u8 *data)
3237{
3238	struct igb_adapter *adapter = netdev_priv(netdev);
3239	struct e1000_hw *hw = &adapter->hw;
3240	u32 status = 0;
3241	u16 *dataword;
3242	u16 first_word, last_word;
3243	int i = 0;
3244
3245	if (ee->len == 0)
3246		return -EINVAL;
3247
3248	first_word = ee->offset >> 1;
3249	last_word = (ee->offset + ee->len - 1) >> 1;
3250
3251	dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3252				 GFP_KERNEL);
3253	if (!dataword)
3254		return -ENOMEM;
3255
3256	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3257	for (i = 0; i < last_word - first_word + 1; i++) {
3258		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3259					      &dataword[i]);
3260		if (status) {
3261			/* Error occurred while reading module */
3262			kfree(dataword);
3263			return -EIO;
3264		}
3265
3266		be16_to_cpus(&dataword[i]);
3267	}
3268
3269	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3270	kfree(dataword);
3271
3272	return 0;
3273}
3274
3275static int igb_ethtool_begin(struct net_device *netdev)
3276{
3277	struct igb_adapter *adapter = netdev_priv(netdev);
3278	pm_runtime_get_sync(&adapter->pdev->dev);
3279	return 0;
3280}
3281
3282static void igb_ethtool_complete(struct net_device *netdev)
3283{
3284	struct igb_adapter *adapter = netdev_priv(netdev);
3285	pm_runtime_put(&adapter->pdev->dev);
3286}
3287
3288static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3289{
3290	return IGB_RETA_SIZE;
3291}
3292
3293static int igb_get_rxfh(struct net_device *netdev,
3294			struct ethtool_rxfh_param *rxfh)
3295{
3296	struct igb_adapter *adapter = netdev_priv(netdev);
3297	int i;
3298
3299	rxfh->hfunc = ETH_RSS_HASH_TOP;
3300	if (!rxfh->indir)
3301		return 0;
3302	for (i = 0; i < IGB_RETA_SIZE; i++)
3303		rxfh->indir[i] = adapter->rss_indir_tbl[i];
3304
3305	return 0;
3306}
3307
3308void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3309{
3310	struct e1000_hw *hw = &adapter->hw;
3311	u32 reg = E1000_RETA(0);
3312	u32 shift = 0;
3313	int i = 0;
3314
3315	switch (hw->mac.type) {
3316	case e1000_82575:
3317		shift = 6;
3318		break;
3319	case e1000_82576:
3320		/* 82576 supports 2 RSS queues for SR-IOV */
3321		if (adapter->vfs_allocated_count)
3322			shift = 3;
3323		break;
3324	default:
3325		break;
3326	}
3327
3328	while (i < IGB_RETA_SIZE) {
3329		u32 val = 0;
3330		int j;
3331
3332		for (j = 3; j >= 0; j--) {
3333			val <<= 8;
3334			val |= adapter->rss_indir_tbl[i + j];
3335		}
3336
3337		wr32(reg, val << shift);
3338		reg += 4;
3339		i += 4;
3340	}
3341}
3342
3343static int igb_set_rxfh(struct net_device *netdev,
3344			struct ethtool_rxfh_param *rxfh,
3345			struct netlink_ext_ack *extack)
3346{
3347	struct igb_adapter *adapter = netdev_priv(netdev);
3348	struct e1000_hw *hw = &adapter->hw;
3349	int i;
3350	u32 num_queues;
3351
3352	/* We do not allow change in unsupported parameters */
3353	if (rxfh->key ||
3354	    (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
3355	     rxfh->hfunc != ETH_RSS_HASH_TOP))
3356		return -EOPNOTSUPP;
3357	if (!rxfh->indir)
3358		return 0;
3359
3360	num_queues = adapter->rss_queues;
3361
3362	switch (hw->mac.type) {
3363	case e1000_82576:
3364		/* 82576 supports 2 RSS queues for SR-IOV */
3365		if (adapter->vfs_allocated_count)
3366			num_queues = 2;
3367		break;
3368	default:
3369		break;
3370	}
3371
3372	/* Verify user input. */
3373	for (i = 0; i < IGB_RETA_SIZE; i++)
3374		if (rxfh->indir[i] >= num_queues)
3375			return -EINVAL;
3376
3377
3378	for (i = 0; i < IGB_RETA_SIZE; i++)
3379		adapter->rss_indir_tbl[i] = rxfh->indir[i];
3380
3381	igb_write_rss_indir_tbl(adapter);
3382
3383	return 0;
3384}
3385
3386static unsigned int igb_max_channels(struct igb_adapter *adapter)
3387{
3388	return igb_get_max_rss_queues(adapter);
3389}
3390
3391static void igb_get_channels(struct net_device *netdev,
3392			     struct ethtool_channels *ch)
3393{
3394	struct igb_adapter *adapter = netdev_priv(netdev);
3395
3396	/* Report maximum channels */
3397	ch->max_combined = igb_max_channels(adapter);
3398
3399	/* Report info for other vector */
3400	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3401		ch->max_other = NON_Q_VECTORS;
3402		ch->other_count = NON_Q_VECTORS;
3403	}
3404
3405	ch->combined_count = adapter->rss_queues;
3406}
3407
3408static int igb_set_channels(struct net_device *netdev,
3409			    struct ethtool_channels *ch)
3410{
3411	struct igb_adapter *adapter = netdev_priv(netdev);
3412	unsigned int count = ch->combined_count;
3413	unsigned int max_combined = 0;
3414
3415	/* Verify they are not requesting separate vectors */
3416	if (!count || ch->rx_count || ch->tx_count)
3417		return -EINVAL;
3418
3419	/* Verify other_count is valid and has not been changed */
3420	if (ch->other_count != NON_Q_VECTORS)
3421		return -EINVAL;
3422
3423	/* Verify the number of channels doesn't exceed hw limits */
3424	max_combined = igb_max_channels(adapter);
3425	if (count > max_combined)
3426		return -EINVAL;
3427
3428	if (count != adapter->rss_queues) {
3429		adapter->rss_queues = count;
3430		igb_set_flag_queue_pairs(adapter, max_combined);
3431
3432		/* Hardware has to reinitialize queues and interrupts to
3433		 * match the new configuration.
