1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4/* e1000_82575
5 * e1000_82576
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/types.h>
11#include <linux/if_ether.h>
12#include <linux/i2c.h>
13
14#include "e1000_mac.h"
15#include "e1000_82575.h"
16#include "e1000_i210.h"
17#include "igb.h"
18
19static s32  igb_get_invariants_82575(struct e1000_hw *);
20static s32  igb_acquire_phy_82575(struct e1000_hw *);
21static void igb_release_phy_82575(struct e1000_hw *);
22static s32  igb_acquire_nvm_82575(struct e1000_hw *);
23static void igb_release_nvm_82575(struct e1000_hw *);
24static s32  igb_check_for_link_82575(struct e1000_hw *);
25static s32  igb_get_cfg_done_82575(struct e1000_hw *);
26static s32  igb_init_hw_82575(struct e1000_hw *);
27static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
28static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
29static s32  igb_reset_hw_82575(struct e1000_hw *);
30static s32  igb_reset_hw_82580(struct e1000_hw *);
31static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
32static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
33static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
34static s32  igb_setup_copper_link_82575(struct e1000_hw *);
35static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
36static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
37static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
38static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
39static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
40						 u16 *);
41static s32  igb_get_phy_id_82575(struct e1000_hw *);
42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
43static bool igb_sgmii_active_82575(struct e1000_hw *);
44static s32  igb_reset_init_script_82575(struct e1000_hw *);
45static s32  igb_read_mac_addr_82575(struct e1000_hw *);
46static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
47static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
48static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
49static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
52static const u16 e1000_82580_rxpbs_table[] = {
53	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
54
55/* Due to a hw errata, if the host tries to  configure the VFTA register
56 * while performing queries from the BMC or DMA, then the VFTA in some
57 * cases won't be written.
58 */
59
60/**
61 *  igb_write_vfta_i350 - Write value to VLAN filter table
62 *  @hw: pointer to the HW structure
63 *  @offset: register offset in VLAN filter table
64 *  @value: register value written to VLAN filter table
65 *
66 *  Writes value at the given offset in the register array which stores
67 *  the VLAN filter table.
68 **/
69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
70{
71	struct igb_adapter *adapter = hw->back;
72	int i;
73
74	for (i = 10; i--;)
75		array_wr32(E1000_VFTA, offset, value);
76
77	wrfl();
78	adapter->shadow_vfta[offset] = value;
79}
80
81/**
82 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83 *  @hw: pointer to the HW structure
84 *
85 *  Called to determine if the I2C pins are being used for I2C or as an
86 *  external MDIO interface since the two options are mutually exclusive.
87 **/
88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
89{
90	u32 reg = 0;
91	bool ext_mdio = false;
92
93	switch (hw->mac.type) {
94	case e1000_82575:
95	case e1000_82576:
96		reg = rd32(E1000_MDIC);
97		ext_mdio = !!(reg & E1000_MDIC_DEST);
98		break;
99	case e1000_82580:
100	case e1000_i350:
101	case e1000_i354:
102	case e1000_i210:
103	case e1000_i211:
104		reg = rd32(E1000_MDICNFG);
105		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106		break;
107	default:
108		break;
109	}
110	return ext_mdio;
111}
112
113/**
114 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
115 *  @hw: pointer to the HW structure
116 *
117 *  Poll the M88E1112 interfaces to see which interface achieved link.
118 */
119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
120{
121	struct e1000_phy_info *phy = &hw->phy;
122	s32 ret_val;
123	u16 data;
124	u8 port = 0;
125
126	/* Check the copper medium. */
127	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
128	if (ret_val)
129		return ret_val;
130
131	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
132	if (ret_val)
133		return ret_val;
134
135	if (data & E1000_M88E1112_STATUS_LINK)
136		port = E1000_MEDIA_PORT_COPPER;
137
138	/* Check the other medium. */
139	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
140	if (ret_val)
141		return ret_val;
142
143	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
144	if (ret_val)
145		return ret_val;
146
147
148	if (data & E1000_M88E1112_STATUS_LINK)
149		port = E1000_MEDIA_PORT_OTHER;
150
151	/* Determine if a swap needs to happen. */
152	if (port && (hw->dev_spec._82575.media_port != port)) {
153		hw->dev_spec._82575.media_port = port;
154		hw->dev_spec._82575.media_changed = true;
155	}
156
157	if (port == E1000_MEDIA_PORT_COPPER) {
158		/* reset page to 0 */
159		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
160		if (ret_val)
161			return ret_val;
162		igb_check_for_link_82575(hw);
163	} else {
164		igb_check_for_link_82575(hw);
165		/* reset page to 0 */
166		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
167		if (ret_val)
168			return ret_val;
169	}
170
171	return 0;
172}
173
174/**
175 *  igb_init_phy_params_82575 - Init PHY func ptrs.
176 *  @hw: pointer to the HW structure
177 **/
178static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
179{
180	struct e1000_phy_info *phy = &hw->phy;
181	s32 ret_val = 0;
182	u32 ctrl_ext;
183
184	if (hw->phy.media_type != e1000_media_type_copper) {
185		phy->type = e1000_phy_none;
186		goto out;
187	}
188
189	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
190	phy->reset_delay_us	= 100;
191
192	ctrl_ext = rd32(E1000_CTRL_EXT);
193
194	if (igb_sgmii_active_82575(hw)) {
195		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
196		ctrl_ext |= E1000_CTRL_I2C_ENA;
197	} else {
198		phy->ops.reset = igb_phy_hw_reset;
199		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
200	}
201
202	wr32(E1000_CTRL_EXT, ctrl_ext);
203	igb_reset_mdicnfg_82580(hw);
204
205	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
206		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
207		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
208	} else {
209		switch (hw->mac.type) {
210		case e1000_82580:
211		case e1000_i350:
212		case e1000_i354:
213		case e1000_i210:
214		case e1000_i211:
215			phy->ops.read_reg = igb_read_phy_reg_82580;
216			phy->ops.write_reg = igb_write_phy_reg_82580;
217			break;
218		default:
219			phy->ops.read_reg = igb_read_phy_reg_igp;
220			phy->ops.write_reg = igb_write_phy_reg_igp;
221		}
222	}
223
224	/* set lan id */
225	hw->bus.func = FIELD_GET(E1000_STATUS_FUNC_MASK, rd32(E1000_STATUS));
226
227	/* Set phy->phy_addr and phy->id. */
228	ret_val = igb_get_phy_id_82575(hw);
229	if (ret_val)
230		return ret_val;
231
232	/* Verify phy id and set remaining function pointers */
233	switch (phy->id) {
234	case M88E1543_E_PHY_ID:
235	case M88E1512_E_PHY_ID:
236	case I347AT4_E_PHY_ID:
237	case M88E1112_E_PHY_ID:
238	case M88E1111_I_PHY_ID:
239		phy->type		= e1000_phy_m88;
240		phy->ops.check_polarity	= igb_check_polarity_m88;
241		phy->ops.get_phy_info	= igb_get_phy_info_m88;
242		if (phy->id != M88E1111_I_PHY_ID)
243			phy->ops.get_cable_length =
244					 igb_get_cable_length_m88_gen2;
245		else
246			phy->ops.get_cable_length = igb_get_cable_length_m88;
247		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
248		/* Check if this PHY is configured for media swap. */
249		if (phy->id == M88E1112_E_PHY_ID) {
250			u16 data;
251
252			ret_val = phy->ops.write_reg(hw,
253						     E1000_M88E1112_PAGE_ADDR,
254						     2);
255			if (ret_val)
256				goto out;
257
258			ret_val = phy->ops.read_reg(hw,
259						    E1000_M88E1112_MAC_CTRL_1,
260						    &data);
261			if (ret_val)
262				goto out;
263
264			data = FIELD_GET(E1000_M88E1112_MAC_CTRL_1_MODE_MASK,
265					 data);
266			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
267			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
268				hw->mac.ops.check_for_link =
269						igb_check_for_link_media_swap;
270		}
271		if (phy->id == M88E1512_E_PHY_ID) {
272			ret_val = igb_initialize_M88E1512_phy(hw);
273			if (ret_val)
274				goto out;
275		}
276		if (phy->id == M88E1543_E_PHY_ID) {
277			ret_val = igb_initialize_M88E1543_phy(hw);
278			if (ret_val)
279				goto out;
280		}
281		break;
282	case IGP03E1000_E_PHY_ID:
283		phy->type = e1000_phy_igp_3;
284		phy->ops.get_phy_info = igb_get_phy_info_igp;
285		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
286		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
287		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
288		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
289		break;
290	case I82580_I_PHY_ID:
291	case I350_I_PHY_ID:
292		phy->type = e1000_phy_82580;
293		phy->ops.force_speed_duplex =
294					 igb_phy_force_speed_duplex_82580;
295		phy->ops.get_cable_length = igb_get_cable_length_82580;
296		phy->ops.get_phy_info = igb_get_phy_info_82580;
297		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
298		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
299		break;
300	case I210_I_PHY_ID:
301		phy->type		= e1000_phy_i210;
302		phy->ops.check_polarity	= igb_check_polarity_m88;
303		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
304		phy->ops.get_phy_info	= igb_get_phy_info_m88;
305		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
306		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
307		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
308		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
309		break;
310	case BCM54616_E_PHY_ID:
311		phy->type = e1000_phy_bcm54616;
312		break;
313	default:
314		ret_val = -E1000_ERR_PHY;
315		goto out;
316	}
317
318out:
319	return ret_val;
320}
321
322/**
323 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
324 *  @hw: pointer to the HW structure
325 **/
326static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
327{
328	struct e1000_nvm_info *nvm = &hw->nvm;
329	u32 eecd = rd32(E1000_EECD);
330	u16 size;
331
332	size = FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
333
334	/* Added to a constant, "size" becomes the left-shift value
335	 * for setting word_size.
