1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2022, Intel Corporation. */
3
4#include "ice_virtchnl.h"
5#include "ice_vf_lib_private.h"
6#include "ice.h"
7#include "ice_base.h"
8#include "ice_lib.h"
9#include "ice_fltr.h"
10#include "ice_virtchnl_allowlist.h"
11#include "ice_vf_vsi_vlan_ops.h"
12#include "ice_vlan.h"
13#include "ice_flex_pipe.h"
14#include "ice_dcb_lib.h"
15
16#define FIELD_SELECTOR(proto_hdr_field) \
17		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19struct ice_vc_hdr_match_type {
20	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22};
23
24static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30					ICE_FLOW_SEG_HDR_IPV_OTHER},
31	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32					ICE_FLOW_SEG_HDR_IPV_OTHER},
33	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40					ICE_FLOW_SEG_HDR_GTPU_DWN},
41	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42					ICE_FLOW_SEG_HDR_GTPU_UP},
43	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47};
48
49struct ice_vc_hash_field_match_type {
50	u32 vc_hdr;		/* virtchnl headers
51				 * (VIRTCHNL_PROTO_HDR_XXX)
52				 */
53	u32 vc_hash_field;	/* virtchnl hash fields selector
54				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55				 */
56	u64 ice_hash_field;	/* ice hash fields
57				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58				 */
59};
60
61static const struct
62ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69		ICE_FLOW_HASH_ETH},
70	{VIRTCHNL_PROTO_HDR_ETH,
71		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73	{VIRTCHNL_PROTO_HDR_S_VLAN,
74		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76	{VIRTCHNL_PROTO_HDR_C_VLAN,
77		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85		ICE_FLOW_HASH_IPV4},
86	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106		ICE_FLOW_HASH_IPV6},
107	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121	{VIRTCHNL_PROTO_HDR_TCP,
122		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124	{VIRTCHNL_PROTO_HDR_TCP,
125		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127	{VIRTCHNL_PROTO_HDR_TCP,
128		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130		ICE_FLOW_HASH_TCP_PORT},
131	{VIRTCHNL_PROTO_HDR_UDP,
132		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134	{VIRTCHNL_PROTO_HDR_UDP,
135		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137	{VIRTCHNL_PROTO_HDR_UDP,
138		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140		ICE_FLOW_HASH_UDP_PORT},
141	{VIRTCHNL_PROTO_HDR_SCTP,
142		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144	{VIRTCHNL_PROTO_HDR_SCTP,
145		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147	{VIRTCHNL_PROTO_HDR_SCTP,
148		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150		ICE_FLOW_HASH_SCTP_PORT},
151	{VIRTCHNL_PROTO_HDR_PPPOE,
152		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157	{VIRTCHNL_PROTO_HDR_L2TPV3,
158		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166};
167
168/**
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
175 */
176static void
177ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179{
180	struct ice_hw *hw = &pf->hw;
181	struct ice_vf *vf;
182	unsigned int bkt;
183
184	mutex_lock(&pf->vfs.table_lock);
185	ice_for_each_vf(pf, bkt, vf) {
186		/* Not all vfs are enabled so skip the ones that are not */
187		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189			continue;
190
191		/* Ignore return value on purpose - a given VF may fail, but
192		 * we need to keep going and send to all of them
193		 */
194		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195				      msglen, NULL);
196	}
197	mutex_unlock(&pf->vfs.table_lock);
198}
199
200/**
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
206 */
207static void
208ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209		 int ice_link_speed, bool link_up)
210{
211	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212		pfe->event_data.link_event_adv.link_status = link_up;
213		/* Speed in Mbps */
214		pfe->event_data.link_event_adv.link_speed =
215			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216	} else {
217		pfe->event_data.link_event.link_status = link_up;
218		/* Legacy method for virtchnl link speeds */
219		pfe->event_data.link_event.link_speed =
220			(enum virtchnl_link_speed)
221			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222	}
223}
224
225/**
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
228 *
229 * send a link status message to a single VF
230 */
231void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232{
233	struct virtchnl_pf_event pfe = { 0 };
234	struct ice_hw *hw = &vf->pf->hw;
235
236	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237	pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239	if (ice_is_vf_link_up(vf))
240		ice_set_pfe_link(vf, &pfe,
241				 hw->port_info->phy.link_info.link_speed, true);
242	else
243		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247			      sizeof(pfe), NULL);
248}
249
250/**
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
253 */
254void ice_vc_notify_link_state(struct ice_pf *pf)
255{
256	struct ice_vf *vf;
257	unsigned int bkt;
258
259	mutex_lock(&pf->vfs.table_lock);
260	ice_for_each_vf(pf, bkt, vf)
261		ice_vc_notify_vf_link_state(vf);
262	mutex_unlock(&pf->vfs.table_lock);
263}
264
265/**
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
268 *
269 * indicate a pending reset to all VFs on a given PF
270 */
271void ice_vc_notify_reset(struct ice_pf *pf)
272{
273	struct virtchnl_pf_event pfe;
274
275	if (!ice_has_vfs(pf))
276		return;
277
278	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282}
283
284/**
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
291 *
292 * send msg to VF
293 */
294int
295ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297{
298	struct device *dev;
299	struct ice_pf *pf;
300	int aq_ret;
301
302	pf = vf->pf;
303	dev = ice_pf_to_dev(pf);
304
305	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306				       msg, msglen, NULL);
307	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309			 vf->vf_id, aq_ret,
310			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311		return -EIO;
312	}
313
314	return 0;
315}
316
317/**
318 * ice_vc_get_ver_msg
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
321 *
322 * called from the VF to request the API version used by the PF
323 */
324static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325{
326	struct virtchnl_version_info info = {
327		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328	};
329
330	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332	if (VF_IS_V10(&vf->vf_ver))
333		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337				     sizeof(struct virtchnl_version_info));
338}
339
340/**
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
343 *
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
348 */
349static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350{
351	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352	u16 max_frame_size;
353
354	max_frame_size = pi->phy.link_info.max_frame_size;
355
356	if (ice_vf_is_port_vlan_ena(vf))
357		max_frame_size -= VLAN_HLEN;
358
359	return max_frame_size;
360}
361
362/**
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
368 *
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
370 */
371static u32
372ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373		     u32 driver_caps)
374{
375	if (ice_is_eswitch_mode_switchdev(vf->pf))
376		/* In switchdev setting VLAN from VF isn't supported */
377		return 0;
378
379	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380		/* VLAN offloads based on current device configuration */
381		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384		 * these two conditions, which amounts to guest VLAN filtering
385		 * and offloads being based on the inner VLAN or the
386		 * inner/single VLAN respectively and don't allow VF to
387		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388		 */
389		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390			return VIRTCHNL_VF_OFFLOAD_VLAN;
391		} else if (!ice_is_dvm_ena(hw) &&
392			   !ice_vf_is_port_vlan_ena(vf)) {
393			/* configure backward compatible support for VFs that
394			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395			 * configured in SVM, and no port VLAN is configured
396			 */
397			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398			return VIRTCHNL_VF_OFFLOAD_VLAN;
399		} else if (ice_is_dvm_ena(hw)) {
400			/* configure software offloaded VLAN support when DVM
401			 * is enabled, but no port VLAN is enabled
402			 */
403			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404		}
405	}
406
407	return 0;
408}
409
410/**
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
414 *
415 * called from the VF to request its resources
416 */
417static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418{
419	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420	struct virtchnl_vf_resource *vfres = NULL;
421	struct ice_hw *hw = &vf->pf->hw;
422	struct ice_vsi *vsi;
423	int len = 0;
424	int ret;
425
426	if (ice_check_vf_init(vf)) {
427		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428		goto err;
429	}
430
431	len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433	vfres = kzalloc(len, GFP_KERNEL);
434	if (!vfres) {
435		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436		len = 0;
437		goto err;
438	}
439	if (VF_IS_V11(&vf->vf_ver))
440		vf->driver_caps = *(u32 *)msg;
441	else
442		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443				  VIRTCHNL_VF_OFFLOAD_VLAN;
444
445	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446	vsi = ice_get_vf_vsi(vf);
447	if (!vsi) {
448		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449		goto err;
450	}
451
452	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453						    vf->driver_caps);
454
455	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457
458	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460
461	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463
464	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
465		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
466
467	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
468		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
469
470	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
471		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
472
473	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
474		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
475
476	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
477		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
478
479	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
480		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
481
482	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
483		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
484
485	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
486		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
487
488	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
489		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
490
491	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
492		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
493
494	vfres->num_vsis = 1;
495	/* Tx and Rx queue are equal for VF */
496	vfres->num_queue_pairs = vsi->num_txq;
497	vfres->max_vectors = vf->num_msix;
498	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
499	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
500	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
501
502	vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
503	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
504	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
505	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
506			vf->hw_lan_addr);
507
508	/* match guest capabilities */
509	vf->driver_caps = vfres->vf_cap_flags;
510
511	ice_vc_set_caps_allowlist(vf);
512	ice_vc_set_working_allowlist(vf);
513
514	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
515
516err:
517	/* send the response back to the VF */
518	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
519				    (u8 *)vfres, len);
520
521	kfree(vfres);
522	return ret;
523}
524
525/**
526 * ice_vc_reset_vf_msg
527 * @vf: pointer to the VF info
528 *
529 * called from the VF to reset itself,
530 * unlike other virtchnl messages, PF driver
531 * doesn't send the response back to the VF
532 */
533static void ice_vc_reset_vf_msg(struct ice_vf *vf)
534{
535	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
536		ice_reset_vf(vf, 0);
537}
538
539/**
540 * ice_vc_isvalid_vsi_id
541 * @vf: pointer to the VF info
542 * @vsi_id: VF relative VSI ID
543 *
544 * check for the valid VSI ID
545 */
546bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
547{
548	return vsi_id == ICE_VF_VSI_ID;
549}
550
551/**
552 * ice_vc_isvalid_q_id
553 * @vsi: VSI to check queue ID against
554 * @qid: VSI relative queue ID
555 *
556 * check for the valid queue ID
557 */
558static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
559{
560	/* allocated Tx and Rx queues should be always equal for VF VSI */
561	return qid < vsi->alloc_txq;
562}
563
564/**
565 * ice_vc_isvalid_ring_len
566 * @ring_len: length of ring
567 *
568 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
569 * or zero
570 */
571static bool ice_vc_isvalid_ring_len(u16 ring_len)
572{
573	return ring_len == 0 ||
574	       (ring_len >= ICE_MIN_NUM_DESC &&
575		ring_len <= ICE_MAX_NUM_DESC &&
576		!(ring_len % ICE_REQ_DESC_MULTIPLE));
577}
578
579/**
580 * ice_vc_validate_pattern
581 * @vf: pointer to the VF info
582 * @proto: virtchnl protocol headers
583 *
584 * validate the pattern is supported or not.
585 *
586 * Return: true on success, false on error.