3434		 */
3435		return igb_reinit_queues(adapter);
3436	}
3437
3438	return 0;
3439}
3440
3441static u32 igb_get_priv_flags(struct net_device *netdev)
3442{
3443	struct igb_adapter *adapter = netdev_priv(netdev);
3444	u32 priv_flags = 0;
3445
3446	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3447		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3448
3449	return priv_flags;
3450}
3451
3452static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3453{
3454	struct igb_adapter *adapter = netdev_priv(netdev);
3455	unsigned int flags = adapter->flags;
3456
3457	flags &= ~IGB_FLAG_RX_LEGACY;
3458	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3459		flags |= IGB_FLAG_RX_LEGACY;
3460
3461	if (flags != adapter->flags) {
3462		adapter->flags = flags;
3463
3464		/* reset interface to repopulate queues */
3465		if (netif_running(netdev))
3466			igb_reinit_locked(adapter);
3467	}
3468
3469	return 0;
3470}
3471
3472static const struct ethtool_ops igb_ethtool_ops = {
3473	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
3474	.get_drvinfo		= igb_get_drvinfo,
3475	.get_regs_len		= igb_get_regs_len,
3476	.get_regs		= igb_get_regs,
3477	.get_wol		= igb_get_wol,
3478	.set_wol		= igb_set_wol,
3479	.get_msglevel		= igb_get_msglevel,
3480	.set_msglevel		= igb_set_msglevel,
3481	.nway_reset		= igb_nway_reset,
3482	.get_link		= igb_get_link,
3483	.get_eeprom_len		= igb_get_eeprom_len,
3484	.get_eeprom		= igb_get_eeprom,
3485	.set_eeprom		= igb_set_eeprom,
3486	.get_ringparam		= igb_get_ringparam,
3487	.set_ringparam		= igb_set_ringparam,
3488	.get_pauseparam		= igb_get_pauseparam,
3489	.set_pauseparam		= igb_set_pauseparam,
3490	.self_test		= igb_diag_test,
3491	.get_strings		= igb_get_strings,
3492	.set_phys_id		= igb_set_phys_id,
3493	.get_sset_count		= igb_get_sset_count,
3494	.get_ethtool_stats	= igb_get_ethtool_stats,
3495	.get_coalesce		= igb_get_coalesce,
3496	.set_coalesce		= igb_set_coalesce,
3497	.get_ts_info		= igb_get_ts_info,
3498	.get_rxnfc		= igb_get_rxnfc,
3499	.set_rxnfc		= igb_set_rxnfc,
3500	.get_eee		= igb_get_eee,
3501	.set_eee		= igb_set_eee,
3502	.get_module_info	= igb_get_module_info,
3503	.get_module_eeprom	= igb_get_module_eeprom,
3504	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3505	.get_rxfh		= igb_get_rxfh,
3506	.set_rxfh		= igb_set_rxfh,
3507	.get_channels		= igb_get_channels,
3508	.set_channels		= igb_set_channels,
3509	.get_priv_flags		= igb_get_priv_flags,
3510	.set_priv_flags		= igb_set_priv_flags,
3511	.begin			= igb_ethtool_begin,
3512	.complete		= igb_ethtool_complete,
3513	.get_link_ksettings	= igb_get_link_ksettings,
3514	.set_link_ksettings	= igb_set_link_ksettings,
3515};
3516
3517void igb_set_ethtool_ops(struct net_device *netdev)
3518{
3519	netdev->ethtool_ops = &igb_ethtool_ops;
3520}
3521