336	 */
337	size += NVM_WORD_SIZE_BASE_SHIFT;
338
339	/* Just in case size is out of range, cap it to the largest
340	 * EEPROM size supported
341	 */
342	if (size > 15)
343		size = 15;
344
345	nvm->word_size = BIT(size);
346	nvm->opcode_bits = 8;
347	nvm->delay_usec = 1;
348
349	switch (nvm->override) {
350	case e1000_nvm_override_spi_large:
351		nvm->page_size = 32;
352		nvm->address_bits = 16;
353		break;
354	case e1000_nvm_override_spi_small:
355		nvm->page_size = 8;
356		nvm->address_bits = 8;
357		break;
358	default:
359		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
360		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
361				    16 : 8;
362		break;
363	}
364	if (nvm->word_size == BIT(15))
365		nvm->page_size = 128;
366
367	nvm->type = e1000_nvm_eeprom_spi;
368
369	/* NVM Function Pointers */
370	nvm->ops.acquire = igb_acquire_nvm_82575;
371	nvm->ops.release = igb_release_nvm_82575;
372	nvm->ops.write = igb_write_nvm_spi;
373	nvm->ops.validate = igb_validate_nvm_checksum;
374	nvm->ops.update = igb_update_nvm_checksum;
375	if (nvm->word_size < BIT(15))
376		nvm->ops.read = igb_read_nvm_eerd;
377	else
378		nvm->ops.read = igb_read_nvm_spi;
379
380	/* override generic family function pointers for specific descendants */
381	switch (hw->mac.type) {
382	case e1000_82580:
383		nvm->ops.validate = igb_validate_nvm_checksum_82580;
384		nvm->ops.update = igb_update_nvm_checksum_82580;
385		break;
386	case e1000_i354:
387	case e1000_i350:
388		nvm->ops.validate = igb_validate_nvm_checksum_i350;
389		nvm->ops.update = igb_update_nvm_checksum_i350;
390		break;
391	default:
392		break;
393	}
394
395	return 0;
396}
397
398/**
399 *  igb_init_mac_params_82575 - Init MAC func ptrs.
400 *  @hw: pointer to the HW structure
401 **/
402static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
403{
404	struct e1000_mac_info *mac = &hw->mac;
405	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
406
407	/* Set mta register count */
408	mac->mta_reg_count = 128;
409	/* Set uta register count */
410	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
411	/* Set rar entry count */
412	switch (mac->type) {
413	case e1000_82576:
414		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
415		break;
416	case e1000_82580:
417		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
418		break;
419	case e1000_i350:
420	case e1000_i354:
421		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
422		break;
423	default:
424		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
425		break;
426	}
427	/* reset */
428	if (mac->type >= e1000_82580)
429		mac->ops.reset_hw = igb_reset_hw_82580;
430	else
431		mac->ops.reset_hw = igb_reset_hw_82575;
432
433	if (mac->type >= e1000_i210) {
434		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
435		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
436
437	} else {
438		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
439		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
440	}
441
442	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
443		mac->ops.write_vfta = igb_write_vfta_i350;
444	else
445		mac->ops.write_vfta = igb_write_vfta;
446
447	/* Set if part includes ASF firmware */
448	mac->asf_firmware_present = true;
449	/* Set if manageability features are enabled. */
450	mac->arc_subsystem_valid =
451		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
452			? true : false;
453	/* enable EEE on i350 parts and later parts */
454	if (mac->type >= e1000_i350)
455		dev_spec->eee_disable = false;
456	else
457		dev_spec->eee_disable = true;
458	/* Allow a single clear of the SW semaphore on I210 and newer */
459	if (mac->type >= e1000_i210)
460		dev_spec->clear_semaphore_once = true;
461	/* physical interface link setup */
462	mac->ops.setup_physical_interface =
463		(hw->phy.media_type == e1000_media_type_copper)
464			? igb_setup_copper_link_82575
465			: igb_setup_serdes_link_82575;
466
467	if (mac->type == e1000_82580 || mac->type == e1000_i350) {
468		switch (hw->device_id) {
469		/* feature not supported on these id's */
470		case E1000_DEV_ID_DH89XXCC_SGMII:
471		case E1000_DEV_ID_DH89XXCC_SERDES:
472		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
473		case E1000_DEV_ID_DH89XXCC_SFP:
474			break;
475		default:
476			hw->dev_spec._82575.mas_capable = true;
477			break;
478		}
479	}
480	return 0;
481}
482
483/**
484 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
485 *  @hw: pointer to the HW structure
486 *
487 *  The media type is chosen based on SFP module.
488 *  compatibility flags retrieved from SFP ID EEPROM.
489 **/
490static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
491{
492	s32 ret_val = E1000_ERR_CONFIG;
493	u32 ctrl_ext = 0;
494	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
495	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
496	u8 tranceiver_type = 0;
497	s32 timeout = 3;
498
499	/* Turn I2C interface ON and power on sfp cage */
500	ctrl_ext = rd32(E1000_CTRL_EXT);
501	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
502	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
503
504	wrfl();
505
506	/* Read SFP module data */
507	while (timeout) {
508		ret_val = igb_read_sfp_data_byte(hw,
509			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
510			&tranceiver_type);
511		if (ret_val == 0)
512			break;
513		msleep(100);
514		timeout--;
515	}
516	if (ret_val != 0)
517		goto out;
518
519	ret_val = igb_read_sfp_data_byte(hw,
520			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
521			(u8 *)eth_flags);
522	if (ret_val != 0)
523		goto out;
524
525	/* Check if there is some SFP module plugged and powered */
526	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
527	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
528		dev_spec->module_plugged = true;
529		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
530			hw->phy.media_type = e1000_media_type_internal_serdes;
531		} else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
532			dev_spec->sgmii_active = true;
533			hw->phy.media_type = e1000_media_type_internal_serdes;
534		} else if (eth_flags->e1000_base_t) {
535			dev_spec->sgmii_active = true;
536			hw->phy.media_type = e1000_media_type_copper;
537		} else {
538			hw->phy.media_type = e1000_media_type_unknown;
539			hw_dbg("PHY module has not been recognized\n");
540			goto out;
541		}
542	} else {
543		hw->phy.media_type = e1000_media_type_unknown;
544	}
545	ret_val = 0;
546out:
547	/* Restore I2C interface setting */
548	wr32(E1000_CTRL_EXT, ctrl_ext);
549	return ret_val;
550}
551
552static s32 igb_get_invariants_82575(struct e1000_hw *hw)
553{
554	struct e1000_mac_info *mac = &hw->mac;
555	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
556	s32 ret_val;
557	u32 ctrl_ext = 0;
558	u32 link_mode = 0;
559
560	switch (hw->device_id) {
561	case E1000_DEV_ID_82575EB_COPPER:
562	case E1000_DEV_ID_82575EB_FIBER_SERDES:
563	case E1000_DEV_ID_82575GB_QUAD_COPPER:
564		mac->type = e1000_82575;
565		break;
566	case E1000_DEV_ID_82576:
567	case E1000_DEV_ID_82576_NS:
568	case E1000_DEV_ID_82576_NS_SERDES:
569	case E1000_DEV_ID_82576_FIBER:
570	case E1000_DEV_ID_82576_SERDES:
571	case E1000_DEV_ID_82576_QUAD_COPPER:
572	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
573	case E1000_DEV_ID_82576_SERDES_QUAD:
574		mac->type = e1000_82576;
575		break;
576	case E1000_DEV_ID_82580_COPPER:
577	case E1000_DEV_ID_82580_FIBER:
578	case E1000_DEV_ID_82580_QUAD_FIBER:
579	case E1000_DEV_ID_82580_SERDES:
580	case E1000_DEV_ID_82580_SGMII:
581	case E1000_DEV_ID_82580_COPPER_DUAL:
582	case E1000_DEV_ID_DH89XXCC_SGMII:
583	case E1000_DEV_ID_DH89XXCC_SERDES:
584	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
585	case E1000_DEV_ID_DH89XXCC_SFP:
586		mac->type = e1000_82580;
587		break;
588	case E1000_DEV_ID_I350_COPPER:
589	case E1000_DEV_ID_I350_FIBER:
590	case E1000_DEV_ID_I350_SERDES:
591	case E1000_DEV_ID_I350_SGMII:
592		mac->type = e1000_i350;
593		break;
594	case E1000_DEV_ID_I210_COPPER:
595	case E1000_DEV_ID_I210_FIBER:
596	case E1000_DEV_ID_I210_SERDES:
597	case E1000_DEV_ID_I210_SGMII:
598	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
599	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
600		mac->type = e1000_i210;
601		break;
602	case E1000_DEV_ID_I211_COPPER:
603		mac->type = e1000_i211;
604		break;
605	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
606	case E1000_DEV_ID_I354_SGMII:
607	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
608		mac->type = e1000_i354;
609		break;
610	default:
611		return -E1000_ERR_MAC_INIT;
612	}
613
614	/* Set media type */
615	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
616	 * based on the EEPROM. We cannot rely upon device ID. There
617	 * is no distinguishable difference between fiber and internal
618	 * SerDes mode on the 82575. There can be an external PHY attached
619	 * on the SGMII interface. For this, we'll set sgmii_active to true.
620	 */
621	hw->phy.media_type = e1000_media_type_copper;
622	dev_spec->sgmii_active = false;
623	dev_spec->module_plugged = false;
624
625	ctrl_ext = rd32(E1000_CTRL_EXT);
626
627	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
628	switch (link_mode) {
629	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
630		hw->phy.media_type = e1000_media_type_internal_serdes;
631		break;
632	case E1000_CTRL_EXT_LINK_MODE_SGMII:
633		/* Get phy control interface type set (MDIO vs. I2C)*/
634		if (igb_sgmii_uses_mdio_82575(hw)) {
635			hw->phy.media_type = e1000_media_type_copper;
636			dev_spec->sgmii_active = true;
637			break;
638		}
639		fallthrough; /* for I2C based SGMII */
640	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
641		/* read media type from SFP EEPROM */
642		ret_val = igb_set_sfp_media_type_82575(hw);
643		if ((ret_val != 0) ||
644		    (hw->phy.media_type == e1000_media_type_unknown)) {
645			/* If media type was not identified then return media
646			 * type defined by the CTRL_EXT settings.
647			 */
648			hw->phy.media_type = e1000_media_type_internal_serdes;
649
650			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
651				hw->phy.media_type = e1000_media_type_copper;
652				dev_spec->sgmii_active = true;
653			}
654
655			break;
656		}
657
658		/* change current link mode setting */
659		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
660
661		if (dev_spec->sgmii_active)
662			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
663		else
664			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
665
666		wr32(E1000_CTRL_EXT, ctrl_ext);
667
668		break;
669	default:
670		break;
671	}
672
673	/* mac initialization and operations */
674	ret_val = igb_init_mac_params_82575(hw);
675	if (ret_val)
676		goto out;
677
678	/* NVM initialization */
679	ret_val = igb_init_nvm_params_82575(hw);
680	switch (hw->mac.type) {
681	case e1000_i210:
682	case e1000_i211:
683		ret_val = igb_init_nvm_params_i210(hw);
684		break;
685	default:
686		break;
687	}
688
689	if (ret_val)
690		goto out;
691
692	/* if part supports SR-IOV then initialize mailbox parameters */
693	switch (mac->type) {
694	case e1000_82576:
695	case e1000_i350:
696		igb_init_mbx_params_pf(hw);
697		break;
698	default:
699		break;
700	}
701
702	/* setup PHY parameters */
703	ret_val = igb_init_phy_params_82575(hw);
704
705out:
706	return ret_val;
707}
708
709/**
710 *  igb_acquire_phy_82575 - Acquire rights to access PHY
711 *  @hw: pointer to the HW structure
712 *
713 *  Acquire access rights to the correct PHY.  This is a
714 *  function pointer entry point called by the api module.