587 */
588bool
589ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
590{
591	bool is_ipv4 = false;
592	bool is_ipv6 = false;
593	bool is_udp = false;
594	u16 ptype = -1;
595	int i = 0;
596
597	while (i < proto->count &&
598	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
599		switch (proto->proto_hdr[i].type) {
600		case VIRTCHNL_PROTO_HDR_ETH:
601			ptype = ICE_PTYPE_MAC_PAY;
602			break;
603		case VIRTCHNL_PROTO_HDR_IPV4:
604			ptype = ICE_PTYPE_IPV4_PAY;
605			is_ipv4 = true;
606			break;
607		case VIRTCHNL_PROTO_HDR_IPV6:
608			ptype = ICE_PTYPE_IPV6_PAY;
609			is_ipv6 = true;
610			break;
611		case VIRTCHNL_PROTO_HDR_UDP:
612			if (is_ipv4)
613				ptype = ICE_PTYPE_IPV4_UDP_PAY;
614			else if (is_ipv6)
615				ptype = ICE_PTYPE_IPV6_UDP_PAY;
616			is_udp = true;
617			break;
618		case VIRTCHNL_PROTO_HDR_TCP:
619			if (is_ipv4)
620				ptype = ICE_PTYPE_IPV4_TCP_PAY;
621			else if (is_ipv6)
622				ptype = ICE_PTYPE_IPV6_TCP_PAY;
623			break;
624		case VIRTCHNL_PROTO_HDR_SCTP:
625			if (is_ipv4)
626				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
627			else if (is_ipv6)
628				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
629			break;
630		case VIRTCHNL_PROTO_HDR_GTPU_IP:
631		case VIRTCHNL_PROTO_HDR_GTPU_EH:
632			if (is_ipv4)
633				ptype = ICE_MAC_IPV4_GTPU;
634			else if (is_ipv6)
635				ptype = ICE_MAC_IPV6_GTPU;
636			goto out;
637		case VIRTCHNL_PROTO_HDR_L2TPV3:
638			if (is_ipv4)
639				ptype = ICE_MAC_IPV4_L2TPV3;
640			else if (is_ipv6)
641				ptype = ICE_MAC_IPV6_L2TPV3;
642			goto out;
643		case VIRTCHNL_PROTO_HDR_ESP:
644			if (is_ipv4)
645				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
646						ICE_MAC_IPV4_ESP;
647			else if (is_ipv6)
648				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
649						ICE_MAC_IPV6_ESP;
650			goto out;
651		case VIRTCHNL_PROTO_HDR_AH:
652			if (is_ipv4)
653				ptype = ICE_MAC_IPV4_AH;
654			else if (is_ipv6)
655				ptype = ICE_MAC_IPV6_AH;
656			goto out;
657		case VIRTCHNL_PROTO_HDR_PFCP:
658			if (is_ipv4)
659				ptype = ICE_MAC_IPV4_PFCP_SESSION;
660			else if (is_ipv6)
661				ptype = ICE_MAC_IPV6_PFCP_SESSION;
662			goto out;
663		default:
664			break;
665		}
666		i++;
667	}
668
669out:
670	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
671}
672
673/**
674 * ice_vc_parse_rss_cfg - parses hash fields and headers from
675 * a specific virtchnl RSS cfg
676 * @hw: pointer to the hardware
677 * @rss_cfg: pointer to the virtchnl RSS cfg
678 * @hash_cfg: pointer to the HW hash configuration
679 *
680 * Return true if all the protocol header and hash fields in the RSS cfg could
681 * be parsed, else return false
682 *
683 * This function parses the virtchnl RSS cfg to be the intended
684 * hash fields and the intended header for RSS configuration
685 */
686static bool ice_vc_parse_rss_cfg(struct ice_hw *hw,
687				 struct virtchnl_rss_cfg *rss_cfg,
688				 struct ice_rss_hash_cfg *hash_cfg)
689{
690	const struct ice_vc_hash_field_match_type *hf_list;
691	const struct ice_vc_hdr_match_type *hdr_list;
692	int i, hf_list_len, hdr_list_len;
693	u32 *addl_hdrs = &hash_cfg->addl_hdrs;
694	u64 *hash_flds = &hash_cfg->hash_flds;
695
696	/* set outer layer RSS as default */
697	hash_cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
698
699	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
700		hash_cfg->symm = true;
701	else
702		hash_cfg->symm = false;
703
704	hf_list = ice_vc_hash_field_list;
705	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
706	hdr_list = ice_vc_hdr_list;
707	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
708
709	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
710		struct virtchnl_proto_hdr *proto_hdr =
711					&rss_cfg->proto_hdrs.proto_hdr[i];
712		bool hdr_found = false;
713		int j;
714
715		/* Find matched ice headers according to virtchnl headers. */
716		for (j = 0; j < hdr_list_len; j++) {
717			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
718
719			if (proto_hdr->type == hdr_map.vc_hdr) {
720				*addl_hdrs |= hdr_map.ice_hdr;
721				hdr_found = true;
722			}
723		}
724
725		if (!hdr_found)
726			return false;
727
728		/* Find matched ice hash fields according to
729		 * virtchnl hash fields.
730		 */
731		for (j = 0; j < hf_list_len; j++) {
732			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
733
734			if (proto_hdr->type == hf_map.vc_hdr &&
735			    proto_hdr->field_selector == hf_map.vc_hash_field) {
736				*hash_flds |= hf_map.ice_hash_field;
737				break;
738			}
739		}
740	}
741
742	return true;
743}
744
745/**
746 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
747 * RSS offloads
748 * @caps: VF driver negotiated capabilities
749 *
750 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
751 * else return false
752 */
753static bool ice_vf_adv_rss_offload_ena(u32 caps)
754{
755	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
756}
757
758/**
759 * ice_vc_handle_rss_cfg
760 * @vf: pointer to the VF info
761 * @msg: pointer to the message buffer
762 * @add: add a RSS config if true, otherwise delete a RSS config
763 *
764 * This function adds/deletes a RSS config
765 */
766static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
767{
768	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
769	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
770	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
771	struct device *dev = ice_pf_to_dev(vf->pf);
772	struct ice_hw *hw = &vf->pf->hw;
773	struct ice_vsi *vsi;
774
775	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
776		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
777			vf->vf_id);
778		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
779		goto error_param;
780	}
781
782	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
783		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
784			vf->vf_id);
785		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
786		goto error_param;
787	}
788
789	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
790		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
791		goto error_param;
792	}
793
794	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
795	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
796	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
797		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
798			vf->vf_id);
799		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
800		goto error_param;
801	}
802
803	vsi = ice_get_vf_vsi(vf);
804	if (!vsi) {
805		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
806		goto error_param;
807	}
808
809	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
810		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
811		goto error_param;
812	}
813
814	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
815		struct ice_vsi_ctx *ctx;
816		u8 lut_type, hash_type;
817		int status;
818
819		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
820		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
821				ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
822
823		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
824		if (!ctx) {
825			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
826			goto error_param;
827		}
828
829		ctx->info.q_opt_rss =
830			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
831			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
832
833		/* Preserve existing queueing option setting */
834		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
835					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
836		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
837		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
838
839		ctx->info.valid_sections =
840				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
841
842		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
843		if (status) {
844			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
845				status, ice_aq_str(hw->adminq.sq_last_status));
846			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
847		} else {
848			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
849		}
850
851		kfree(ctx);
852	} else {
853		struct ice_rss_hash_cfg cfg;
854
855		/* Only check for none raw pattern case */
856		if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
857			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
858			goto error_param;
859		}
860		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
861		cfg.hash_flds = ICE_HASH_INVALID;
862		cfg.hdr_type = ICE_RSS_ANY_HEADERS;
863
864		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &cfg)) {
865			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
866			goto error_param;
867		}
868
869		if (add) {
870			if (ice_add_rss_cfg(hw, vsi, &cfg)) {
871				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
872				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
873					vsi->vsi_num, v_ret);
874			}
875		} else {
876			int status;
877
878			status = ice_rem_rss_cfg(hw, vsi->idx, &cfg);
879			/* We just ignore -ENOENT, because if two configurations
880			 * share the same profile remove one of them actually
881			 * removes both, since the profile is deleted.
882			 */
883			if (status && status != -ENOENT) {
884				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
885				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
886					vf->vf_id, status);
887			}
888		}
889	}
890
891error_param:
892	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
893}
894
895/**
896 * ice_vc_config_rss_key
897 * @vf: pointer to the VF info
898 * @msg: pointer to the msg buffer
899 *
900 * Configure the VF's RSS key
901 */
902static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
903{
904	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
905	struct virtchnl_rss_key *vrk =
906		(struct virtchnl_rss_key *)msg;
907	struct ice_vsi *vsi;
908
909	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
910		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
911		goto error_param;
912	}
913
914	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
915		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
916		goto error_param;
917	}
918
919	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
920		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
921		goto error_param;
922	}
923
924	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
925		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
926		goto error_param;
927	}
928
929	vsi = ice_get_vf_vsi(vf);
930	if (!vsi) {
931		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
932		goto error_param;
933	}
934
935	if (ice_set_rss_key(vsi, vrk->key))
936		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
937error_param:
938	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
939				     NULL, 0);
940}
941
942/**
943 * ice_vc_config_rss_lut
944 * @vf: pointer to the VF info
945 * @msg: pointer to the msg buffer
946 *
947 * Configure the VF's RSS LUT
948 */
949static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
950{
951	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
952	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
953	struct ice_vsi *vsi;
954
955	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
956		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
957		goto error_param;
958	}
959
960	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
961		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
962		goto error_param;
963	}
964
965	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
966		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
967		goto error_param;
968	}
969
970	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
971		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
972		goto error_param;
973	}
974
975	vsi = ice_get_vf_vsi(vf);
976	if (!vsi) {
977		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
978		goto error_param;
979	}
980
981	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
982		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
983error_param:
984	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
985				     NULL, 0);
986}
987
988/**
989 * ice_vc_config_rss_hfunc
990 * @vf: pointer to the VF info
991 * @msg: pointer to the msg buffer
992 *
993 * Configure the VF's RSS Hash function
994 */
995static int ice_vc_config_rss_hfunc(struct ice_vf *vf, u8 *msg)
996{
997	struct virtchnl_rss_hfunc *vrh = (struct virtchnl_rss_hfunc *)msg;
998	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
999	u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1000	struct ice_vsi *vsi;
1001
1002	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1003		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1004		goto error_param;
1005	}
1006
1007	if (!ice_vc_isvalid_vsi_id(vf, vrh->vsi_id)) {
1008		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1009		goto error_param;
1010	}
1011
1012	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1013		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1014		goto error_param;
1015	}
1016
1017	vsi = ice_get_vf_vsi(vf);
1018	if (!vsi) {
1019		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1020		goto error_param;
1021	}
1022
1023	if (vrh->rss_algorithm == VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC)
1024		hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
1025
1026	if (ice_set_rss_hfunc(vsi, hfunc))
1027		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1028error_param:
1029	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_HFUNC, v_ret,
1030				     NULL, 0);
1031}
1032
1033/**
1034 * ice_vc_cfg_promiscuous_mode_msg
1035 * @vf: pointer to the VF info
1036 * @msg: pointer to the msg buffer
1037 *
1038 * called from the VF to configure VF VSIs promiscuous mode
1039 */
1040static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
1041{
1042	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1043	bool rm_promisc, alluni = false, allmulti = false;
1044	struct virtchnl_promisc_info *info =
1045	    (struct virtchnl_promisc_info *)msg;
1046	struct ice_vsi_vlan_ops *vlan_ops;
1047	int mcast_err = 0, ucast_err = 0;
1048	struct ice_pf *pf = vf->pf;
1049	struct ice_vsi *vsi;
1050	u8 mcast_m, ucast_m;
1051	struct device *dev;
1052	int ret = 0;
1053
1054	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1055		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1056		goto error_param;
1057	}
1058
1059	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1060		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1061		goto error_param;
1062	}
1063
1064	vsi = ice_get_vf_vsi(vf);
1065	if (!vsi) {
1066		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1067		goto error_param;
1068	}
1069
1070	dev = ice_pf_to_dev(pf);
1071	if (!ice_is_vf_trusted(vf)) {
1072		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1073			vf->vf_id);
1074		/* Leave v_ret alone, lie to the VF on purpose. */
1075		goto error_param;
1076	}
1077
1078	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1079		alluni = true;
1080
1081	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1082		allmulti = true;
1083
1084	rm_promisc = !allmulti && !alluni;
1085
1086	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1087	if (rm_promisc)
1088		ret = vlan_ops->ena_rx_filtering(vsi);
1089	else
1090		ret = vlan_ops->dis_rx_filtering(vsi);
1091	if (ret) {
1092		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1093		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1094		goto error_param;
1095	}
1096
1097	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1098
1099	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1100		if (alluni) {
1101			/* in this case we're turning on promiscuous mode */
1102			ret = ice_set_dflt_vsi(vsi);
1103		} else {
1104			/* in this case we're turning off promiscuous mode */
1105			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1106				ret = ice_clear_dflt_vsi(vsi);
1107		}
1108
1109		/* in this case we're turning on/off only
1110		 * allmulticast
1111		 */
1112		if (allmulti)
1113			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1114		else
1115			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1116
1117		if (ret) {
1118			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1119				vf->vf_id, ret);
1120			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1121			goto error_param;
1122		}
1123	} else {
1124		if (alluni)
1125			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1126		else
1127			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1128
1129		if (allmulti)
1130			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1131		else
1132			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1133
1134		if (ucast_err || mcast_err)
1135			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1136	}
1137
1138	if (!mcast_err) {
1139		if (allmulti &&
1140		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1141			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1142				 vf->vf_id);
1143		else if (!allmulti &&
1144			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1145					    vf->vf_states))
1146			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1147				 vf->vf_id);
1148	} else {
1149		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1150			vf->vf_id, mcast_err);
1151	}
1152
1153	if (!ucast_err) {
1154		if (alluni &&
1155		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1156			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1157				 vf->vf_id);
1158		else if (!alluni &&
1159			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1160					    vf->vf_states))
1161			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1162				 vf->vf_id);
1163	} else {
1164		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1165			vf->vf_id, ucast_err);
1166	}
1167
1168error_param:
1169	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1170				     v_ret, NULL, 0);
1171}
1172
1173/**
1174 * ice_vc_get_stats_msg
1175 * @vf: pointer to the VF info
1176 * @msg: pointer to the msg buffer
1177 *
1178 * called from the VF to get VSI stats
1179 */
1180static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1181{
1182	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1183	struct virtchnl_queue_select *vqs =
1184		(struct virtchnl_queue_select *)msg;
1185	struct ice_eth_stats stats = { 0 };
1186	struct ice_vsi *vsi;