715 **/
716static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
717{
718	u16 mask = E1000_SWFW_PHY0_SM;
719
720	if (hw->bus.func == E1000_FUNC_1)
721		mask = E1000_SWFW_PHY1_SM;
722	else if (hw->bus.func == E1000_FUNC_2)
723		mask = E1000_SWFW_PHY2_SM;
724	else if (hw->bus.func == E1000_FUNC_3)
725		mask = E1000_SWFW_PHY3_SM;
726
727	return hw->mac.ops.acquire_swfw_sync(hw, mask);
728}
729
730/**
731 *  igb_release_phy_82575 - Release rights to access PHY
732 *  @hw: pointer to the HW structure
733 *
734 *  A wrapper to release access rights to the correct PHY.  This is a
735 *  function pointer entry point called by the api module.
736 **/
737static void igb_release_phy_82575(struct e1000_hw *hw)
738{
739	u16 mask = E1000_SWFW_PHY0_SM;
740
741	if (hw->bus.func == E1000_FUNC_1)
742		mask = E1000_SWFW_PHY1_SM;
743	else if (hw->bus.func == E1000_FUNC_2)
744		mask = E1000_SWFW_PHY2_SM;
745	else if (hw->bus.func == E1000_FUNC_3)
746		mask = E1000_SWFW_PHY3_SM;
747
748	hw->mac.ops.release_swfw_sync(hw, mask);
749}
750
751/**
752 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
753 *  @hw: pointer to the HW structure
754 *  @offset: register offset to be read
755 *  @data: pointer to the read data
756 *
757 *  Reads the PHY register at offset using the serial gigabit media independent
758 *  interface and stores the retrieved information in data.
759 **/
760static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
761					  u16 *data)
762{
763	s32 ret_val = -E1000_ERR_PARAM;
764
765	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
766		hw_dbg("PHY Address %u is out of range\n", offset);
767		goto out;
768	}
769
770	ret_val = hw->phy.ops.acquire(hw);
771	if (ret_val)
772		goto out;
773
774	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
775
776	hw->phy.ops.release(hw);
777
778out:
779	return ret_val;
780}
781
782/**
783 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
784 *  @hw: pointer to the HW structure
785 *  @offset: register offset to write to
786 *  @data: data to write at register offset
787 *
788 *  Writes the data to PHY register at the offset using the serial gigabit
789 *  media independent interface.
790 **/
791static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
792					   u16 data)
793{
794	s32 ret_val = -E1000_ERR_PARAM;
795
796
797	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
798		hw_dbg("PHY Address %d is out of range\n", offset);
799		goto out;
800	}
801
802	ret_val = hw->phy.ops.acquire(hw);
803	if (ret_val)
804		goto out;
805
806	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
807
808	hw->phy.ops.release(hw);
809
810out:
811	return ret_val;
812}
813
814/**
815 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
816 *  @hw: pointer to the HW structure
817 *
818 *  Retrieves the PHY address and ID for both PHY's which do and do not use
819 *  sgmi interface.
820 **/
821static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
822{
823	struct e1000_phy_info *phy = &hw->phy;
824	s32  ret_val = 0;
825	u16 phy_id;
826	u32 ctrl_ext;
827	u32 mdic;
828
829	/* Extra read required for some PHY's on i354 */
830	if (hw->mac.type == e1000_i354)
831		igb_get_phy_id(hw);
832
833	/* For SGMII PHYs, we try the list of possible addresses until
834	 * we find one that works.  For non-SGMII PHYs
835	 * (e.g. integrated copper PHYs), an address of 1 should
836	 * work.  The result of this function should mean phy->phy_addr
837	 * and phy->id are set correctly.
838	 */
839	if (!(igb_sgmii_active_82575(hw))) {
840		phy->addr = 1;
841		ret_val = igb_get_phy_id(hw);
842		goto out;
843	}
844
845	if (igb_sgmii_uses_mdio_82575(hw)) {
846		switch (hw->mac.type) {
847		case e1000_82575:
848		case e1000_82576:
849			mdic = rd32(E1000_MDIC);
850			mdic &= E1000_MDIC_PHY_MASK;
851			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
852			break;
853		case e1000_82580:
854		case e1000_i350:
855		case e1000_i354:
856		case e1000_i210:
857		case e1000_i211:
858			mdic = rd32(E1000_MDICNFG);
859			mdic &= E1000_MDICNFG_PHY_MASK;
860			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
861			break;
862		default:
863			ret_val = -E1000_ERR_PHY;
864			goto out;
865		}
866		ret_val = igb_get_phy_id(hw);
867		goto out;
868	}
869
870	/* Power on sgmii phy if it is disabled */
871	ctrl_ext = rd32(E1000_CTRL_EXT);
872	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
873	wrfl();
874	msleep(300);
875
876	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
877	 * Therefore, we need to test 1-7
878	 */
879	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
880		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
881		if (ret_val == 0) {
882			hw_dbg("Vendor ID 0x%08X read at address %u\n",
883			       phy_id, phy->addr);
884			/* At the time of this writing, The M88 part is
885			 * the only supported SGMII PHY product.
886			 */
887			if (phy_id == M88_VENDOR)
888				break;
889		} else {
890			hw_dbg("PHY address %u was unreadable\n", phy->addr);
891		}
892	}
893
894	/* A valid PHY type couldn't be found. */
895	if (phy->addr == 8) {
896		phy->addr = 0;
897		ret_val = -E1000_ERR_PHY;
898		goto out;
899	} else {
900		ret_val = igb_get_phy_id(hw);
901	}
902
903	/* restore previous sfp cage power state */
904	wr32(E1000_CTRL_EXT, ctrl_ext);
905
906out:
907	return ret_val;
908}
909
910/**
911 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
912 *  @hw: pointer to the HW structure
913 *
914 *  Resets the PHY using the serial gigabit media independent interface.
915 **/
916static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
917{
918	struct e1000_phy_info *phy = &hw->phy;
919	s32 ret_val;
920
921	/* This isn't a true "hard" reset, but is the only reset
922	 * available to us at this time.
923	 */
924
925	hw_dbg("Soft resetting SGMII attached PHY...\n");
926
927	/* SFP documentation requires the following to configure the SPF module
928	 * to work on SGMII.  No further documentation is given.
929	 */
930	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
931	if (ret_val)
932		goto out;
933
934	ret_val = igb_phy_sw_reset(hw);
935	if (ret_val)
936		goto out;
937
938	if (phy->id == M88E1512_E_PHY_ID)
939		ret_val = igb_initialize_M88E1512_phy(hw);
940	if (phy->id == M88E1543_E_PHY_ID)
941		ret_val = igb_initialize_M88E1543_phy(hw);
942out:
943	return ret_val;
944}
945
946/**
947 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
948 *  @hw: pointer to the HW structure
949 *  @active: true to enable LPLU, false to disable
950 *
951 *  Sets the LPLU D0 state according to the active flag.  When
952 *  activating LPLU this function also disables smart speed
953 *  and vice versa.  LPLU will not be activated unless the
954 *  device autonegotiation advertisement meets standards of
955 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
956 *  This is a function pointer entry point only called by
957 *  PHY setup routines.
958 **/
959static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
960{
961	struct e1000_phy_info *phy = &hw->phy;
962	s32 ret_val;
963	u16 data;
964
965	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
966	if (ret_val)
967		goto out;
968
969	if (active) {
970		data |= IGP02E1000_PM_D0_LPLU;
971		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
972						 data);
973		if (ret_val)
974			goto out;
975
976		/* When LPLU is enabled, we should disable SmartSpeed */
977		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
978						&data);
979		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
980		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
981						 data);
982		if (ret_val)
983			goto out;
984	} else {
985		data &= ~IGP02E1000_PM_D0_LPLU;
986		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
987						 data);
988		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
989		 * during Dx states where the power conservation is most
990		 * important.  During driver activity we should enable
991		 * SmartSpeed, so performance is maintained.
992		 */
993		if (phy->smart_speed == e1000_smart_speed_on) {
994			ret_val = phy->ops.read_reg(hw,
995					IGP01E1000_PHY_PORT_CONFIG, &data);
996			if (ret_val)
997				goto out;
998
999			data |= IGP01E1000_PSCFR_SMART_SPEED;
1000			ret_val = phy->ops.write_reg(hw,
1001					IGP01E1000_PHY_PORT_CONFIG, data);
1002			if (ret_val)
1003				goto out;
1004		} else if (phy->smart_speed == e1000_smart_speed_off) {
1005			ret_val = phy->ops.read_reg(hw,
1006					IGP01E1000_PHY_PORT_CONFIG, &data);
1007			if (ret_val)
1008				goto out;
1009
1010			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1011			ret_val = phy->ops.write_reg(hw,
1012					IGP01E1000_PHY_PORT_CONFIG, data);
1013			if (ret_val)
1014				goto out;
1015		}
1016	}
1017
1018out:
1019	return ret_val;
1020}
1021
1022/**
1023 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1024 *  @hw: pointer to the HW structure
1025 *  @active: true to enable LPLU, false to disable
1026 *
1027 *  Sets the LPLU D0 state according to the active flag.  When
1028 *  activating LPLU this function also disables smart speed
1029 *  and vice versa.  LPLU will not be activated unless the
1030 *  device autonegotiation advertisement meets standards of
1031 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1032 *  This is a function pointer entry point only called by
1033 *  PHY setup routines.
1034 **/
1035static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1036{
1037	struct e1000_phy_info *phy = &hw->phy;
1038	u16 data;
1039
1040	data = rd32(E1000_82580_PHY_POWER_MGMT);
1041
1042	if (active) {
1043		data |= E1000_82580_PM_D0_LPLU;
1044
1045		/* When LPLU is enabled, we should disable SmartSpeed */
1046		data &= ~E1000_82580_PM_SPD;
1047	} else {
1048		data &= ~E1000_82580_PM_D0_LPLU;
1049
1050		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1051		 * during Dx states where the power conservation is most
1052		 * important.  During driver activity we should enable
1053		 * SmartSpeed, so performance is maintained.
1054		 */
1055		if (phy->smart_speed == e1000_smart_speed_on)
1056			data |= E1000_82580_PM_SPD;
1057		else if (phy->smart_speed == e1000_smart_speed_off)
1058			data &= ~E1000_82580_PM_SPD; }
1059
1060	wr32(E1000_82580_PHY_POWER_MGMT, data);
1061	return 0;
1062}
1063
1064/**
1065 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1066 *  @hw: pointer to the HW structure
1067 *  @active: boolean used to enable/disable lplu
1068 *
1069 *  Success returns 0, Failure returns 1
1070 *
1071 *  The low power link up (lplu) state is set to the power management level D3
1072 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1073 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1074 *  is used during Dx states where the power conservation is most important.
1075 *  During driver activity, SmartSpeed should be enabled so performance is
1076 *  maintained.
1077 **/
1078static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1079{
1080	struct e1000_phy_info *phy = &hw->phy;
1081	u16 data;
1082
1083	data = rd32(E1000_82580_PHY_POWER_MGMT);
1084
1085	if (!active) {
1086		data &= ~E1000_82580_PM_D3_LPLU;
1087		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1088		 * during Dx states where the power conservation is most
1089		 * important.  During driver activity we should enable
1090		 * SmartSpeed, so performance is maintained.
1091		 */
1092		if (phy->smart_speed == e1000_smart_speed_on)
1093			data |= E1000_82580_PM_SPD;
1094		else if (phy->smart_speed == e1000_smart_speed_off)
1095			data &= ~E1000_82580_PM_SPD;
1096	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1097		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1098		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1099		data |= E1000_82580_PM_D3_LPLU;
1100		/* When LPLU is enabled, we should disable SmartSpeed */
1101		data &= ~E1000_82580_PM_SPD;
1102	}
1103
1104	wr32(E1000_82580_PHY_POWER_MGMT, data);
1105	return 0;
1106}
1107
1108/**
1109 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1110 *  @hw: pointer to the HW structure
1111 *
1112 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1113 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1114 *  Return successful if access grant bit set, else clear the request for
1115 *  EEPROM access and return -E1000_ERR_NVM (-1).
1116 **/
1117static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1118{
1119	s32 ret_val;
1120
1121	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1122	if (ret_val)
1123		goto out;
1124
1125	ret_val = igb_acquire_nvm(hw);
1126
1127	if (ret_val)
1128		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1129
1130out:
1131	return ret_val;
1132}
1133
1134/**
1135 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1136 *  @hw: pointer to the HW structure
1137 *
1138 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1139 *  then release the semaphores acquired.
1140 **/
1141static void igb_release_nvm_82575(struct e1000_hw *hw)
1142{
1143	igb_release_nvm(hw);
1144	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1145}
1146
1147/**
1148 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1149 *  @hw: pointer to the HW structure
1150 *  @mask: specifies which semaphore to acquire
1151 *
1152 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1153 *  will also specify which port we're acquiring the lock for.
1154 **/
1155static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1156{
1157	u32 swfw_sync;
1158	u32 swmask = mask;
1159	u32 fwmask = mask << 16;
1160	s32 ret_val = 0;
1161	s32 i = 0, timeout = 200;
1162
1163	while (i < timeout) {
1164		if (igb_get_hw_semaphore(hw)) {
1165			ret_val = -E1000_ERR_SWFW_SYNC;
1166			goto out;
1167		}
1168
1169		swfw_sync = rd32(E1000_SW_FW_SYNC);
1170		if (!(swfw_sync & (fwmask | swmask)))
1171			break;
1172
1173		/* Firmware currently using resource (fwmask)
1174		 * or other software thread using resource (swmask)
1175		 */
1176		igb_put_hw_semaphore(hw);
1177		mdelay(5);
1178		i++;
1179	}
1180
1181	if (i == timeout) {
1182		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1183		ret_val = -E1000_ERR_SWFW_SYNC;
1184		goto out;
1185	}
1186
1187	swfw_sync |= swmask;
1188	wr32(E1000_SW_FW_SYNC, swfw_sync);
1189
1190	igb_put_hw_semaphore(hw);
1191
1192out:
1193	return ret_val;
1194}
1195
1196/**
1197 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1198 *  @hw: pointer to the HW structure
1199 *  @mask: specifies which semaphore to acquire
1200 *
1201 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1202 *  will also specify which port we're releasing the lock for.
1203 **/
1204static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1205{
1206	u32 swfw_sync;
1207
1208	while (igb_get_hw_semaphore(hw) != 0)
1209		; /* Empty */
1210
1211	swfw_sync = rd32(E1000_SW_FW_SYNC);
1212	swfw_sync &= ~mask;
1213	wr32(E1000_SW_FW_SYNC, swfw_sync);
1214
1215	igb_put_hw_semaphore(hw);
1216}
1217
1218/**
1219 *  igb_get_cfg_done_82575 - Read config done bit
1220 *  @hw: pointer to the HW structure
1221 *
1222 *  Read the management control register for the config done bit for
1223 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1224 *  to read the config done bit, so an error is *ONLY* logged and returns
1225 *  0.  If we were to return with error, EEPROM-less silicon
1226 *  would not be able to be reset or change link.
1227 **/
1228static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1229{
1230	s32 timeout = PHY_CFG_TIMEOUT;
1231	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1232
1233	if (hw->bus.func == 1)
1234		mask = E1000_NVM_CFG_DONE_PORT_1;
1235	else if (hw->bus.func == E1000_FUNC_2)
1236		mask = E1000_NVM_CFG_DONE_PORT_2;
1237	else if (hw->bus.func == E1000_FUNC_3)
1238		mask = E1000_NVM_CFG_DONE_PORT_3;
1239
1240	while (timeout) {
1241		if (rd32(E1000_EEMNGCTL) & mask)
1242			break;
1243		usleep_range(1000, 2000);
1244		timeout--;
1245	}
1246	if (!timeout)
1247		hw_dbg("MNG configuration cycle has not completed.\n");
1248
1249	/* If EEPROM is not marked present, init the PHY manually */
1250	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1251	    (hw->phy.type == e1000_phy_igp_3))
1252		igb_phy_init_script_igp3(hw);
1253
1254	return 0;
1255}
1256
1257/**
1258 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1259 *  @hw: pointer to the HW structure
1260 *  @speed: stores the current speed
1261 *  @duplex: stores the current duplex
1262 *
1263 *  This is a wrapper function, if using the serial gigabit media independent
1264 *  interface, use PCS to retrieve the link speed and duplex information.
1265 *  Otherwise, use the generic function to get the link speed and duplex info.
1266 **/
1267static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1268					u16 *duplex)
1269{
1270	s32 ret_val;
1271
1272	if (hw->phy.media_type != e1000_media_type_copper)
1273		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1274							       duplex);
1275	else
1276		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1277								    duplex);
1278
1279	return ret_val;
1280}
1281
1282/**
1283 *  igb_check_for_link_82575 - Check for link
1284 *  @hw: pointer to the HW structure
1285 *
1286 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1287 *  use the generic interface for determining link.
1288 **/
1289static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1290{
1291	s32 ret_val;
1292	u16 speed, duplex;
1293
1294	if (hw->phy.media_type != e1000_media_type_copper) {
1295		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1296							     &duplex);
1297		/* Use this flag to determine if link needs to be checked or
1298		 * not.  If  we have link clear the flag so that we do not
1299		 * continue to check for link.
1300		 */
1301		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1302
1303		/* Configure Flow Control now that Auto-Neg has completed.
1304		 * First, we need to restore the desired flow control
1305		 * settings because we may have had to re-autoneg with a
1306		 * different link partner.
1307		 */
1308		ret_val = igb_config_fc_after_link_up(hw);
1309		if (ret_val)
1310			hw_dbg("Error configuring flow control\n");
1311	} else {
1312		ret_val = igb_check_for_copper_link(hw);
1313	}
1314
1315	return ret_val;
1316}
1317
1318/**
1319 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1320 *  @hw: pointer to the HW structure
1321 **/
1322void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1323{
1324	u32 reg;
1325
1326
1327	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1328	    !igb_sgmii_active_82575(hw))
1329		return;
1330
1331	/* Enable PCS to turn on link */
1332	reg = rd32(E1000_PCS_CFG0);
1333	reg |= E1000_PCS_CFG_PCS_EN;
1334	wr32(E1000_PCS_CFG0, reg);
1335
1336	/* Power up the laser */
1337	reg = rd32(E1000_CTRL_EXT);
1338	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1339	wr32(E1000_CTRL_EXT, reg);
1340
1341	/* flush the write to verify completion */
1342	wrfl();
1343	usleep_range(1000, 2000);
1344}
1345
1346/**
1347 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1348 *  @hw: pointer to the HW structure
1349 *  @speed: stores the current speed
1350 *  @duplex: stores the current duplex
1351 *
1352 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1353 *  duplex, then store the values in the pointers provided.
1354 **/
1355static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1356						u16 *duplex)
1357{
1358	struct e1000_mac_info *mac = &hw->mac;
1359	u32 pcs, status;
1360
1361	/* Set up defaults for the return values of this function */
1362	mac->serdes_has_link = false;
1363	*speed = 0;
1364	*duplex = 0;
1365
1366	/* Read the PCS Status register for link state. For non-copper mode,
1367	 * the status register is not accurate. The PCS status register is
1368	 * used instead.
1369	 */
1370	pcs = rd32(E1000_PCS_LSTAT);
1371
1372	/* The link up bit determines when link is up on autoneg. The sync ok
1373	 * gets set once both sides sync up and agree upon link. Stable link
1374	 * can be determined by checking for both link up and link sync ok
1375	 */
1376	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1377		mac->serdes_has_link = true;
1378
1379		/* Detect and store PCS speed */
1380		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1381			*speed = SPEED_1000;
1382		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1383			*speed = SPEED_100;
1384		else
1385			*speed = SPEED_10;
1386
1387		/* Detect and store PCS duplex */
1388		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1389			*duplex = FULL_DUPLEX;
1390		else
1391			*duplex = HALF_DUPLEX;
1392
1393	/* Check if it is an I354 2.5Gb backplane connection. */
1394		if (mac->type == e1000_i354) {
1395			status = rd32(E1000_STATUS);
1396			if ((status & E1000_STATUS_2P5_SKU) &&
1397			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1398				*speed = SPEED_2500;
1399				*duplex = FULL_DUPLEX;
1400				hw_dbg("2500 Mbs, ");
1401				hw_dbg("Full Duplex\n");
1402			}
1403		}
1404
1405	}
1406
1407	return 0;
1408}
1409
1410/**
1411 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1412 *  @hw: pointer to the HW structure
1413 *
1414 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1415 *  when management pass thru is not enabled.