1187
1188	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1189		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1190		goto error_param;
1191	}
1192
1193	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1194		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1195		goto error_param;
1196	}
1197
1198	vsi = ice_get_vf_vsi(vf);
1199	if (!vsi) {
1200		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1201		goto error_param;
1202	}
1203
1204	ice_update_eth_stats(vsi);
1205
1206	stats = vsi->eth_stats;
1207
1208error_param:
1209	/* send the response to the VF */
1210	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1211				     (u8 *)&stats, sizeof(stats));
1212}
1213
1214/**
1215 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1216 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1217 *
1218 * Return true on successful validation, else false
1219 */
1220static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1221{
1222	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1223	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1224	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1225		return false;
1226
1227	return true;
1228}
1229
1230/**
1231 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1232 * @vsi: VSI of the VF to configure
1233 * @q_idx: VF queue index used to determine the queue in the PF's space
1234 */
1235static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1236{
1237	struct ice_hw *hw = &vsi->back->hw;
1238	u32 pfq = vsi->txq_map[q_idx];
1239	u32 reg;
1240
1241	reg = rd32(hw, QINT_TQCTL(pfq));
1242
1243	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1244	 * this is most likely a poll mode VF driver, so don't enable an
1245	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1246	 */
1247	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1248		return;
1249
1250	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1251}
1252
1253/**
1254 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1255 * @vsi: VSI of the VF to configure
1256 * @q_idx: VF queue index used to determine the queue in the PF's space
1257 */
1258static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1259{
1260	struct ice_hw *hw = &vsi->back->hw;
1261	u32 pfq = vsi->rxq_map[q_idx];
1262	u32 reg;
1263
1264	reg = rd32(hw, QINT_RQCTL(pfq));
1265
1266	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1267	 * this is most likely a poll mode VF driver, so don't enable an
1268	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1269	 */
1270	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1271		return;
1272
1273	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1274}
1275
1276/**
1277 * ice_vc_ena_qs_msg
1278 * @vf: pointer to the VF info
1279 * @msg: pointer to the msg buffer
1280 *
1281 * called from the VF to enable all or specific queue(s)
1282 */
1283static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1284{
1285	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1286	struct virtchnl_queue_select *vqs =
1287	    (struct virtchnl_queue_select *)msg;
1288	struct ice_vsi *vsi;
1289	unsigned long q_map;
1290	u16 vf_q_id;
1291
1292	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1293		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1294		goto error_param;
1295	}
1296
1297	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1298		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1299		goto error_param;
1300	}
1301
1302	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1303		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1304		goto error_param;
1305	}
1306
1307	vsi = ice_get_vf_vsi(vf);
1308	if (!vsi) {
1309		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1310		goto error_param;
1311	}
1312
1313	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1314	 * Tx queue group list was configured and the context bits were
1315	 * programmed using ice_vsi_cfg_txqs
1316	 */
1317	q_map = vqs->rx_queues;
1318	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1319		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1320			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1321			goto error_param;
1322		}
1323
1324		/* Skip queue if enabled */
1325		if (test_bit(vf_q_id, vf->rxq_ena))
1326			continue;
1327
1328		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1329			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1330				vf_q_id, vsi->vsi_num);
1331			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1332			goto error_param;
1333		}
1334
1335		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1336		set_bit(vf_q_id, vf->rxq_ena);
1337	}
1338
1339	q_map = vqs->tx_queues;
1340	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1341		if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1342			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1343			goto error_param;
1344		}
1345
1346		/* Skip queue if enabled */
1347		if (test_bit(vf_q_id, vf->txq_ena))
1348			continue;
1349
1350		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1351		set_bit(vf_q_id, vf->txq_ena);
1352	}
1353
1354	/* Set flag to indicate that queues are enabled */
1355	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1356		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1357
1358error_param:
1359	/* send the response to the VF */
1360	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1361				     NULL, 0);
1362}
1363
1364/**
1365 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1366 * @vf: VF to disable queue for
1367 * @vsi: VSI for the VF
1368 * @q_id: VF relative (0-based) queue ID
1369 *
1370 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1371 * disabled then clear q_id bit in the enabled queues bitmap and return
1372 * success. Otherwise return error.
1373 */
1374static int
1375ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1376{
1377	struct ice_txq_meta txq_meta = { 0 };
1378	struct ice_tx_ring *ring;
1379	int err;
1380
1381	if (!test_bit(q_id, vf->txq_ena))
1382		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1383			q_id, vsi->vsi_num);
1384
1385	ring = vsi->tx_rings[q_id];
1386	if (!ring)
1387		return -EINVAL;
1388
1389	ice_fill_txq_meta(vsi, ring, &txq_meta);
1390
1391	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1392	if (err) {
1393		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1394			q_id, vsi->vsi_num);
1395		return err;
1396	}
1397
1398	/* Clear enabled queues flag */
1399	clear_bit(q_id, vf->txq_ena);
1400
1401	return 0;
1402}
1403
1404/**
1405 * ice_vc_dis_qs_msg
1406 * @vf: pointer to the VF info
1407 * @msg: pointer to the msg buffer
1408 *
1409 * called from the VF to disable all or specific queue(s)
1410 */
1411static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1412{
1413	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1414	struct virtchnl_queue_select *vqs =
1415	    (struct virtchnl_queue_select *)msg;
1416	struct ice_vsi *vsi;
1417	unsigned long q_map;
1418	u16 vf_q_id;
1419
1420	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1421	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1422		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1423		goto error_param;
1424	}
1425
1426	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1427		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1428		goto error_param;
1429	}
1430
1431	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1432		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1433		goto error_param;
1434	}
1435
1436	vsi = ice_get_vf_vsi(vf);
1437	if (!vsi) {
1438		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1439		goto error_param;
1440	}
1441
1442	if (vqs->tx_queues) {
1443		q_map = vqs->tx_queues;
1444
1445		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1446			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1447				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1448				goto error_param;
1449			}
1450
1451			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1452				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1453				goto error_param;
1454			}
1455		}
1456	}
1457
1458	q_map = vqs->rx_queues;
1459	/* speed up Rx queue disable by batching them if possible */
1460	if (q_map &&
1461	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1462		if (ice_vsi_stop_all_rx_rings(vsi)) {
1463			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1464				vsi->vsi_num);
1465			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1466			goto error_param;
1467		}
1468
1469		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1470	} else if (q_map) {
1471		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1472			if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1473				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1474				goto error_param;
1475			}
1476
1477			/* Skip queue if not enabled */
1478			if (!test_bit(vf_q_id, vf->rxq_ena))
1479				continue;
1480
1481			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1482						     true)) {
1483				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1484					vf_q_id, vsi->vsi_num);
1485				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1486				goto error_param;
1487			}
1488
1489			/* Clear enabled queues flag */
1490			clear_bit(vf_q_id, vf->rxq_ena);
1491		}
1492	}
1493
1494	/* Clear enabled queues flag */
1495	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1496		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1497
1498error_param:
1499	/* send the response to the VF */
1500	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1501				     NULL, 0);
1502}
1503
1504/**
1505 * ice_cfg_interrupt
1506 * @vf: pointer to the VF info
1507 * @vsi: the VSI being configured
1508 * @vector_id: vector ID
1509 * @map: vector map for mapping vectors to queues
1510 * @q_vector: structure for interrupt vector
1511 * configure the IRQ to queue map
1512 */
1513static int
1514ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1515		  struct virtchnl_vector_map *map,
1516		  struct ice_q_vector *q_vector)
1517{
1518	u16 vsi_q_id, vsi_q_id_idx;
1519	unsigned long qmap;
1520
1521	q_vector->num_ring_rx = 0;
1522	q_vector->num_ring_tx = 0;
1523
1524	qmap = map->rxq_map;
1525	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1526		vsi_q_id = vsi_q_id_idx;
1527
1528		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1529			return VIRTCHNL_STATUS_ERR_PARAM;
1530
1531		q_vector->num_ring_rx++;
1532		q_vector->rx.itr_idx = map->rxitr_idx;
1533		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1534		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1535				      q_vector->rx.itr_idx);
1536	}
1537
1538	qmap = map->txq_map;
1539	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1540		vsi_q_id = vsi_q_id_idx;
1541
1542		if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1543			return VIRTCHNL_STATUS_ERR_PARAM;
1544
1545		q_vector->num_ring_tx++;
1546		q_vector->tx.itr_idx = map->txitr_idx;
1547		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1548		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1549				      q_vector->tx.itr_idx);
1550	}
1551
1552	return VIRTCHNL_STATUS_SUCCESS;
1553}
1554
1555/**
1556 * ice_vc_cfg_irq_map_msg
1557 * @vf: pointer to the VF info
1558 * @msg: pointer to the msg buffer
1559 *
1560 * called from the VF to configure the IRQ to queue map
1561 */
1562static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1563{
1564	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1565	u16 num_q_vectors_mapped, vsi_id, vector_id;
1566	struct virtchnl_irq_map_info *irqmap_info;
1567	struct virtchnl_vector_map *map;
1568	struct ice_vsi *vsi;
1569	int i;
1570
1571	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1572	num_q_vectors_mapped = irqmap_info->num_vectors;
1573
1574	/* Check to make sure number of VF vectors mapped is not greater than
1575	 * number of VF vectors originally allocated, and check that
1576	 * there is actually at least a single VF queue vector mapped
1577	 */
1578	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1579	    vf->num_msix < num_q_vectors_mapped ||
1580	    !num_q_vectors_mapped) {
1581		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1582		goto error_param;
1583	}
1584
1585	vsi = ice_get_vf_vsi(vf);
1586	if (!vsi) {
1587		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1588		goto error_param;
1589	}
1590
1591	for (i = 0; i < num_q_vectors_mapped; i++) {
1592		struct ice_q_vector *q_vector;
1593
1594		map = &irqmap_info->vecmap[i];
1595
1596		vector_id = map->vector_id;
1597		vsi_id = map->vsi_id;
1598		/* vector_id is always 0-based for each VF, and can never be
1599		 * larger than or equal to the max allowed interrupts per VF
1600		 */
1601		if (!(vector_id < vf->num_msix) ||
1602		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1603		    (!vector_id && (map->rxq_map || map->txq_map))) {
1604			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1605			goto error_param;
1606		}
1607
1608		/* No need to map VF miscellaneous or rogue vector */
1609		if (!vector_id)
1610			continue;
1611
1612		/* Subtract non queue vector from vector_id passed by VF
1613		 * to get actual number of VSI queue vector array index
1614		 */
1615		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1616		if (!q_vector) {
1617			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1618			goto error_param;
1619		}
1620
1621		/* lookout for the invalid queue index */
1622		v_ret = (enum virtchnl_status_code)
1623			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1624		if (v_ret)
1625			goto error_param;
1626	}
1627
1628error_param:
1629	/* send the response to the VF */
1630	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1631				     NULL, 0);
1632}
1633
1634/**
1635 * ice_vc_cfg_qs_msg
1636 * @vf: pointer to the VF info
1637 * @msg: pointer to the msg buffer
1638 *
1639 * called from the VF to configure the Rx/Tx queues
1640 */
1641static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1642{
1643	struct virtchnl_vsi_queue_config_info *qci =
1644	    (struct virtchnl_vsi_queue_config_info *)msg;
1645	struct virtchnl_queue_pair_info *qpi;
1646	struct ice_pf *pf = vf->pf;
1647	struct ice_lag *lag;
1648	struct ice_vsi *vsi;
1649	u8 act_prt, pri_prt;
1650	int i = -1, q_idx;
1651
1652	lag = pf->lag;
1653	mutex_lock(&pf->lag_mutex);
1654	act_prt = ICE_LAG_INVALID_PORT;
1655	pri_prt = pf->hw.port_info->lport;
1656	if (lag && lag->bonded && lag->primary) {
1657		act_prt = lag->active_port;
1658		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1659		    lag->upper_netdev)
1660			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1661		else
1662			act_prt = ICE_LAG_INVALID_PORT;
1663	}
1664
1665	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1666		goto error_param;
1667
1668	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1669		goto error_param;
1670
1671	vsi = ice_get_vf_vsi(vf);
1672	if (!vsi)
1673		goto error_param;
1674
1675	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1676	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1677		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1678			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1679		goto error_param;
1680	}
1681
1682	for (i = 0; i < qci->num_queue_pairs; i++) {
1683		if (!qci->qpair[i].rxq.crc_disable)
1684			continue;
1685
1686		if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) ||
1687		    vf->vlan_strip_ena)
1688			goto error_param;
1689	}
1690
1691	for (i = 0; i < qci->num_queue_pairs; i++) {
1692		qpi = &qci->qpair[i];
1693		if (qpi->txq.vsi_id != qci->vsi_id ||
1694		    qpi->rxq.vsi_id != qci->vsi_id ||
1695		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1696		    qpi->txq.headwb_enabled ||
1697		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1698		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1699		    !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
1700			goto error_param;
1701		}
1702
1703		q_idx = qpi->rxq.queue_id;
1704
1705		/* make sure selected "q_idx" is in valid range of queues
1706		 * for selected "vsi"
1707		 */
1708		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1709			goto error_param;
1710		}
1711
1712		/* copy Tx queue info from VF into VSI */
1713		if (qpi->txq.ring_len > 0) {
1714			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1715			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1716
1717			/* Disable any existing queue first */
1718			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1719				goto error_param;
1720
1721			/* Configure a queue with the requested settings */
1722			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1723				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1724					 vf->vf_id, i);
1725				goto error_param;
1726			}
1727		}
1728
1729		/* copy Rx queue info from VF into VSI */
1730		if (qpi->rxq.ring_len > 0) {
1731			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1732			u32 rxdid;
1733
1734			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1735			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1736
1737			if (qpi->rxq.crc_disable)
1738				vsi->rx_rings[q_idx]->flags |=
1739					ICE_RX_FLAGS_CRC_STRIP_DIS;
1740			else
1741				vsi->rx_rings[q_idx]->flags &=
1742					~ICE_RX_FLAGS_CRC_STRIP_DIS;
1743
1744			if (qpi->rxq.databuffer_size != 0 &&
1745			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1746			     qpi->rxq.databuffer_size < 1024))
1747				goto error_param;
1748			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1749			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1750			if (qpi->rxq.max_pkt_size > max_frame_size ||
1751			    qpi->rxq.max_pkt_size < 64)
1752				goto error_param;
1753
1754			vsi->max_frame = qpi->rxq.max_pkt_size;
1755			/* add space for the port VLAN since the VF driver is
1756			 * not expected to account for it in the MTU
1757			 * calculation
1758			 */
1759			if (ice_vf_is_port_vlan_ena(vf))
1760				vsi->max_frame += VLAN_HLEN;
1761
1762			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1763				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1764					 vf->vf_id, i);
1765				goto error_param;
1766			}
1767
1768			/* If Rx flex desc is supported, select RXDID for Rx
1769			 * queues. Otherwise, use legacy 32byte descriptor
1770			 * format. Legacy 16byte descriptor is not supported.