1416 **/
1417void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1418{
1419	u32 reg;
1420
1421	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1422	    igb_sgmii_active_82575(hw))
1423		return;
1424
1425	if (!igb_enable_mng_pass_thru(hw)) {
1426		/* Disable PCS to turn off link */
1427		reg = rd32(E1000_PCS_CFG0);
1428		reg &= ~E1000_PCS_CFG_PCS_EN;
1429		wr32(E1000_PCS_CFG0, reg);
1430
1431		/* shutdown the laser */
1432		reg = rd32(E1000_CTRL_EXT);
1433		reg |= E1000_CTRL_EXT_SDP3_DATA;
1434		wr32(E1000_CTRL_EXT, reg);
1435
1436		/* flush the write to verify completion */
1437		wrfl();
1438		usleep_range(1000, 2000);
1439	}
1440}
1441
1442/**
1443 *  igb_reset_hw_82575 - Reset hardware
1444 *  @hw: pointer to the HW structure
1445 *
1446 *  This resets the hardware into a known state.  This is a
1447 *  function pointer entry point called by the api module.
1448 **/
1449static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1450{
1451	u32 ctrl;
1452	s32 ret_val;
1453
1454	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1455	 * on the last TLP read/write transaction when MAC is reset.
1456	 */
1457	ret_val = igb_disable_pcie_master(hw);
1458	if (ret_val)
1459		hw_dbg("PCI-E Master disable polling has failed.\n");
1460
1461	/* set the completion timeout for interface */
1462	ret_val = igb_set_pcie_completion_timeout(hw);
1463	if (ret_val)
1464		hw_dbg("PCI-E Set completion timeout has failed.\n");
1465
1466	hw_dbg("Masking off all interrupts\n");
1467	wr32(E1000_IMC, 0xffffffff);
1468
1469	wr32(E1000_RCTL, 0);
1470	wr32(E1000_TCTL, E1000_TCTL_PSP);
1471	wrfl();
1472
1473	usleep_range(10000, 20000);
1474
1475	ctrl = rd32(E1000_CTRL);
1476
1477	hw_dbg("Issuing a global reset to MAC\n");
1478	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1479
1480	ret_val = igb_get_auto_rd_done(hw);
1481	if (ret_val) {
1482		/* When auto config read does not complete, do not
1483		 * return with an error. This can happen in situations
1484		 * where there is no eeprom and prevents getting link.
1485		 */
1486		hw_dbg("Auto Read Done did not complete\n");
1487	}
1488
1489	/* If EEPROM is not present, run manual init scripts */
1490	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1491		igb_reset_init_script_82575(hw);
1492
1493	/* Clear any pending interrupt events. */
1494	wr32(E1000_IMC, 0xffffffff);
1495	rd32(E1000_ICR);
1496
1497	/* Install any alternate MAC address into RAR0 */
1498	ret_val = igb_check_alt_mac_addr(hw);
1499
1500	return ret_val;
1501}
1502
1503/**
1504 *  igb_init_hw_82575 - Initialize hardware
1505 *  @hw: pointer to the HW structure
1506 *
1507 *  This inits the hardware readying it for operation.
1508 **/
1509static s32 igb_init_hw_82575(struct e1000_hw *hw)
1510{
1511	struct e1000_mac_info *mac = &hw->mac;
1512	s32 ret_val;
1513	u16 i, rar_count = mac->rar_entry_count;
1514
1515	if ((hw->mac.type >= e1000_i210) &&
1516	    !(igb_get_flash_presence_i210(hw))) {
1517		ret_val = igb_pll_workaround_i210(hw);
1518		if (ret_val)
1519			return ret_val;
1520	}
1521
1522	/* Initialize identification LED */
1523	ret_val = igb_id_led_init(hw);
1524	if (ret_val) {
1525		hw_dbg("Error initializing identification LED\n");
1526		/* This is not fatal and we should not stop init due to this */
1527	}
1528
1529	/* Disabling VLAN filtering */
1530	hw_dbg("Initializing the IEEE VLAN\n");
1531	igb_clear_vfta(hw);
1532
1533	/* Setup the receive address */
1534	igb_init_rx_addrs(hw, rar_count);
1535
1536	/* Zero out the Multicast HASH table */
1537	hw_dbg("Zeroing the MTA\n");
1538	for (i = 0; i < mac->mta_reg_count; i++)
1539		array_wr32(E1000_MTA, i, 0);
1540
1541	/* Zero out the Unicast HASH table */
1542	hw_dbg("Zeroing the UTA\n");
1543	for (i = 0; i < mac->uta_reg_count; i++)
1544		array_wr32(E1000_UTA, i, 0);
1545
1546	/* Setup link and flow control */
1547	ret_val = igb_setup_link(hw);
1548
1549	/* Clear all of the statistics registers (clear on read).  It is
1550	 * important that we do this after we have tried to establish link
1551	 * because the symbol error count will increment wildly if there
1552	 * is no link.
1553	 */
1554	igb_clear_hw_cntrs_82575(hw);
1555	return ret_val;
1556}
1557
1558/**
1559 *  igb_setup_copper_link_82575 - Configure copper link settings
1560 *  @hw: pointer to the HW structure
1561 *
1562 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1563 *  for link, once link is established calls to configure collision distance
1564 *  and flow control are called.
1565 **/
1566static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1567{
1568	u32 ctrl;
1569	s32  ret_val;
1570	u32 phpm_reg;
1571
1572	ctrl = rd32(E1000_CTRL);
1573	ctrl |= E1000_CTRL_SLU;
1574	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1575	wr32(E1000_CTRL, ctrl);
1576
1577	/* Clear Go Link Disconnect bit on supported devices */
1578	switch (hw->mac.type) {
1579	case e1000_82580:
1580	case e1000_i350:
1581	case e1000_i210:
1582	case e1000_i211:
1583		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1584		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1585		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1586		break;
1587	default:
1588		break;
1589	}
1590
1591	ret_val = igb_setup_serdes_link_82575(hw);
1592	if (ret_val)
1593		goto out;
1594
1595	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1596		/* allow time for SFP cage time to power up phy */
1597		msleep(300);
1598
1599		ret_val = hw->phy.ops.reset(hw);
1600		if (ret_val) {
1601			hw_dbg("Error resetting the PHY.\n");
1602			goto out;
1603		}
1604	}
1605	switch (hw->phy.type) {
1606	case e1000_phy_i210:
1607	case e1000_phy_m88:
1608		switch (hw->phy.id) {
1609		case I347AT4_E_PHY_ID:
1610		case M88E1112_E_PHY_ID:
1611		case M88E1543_E_PHY_ID:
1612		case M88E1512_E_PHY_ID:
1613		case I210_I_PHY_ID:
1614			ret_val = igb_copper_link_setup_m88_gen2(hw);
1615			break;
1616		default:
1617			ret_val = igb_copper_link_setup_m88(hw);
1618			break;
1619		}
1620		break;
1621	case e1000_phy_igp_3:
1622		ret_val = igb_copper_link_setup_igp(hw);
1623		break;
1624	case e1000_phy_82580:
1625		ret_val = igb_copper_link_setup_82580(hw);
1626		break;
1627	case e1000_phy_bcm54616:
1628		ret_val = 0;
1629		break;
1630	default:
1631		ret_val = -E1000_ERR_PHY;
1632		break;
1633	}
1634
1635	if (ret_val)
1636		goto out;
1637
1638	ret_val = igb_setup_copper_link(hw);
1639out:
1640	return ret_val;
1641}
1642
1643/**
1644 *  igb_setup_serdes_link_82575 - Setup link for serdes
1645 *  @hw: pointer to the HW structure
1646 *
1647 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1648 *  used on copper connections where the serialized gigabit media independent
1649 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1650 *  for auto-negotiation or forces speed/duplex.
1651 **/
1652static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1653{
1654	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1655	bool pcs_autoneg;
1656	s32 ret_val = 0;
1657	u16 data;
1658
1659	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1660	    !igb_sgmii_active_82575(hw))
1661		return ret_val;
1662
1663
1664	/* On the 82575, SerDes loopback mode persists until it is
1665	 * explicitly turned off or a power cycle is performed.  A read to
1666	 * the register does not indicate its status.  Therefore, we ensure
1667	 * loopback mode is disabled during initialization.
1668	 */
1669	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1670
1671	/* power on the sfp cage if present and turn on I2C */
1672	ctrl_ext = rd32(E1000_CTRL_EXT);
1673	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1674	ctrl_ext |= E1000_CTRL_I2C_ENA;
1675	wr32(E1000_CTRL_EXT, ctrl_ext);
1676
1677	ctrl_reg = rd32(E1000_CTRL);
1678	ctrl_reg |= E1000_CTRL_SLU;
1679
1680	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1681		/* set both sw defined pins */
1682		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1683
1684		/* Set switch control to serdes energy detect */
1685		reg = rd32(E1000_CONNSW);
1686		reg |= E1000_CONNSW_ENRGSRC;
1687		wr32(E1000_CONNSW, reg);
1688	}
1689
1690	reg = rd32(E1000_PCS_LCTL);
1691
1692	/* default pcs_autoneg to the same setting as mac autoneg */
1693	pcs_autoneg = hw->mac.autoneg;
1694
1695	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1696	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1697		/* sgmii mode lets the phy handle forcing speed/duplex */
1698		pcs_autoneg = true;
1699		/* autoneg time out should be disabled for SGMII mode */
1700		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1701		break;
1702	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1703		/* disable PCS autoneg and support parallel detect only */
1704		pcs_autoneg = false;
1705		fallthrough;
1706	default:
1707		if (hw->mac.type == e1000_82575 ||
1708		    hw->mac.type == e1000_82576) {
1709			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1710			if (ret_val) {
1711				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1712				return ret_val;
1713			}
1714
1715			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1716				pcs_autoneg = false;
1717		}
1718
1719		/* non-SGMII modes only supports a speed of 1000/Full for the
1720		 * link so it is best to just force the MAC and let the pcs
1721		 * link either autoneg or be forced to 1000/Full
1722		 */
1723		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1724				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1725
1726		/* set speed of 1000/Full if speed/duplex is forced */
1727		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1728		break;
1729	}
1730
1731	wr32(E1000_CTRL, ctrl_reg);
1732
1733	/* New SerDes mode allows for forcing speed or autonegotiating speed
1734	 * at 1gb. Autoneg should be default set by most drivers. This is the
1735	 * mode that will be compatible with older link partners and switches.
1736	 * However, both are supported by the hardware and some drivers/tools.
1737	 */
1738	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1739		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1740
1741	if (pcs_autoneg) {
1742		/* Set PCS register for autoneg */
1743		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1744		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1745
1746		/* Disable force flow control for autoneg */
1747		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1748
1749		/* Configure flow control advertisement for autoneg */
1750		anadv_reg = rd32(E1000_PCS_ANADV);
1751		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1752		switch (hw->fc.requested_mode) {
1753		case e1000_fc_full:
1754		case e1000_fc_rx_pause:
1755			anadv_reg |= E1000_TXCW_ASM_DIR;
1756			anadv_reg |= E1000_TXCW_PAUSE;
1757			break;
1758		case e1000_fc_tx_pause:
1759			anadv_reg |= E1000_TXCW_ASM_DIR;
1760			break;
1761		default:
1762			break;
1763		}
1764		wr32(E1000_PCS_ANADV, anadv_reg);
1765
1766		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1767	} else {
1768		/* Set PCS register for forced link */
1769		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1770
1771		/* Force flow control for forced link */
1772		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1773
1774		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1775	}
1776
1777	wr32(E1000_PCS_LCTL, reg);
1778
1779	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1780		igb_force_mac_fc(hw);
1781
1782	return ret_val;
1783}
1784
1785/**
1786 *  igb_sgmii_active_82575 - Return sgmii state
1787 *  @hw: pointer to the HW structure
1788 *
1789 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1790 *  which can be enabled for use in the embedded applications.  Simply
1791 *  return the current state of the sgmii interface.
1792 **/
1793static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1794{
1795	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1796	return dev_spec->sgmii_active;
1797}
1798
1799/**
1800 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1801 *  @hw: pointer to the HW structure
1802 *
1803 *  Inits recommended HW defaults after a reset when there is no EEPROM
1804 *  detected. This is only for the 82575.
1805 **/
1806static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1807{
1808	if (hw->mac.type == e1000_82575) {
1809		hw_dbg("Running reset init script for 82575\n");
1810		/* SerDes configuration via SERDESCTRL */
1811		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1812		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1813		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1814		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1815
1816		/* CCM configuration via CCMCTL register */
1817		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1818		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1819
1820		/* PCIe lanes configuration */
1821		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1822		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1823		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1824		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1825
1826		/* PCIe PLL Configuration */
1827		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1828		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1829		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1830	}
1831
1832	return 0;
1833}
1834
1835/**
1836 *  igb_read_mac_addr_82575 - Read device MAC address
1837 *  @hw: pointer to the HW structure
1838 **/
1839static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1840{
1841	s32 ret_val = 0;
1842
1843	/* If there's an alternate MAC address place it in RAR0
1844	 * so that it will override the Si installed default perm
1845	 * address.
1846	 */
1847	ret_val = igb_check_alt_mac_addr(hw);
1848	if (ret_val)
1849		goto out;
1850
1851	ret_val = igb_read_mac_addr(hw);
1852
1853out:
1854	return ret_val;
1855}
1856
1857/**
1858 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1859 * @hw: pointer to the HW structure
1860 *
1861 * In the case of a PHY power down to save power, or to turn off link during a
1862 * driver unload, or wake on lan is not enabled, remove the link.
1863 **/
1864void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1865{
1866	/* If the management interface is not enabled, then power down */
1867	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1868		igb_power_down_phy_copper(hw);
1869}
1870
1871/**
1872 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1873 *  @hw: pointer to the HW structure
1874 *
1875 *  Clears the hardware counters by reading the counter registers.
1876 **/
1877static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1878{
1879	igb_clear_hw_cntrs_base(hw);
1880
1881	rd32(E1000_PRC64);
1882	rd32(E1000_PRC127);
1883	rd32(E1000_PRC255);
1884	rd32(E1000_PRC511);
1885	rd32(E1000_PRC1023);
1886	rd32(E1000_PRC1522);
1887	rd32(E1000_PTC64);
1888	rd32(E1000_PTC127);
1889	rd32(E1000_PTC255);
1890	rd32(E1000_PTC511);
1891	rd32(E1000_PTC1023);
1892	rd32(E1000_PTC1522);
1893
1894	rd32(E1000_ALGNERRC);
1895	rd32(E1000_RXERRC);
1896	rd32(E1000_TNCRS);
1897	rd32(E1000_CEXTERR);
1898	rd32(E1000_TSCTC);
1899	rd32(E1000_TSCTFC);
1900
1901	rd32(E1000_MGTPRC);
1902	rd32(E1000_MGTPDC);
1903	rd32(E1000_MGTPTC);
1904
1905	rd32(E1000_IAC);
1906	rd32(E1000_ICRXOC);
1907
1908	rd32(E1000_ICRXPTC);
1909	rd32(E1000_ICRXATC);
1910	rd32(E1000_ICTXPTC);
1911	rd32(E1000_ICTXATC);
1912	rd32(E1000_ICTXQEC);
1913	rd32(E1000_ICTXQMTC);
1914	rd32(E1000_ICRXDMTC);
1915
1916	rd32(E1000_CBTMPC);
1917	rd32(E1000_HTDPMC);
1918	rd32(E1000_CBRMPC);
1919	rd32(E1000_RPTHC);
1920	rd32(E1000_HGPTC);
1921	rd32(E1000_HTCBDPC);
1922	rd32(E1000_HGORCL);
1923	rd32(E1000_HGORCH);
1924	rd32(E1000_HGOTCL);
1925	rd32(E1000_HGOTCH);
1926	rd32(E1000_LENERRS);
1927
1928	/* This register should not be read in copper configurations */
1929	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1930	    igb_sgmii_active_82575(hw))
1931		rd32(E1000_SCVPC);
1932}
1933
1934/**
1935 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1936 *  @hw: pointer to the HW structure
1937 *
1938 *  After rx enable if manageability is enabled then there is likely some
1939 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1940 *  function clears the fifos and flushes any packets that came in as rx was
1941 *  being enabled.
1942 **/
1943void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1944{
1945	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1946	int i, ms_wait;
1947
1948	/* disable IPv6 options as per hardware errata */
1949	rfctl = rd32(E1000_RFCTL);
1950	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1951	wr32(E1000_RFCTL, rfctl);
1952
1953	if (hw->mac.type != e1000_82575 ||
1954	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1955		return;
1956
1957	/* Disable all RX queues */
1958	for (i = 0; i < 4; i++) {
1959		rxdctl[i] = rd32(E1000_RXDCTL(i));
1960		wr32(E1000_RXDCTL(i),
1961		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1962	}
1963	/* Poll all queues to verify they have shut down */
1964	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1965		usleep_range(1000, 2000);
1966		rx_enabled = 0;
1967		for (i = 0; i < 4; i++)
1968			rx_enabled |= rd32(E1000_RXDCTL(i));
1969		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1970			break;
1971	}
1972
1973	if (ms_wait == 10)
1974		hw_dbg("Queue disable timed out after 10ms\n");
1975
1976	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1977	 * incoming packets are rejected.  Set enable and wait 2ms so that
1978	 * any packet that was coming in as RCTL.EN was set is flushed
1979	 */
1980	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1981
1982	rlpml = rd32(E1000_RLPML);
1983	wr32(E1000_RLPML, 0);
1984
1985	rctl = rd32(E1000_RCTL);
1986	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1987	temp_rctl |= E1000_RCTL_LPE;
1988
1989	wr32(E1000_RCTL, temp_rctl);
1990	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1991	wrfl();
1992	usleep_range(2000, 3000);
1993
1994	/* Enable RX queues that were previously enabled and restore our
1995	 * previous state
1996	 */
1997	for (i = 0; i < 4; i++)
1998		wr32(E1000_RXDCTL(i), rxdctl[i]);
1999	wr32(E1000_RCTL, rctl);
2000	wrfl();
2001
2002	wr32(E1000_RLPML, rlpml);
2003	wr32(E1000_RFCTL, rfctl);
2004
2005	/* Flush receive errors generated by workaround */
2006	rd32(E1000_ROC);
2007	rd32(E1000_RNBC);
2008	rd32(E1000_MPC);
2009}
2010
2011/**
2012 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2013 *  @hw: pointer to the HW structure
2014 *
2015 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2016 *  however the hardware default for these parts is 500us to 1ms which is less
2017 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2018 *  increase the value to either 10ms to 200ms for capability version 1 config,
2019 *  or 16ms to 55ms for version 2.
2020 **/
2021static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2022{
2023	u32 gcr = rd32(E1000_GCR);
2024	s32 ret_val = 0;
2025	u16 pcie_devctl2;
2026
2027	/* only take action if timeout value is defaulted to 0 */
2028	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2029		goto out;
2030
2031	/* if capabilities version is type 1 we can write the
2032	 * timeout of 10ms to 200ms through the GCR register
2033	 */
2034	if (!(gcr & E1000_GCR_CAP_VER2)) {
2035		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2036		goto out;
2037	}
2038
2039	/* for version 2 capabilities we need to write the config space
2040	 * directly in order to set the completion timeout value for
2041	 * 16ms to 55ms
2042	 */
2043	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2044					&pcie_devctl2);
2045	if (ret_val)
2046		goto out;
2047
2048	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2049
2050	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2051					 &pcie_devctl2);
2052out:
2053	/* disable completion timeout resend */
2054	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2055
2056	wr32(E1000_GCR, gcr);
2057	return ret_val;
2058}
2059
2060/**
2061 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2062 *  @hw: pointer to the hardware struct
2063 *  @enable: state to enter, either enabled or disabled
2064 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2065 *
2066 *  enables/disables L2 switch anti-spoofing functionality.
2067 **/
2068void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2069{
2070	u32 reg_val, reg_offset;
2071
2072	switch (hw->mac.type) {
2073	case e1000_82576:
2074		reg_offset = E1000_DTXSWC;
2075		break;
2076	case e1000_i350:
2077	case e1000_i354:
2078		reg_offset = E1000_TXSWC;
2079		break;
2080	default:
2081		return;
2082	}
2083
2084	reg_val = rd32(reg_offset);
2085	if (enable) {
2086		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2087			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2088		/* The PF can spoof - it has to in order to
2089		 * support emulation mode NICs
2090		 */
2091		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2092	} else {
2093		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2094			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2095	}
2096	wr32(reg_offset, reg_val);
2097}
2098
2099/**
2100 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2101 *  @hw: pointer to the hardware struct
2102 *  @enable: state to enter, either enabled or disabled
2103 *
2104 *  enables/disables L2 switch loopback functionality.
2105 **/
2106void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2107{
2108	u32 dtxswc;
2109
2110	switch (hw->mac.type) {
2111	case e1000_82576:
2112		dtxswc = rd32(E1000_DTXSWC);
2113		if (enable)
2114			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2115		else
2116			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2117		wr32(E1000_DTXSWC, dtxswc);
2118		break;
2119	case e1000_i354:
2120	case e1000_i350:
2121		dtxswc = rd32(E1000_TXSWC);
2122		if (enable)
2123			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2124		else
2125			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2126		wr32(E1000_TXSWC, dtxswc);
2127		break;
2128	default:
2129		/* Currently no other hardware supports loopback */
2130		break;
2131	}
2132
2133}
2134
2135/**
2136 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2137 *  @hw: pointer to the hardware struct
2138 *  @enable: state to enter, either enabled or disabled
2139 *
2140 *  enables/disables replication of packets across multiple pools.