1771			 * If this RXDID is selected, return error.
1772			 */
1773			if (vf->driver_caps &
1774			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1775				rxdid = qpi->rxq.rxdid;
1776				if (!(BIT(rxdid) & pf->supported_rxdids))
1777					goto error_param;
1778			} else {
1779				rxdid = ICE_RXDID_LEGACY_1;
1780			}
1781
1782			ice_write_qrxflxp_cntxt(&vsi->back->hw,
1783						vsi->rxq_map[q_idx],
1784						rxdid, 0x03, false);
1785		}
1786	}
1787
1788	if (lag && lag->bonded && lag->primary &&
1789	    act_prt != ICE_LAG_INVALID_PORT)
1790		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1791	mutex_unlock(&pf->lag_mutex);
1792
1793	/* send the response to the VF */
1794	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1795				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1796error_param:
1797	/* disable whatever we can */
1798	for (; i >= 0; i--) {
1799		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1800			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1801				vf->vf_id, i);
1802		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1803			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1804				vf->vf_id, i);
1805	}
1806
1807	if (lag && lag->bonded && lag->primary &&
1808	    act_prt != ICE_LAG_INVALID_PORT)
1809		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1810	mutex_unlock(&pf->lag_mutex);
1811
1812	ice_lag_move_new_vf_nodes(vf);
1813
1814	/* send the response to the VF */
1815	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1816				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1817}
1818
1819/**
1820 * ice_can_vf_change_mac
1821 * @vf: pointer to the VF info
1822 *
1823 * Return true if the VF is allowed to change its MAC filters, false otherwise
1824 */
1825static bool ice_can_vf_change_mac(struct ice_vf *vf)
1826{
1827	/* If the VF MAC address has been set administratively (via the
1828	 * ndo_set_vf_mac command), then deny permission to the VF to
1829	 * add/delete unicast MAC addresses, unless the VF is trusted
1830	 */
1831	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1832		return false;
1833
1834	return true;
1835}
1836
1837/**
1838 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1839 * @vc_ether_addr: used to extract the type
1840 */
1841static u8
1842ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1843{
1844	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1845}
1846
1847/**
1848 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1849 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1850 */
1851static bool
1852ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1853{
1854	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1855
1856	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1857}
1858
1859/**
1860 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1861 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1862 *
1863 * This function should only be called when the MAC address in
1864 * virtchnl_ether_addr is a valid unicast MAC
1865 */
1866static bool
1867ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1868{
1869	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1870
1871	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1872}
1873
1874/**
1875 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1876 * @vf: VF to update
1877 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1878 */
1879static void
1880ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1881{
1882	u8 *mac_addr = vc_ether_addr->addr;
1883
1884	if (!is_valid_ether_addr(mac_addr))
1885		return;
1886
1887	/* only allow legacy VF drivers to set the device and hardware MAC if it
1888	 * is zero and allow new VF drivers to set the hardware MAC if the type
1889	 * was correctly specified over VIRTCHNL
1890	 */
1891	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1892	     is_zero_ether_addr(vf->hw_lan_addr)) ||
1893	    ice_is_vc_addr_primary(vc_ether_addr)) {
1894		ether_addr_copy(vf->dev_lan_addr, mac_addr);
1895		ether_addr_copy(vf->hw_lan_addr, mac_addr);
1896	}
1897
1898	/* hardware and device MACs are already set, but its possible that the
1899	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1900	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1901	 * away for the legacy VF driver case as it will be updated in the
1902	 * delete flow for this case
1903	 */
1904	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1905		ether_addr_copy(vf->legacy_last_added_umac.addr,
1906				mac_addr);
1907		vf->legacy_last_added_umac.time_modified = jiffies;
1908	}
1909}
1910
1911/**
1912 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1913 * @vf: pointer to the VF info
1914 * @vsi: pointer to the VF's VSI
1915 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1916 */
1917static int
1918ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1919		    struct virtchnl_ether_addr *vc_ether_addr)
1920{
1921	struct device *dev = ice_pf_to_dev(vf->pf);
1922	u8 *mac_addr = vc_ether_addr->addr;
1923	int ret;
1924
1925	/* device MAC already added */
1926	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1927		return 0;
1928
1929	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1930		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1931		return -EPERM;
1932	}
1933
1934	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1935	if (ret == -EEXIST) {
1936		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1937			vf->vf_id);
1938		/* don't return since we might need to update
1939		 * the primary MAC in ice_vfhw_mac_add() below
1940		 */
1941	} else if (ret) {
1942		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1943			mac_addr, vf->vf_id, ret);
1944		return ret;
1945	} else {
1946		vf->num_mac++;
1947	}
1948
1949	ice_vfhw_mac_add(vf, vc_ether_addr);
1950
1951	return ret;
1952}
1953
1954/**
1955 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1956 * @last_added_umac: structure used to check expiration
1957 */
1958static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1959{
1960#define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1961	return time_is_before_jiffies(last_added_umac->time_modified +
1962				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1963}
1964
1965/**
1966 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1967 * @vf: VF to update
1968 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1969 *
1970 * only update cached hardware MAC for legacy VF drivers on delete
1971 * because we cannot guarantee order/type of MAC from the VF driver
1972 */
1973static void
1974ice_update_legacy_cached_mac(struct ice_vf *vf,
1975			     struct virtchnl_ether_addr *vc_ether_addr)
1976{
1977	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1978	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1979		return;
1980
1981	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1982	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1983}
1984
1985/**
1986 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1987 * @vf: VF to update
1988 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1989 */
1990static void
1991ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1992{
1993	u8 *mac_addr = vc_ether_addr->addr;
1994
1995	if (!is_valid_ether_addr(mac_addr) ||
1996	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1997		return;
1998
1999	/* allow the device MAC to be repopulated in the add flow and don't
2000	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
2001	 * to be persistent on VM reboot and across driver unload/load, which
2002	 * won't work if we clear the hardware MAC here
2003	 */
2004	eth_zero_addr(vf->dev_lan_addr);
2005
2006	ice_update_legacy_cached_mac(vf, vc_ether_addr);
2007}
2008
2009/**
2010 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
2011 * @vf: pointer to the VF info
2012 * @vsi: pointer to the VF's VSI
2013 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
2014 */
2015static int
2016ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
2017		    struct virtchnl_ether_addr *vc_ether_addr)
2018{
2019	struct device *dev = ice_pf_to_dev(vf->pf);
2020	u8 *mac_addr = vc_ether_addr->addr;
2021	int status;
2022
2023	if (!ice_can_vf_change_mac(vf) &&
2024	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
2025		return 0;
2026
2027	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
2028	if (status == -ENOENT) {
2029		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
2030			vf->vf_id);
2031		return -ENOENT;
2032	} else if (status) {
2033		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
2034			mac_addr, vf->vf_id, status);
2035		return -EIO;
2036	}
2037
2038	ice_vfhw_mac_del(vf, vc_ether_addr);
2039
2040	vf->num_mac--;
2041
2042	return 0;
2043}
2044
2045/**
2046 * ice_vc_handle_mac_addr_msg
2047 * @vf: pointer to the VF info
2048 * @msg: pointer to the msg buffer
2049 * @set: true if MAC filters are being set, false otherwise
2050 *
2051 * add guest MAC address filter
2052 */
2053static int
2054ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
2055{
2056	int (*ice_vc_cfg_mac)
2057		(struct ice_vf *vf, struct ice_vsi *vsi,
2058		 struct virtchnl_ether_addr *virtchnl_ether_addr);
2059	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2060	struct virtchnl_ether_addr_list *al =
2061	    (struct virtchnl_ether_addr_list *)msg;
2062	struct ice_pf *pf = vf->pf;
2063	enum virtchnl_ops vc_op;
2064	struct ice_vsi *vsi;
2065	int i;
2066
2067	if (set) {
2068		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2069		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2070	} else {
2071		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2072		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2073	}
2074
2075	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2076	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2077		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2078		goto handle_mac_exit;
2079	}
2080
2081	/* If this VF is not privileged, then we can't add more than a
2082	 * limited number of addresses. Check to make sure that the
2083	 * additions do not push us over the limit.
2084	 */
2085	if (set && !ice_is_vf_trusted(vf) &&
2086	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2087		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2088			vf->vf_id);
2089		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2090		goto handle_mac_exit;
2091	}
2092
2093	vsi = ice_get_vf_vsi(vf);
2094	if (!vsi) {
2095		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2096		goto handle_mac_exit;
2097	}
2098
2099	for (i = 0; i < al->num_elements; i++) {
2100		u8 *mac_addr = al->list[i].addr;
2101		int result;
2102
2103		if (is_broadcast_ether_addr(mac_addr) ||
2104		    is_zero_ether_addr(mac_addr))
2105			continue;
2106
2107		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2108		if (result == -EEXIST || result == -ENOENT) {
2109			continue;
2110		} else if (result) {
2111			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2112			goto handle_mac_exit;
2113		}
2114	}
2115
2116handle_mac_exit:
2117	/* send the response to the VF */
2118	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2119}
2120
2121/**
2122 * ice_vc_add_mac_addr_msg
2123 * @vf: pointer to the VF info
2124 * @msg: pointer to the msg buffer
2125 *
2126 * add guest MAC address filter
2127 */
2128static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2129{
2130	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2131}
2132
2133/**
2134 * ice_vc_del_mac_addr_msg
2135 * @vf: pointer to the VF info
2136 * @msg: pointer to the msg buffer
2137 *
2138 * remove guest MAC address filter
2139 */
2140static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2141{
2142	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2143}
2144
2145/**
2146 * ice_vc_request_qs_msg
2147 * @vf: pointer to the VF info
2148 * @msg: pointer to the msg buffer
2149 *
2150 * VFs get a default number of queues but can use this message to request a
2151 * different number. If the request is successful, PF will reset the VF and
2152 * return 0. If unsuccessful, PF will send message informing VF of number of
2153 * available queue pairs via virtchnl message response to VF.