2141 **/
2142void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2143{
2144	u32 vt_ctl = rd32(E1000_VT_CTL);
2145
2146	if (enable)
2147		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2148	else
2149		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2150
2151	wr32(E1000_VT_CTL, vt_ctl);
2152}
2153
2154/**
2155 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2156 *  @hw: pointer to the HW structure
2157 *  @offset: register offset to be read
2158 *  @data: pointer to the read data
2159 *
2160 *  Reads the MDI control register in the PHY at offset and stores the
2161 *  information read to data.
2162 **/
2163s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2164{
2165	s32 ret_val;
2166
2167	ret_val = hw->phy.ops.acquire(hw);
2168	if (ret_val)
2169		goto out;
2170
2171	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2172
2173	hw->phy.ops.release(hw);
2174
2175out:
2176	return ret_val;
2177}
2178
2179/**
2180 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2181 *  @hw: pointer to the HW structure
2182 *  @offset: register offset to write to
2183 *  @data: data to write to register at offset
2184 *
2185 *  Writes data to MDI control register in the PHY at offset.
2186 **/
2187s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2188{
2189	s32 ret_val;
2190
2191
2192	ret_val = hw->phy.ops.acquire(hw);
2193	if (ret_val)
2194		goto out;
2195
2196	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2197
2198	hw->phy.ops.release(hw);
2199
2200out:
2201	return ret_val;
2202}
2203
2204/**
2205 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2206 *  @hw: pointer to the HW structure
2207 *
2208 *  This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2209 *  the values found in the EEPROM.  This addresses an issue in which these
2210 *  bits are not restored from EEPROM after reset.
2211 **/
2212static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2213{
2214	s32 ret_val = 0;
2215	u32 mdicnfg;
2216	u16 nvm_data = 0;
2217
2218	if (hw->mac.type != e1000_82580)
2219		goto out;
2220	if (!igb_sgmii_active_82575(hw))
2221		goto out;
2222
2223	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2224				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2225				   &nvm_data);
2226	if (ret_val) {
2227		hw_dbg("NVM Read Error\n");
2228		goto out;
2229	}
2230
2231	mdicnfg = rd32(E1000_MDICNFG);
2232	if (nvm_data & NVM_WORD24_EXT_MDIO)
2233		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2234	if (nvm_data & NVM_WORD24_COM_MDIO)
2235		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2236	wr32(E1000_MDICNFG, mdicnfg);
2237out:
2238	return ret_val;
2239}
2240
2241/**
2242 *  igb_reset_hw_82580 - Reset hardware
2243 *  @hw: pointer to the HW structure
2244 *
2245 *  This resets function or entire device (all ports, etc.)
2246 *  to a known state.
2247 **/
2248static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2249{
2250	s32 ret_val = 0;
2251	/* BH SW mailbox bit in SW_FW_SYNC */
2252	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2253	u32 ctrl;
2254	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2255
2256	hw->dev_spec._82575.global_device_reset = false;
2257
2258	/* due to hw errata, global device reset doesn't always
2259	 * work on 82580
2260	 */
2261	if (hw->mac.type == e1000_82580)
2262		global_device_reset = false;
2263
2264	/* Get current control state. */
2265	ctrl = rd32(E1000_CTRL);
2266
2267	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2268	 * on the last TLP read/write transaction when MAC is reset.
2269	 */
2270	ret_val = igb_disable_pcie_master(hw);
2271	if (ret_val)
2272		hw_dbg("PCI-E Master disable polling has failed.\n");
2273
2274	hw_dbg("Masking off all interrupts\n");
2275	wr32(E1000_IMC, 0xffffffff);
2276	wr32(E1000_RCTL, 0);
2277	wr32(E1000_TCTL, E1000_TCTL_PSP);
2278	wrfl();
2279
2280	usleep_range(10000, 11000);
2281
2282	/* Determine whether or not a global dev reset is requested */
2283	if (global_device_reset &&
2284		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2285			global_device_reset = false;
2286
2287	if (global_device_reset &&
2288		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2289		ctrl |= E1000_CTRL_DEV_RST;
2290	else
2291		ctrl |= E1000_CTRL_RST;
2292
2293	wr32(E1000_CTRL, ctrl);
2294	wrfl();
2295
2296	/* Add delay to insure DEV_RST has time to complete */
2297	if (global_device_reset)
2298		usleep_range(5000, 6000);
2299
2300	ret_val = igb_get_auto_rd_done(hw);
2301	if (ret_val) {
2302		/* When auto config read does not complete, do not
2303		 * return with an error. This can happen in situations
2304		 * where there is no eeprom and prevents getting link.
2305		 */
2306		hw_dbg("Auto Read Done did not complete\n");
2307	}
2308
2309	/* clear global device reset status bit */
2310	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2311
2312	/* Clear any pending interrupt events. */
2313	wr32(E1000_IMC, 0xffffffff);
2314	rd32(E1000_ICR);
2315
2316	ret_val = igb_reset_mdicnfg_82580(hw);
2317	if (ret_val)
2318		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2319
2320	/* Install any alternate MAC address into RAR0 */
2321	ret_val = igb_check_alt_mac_addr(hw);
2322
2323	/* Release semaphore */
2324	if (global_device_reset)
2325		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2326
2327	return ret_val;
2328}
2329
2330/**
2331 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2332 *  @data: data received by reading RXPBS register
2333 *
2334 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2335 *  This function converts the retrieved value into the correct table value
2336 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2337 *  0x0 36  72 144   1   2   4   8  16
2338 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2339 */
2340u16 igb_rxpbs_adjust_82580(u32 data)
2341{
2342	u16 ret_val = 0;
2343
2344	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2345		ret_val = e1000_82580_rxpbs_table[data];
2346
2347	return ret_val;
2348}
2349
2350/**
2351 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2352 *  checksum
2353 *  @hw: pointer to the HW structure
2354 *  @offset: offset in words of the checksum protected region
2355 *
2356 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2357 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2358 **/
2359static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2360						 u16 offset)
2361{
2362	s32 ret_val = 0;
2363	u16 checksum = 0;
2364	u16 i, nvm_data;
2365
2366	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2367		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2368		if (ret_val) {
2369			hw_dbg("NVM Read Error\n");
2370			goto out;
2371		}
2372		checksum += nvm_data;
2373	}
2374
2375	if (checksum != (u16) NVM_SUM) {
2376		hw_dbg("NVM Checksum Invalid\n");
2377		ret_val = -E1000_ERR_NVM;
2378		goto out;
2379	}
2380
2381out:
2382	return ret_val;
2383}
2384
2385/**
2386 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2387 *  checksum
2388 *  @hw: pointer to the HW structure
2389 *  @offset: offset in words of the checksum protected region
2390 *
2391 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2392 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2393 *  value to the EEPROM.
2394 **/
2395static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2396{
2397	s32 ret_val;
2398	u16 checksum = 0;
2399	u16 i, nvm_data;
2400
2401	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2402		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2403		if (ret_val) {
2404			hw_dbg("NVM Read Error while updating checksum.\n");
2405			goto out;
2406		}
2407		checksum += nvm_data;
2408	}
2409	checksum = (u16) NVM_SUM - checksum;
2410	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2411				&checksum);
2412	if (ret_val)
2413		hw_dbg("NVM Write Error while updating checksum.\n");
2414
2415out:
2416	return ret_val;
2417}
2418
2419/**
2420 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2421 *  @hw: pointer to the HW structure
2422 *
2423 *  Calculates the EEPROM section checksum by reading/adding each word of
2424 *  the EEPROM and then verifies that the sum of the EEPROM is
2425 *  equal to 0xBABA.
2426 **/
2427static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2428{
2429	s32 ret_val = 0;
2430	u16 eeprom_regions_count = 1;
2431	u16 j, nvm_data;
2432	u16 nvm_offset;
2433
2434	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2435	if (ret_val) {
2436		hw_dbg("NVM Read Error\n");
2437		goto out;
2438	}
2439
2440	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2441		/* if checksums compatibility bit is set validate checksums
2442		 * for all 4 ports.
2443		 */
2444		eeprom_regions_count = 4;
2445	}
2446
2447	for (j = 0; j < eeprom_regions_count; j++) {
2448		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2449		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2450								nvm_offset);
2451		if (ret_val != 0)
2452			goto out;
2453	}
2454
2455out:
2456	return ret_val;
2457}
2458
2459/**
2460 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2461 *  @hw: pointer to the HW structure
2462 *
2463 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2464 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2465 *  checksum and writes the value to the EEPROM.
2466 **/
2467static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2468{
2469	s32 ret_val;
2470	u16 j, nvm_data;
2471	u16 nvm_offset;
2472
2473	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2474	if (ret_val) {
2475		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2476		goto out;
2477	}
2478
2479	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2480		/* set compatibility bit to validate checksums appropriately */
2481		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2482		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2483					&nvm_data);
2484		if (ret_val) {
2485			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2486			goto out;
2487		}
2488	}
2489
2490	for (j = 0; j < 4; j++) {
2491		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2492		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2493		if (ret_val)
2494			goto out;
2495	}
2496
2497out:
2498	return ret_val;
2499}
2500
2501/**
2502 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2503 *  @hw: pointer to the HW structure
2504 *
2505 *  Calculates the EEPROM section checksum by reading/adding each word of
2506 *  the EEPROM and then verifies that the sum of the EEPROM is
2507 *  equal to 0xBABA.
2508 **/
2509static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2510{
2511	s32 ret_val = 0;
2512	u16 j;
2513	u16 nvm_offset;
2514
2515	for (j = 0; j < 4; j++) {
2516		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2517		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2518								nvm_offset);
2519		if (ret_val != 0)
2520			goto out;
2521	}
2522
2523out:
2524	return ret_val;
2525}
2526
2527/**
2528 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2529 *  @hw: pointer to the HW structure
2530 *
2531 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2532 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2533 *  checksum and writes the value to the EEPROM.