2154 */
2155static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2156{
2157	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2158	struct virtchnl_vf_res_request *vfres =
2159		(struct virtchnl_vf_res_request *)msg;
2160	u16 req_queues = vfres->num_queue_pairs;
2161	struct ice_pf *pf = vf->pf;
2162	u16 max_allowed_vf_queues;
2163	u16 tx_rx_queue_left;
2164	struct device *dev;
2165	u16 cur_queues;
2166
2167	dev = ice_pf_to_dev(pf);
2168	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2169		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2170		goto error_param;
2171	}
2172
2173	cur_queues = vf->num_vf_qs;
2174	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2175				 ice_get_avail_rxq_count(pf));
2176	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2177	if (!req_queues) {
2178		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2179			vf->vf_id);
2180	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2181		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2182			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2183		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2184	} else if (req_queues > cur_queues &&
2185		   req_queues - cur_queues > tx_rx_queue_left) {
2186		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2187			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2188		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2189					       ICE_MAX_RSS_QS_PER_VF);
2190	} else {
2191		/* request is successful, then reset VF */
2192		vf->num_req_qs = req_queues;
2193		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2194		dev_info(dev, "VF %d granted request of %u queues.\n",
2195			 vf->vf_id, req_queues);
2196		return 0;
2197	}
2198
2199error_param:
2200	/* send the response to the VF */
2201	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2202				     v_ret, (u8 *)vfres, sizeof(*vfres));
2203}
2204
2205/**
2206 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2207 * @caps: VF driver negotiated capabilities
2208 *
2209 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2210 */
2211static bool ice_vf_vlan_offload_ena(u32 caps)
2212{
2213	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2214}
2215
2216/**
2217 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2218 * @vf: VF used to determine if VLAN promiscuous config is allowed
2219 */
2220static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2221{
2222	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2223	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2224	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2225		return true;
2226
2227	return false;
2228}
2229
2230/**
2231 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2232 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2233 * @vlan: VLAN used to enable VLAN promiscuous
2234 *
2235 * This function should only be called if VLAN promiscuous mode is allowed,
2236 * which can be determined via ice_is_vlan_promisc_allowed().
2237 */
2238static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2239{
2240	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2241	int status;
2242
2243	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2244					  vlan->vid);
2245	if (status && status != -EEXIST)
2246		return status;
2247
2248	return 0;
2249}
2250
2251/**
2252 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2253 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2254 * @vlan: VLAN used to disable VLAN promiscuous
2255 *
2256 * This function should only be called if VLAN promiscuous mode is allowed,
2257 * which can be determined via ice_is_vlan_promisc_allowed().
2258 */
2259static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2260{
2261	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2262	int status;
2263
2264	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2265					    vlan->vid);
2266	if (status && status != -ENOENT)
2267		return status;
2268
2269	return 0;
2270}
2271
2272/**
2273 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2274 * @vf: VF to check against
2275 * @vsi: VF's VSI
2276 *
2277 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2278 * wants to, so return false.
2279 *
2280 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2281 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2282 */
2283static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2284{
2285	if (ice_is_vf_trusted(vf))
2286		return false;
2287
2288#define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2289	return ((ice_vsi_num_non_zero_vlans(vsi) +
2290		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2291}
2292
2293/**
2294 * ice_vc_process_vlan_msg
2295 * @vf: pointer to the VF info
2296 * @msg: pointer to the msg buffer
2297 * @add_v: Add VLAN if true, otherwise delete VLAN
2298 *
2299 * Process virtchnl op to add or remove programmed guest VLAN ID
2300 */
2301static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2302{
2303	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2304	struct virtchnl_vlan_filter_list *vfl =
2305	    (struct virtchnl_vlan_filter_list *)msg;
2306	struct ice_pf *pf = vf->pf;
2307	bool vlan_promisc = false;
2308	struct ice_vsi *vsi;
2309	struct device *dev;
2310	int status = 0;
2311	int i;
2312
2313	dev = ice_pf_to_dev(pf);
2314	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2315		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2316		goto error_param;
2317	}
2318
2319	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2320		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2321		goto error_param;
2322	}
2323
2324	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2325		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2326		goto error_param;
2327	}
2328
2329	for (i = 0; i < vfl->num_elements; i++) {
2330		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2331			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2332			dev_err(dev, "invalid VF VLAN id %d\n",
2333				vfl->vlan_id[i]);
2334			goto error_param;
2335		}
2336	}
2337
2338	vsi = ice_get_vf_vsi(vf);
2339	if (!vsi) {
2340		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2341		goto error_param;
2342	}
2343
2344	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2345		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2346			 vf->vf_id);
2347		/* There is no need to let VF know about being not trusted,
2348		 * so we can just return success message here
2349		 */
2350		goto error_param;
2351	}
2352
2353	/* in DVM a VF can add/delete inner VLAN filters when
2354	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2355	 */
2356	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2357		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2358		goto error_param;
2359	}
2360
2361	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2362	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2363	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2364	 */
2365	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2366		!ice_is_dvm_ena(&pf->hw) &&
2367		!ice_vf_is_port_vlan_ena(vf);
2368
2369	if (add_v) {
2370		for (i = 0; i < vfl->num_elements; i++) {
2371			u16 vid = vfl->vlan_id[i];
2372			struct ice_vlan vlan;
2373
2374			if (ice_vf_has_max_vlans(vf, vsi)) {
2375				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2376					 vf->vf_id);
2377				/* There is no need to let VF know about being
2378				 * not trusted, so we can just return success
2379				 * message here as well.
2380				 */
2381				goto error_param;
2382			}
2383
2384			/* we add VLAN 0 by default for each VF so we can enable
2385			 * Tx VLAN anti-spoof without triggering MDD events so
2386			 * we don't need to add it again here
2387			 */
2388			if (!vid)
2389				continue;
2390
2391			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2392			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2393			if (status) {
2394				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2395				goto error_param;
2396			}
2397
2398			/* Enable VLAN filtering on first non-zero VLAN */
2399			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2400				if (vf->spoofchk) {
2401					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2402					if (status) {
2403						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2404						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2405							vid, status);
2406						goto error_param;
2407					}
2408				}
2409				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2410					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2411					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2412						vid, status);
2413					goto error_param;
2414				}
2415			} else if (vlan_promisc) {
2416				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2417				if (status) {
2418					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2419					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2420						vid, status);
2421				}
2422			}
2423		}
2424	} else {
2425		/* In case of non_trusted VF, number of VLAN elements passed
2426		 * to PF for removal might be greater than number of VLANs
2427		 * filter programmed for that VF - So, use actual number of
2428		 * VLANS added earlier with add VLAN opcode. In order to avoid
2429		 * removing VLAN that doesn't exist, which result to sending
2430		 * erroneous failed message back to the VF
2431		 */
2432		int num_vf_vlan;
2433
2434		num_vf_vlan = vsi->num_vlan;
2435		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2436			u16 vid = vfl->vlan_id[i];
2437			struct ice_vlan vlan;
2438
2439			/* we add VLAN 0 by default for each VF so we can enable
2440			 * Tx VLAN anti-spoof without triggering MDD events so
2441			 * we don't want a VIRTCHNL request to remove it
2442			 */
2443			if (!vid)
2444				continue;
2445
2446			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2447			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2448			if (status) {
2449				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2450				goto error_param;
2451			}
2452
2453			/* Disable VLAN filtering when only VLAN 0 is left */
2454			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2455				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2456				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2457			}
2458
2459			if (vlan_promisc)
2460				ice_vf_dis_vlan_promisc(vsi, &vlan);
2461		}
2462	}
2463
2464error_param:
2465	/* send the response to the VF */
2466	if (add_v)
2467		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2468					     NULL, 0);
2469	else
2470		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2471					     NULL, 0);
2472}
2473
2474/**
2475 * ice_vc_add_vlan_msg
2476 * @vf: pointer to the VF info
2477 * @msg: pointer to the msg buffer
2478 *
2479 * Add and program guest VLAN ID
2480 */
2481static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2482{
2483	return ice_vc_process_vlan_msg(vf, msg, true);
2484}
2485
2486/**
2487 * ice_vc_remove_vlan_msg
2488 * @vf: pointer to the VF info
2489 * @msg: pointer to the msg buffer
2490 *
2491 * remove programmed guest VLAN ID
2492 */
2493static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2494{
2495	return ice_vc_process_vlan_msg(vf, msg, false);
2496}
2497
2498/**
2499 * ice_vsi_is_rxq_crc_strip_dis - check if Rx queue CRC strip is disabled or not
2500 * @vsi: pointer to the VF VSI info
2501 */
2502static bool ice_vsi_is_rxq_crc_strip_dis(struct ice_vsi *vsi)
2503{
2504	unsigned int i;
2505
2506	ice_for_each_alloc_rxq(vsi, i)
2507		if (vsi->rx_rings[i]->flags & ICE_RX_FLAGS_CRC_STRIP_DIS)
2508			return true;
2509
2510	return false;
2511}
2512
2513/**
2514 * ice_vc_ena_vlan_stripping
2515 * @vf: pointer to the VF info
2516 *
2517 * Enable VLAN header stripping for a given VF
2518 */
2519static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2520{
2521	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2522	struct ice_vsi *vsi;
2523
2524	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2525		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2526		goto error_param;
2527	}
2528
2529	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2530		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2531		goto error_param;
2532	}
2533
2534	vsi = ice_get_vf_vsi(vf);
2535	if (!vsi) {
2536		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2537		goto error_param;
2538	}
2539
2540	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2541		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2542	else
2543		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2544
2545error_param:
2546	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2547				     v_ret, NULL, 0);
2548}
2549
2550/**
2551 * ice_vc_dis_vlan_stripping
2552 * @vf: pointer to the VF info
2553 *
2554 * Disable VLAN header stripping for a given VF
2555 */
2556static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2557{
2558	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2559	struct ice_vsi *vsi;
2560
2561	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2562		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2563		goto error_param;
2564	}
2565
2566	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2567		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2568		goto error_param;
2569	}
2570
2571	vsi = ice_get_vf_vsi(vf);
2572	if (!vsi) {
2573		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2574		goto error_param;
2575	}
2576
2577	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2578		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2579	else
2580		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
2581
2582error_param:
2583	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2584				     v_ret, NULL, 0);
2585}
2586
2587/**
2588 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2589 * @vf: pointer to the VF info
2590 */
2591static int ice_vc_get_rss_hena(struct ice_vf *vf)
2592{
2593	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2594	struct virtchnl_rss_hena *vrh = NULL;
2595	int len = 0, ret;
2596
2597	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2598		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2599		goto err;
2600	}
2601
2602	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2603		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2604		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2605		goto err;
2606	}
2607
2608	len = sizeof(struct virtchnl_rss_hena);
2609	vrh = kzalloc(len, GFP_KERNEL);
2610	if (!vrh) {
2611		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2612		len = 0;
2613		goto err;
2614	}
2615
2616	vrh->hena = ICE_DEFAULT_RSS_HENA;
2617err:
2618	/* send the response back to the VF */
2619	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2620				    (u8 *)vrh, len);
2621	kfree(vrh);
2622	return ret;
2623}
2624
2625/**
2626 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2627 * @vf: pointer to the VF info
2628 * @msg: pointer to the msg buffer
2629 */
2630static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2631{
2632	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2633	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2634	struct ice_pf *pf = vf->pf;
2635	struct ice_vsi *vsi;
2636	struct device *dev;
2637	int status;
2638
2639	dev = ice_pf_to_dev(pf);
2640
2641	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2642		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2643		goto err;
2644	}
2645
2646	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2647		dev_err(dev, "RSS not supported by PF\n");
2648		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2649		goto err;
2650	}
2651
2652	vsi = ice_get_vf_vsi(vf);
2653	if (!vsi) {
2654		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2655		goto err;
2656	}
2657
2658	/* clear all previously programmed RSS configuration to allow VF drivers
2659	 * the ability to customize the RSS configuration and/or completely
2660	 * disable RSS
2661	 */
2662	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2663	if (status && !vrh->hena) {
2664		/* only report failure to clear the current RSS configuration if
2665		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2666		 */
2667		v_ret = ice_err_to_virt_err(status);
2668		goto err;
2669	} else if (status) {
2670		/* allow the VF to update the RSS configuration even on failure
2671		 * to clear the current RSS confguration in an attempt to keep
2672		 * RSS in a working state
2673		 */
2674		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2675			 vf->vf_id);
2676	}
2677
2678	if (vrh->hena) {
2679		status = ice_add_avf_rss_cfg(&pf->hw, vsi, vrh->hena);
2680		v_ret = ice_err_to_virt_err(status);
2681	}
2682
2683	/* send the response to the VF */
2684err:
2685	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2686				     NULL, 0);
2687}
2688
2689/**
2690 * ice_vc_query_rxdid - query RXDID supported by DDP package
2691 * @vf: pointer to VF info
2692 *
2693 * Called from VF to query a bitmap of supported flexible
2694 * descriptor RXDIDs of a DDP package.
2695 */
2696static int ice_vc_query_rxdid(struct ice_vf *vf)
2697{
2698	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2699	struct virtchnl_supported_rxdids *rxdid = NULL;
2700	struct ice_hw *hw = &vf->pf->hw;
2701	struct ice_pf *pf = vf->pf;
2702	int len = 0;
2703	int ret, i;
2704	u32 regval;
2705
2706	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2707		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2708		goto err;
2709	}
2710
2711	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2712		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2713		goto err;
2714	}
2715
2716	len = sizeof(struct virtchnl_supported_rxdids);
2717	rxdid = kzalloc(len, GFP_KERNEL);
2718	if (!rxdid) {
2719		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2720		len = 0;
2721		goto err;
2722	}
2723
2724	/* RXDIDs supported by DDP package can be read from the register
2725	 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2726	 * is not listed in DDP package, add it in the bitmap manually.
2727	 * Legacy 16byte descriptor is not supported.
2728	 */
2729	rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2730
2731	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2732		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2733		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2734			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2735			rxdid->supported_rxdids |= BIT(i);
2736	}
2737
2738	pf->supported_rxdids = rxdid->supported_rxdids;
2739
2740err:
2741	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2742				    v_ret, (u8 *)rxdid, len);
2743	kfree(rxdid);
2744	return ret;
2745}
2746
2747/**
2748 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2749 * @vf: VF to enable/disable VLAN stripping for on initialization
2750 *
2751 * Set the default for VLAN stripping based on whether a port VLAN is configured
2752 * and the current VLAN mode of the device.
2753 */
2754static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2755{
2756	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2757
2758	vf->vlan_strip_ena = 0;
2759
2760	if (!vsi)
2761		return -EINVAL;
2762
2763	/* don't modify stripping if port VLAN is configured in SVM since the
2764	 * port VLAN is based on the inner/single VLAN in SVM
2765	 */
2766	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2767		return 0;
2768
2769	if (ice_vf_vlan_offload_ena(vf->driver_caps)) {
2770		int err;
2771
2772		err = vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2773		if (!err)
2774			vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
2775		return err;
2776	}
2777
2778	return vsi->inner_vlan_ops.dis_stripping(vsi);
2779}
2780
2781static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2782{
2783	if (vf->trusted)
2784		return VLAN_N_VID;
2785	else
2786		return ICE_MAX_VLAN_PER_VF;
2787}
2788
2789/**
2790 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2791 * @vf: VF that being checked for
2792 *
2793 * When the device is in double VLAN mode, check whether or not the outer VLAN
2794 * is allowed.
2795 */
2796static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2797{
2798	if (ice_vf_is_port_vlan_ena(vf))
2799		return true;
2800
2801	return false;
2802}
2803
2804/**
2805 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2806 * @vf: VF that capabilities are being set for
2807 * @caps: VLAN capabilities to populate
2808 *
2809 * Determine VLAN capabilities support based on whether a port VLAN is
2810 * configured. If a port VLAN is configured then the VF should use the inner
2811 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2812 * capabilies.
2813 */
2814static void
2815ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2816{
2817	struct virtchnl_vlan_supported_caps *supported_caps;
2818
2819	if (ice_vf_outer_vlan_not_allowed(vf)) {
2820		/* until support for inner VLAN filtering is added when a port
2821		 * VLAN is configured, only support software offloaded inner
2822		 * VLANs when a port VLAN is confgured in DVM
2823		 */
2824		supported_caps = &caps->filtering.filtering_support;
2825		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2826
2827		supported_caps = &caps->offloads.stripping_support;
2828		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2829					VIRTCHNL_VLAN_TOGGLE |
2830					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2831		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2832
2833		supported_caps = &caps->offloads.insertion_support;
2834		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2835					VIRTCHNL_VLAN_TOGGLE |
2836					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2837		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2838
2839		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2840		caps->offloads.ethertype_match =
2841			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2842	} else {
2843		supported_caps = &caps->filtering.filtering_support;
2844		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2845		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2846					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2847					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2848					VIRTCHNL_VLAN_ETHERTYPE_AND;
2849		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2850						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2851						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2852
2853		supported_caps = &caps->offloads.stripping_support;
2854		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2855					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2856					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2857		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2858					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2859					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2860					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2861					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2862					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2863
2864		supported_caps = &caps->offloads.insertion_support;
2865		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2866					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2867					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2868		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2869					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2870					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2871					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2872					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2873					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2874
2875		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2876
2877		caps->offloads.ethertype_match =
2878			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2879	}
2880
2881	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2882}
2883
2884/**
2885 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2886 * @vf: VF that capabilities are being set for
2887 * @caps: VLAN capabilities to populate
2888 *
2889 * Determine VLAN capabilities support based on whether a port VLAN is
2890 * configured. If a port VLAN is configured then the VF does not have any VLAN
2891 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2892 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2893 * VLAN fitlering and offload capabilities.
2894 */
2895static void
2896ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2897{
2898	struct virtchnl_vlan_supported_caps *supported_caps;
2899
2900	if (ice_vf_is_port_vlan_ena(vf)) {
2901		supported_caps = &caps->filtering.filtering_support;
2902		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2903		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2904
2905		supported_caps = &caps->offloads.stripping_support;
2906		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2907		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2908
2909		supported_caps = &caps->offloads.insertion_support;
2910		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2911		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2912
2913		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2914		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2915		caps->filtering.max_filters = 0;
2916	} else {
2917		supported_caps = &caps->filtering.filtering_support;
2918		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2919		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2920		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2921
2922		supported_caps = &caps->offloads.stripping_support;
2923		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2924					VIRTCHNL_VLAN_TOGGLE |
2925					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2926		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2927
2928		supported_caps = &caps->offloads.insertion_support;
2929		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2930					VIRTCHNL_VLAN_TOGGLE |
2931					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2932		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2933
2934		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2935		caps->offloads.ethertype_match =
2936			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2937		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2938	}
2939}
2940
2941/**
2942 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2943 * @vf: VF to determine VLAN capabilities for
2944 *
2945 * This will only be called if the VF and PF successfully negotiated
2946 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2947 *
2948 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2949 * is configured or not.
2950 */
2951static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2952{
2953	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2954	struct virtchnl_vlan_caps *caps = NULL;
2955	int err, len = 0;
2956
2957	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2958		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2959		goto out;
2960	}
2961
2962	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2963	if (!caps) {
2964		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2965		goto out;
2966	}
2967	len = sizeof(*caps);
2968
2969	if (ice_is_dvm_ena(&vf->pf->hw))
2970		ice_vc_set_dvm_caps(vf, caps);
2971	else
2972		ice_vc_set_svm_caps(vf, caps);
2973
2974	/* store negotiated caps to prevent invalid VF messages */
2975	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2976
2977out:
2978	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2979				    v_ret, (u8 *)caps, len);
2980	kfree(caps);
2981	return err;
2982}
2983
2984/**
2985 * ice_vc_validate_vlan_tpid - validate VLAN TPID
2986 * @filtering_caps: negotiated/supported VLAN filtering capabilities
2987 * @tpid: VLAN TPID used for validation
2988 *
2989 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2990 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2991 */
2992static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2993{
2994	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2995
2996	switch (tpid) {
2997	case ETH_P_8021Q:
2998		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2999		break;
3000	case ETH_P_8021AD:
3001		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
3002		break;
3003	case ETH_P_QINQ1:
3004		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
3005		break;
3006	}
3007
3008	if (!(filtering_caps & vlan_ethertype))
3009		return false;
3010
3011	return true;
3012}
3013
3014/**
3015 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
3016 * @vc_vlan: virtchnl_vlan to validate
3017 *
3018 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
3019 * false. Otherwise return true.
3020 */
3021static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
3022{
3023	if (!vc_vlan->tci || !vc_vlan->tpid)
3024		return false;
3025
3026	return true;
3027}
3028
3029/**
3030 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
3031 * @vfc: negotiated/supported VLAN filtering capabilities
3032 * @vfl: VLAN filter list from VF to validate
3033 *
3034 * Validate all of the filters in the VLAN filter list from the VF. If any of
3035 * the checks fail then return false. Otherwise return true.
3036 */
3037static bool
3038ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
3039				 struct virtchnl_vlan_filter_list_v2 *vfl)
3040{
3041	u16 i;
3042
3043	if (!vfl->num_elements)
3044		return false;
3045
3046	for (i = 0; i < vfl->num_elements; i++) {
3047		struct virtchnl_vlan_supported_caps *filtering_support =
3048			&vfc->filtering_support;
3049		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3050		struct virtchnl_vlan *outer = &vlan_fltr->outer;
3051		struct virtchnl_vlan *inner = &vlan_fltr->inner;
3052
3053		if ((ice_vc_is_valid_vlan(outer) &&
3054		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
3055		    (ice_vc_is_valid_vlan(inner) &&
3056		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
3057			return false;
3058
3059		if ((outer->tci_mask &&
3060		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
3061		    (inner->tci_mask &&
3062		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
3063			return false;
3064
3065		if (((outer->tci & VLAN_PRIO_MASK) &&
3066		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
3067		    ((inner->tci & VLAN_PRIO_MASK) &&
3068		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
3069			return false;
3070
3071		if ((ice_vc_is_valid_vlan(outer) &&
3072		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
3073						outer->tpid)) ||
3074		    (ice_vc_is_valid_vlan(inner) &&
3075		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
3076						inner->tpid)))
3077			return false;
3078	}
3079
3080	return true;
3081}
3082
3083/**
3084 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
3085 * @vc_vlan: struct virtchnl_vlan to transform
3086 */
3087static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
3088{
3089	struct ice_vlan vlan = { 0 };
3090
3091	vlan.prio = FIELD_GET(VLAN_PRIO_MASK, vc_vlan->tci);
3092	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3093	vlan.tpid = vc_vlan->tpid;
3094
3095	return vlan;
3096}
3097
3098/**
3099 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3100 * @vsi: VF's VSI used to perform the action
3101 * @vlan_action: function to perform the action with (i.e. add/del)
3102 * @vlan: VLAN filter to perform the action with
3103 */
3104static int
3105ice_vc_vlan_action(struct ice_vsi *vsi,
3106		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3107		   struct ice_vlan *vlan)
3108{
3109	int err;
3110
3111	err = vlan_action(vsi, vlan);
3112	if (err)
3113		return err;
3114
3115	return 0;
3116}
3117
3118/**
3119 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3120 * @vf: VF used to delete the VLAN(s)
3121 * @vsi: VF's VSI used to delete the VLAN(s)
3122 * @vfl: virthchnl filter list used to delete the filters
3123 */
3124static int
3125ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3126		 struct virtchnl_vlan_filter_list_v2 *vfl)
3127{
3128	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3129	int err;
3130	u16 i;
3131
3132	for (i = 0; i < vfl->num_elements; i++) {
3133		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3134		struct virtchnl_vlan *vc_vlan;
3135
3136		vc_vlan = &vlan_fltr->outer;
3137		if (ice_vc_is_valid_vlan(vc_vlan)) {
3138			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3139
3140			err = ice_vc_vlan_action(vsi,
3141						 vsi->outer_vlan_ops.del_vlan,
3142						 &vlan);
3143			if (err)
3144				return err;
3145
3146			if (vlan_promisc)
3147				ice_vf_dis_vlan_promisc(vsi, &vlan);
3148
3149			/* Disable VLAN filtering when only VLAN 0 is left */
3150			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3151				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3152				if (err)
3153					return err;
3154			}
3155		}
3156
3157		vc_vlan = &vlan_fltr->inner;
3158		if (ice_vc_is_valid_vlan(vc_vlan)) {
3159			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3160
3161			err = ice_vc_vlan_action(vsi,
3162						 vsi->inner_vlan_ops.del_vlan,
3163						 &vlan);
3164			if (err)
3165				return err;
3166
3167			/* no support for VLAN promiscuous on inner VLAN unless
3168			 * we are in Single VLAN Mode (SVM)
3169			 */
3170			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3171				if (vlan_promisc)
3172					ice_vf_dis_vlan_promisc(vsi, &vlan);
3173
3174				/* Disable VLAN filtering when only VLAN 0 is left */
3175				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3176					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3177					if (err)
3178						return err;
3179				}
3180			}
3181		}
3182	}
3183
3184	return 0;
3185}
3186
3187/**
3188 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3189 * @vf: VF the message was received from
3190 * @msg: message received from the VF
3191 */
3192static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3193{
3194	struct virtchnl_vlan_filter_list_v2 *vfl =
3195		(struct virtchnl_vlan_filter_list_v2 *)msg;
3196	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3197	struct ice_vsi *vsi;
3198
3199	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3200					      vfl)) {
3201		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3202		goto out;
3203	}
3204
3205	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3206		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3207		goto out;
3208	}
3209
3210	vsi = ice_get_vf_vsi(vf);
3211	if (!vsi) {
3212		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3213		goto out;
3214	}
3215
3216	if (ice_vc_del_vlans(vf, vsi, vfl))
3217		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3218
3219out:
3220	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3221				     0);
3222}
3223
3224/**
3225 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3226 * @vf: VF used to add the VLAN(s)
3227 * @vsi: VF's VSI used to add the VLAN(s)
3228 * @vfl: virthchnl filter list used to add the filters
3229 */
3230static int
3231ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3232		 struct virtchnl_vlan_filter_list_v2 *vfl)
3233{
3234	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3235	int err;
3236	u16 i;
3237
3238	for (i = 0; i < vfl->num_elements; i++) {
3239		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3240		struct virtchnl_vlan *vc_vlan;
3241
3242		vc_vlan = &vlan_fltr->outer;
3243		if (ice_vc_is_valid_vlan(vc_vlan)) {
3244			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3245
3246			err = ice_vc_vlan_action(vsi,
3247						 vsi->outer_vlan_ops.add_vlan,
3248						 &vlan);
3249			if (err)
3250				return err;
3251
3252			if (vlan_promisc) {
3253				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3254				if (err)
3255					return err;
3256			}
3257
3258			/* Enable VLAN filtering on first non-zero VLAN */
3259			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3260				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3261				if (err)
3262					return err;
3263			}
3264		}
3265
3266		vc_vlan = &vlan_fltr->inner;
3267		if (ice_vc_is_valid_vlan(vc_vlan)) {
3268			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3269
3270			err = ice_vc_vlan_action(vsi,
3271						 vsi->inner_vlan_ops.add_vlan,
3272						 &vlan);
3273			if (err)
3274				return err;
3275
3276			/* no support for VLAN promiscuous on inner VLAN unless
3277			 * we are in Single VLAN Mode (SVM)
3278			 */
3279			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3280				if (vlan_promisc) {
3281					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3282					if (err)
3283						return err;
3284				}
3285
3286				/* Enable VLAN filtering on first non-zero VLAN */
3287				if (vf->spoofchk && vlan.vid) {
3288					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3289					if (err)
3290						return err;
3291				}
3292			}
3293		}
3294	}
3295
3296	return 0;
3297}
3298
3299/**
3300 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3301 * @vsi: VF VSI used to get number of existing VLAN filters
3302 * @vfc: negotiated/supported VLAN filtering capabilities
3303 * @vfl: VLAN filter list from VF to validate
3304 *
3305 * Validate all of the filters in the VLAN filter list from the VF during the
3306 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3307 * Otherwise return true.