2534 **/
2535static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2536{
2537	s32 ret_val = 0;
2538	u16 j;
2539	u16 nvm_offset;
2540
2541	for (j = 0; j < 4; j++) {
2542		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2543		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2544		if (ret_val != 0)
2545			goto out;
2546	}
2547
2548out:
2549	return ret_val;
2550}
2551
2552/**
2553 *  __igb_access_emi_reg - Read/write EMI register
2554 *  @hw: pointer to the HW structure
2555 *  @address: EMI address to program
2556 *  @data: pointer to value to read/write from/to the EMI address
2557 *  @read: boolean flag to indicate read or write
2558 **/
2559static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2560				  u16 *data, bool read)
2561{
2562	s32 ret_val = 0;
2563
2564	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2565	if (ret_val)
2566		return ret_val;
2567
2568	if (read)
2569		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2570	else
2571		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2572
2573	return ret_val;
2574}
2575
2576/**
2577 *  igb_read_emi_reg - Read Extended Management Interface register
2578 *  @hw: pointer to the HW structure
2579 *  @addr: EMI address to program
2580 *  @data: value to be read from the EMI address
2581 **/
2582s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2583{
2584	return __igb_access_emi_reg(hw, addr, data, true);
2585}
2586
2587/**
2588 *  igb_set_eee_i350 - Enable/disable EEE support
2589 *  @hw: pointer to the HW structure
2590 *  @adv1G: boolean flag enabling 1G EEE advertisement
2591 *  @adv100M: boolean flag enabling 100M EEE advertisement
2592 *
2593 *  Enable/disable EEE based on setting in dev_spec structure.
2594 *
2595 **/
2596s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2597{
2598	u32 ipcnfg, eeer;
2599
2600	if ((hw->mac.type < e1000_i350) ||
2601	    (hw->phy.media_type != e1000_media_type_copper))
2602		goto out;
2603	ipcnfg = rd32(E1000_IPCNFG);
2604	eeer = rd32(E1000_EEER);
2605
2606	/* enable or disable per user setting */
2607	if (!(hw->dev_spec._82575.eee_disable)) {
2608		u32 eee_su = rd32(E1000_EEE_SU);
2609
2610		if (adv100M)
2611			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2612		else
2613			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2614
2615		if (adv1G)
2616			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2617		else
2618			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2619
2620		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2621			E1000_EEER_LPI_FC);
2622
2623		/* This bit should not be set in normal operation. */
2624		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2625			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2626
2627	} else {
2628		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2629			E1000_IPCNFG_EEE_100M_AN);
2630		eeer &= ~(E1000_EEER_TX_LPI_EN |
2631			E1000_EEER_RX_LPI_EN |
2632			E1000_EEER_LPI_FC);
2633	}
2634	wr32(E1000_IPCNFG, ipcnfg);
2635	wr32(E1000_EEER, eeer);
2636	rd32(E1000_IPCNFG);
2637	rd32(E1000_EEER);
2638out:
2639
2640	return 0;
2641}
2642
2643/**
2644 *  igb_set_eee_i354 - Enable/disable EEE support
2645 *  @hw: pointer to the HW structure
2646 *  @adv1G: boolean flag enabling 1G EEE advertisement
2647 *  @adv100M: boolean flag enabling 100M EEE advertisement
2648 *
2649 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2650 *
2651 **/
2652s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2653{
2654	struct e1000_phy_info *phy = &hw->phy;
2655	s32 ret_val = 0;
2656	u16 phy_data;
2657
2658	if ((hw->phy.media_type != e1000_media_type_copper) ||
2659	    ((phy->id != M88E1543_E_PHY_ID) &&
2660	     (phy->id != M88E1512_E_PHY_ID)))
2661		goto out;
2662
2663	if (!hw->dev_spec._82575.eee_disable) {
2664		/* Switch to PHY page 18. */
2665		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2666		if (ret_val)
2667			goto out;
2668
2669		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2670					    &phy_data);
2671		if (ret_val)
2672			goto out;
2673
2674		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2675		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2676					     phy_data);
2677		if (ret_val)
2678			goto out;
2679
2680		/* Return the PHY to page 0. */
2681		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2682		if (ret_val)
2683			goto out;
2684
2685		/* Turn on EEE advertisement. */
2686		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2687					     E1000_EEE_ADV_DEV_I354,
2688					     &phy_data);
2689		if (ret_val)
2690			goto out;
2691
2692		if (adv100M)
2693			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2694		else
2695			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2696
2697		if (adv1G)
2698			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2699		else
2700			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2701
2702		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2703						E1000_EEE_ADV_DEV_I354,
2704						phy_data);
2705	} else {
2706		/* Turn off EEE advertisement. */
2707		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2708					     E1000_EEE_ADV_DEV_I354,
2709					     &phy_data);
2710		if (ret_val)
2711			goto out;
2712
2713		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2714			      E1000_EEE_ADV_1000_SUPPORTED);
2715		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2716					      E1000_EEE_ADV_DEV_I354,
2717					      phy_data);
2718	}
2719
2720out:
2721	return ret_val;
2722}
2723
2724/**
2725 *  igb_get_eee_status_i354 - Get EEE status
2726 *  @hw: pointer to the HW structure
2727 *  @status: EEE status
2728 *
2729 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2730 *  been received.
2731 **/
2732s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2733{
2734	struct e1000_phy_info *phy = &hw->phy;
2735	s32 ret_val = 0;
2736	u16 phy_data;
2737
2738	/* Check if EEE is supported on this device. */
2739	if ((hw->phy.media_type != e1000_media_type_copper) ||
2740	    ((phy->id != M88E1543_E_PHY_ID) &&
2741	     (phy->id != M88E1512_E_PHY_ID)))
2742		goto out;
2743
2744	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2745				     E1000_PCS_STATUS_DEV_I354,
2746				     &phy_data);
2747	if (ret_val)
2748		goto out;
2749
2750	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2751			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2752
2753out:
2754	return ret_val;
2755}
2756
2757#ifdef CONFIG_IGB_HWMON
2758static const u8 e1000_emc_temp_data[4] = {
2759	E1000_EMC_INTERNAL_DATA,
2760	E1000_EMC_DIODE1_DATA,
2761	E1000_EMC_DIODE2_DATA,
2762	E1000_EMC_DIODE3_DATA
2763};
2764static const u8 e1000_emc_therm_limit[4] = {
2765	E1000_EMC_INTERNAL_THERM_LIMIT,
2766	E1000_EMC_DIODE1_THERM_LIMIT,
2767	E1000_EMC_DIODE2_THERM_LIMIT,
2768	E1000_EMC_DIODE3_THERM_LIMIT
2769};
2770
2771/**
2772 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2773 *  @hw: pointer to hardware structure
2774 *
2775 *  Updates the temperatures in mac.thermal_sensor_data
2776 **/
2777static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2778{
2779	u16 ets_offset;
2780	u16 ets_cfg;
2781	u16 ets_sensor;
2782	u8  num_sensors;
2783	u8  sensor_index;
2784	u8  sensor_location;
2785	u8  i;
2786	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2787
2788	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2789		return E1000_NOT_IMPLEMENTED;
2790
2791	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2792
2793	/* Return the internal sensor only if ETS is unsupported */
2794	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2795	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2796		return 0;
2797
2798	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2799	if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg)
2800	    != NVM_ETS_TYPE_EMC)
2801		return E1000_NOT_IMPLEMENTED;
2802
2803	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2804	if (num_sensors > E1000_MAX_SENSORS)
2805		num_sensors = E1000_MAX_SENSORS;
2806
2807	for (i = 1; i < num_sensors; i++) {
2808		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2809		sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor);
2810		sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor);
2811
2812		if (sensor_location != 0)
2813			hw->phy.ops.read_i2c_byte(hw,
2814					e1000_emc_temp_data[sensor_index],
2815					E1000_I2C_THERMAL_SENSOR_ADDR,
2816					&data->sensor[i].temp);
2817	}
2818	return 0;
2819}
2820
2821/**
2822 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2823 *  @hw: pointer to hardware structure
2824 *
2825 *  Sets the thermal sensor thresholds according to the NVM map
2826 *  and save off the threshold and location values into mac.thermal_sensor_data
2827 **/
2828static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2829{
2830	u16 ets_offset;
2831	u16 ets_cfg;
2832	u16 ets_sensor;
2833	u8  low_thresh_delta;
2834	u8  num_sensors;
2835	u8  sensor_index;
2836	u8  sensor_location;
2837	u8  therm_limit;
2838	u8  i;
2839	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2840
2841	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2842		return E1000_NOT_IMPLEMENTED;
2843
2844	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2845
2846	data->sensor[0].location = 0x1;
2847	data->sensor[0].caution_thresh =
2848		(rd32(E1000_THHIGHTC) & 0xFF);
2849	data->sensor[0].max_op_thresh =
2850		(rd32(E1000_THLOWTC) & 0xFF);
2851
2852	/* Return the internal sensor only if ETS is unsupported */
2853	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2854	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2855		return 0;
2856
2857	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2858	if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg)
2859	    != NVM_ETS_TYPE_EMC)
2860		return E1000_NOT_IMPLEMENTED;
2861
2862	low_thresh_delta = FIELD_GET(NVM_ETS_LTHRES_DELTA_MASK, ets_cfg);
2863	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2864
2865	for (i = 1; i <= num_sensors; i++) {
2866		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2867		sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor);
2868		sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor);
2869		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2870
2871		hw->phy.ops.write_i2c_byte(hw,
2872			e1000_emc_therm_limit[sensor_index],
2873			E1000_I2C_THERMAL_SENSOR_ADDR,
2874			therm_limit);
2875
2876		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2877			data->sensor[i].location = sensor_location;
2878			data->sensor[i].caution_thresh = therm_limit;
2879			data->sensor[i].max_op_thresh = therm_limit -
2880							low_thresh_delta;
2881		}
2882	}
2883	return 0;
2884}
2885
2886#endif
2887static struct e1000_mac_operations e1000_mac_ops_82575 = {
2888	.init_hw              = igb_init_hw_82575,
2889	.check_for_link       = igb_check_for_link_82575,
2890	.rar_set              = igb_rar_set,
2891	.read_mac_addr        = igb_read_mac_addr_82575,
2892	.get_speed_and_duplex = igb_get_link_up_info_82575,
2893#ifdef CONFIG_IGB_HWMON
2894	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2895	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2896#endif
2897};
2898
2899static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2900	.acquire              = igb_acquire_phy_82575,
2901	.get_cfg_done         = igb_get_cfg_done_82575,
2902	.release              = igb_release_phy_82575,
2903	.write_i2c_byte       = igb_write_i2c_byte,
2904	.read_i2c_byte        = igb_read_i2c_byte,
2905};
2906
2907static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2908	.acquire              = igb_acquire_nvm_82575,
2909	.read                 = igb_read_nvm_eerd,
2910	.release              = igb_release_nvm_82575,
2911	.write                = igb_write_nvm_spi,
2912};
2913
2914const struct e1000_info e1000_82575_info = {
2915	.get_invariants = igb_get_invariants_82575,
2916	.mac_ops = &e1000_mac_ops_82575,
2917	.phy_ops = &e1000_phy_ops_82575,
2918	.nvm_ops = &e1000_nvm_ops_82575,
2919};
2920
2921