3308 */
3309static bool
3310ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3311				     struct virtchnl_vlan_filtering_caps *vfc,
3312				     struct virtchnl_vlan_filter_list_v2 *vfl)
3313{
3314	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3315		vfl->num_elements;
3316
3317	if (num_requested_filters > vfc->max_filters)
3318		return false;
3319
3320	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3321}
3322
3323/**
3324 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3325 * @vf: VF the message was received from
3326 * @msg: message received from the VF
3327 */
3328static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3329{
3330	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3331	struct virtchnl_vlan_filter_list_v2 *vfl =
3332		(struct virtchnl_vlan_filter_list_v2 *)msg;
3333	struct ice_vsi *vsi;
3334
3335	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3336		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3337		goto out;
3338	}
3339
3340	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3341		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3342		goto out;
3343	}
3344
3345	vsi = ice_get_vf_vsi(vf);
3346	if (!vsi) {
3347		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3348		goto out;
3349	}
3350
3351	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3352						  &vf->vlan_v2_caps.filtering,
3353						  vfl)) {
3354		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3355		goto out;
3356	}
3357
3358	if (ice_vc_add_vlans(vf, vsi, vfl))
3359		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3360
3361out:
3362	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3363				     0);
3364}
3365
3366/**
3367 * ice_vc_valid_vlan_setting - validate VLAN setting
3368 * @negotiated_settings: negotiated VLAN settings during VF init
3369 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3370 */
3371static bool
3372ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3373{
3374	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3375		return false;
3376
3377	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3378	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3379	 */
3380	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3381	    hweight32(ethertype_setting) > 1)
3382		return false;
3383
3384	/* ability to modify the VLAN setting was not negotiated */
3385	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3386		return false;
3387
3388	return true;
3389}
3390
3391/**
3392 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3393 * @caps: negotiated VLAN settings during VF init
3394 * @msg: message to validate
3395 *
3396 * Used to validate any VLAN virtchnl message sent as a
3397 * virtchnl_vlan_setting structure. Validates the message against the
3398 * negotiated/supported caps during VF driver init.
3399 */
3400static bool
3401ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3402			      struct virtchnl_vlan_setting *msg)
3403{
3404	if ((!msg->outer_ethertype_setting &&
3405	     !msg->inner_ethertype_setting) ||
3406	    (!caps->outer && !caps->inner))
3407		return false;
3408
3409	if (msg->outer_ethertype_setting &&
3410	    !ice_vc_valid_vlan_setting(caps->outer,
3411				       msg->outer_ethertype_setting))
3412		return false;
3413
3414	if (msg->inner_ethertype_setting &&
3415	    !ice_vc_valid_vlan_setting(caps->inner,
3416				       msg->inner_ethertype_setting))
3417		return false;
3418
3419	return true;
3420}
3421
3422/**
3423 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3424 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3425 * @tpid: VLAN TPID to populate
3426 */
3427static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3428{
3429	switch (ethertype_setting) {
3430	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3431		*tpid = ETH_P_8021Q;
3432		break;
3433	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3434		*tpid = ETH_P_8021AD;
3435		break;
3436	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3437		*tpid = ETH_P_QINQ1;
3438		break;
3439	default:
3440		*tpid = 0;
3441		return -EINVAL;
3442	}
3443
3444	return 0;
3445}
3446
3447/**
3448 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3449 * @vsi: VF's VSI used to enable the VLAN offload
3450 * @ena_offload: function used to enable the VLAN offload
3451 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3452 */
3453static int
3454ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3455			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3456			u32 ethertype_setting)
3457{
3458	u16 tpid;
3459	int err;
3460
3461	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3462	if (err)
3463		return err;
3464
3465	err = ena_offload(vsi, tpid);
3466	if (err)
3467		return err;
3468
3469	return 0;
3470}
3471
3472#define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3473#define ICE_L2TSEL_BIT_OFFSET		23
3474enum ice_l2tsel {
3475	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3476	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3477};
3478
3479/**
3480 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3481 * @vsi: VSI used to update l2tsel on
3482 * @l2tsel: l2tsel setting requested
3483 *
3484 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3485 * This will modify which descriptor field the first offloaded VLAN will be
3486 * stripped into.
3487 */
3488static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3489{
3490	struct ice_hw *hw = &vsi->back->hw;
3491	u32 l2tsel_bit;
3492	int i;
3493
3494	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3495		l2tsel_bit = 0;
3496	else
3497		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3498
3499	for (i = 0; i < vsi->alloc_rxq; i++) {
3500		u16 pfq = vsi->rxq_map[i];
3501		u32 qrx_context_offset;
3502		u32 regval;
3503
3504		qrx_context_offset =
3505			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3506
3507		regval = rd32(hw, qrx_context_offset);
3508		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3509		regval |= l2tsel_bit;
3510		wr32(hw, qrx_context_offset, regval);
3511	}
3512}
3513
3514/**
3515 * ice_vc_ena_vlan_stripping_v2_msg
3516 * @vf: VF the message was received from
3517 * @msg: message received from the VF
3518 *
3519 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3520 */
3521static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3522{
3523	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3524	struct virtchnl_vlan_supported_caps *stripping_support;
3525	struct virtchnl_vlan_setting *strip_msg =
3526		(struct virtchnl_vlan_setting *)msg;
3527	u32 ethertype_setting;
3528	struct ice_vsi *vsi;
3529
3530	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3531		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3532		goto out;
3533	}
3534
3535	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3536		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3537		goto out;
3538	}
3539
3540	vsi = ice_get_vf_vsi(vf);
3541	if (!vsi) {
3542		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3543		goto out;
3544	}
3545
3546	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3547	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3548		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3549		goto out;
3550	}
3551
3552	if (ice_vsi_is_rxq_crc_strip_dis(vsi)) {
3553		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3554		goto out;
3555	}
3556
3557	ethertype_setting = strip_msg->outer_ethertype_setting;
3558	if (ethertype_setting) {
3559		if (ice_vc_ena_vlan_offload(vsi,
3560					    vsi->outer_vlan_ops.ena_stripping,
3561					    ethertype_setting)) {
3562			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3563			goto out;
3564		} else {
3565			enum ice_l2tsel l2tsel =
3566				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3567
3568			/* PF tells the VF that the outer VLAN tag is always
3569			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3570			 * inner is always extracted to
3571			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3572			 * support outer stripping so the first tag always ends
3573			 * up in L2TAG2_2ND and the second/inner tag, if
3574			 * enabled, is extracted in L2TAG1.
3575			 */
3576			ice_vsi_update_l2tsel(vsi, l2tsel);
3577
3578			vf->vlan_strip_ena |= ICE_OUTER_VLAN_STRIP_ENA;
3579		}
3580	}
3581
3582	ethertype_setting = strip_msg->inner_ethertype_setting;
3583	if (ethertype_setting &&
3584	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3585				    ethertype_setting)) {
3586		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3587		goto out;
3588	}
3589
3590	if (ethertype_setting)
3591		vf->vlan_strip_ena |= ICE_INNER_VLAN_STRIP_ENA;
3592
3593out:
3594	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3595				     v_ret, NULL, 0);
3596}
3597
3598/**
3599 * ice_vc_dis_vlan_stripping_v2_msg
3600 * @vf: VF the message was received from
3601 * @msg: message received from the VF
3602 *
3603 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3604 */
3605static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3606{
3607	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3608	struct virtchnl_vlan_supported_caps *stripping_support;
3609	struct virtchnl_vlan_setting *strip_msg =
3610		(struct virtchnl_vlan_setting *)msg;
3611	u32 ethertype_setting;
3612	struct ice_vsi *vsi;
3613
3614	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3615		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3616		goto out;
3617	}
3618
3619	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3620		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3621		goto out;
3622	}
3623
3624	vsi = ice_get_vf_vsi(vf);
3625	if (!vsi) {
3626		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3627		goto out;
3628	}
3629
3630	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3631	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3632		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3633		goto out;
3634	}
3635
3636	ethertype_setting = strip_msg->outer_ethertype_setting;
3637	if (ethertype_setting) {
3638		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3639			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3640			goto out;
3641		} else {
3642			enum ice_l2tsel l2tsel =
3643				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3644
3645			/* PF tells the VF that the outer VLAN tag is always
3646			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3647			 * inner is always extracted to
3648			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3649			 * support inner stripping while outer stripping is
3650			 * disabled so that the first and only tag is extracted
3651			 * in L2TAG1.
3652			 */
3653			ice_vsi_update_l2tsel(vsi, l2tsel);
3654
3655			vf->vlan_strip_ena &= ~ICE_OUTER_VLAN_STRIP_ENA;
3656		}
3657	}
3658
3659	ethertype_setting = strip_msg->inner_ethertype_setting;
3660	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3661		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3662		goto out;
3663	}
3664
3665	if (ethertype_setting)
3666		vf->vlan_strip_ena &= ~ICE_INNER_VLAN_STRIP_ENA;
3667
3668out:
3669	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3670				     v_ret, NULL, 0);
3671}
3672
3673/**
3674 * ice_vc_ena_vlan_insertion_v2_msg
3675 * @vf: VF the message was received from
3676 * @msg: message received from the VF
3677 *
3678 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3679 */
3680static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3681{
3682	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3683	struct virtchnl_vlan_supported_caps *insertion_support;
3684	struct virtchnl_vlan_setting *insertion_msg =
3685		(struct virtchnl_vlan_setting *)msg;
3686	u32 ethertype_setting;
3687	struct ice_vsi *vsi;
3688
3689	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3690		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3691		goto out;
3692	}
3693
3694	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3695		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3696		goto out;
3697	}
3698
3699	vsi = ice_get_vf_vsi(vf);
3700	if (!vsi) {
3701		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3702		goto out;
3703	}
3704
3705	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3706	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3707		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3708		goto out;
3709	}
3710
3711	ethertype_setting = insertion_msg->outer_ethertype_setting;
3712	if (ethertype_setting &&
3713	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3714				    ethertype_setting)) {
3715		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3716		goto out;
3717	}
3718
3719	ethertype_setting = insertion_msg->inner_ethertype_setting;
3720	if (ethertype_setting &&
3721	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3722				    ethertype_setting)) {
3723		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3724		goto out;
3725	}
3726
3727out:
3728	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3729				     v_ret, NULL, 0);
3730}
3731
3732/**
3733 * ice_vc_dis_vlan_insertion_v2_msg
3734 * @vf: VF the message was received from
3735 * @msg: message received from the VF
3736 *
3737 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3738 */
3739static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3740{
3741	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3742	struct virtchnl_vlan_supported_caps *insertion_support;
3743	struct virtchnl_vlan_setting *insertion_msg =
3744		(struct virtchnl_vlan_setting *)msg;
3745	u32 ethertype_setting;
3746	struct ice_vsi *vsi;
3747
3748	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3749		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3750		goto out;
3751	}
3752
3753	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3754		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3755		goto out;
3756	}
3757
3758	vsi = ice_get_vf_vsi(vf);
3759	if (!vsi) {
3760		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3761		goto out;
3762	}
3763
3764	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3765	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3766		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3767		goto out;
3768	}
3769
3770	ethertype_setting = insertion_msg->outer_ethertype_setting;
3771	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3772		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3773		goto out;
3774	}
3775
3776	ethertype_setting = insertion_msg->inner_ethertype_setting;
3777	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3778		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3779		goto out;
3780	}
3781
3782out:
3783	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3784				     v_ret, NULL, 0);
3785}
3786
3787static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3788	.get_ver_msg = ice_vc_get_ver_msg,
3789	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3790	.reset_vf = ice_vc_reset_vf_msg,
3791	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3792	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3793	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3794	.ena_qs_msg = ice_vc_ena_qs_msg,
3795	.dis_qs_msg = ice_vc_dis_qs_msg,
3796	.request_qs_msg = ice_vc_request_qs_msg,
3797	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3798	.config_rss_key = ice_vc_config_rss_key,
3799	.config_rss_lut = ice_vc_config_rss_lut,
3800	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3801	.get_stats_msg = ice_vc_get_stats_msg,
3802	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3803	.add_vlan_msg = ice_vc_add_vlan_msg,
3804	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3805	.query_rxdid = ice_vc_query_rxdid,
3806	.get_rss_hena = ice_vc_get_rss_hena,
3807	.set_rss_hena_msg = ice_vc_set_rss_hena,
3808	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3809	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3810	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3811	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3812	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3813	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3814	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3815	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3816	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3817	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3818	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3819	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3820};
3821
3822/**
3823 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3824 * @vf: the VF to switch ops
3825 */
3826void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3827{
3828	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3829}
3830
3831/**
3832 * ice_vc_repr_add_mac
3833 * @vf: pointer to VF
3834 * @msg: virtchannel message
3835 *
3836 * When port representors are created, we do not add MAC rule
3837 * to firmware, we store it so that PF could report same
3838 * MAC as VF.
3839 */
3840static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3841{
3842	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3843	struct virtchnl_ether_addr_list *al =
3844	    (struct virtchnl_ether_addr_list *)msg;
3845	struct ice_vsi *vsi;
3846	struct ice_pf *pf;
3847	int i;
3848
3849	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3850	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3851		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3852		goto handle_mac_exit;
3853	}
3854
3855	pf = vf->pf;
3856
3857	vsi = ice_get_vf_vsi(vf);
3858	if (!vsi) {
3859		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3860		goto handle_mac_exit;
3861	}
3862
3863	for (i = 0; i < al->num_elements; i++) {
3864		u8 *mac_addr = al->list[i].addr;
3865
3866		if (!is_unicast_ether_addr(mac_addr) ||
3867		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
3868			continue;
3869
3870		if (vf->pf_set_mac) {
3871			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3872			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3873			goto handle_mac_exit;
3874		}
3875
3876		ice_vfhw_mac_add(vf, &al->list[i]);
3877		vf->num_mac++;
3878		break;
3879	}
3880
3881handle_mac_exit:
3882	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3883				     v_ret, NULL, 0);
3884}
3885
3886/**
3887 * ice_vc_repr_del_mac - response with success for deleting MAC
3888 * @vf: pointer to VF
3889 * @msg: virtchannel message
3890 *
3891 * Respond with success to not break normal VF flow.
3892 * For legacy VF driver try to update cached MAC address.
3893 */
3894static int
3895ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3896{
3897	struct virtchnl_ether_addr_list *al =
3898		(struct virtchnl_ether_addr_list *)msg;
3899
3900	ice_update_legacy_cached_mac(vf, &al->list[0]);
3901
3902	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3903				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3904}
3905
3906static int
3907ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3908{
3909	dev_dbg(ice_pf_to_dev(vf->pf),
3910		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3911		vf->vf_id);
3912	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3913				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3914				     NULL, 0);
3915}
3916
3917static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3918	.get_ver_msg = ice_vc_get_ver_msg,
3919	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3920	.reset_vf = ice_vc_reset_vf_msg,
3921	.add_mac_addr_msg = ice_vc_repr_add_mac,
3922	.del_mac_addr_msg = ice_vc_repr_del_mac,
3923	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3924	.ena_qs_msg = ice_vc_ena_qs_msg,
3925	.dis_qs_msg = ice_vc_dis_qs_msg,
3926	.request_qs_msg = ice_vc_request_qs_msg,
3927	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3928	.config_rss_key = ice_vc_config_rss_key,
3929	.config_rss_lut = ice_vc_config_rss_lut,
3930	.config_rss_hfunc = ice_vc_config_rss_hfunc,
3931	.get_stats_msg = ice_vc_get_stats_msg,
3932	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3933	.add_vlan_msg = ice_vc_add_vlan_msg,
3934	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3935	.query_rxdid = ice_vc_query_rxdid,
3936	.get_rss_hena = ice_vc_get_rss_hena,
3937	.set_rss_hena_msg = ice_vc_set_rss_hena,
3938	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3939	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3940	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3941	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3942	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3943	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3944	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3945	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3946	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3947	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3948	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3949	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3950};
3951
3952/**
3953 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3954 * @vf: the VF to switch ops
3955 */
3956void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3957{
3958	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3959}
3960
3961/**
3962 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3963 * @vf: the VF to check
3964 * @mbxdata: data about the state of the mailbox
3965 *
3966 * Detect if a given VF might be malicious and attempting to overflow the PF
3967 * mailbox. If so, log a warning message and ignore this event.
3968 */
3969static bool
3970ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3971{
3972	bool report_malvf = false;
3973	struct device *dev;
3974	struct ice_pf *pf;
3975	int status;
3976
3977	pf = vf->pf;
3978	dev = ice_pf_to_dev(pf);
3979
3980	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3981		return vf->mbx_info.malicious;
3982
3983	/* check to see if we have a newly malicious VF */
3984	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3985					  &report_malvf);
3986	if (status)
3987		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3988				     vf->vf_id, vf->dev_lan_addr, status);
3989
3990	if (report_malvf) {
3991		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3992		u8 zero_addr[ETH_ALEN] = {};
3993
3994		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3995			 vf->dev_lan_addr,
3996			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3997	}
3998
3999	return vf->mbx_info.malicious;
4000}
4001
4002/**
4003 * ice_vc_process_vf_msg - Process request from VF
4004 * @pf: pointer to the PF structure
4005 * @event: pointer to the AQ event
4006 * @mbxdata: information used to detect VF attempting mailbox overflow
4007 *
4008 * called from the common asq/arq handler to
4009 * process request from VF
4010 */
4011void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
4012			   struct ice_mbx_data *mbxdata)
4013{
4014	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
4015	s16 vf_id = le16_to_cpu(event->desc.retval);
4016	const struct ice_virtchnl_ops *ops;
4017	u16 msglen = event->msg_len;
4018	u8 *msg = event->msg_buf;
4019	struct ice_vf *vf = NULL;
4020	struct device *dev;
4021	int err = 0;
4022
4023	dev = ice_pf_to_dev(pf);
4024
4025	vf = ice_get_vf_by_id(pf, vf_id);
4026	if (!vf) {
4027		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
4028			vf_id, v_opcode, msglen);
4029		return;
4030	}
4031
4032	mutex_lock(&vf->cfg_lock);
4033
4034	/* Check if the VF is trying to overflow the mailbox */
4035	if (ice_is_malicious_vf(vf, mbxdata))
4036		goto finish;
4037
4038	/* Check if VF is disabled. */
4039	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
4040		err = -EPERM;
4041		goto error_handler;
4042	}
4043
4044	ops = vf->virtchnl_ops;
4045
4046	/* Perform basic checks on the msg */
4047	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
4048	if (err) {
4049		if (err == VIRTCHNL_STATUS_ERR_PARAM)
4050			err = -EPERM;
4051		else
4052			err = -EINVAL;
4053	}
4054
4055error_handler:
4056	if (err) {
4057		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
4058				      NULL, 0);
4059		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
4060			vf_id, v_opcode, msglen, err);
4061		goto finish;
4062	}
4063
4064	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
4065		ice_vc_send_msg_to_vf(vf, v_opcode,
4066				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
4067				      0);
4068		goto finish;
4069	}
4070
4071	switch (v_opcode) {
4072	case VIRTCHNL_OP_VERSION:
4073		err = ops->get_ver_msg(vf, msg);
4074		break;
4075	case VIRTCHNL_OP_GET_VF_RESOURCES:
4076		err = ops->get_vf_res_msg(vf, msg);
4077		if (ice_vf_init_vlan_stripping(vf))
4078			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
4079				vf->vf_id);
4080		ice_vc_notify_vf_link_state(vf);
4081		break;
4082	case VIRTCHNL_OP_RESET_VF:
4083		ops->reset_vf(vf);
4084		break;
4085	case VIRTCHNL_OP_ADD_ETH_ADDR:
4086		err = ops->add_mac_addr_msg(vf, msg);
4087		break;
4088	case VIRTCHNL_OP_DEL_ETH_ADDR:
4089		err = ops->del_mac_addr_msg(vf, msg);
4090		break;
4091	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
4092		err = ops->cfg_qs_msg(vf, msg);
4093		break;
4094	case VIRTCHNL_OP_ENABLE_QUEUES:
4095		err = ops->ena_qs_msg(vf, msg);
4096		ice_vc_notify_vf_link_state(vf);
4097		break;
4098	case VIRTCHNL_OP_DISABLE_QUEUES:
4099		err = ops->dis_qs_msg(vf, msg);
4100		break;
4101	case VIRTCHNL_OP_REQUEST_QUEUES:
4102		err = ops->request_qs_msg(vf, msg);
4103		break;
4104	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
4105		err = ops->cfg_irq_map_msg(vf, msg);
4106		break;
4107	case VIRTCHNL_OP_CONFIG_RSS_KEY:
4108		err = ops->config_rss_key(vf, msg);
4109		break;
4110	case VIRTCHNL_OP_CONFIG_RSS_LUT:
4111		err = ops->config_rss_lut(vf, msg);
4112		break;
4113	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
4114		err = ops->config_rss_hfunc(vf, msg);
4115		break;
4116	case VIRTCHNL_OP_GET_STATS:
4117		err = ops->get_stats_msg(vf, msg);
4118		break;
4119	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4120		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4121		break;
4122	case VIRTCHNL_OP_ADD_VLAN:
4123		err = ops->add_vlan_msg(vf, msg);
4124		break;
4125	case VIRTCHNL_OP_DEL_VLAN:
4126		err = ops->remove_vlan_msg(vf, msg);
4127		break;
4128	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4129		err = ops->query_rxdid(vf);
4130		break;
4131	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4132		err = ops->get_rss_hena(vf);
4133		break;
4134	case VIRTCHNL_OP_SET_RSS_HENA:
4135		err = ops->set_rss_hena_msg(vf, msg);
4136		break;
4137	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4138		err = ops->ena_vlan_stripping(vf);
4139		break;
4140	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4141		err = ops->dis_vlan_stripping(vf);
4142		break;
4143	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4144		err = ops->add_fdir_fltr_msg(vf, msg);
4145		break;
4146	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4147		err = ops->del_fdir_fltr_msg(vf, msg);
4148		break;
4149	case VIRTCHNL_OP_ADD_RSS_CFG:
4150		err = ops->handle_rss_cfg_msg(vf, msg, true);
4151		break;
4152	case VIRTCHNL_OP_DEL_RSS_CFG:
4153		err = ops->handle_rss_cfg_msg(vf, msg, false);
4154		break;
4155	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4156		err = ops->get_offload_vlan_v2_caps(vf);
4157		break;
4158	case VIRTCHNL_OP_ADD_VLAN_V2:
4159		err = ops->add_vlan_v2_msg(vf, msg);
4160		break;
4161	case VIRTCHNL_OP_DEL_VLAN_V2:
4162		err = ops->remove_vlan_v2_msg(vf, msg);
4163		break;
4164	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4165		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4166		break;
4167	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4168		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4169		break;
4170	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4171		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4172		break;
4173	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4174		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4175		break;
4176	case VIRTCHNL_OP_UNKNOWN:
4177	default:
4178		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4179			vf_id);
4180		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4181					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4182					    NULL, 0);
4183		break;
4184	}
4185	if (err) {
4186		/* Helper function cares less about error return values here
4187		 * as it is busy with pending work.
4188		 */
4189		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4190			 vf_id, v_opcode, err);
4191	}
4192
4193finish:
4194	mutex_unlock(&vf->cfg_lock);
4195	ice_put_vf(vf);
4196}
4197