1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_lib.h"
5#include "ice_switch.h"
6
7#define ICE_ETH_DA_OFFSET		0
8#define ICE_ETH_ETHTYPE_OFFSET		12
9#define ICE_ETH_VLAN_TCI_OFFSET		14
10#define ICE_MAX_VLAN_ID			0xFFF
11#define ICE_IPV6_ETHER_ID		0x86DD
12
13/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
14 * struct to configure any switch filter rules.
15 * {DA (6 bytes), SA(6 bytes),
16 * Ether type (2 bytes for header without VLAN tag) OR
17 * VLAN tag (4 bytes for header with VLAN tag) }
18 *
19 * Word on Hardcoded values
20 * byte 0 = 0x2: to identify it as locally administered DA MAC
21 * byte 6 = 0x2: to identify it as locally administered SA MAC
22 * byte 12 = 0x81 & byte 13 = 0x00:
23 *      In case of VLAN filter first two bytes defines ether type (0x8100)
24 *      and remaining two bytes are placeholder for programming a given VLAN ID
25 *      In case of Ether type filter it is treated as header without VLAN tag
26 *      and byte 12 and 13 is used to program a given Ether type instead
27 */
28static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
29							0x2, 0, 0, 0, 0, 0,
30							0x81, 0, 0, 0};
31
32enum {
33	ICE_PKT_OUTER_IPV6	= BIT(0),
34	ICE_PKT_TUN_GTPC	= BIT(1),
35	ICE_PKT_TUN_GTPU	= BIT(2),
36	ICE_PKT_TUN_NVGRE	= BIT(3),
37	ICE_PKT_TUN_UDP		= BIT(4),
38	ICE_PKT_INNER_IPV6	= BIT(5),
39	ICE_PKT_INNER_TCP	= BIT(6),
40	ICE_PKT_INNER_UDP	= BIT(7),
41	ICE_PKT_GTP_NOPAY	= BIT(8),
42	ICE_PKT_KMALLOC		= BIT(9),
43	ICE_PKT_PPPOE		= BIT(10),
44	ICE_PKT_L2TPV3		= BIT(11),
45};
46
47struct ice_dummy_pkt_offsets {
48	enum ice_protocol_type type;
49	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
50};
51
52struct ice_dummy_pkt_profile {
53	const struct ice_dummy_pkt_offsets *offsets;
54	const u8 *pkt;
55	u32 match;
56	u16 pkt_len;
57	u16 offsets_len;
58};
59
60#define ICE_DECLARE_PKT_OFFSETS(type)					\
61	static const struct ice_dummy_pkt_offsets			\
62	ice_dummy_##type##_packet_offsets[]
63
64#define ICE_DECLARE_PKT_TEMPLATE(type)					\
65	static const u8 ice_dummy_##type##_packet[]
66
67#define ICE_PKT_PROFILE(type, m) {					\
68	.match		= (m),						\
69	.pkt		= ice_dummy_##type##_packet,			\
70	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
71	.offsets	= ice_dummy_##type##_packet_offsets,		\
72	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
73}
74
75ICE_DECLARE_PKT_OFFSETS(vlan) = {
76	{ ICE_VLAN_OFOS,        12 },
77};
78
79ICE_DECLARE_PKT_TEMPLATE(vlan) = {
80	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
81};
82
83ICE_DECLARE_PKT_OFFSETS(qinq) = {
84	{ ICE_VLAN_EX,          12 },
85	{ ICE_VLAN_IN,          16 },
86};
87
88ICE_DECLARE_PKT_TEMPLATE(qinq) = {
89	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
90	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
91};
92
93ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
94	{ ICE_MAC_OFOS,		0 },
95	{ ICE_ETYPE_OL,		12 },
96	{ ICE_IPV4_OFOS,	14 },
97	{ ICE_NVGRE,		34 },
98	{ ICE_MAC_IL,		42 },
99	{ ICE_ETYPE_IL,		54 },
100	{ ICE_IPV4_IL,		56 },
101	{ ICE_TCP_IL,		76 },
102	{ ICE_PROTOCOL_LAST,	0 },
103};
104
105ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
106	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
107	0x00, 0x00, 0x00, 0x00,
108	0x00, 0x00, 0x00, 0x00,
109
110	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
111
112	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
113	0x00, 0x00, 0x00, 0x00,
114	0x00, 0x2F, 0x00, 0x00,
115	0x00, 0x00, 0x00, 0x00,
116	0x00, 0x00, 0x00, 0x00,
117
118	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
119	0x00, 0x00, 0x00, 0x00,
120
121	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
122	0x00, 0x00, 0x00, 0x00,
123	0x00, 0x00, 0x00, 0x00,
124
125	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
126
127	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
128	0x00, 0x00, 0x00, 0x00,
129	0x00, 0x06, 0x00, 0x00,
130	0x00, 0x00, 0x00, 0x00,
131	0x00, 0x00, 0x00, 0x00,
132
133	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
134	0x00, 0x00, 0x00, 0x00,
135	0x00, 0x00, 0x00, 0x00,
136	0x50, 0x02, 0x20, 0x00,
137	0x00, 0x00, 0x00, 0x00
138};
139
140ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
141	{ ICE_MAC_OFOS,		0 },
142	{ ICE_ETYPE_OL,		12 },
143	{ ICE_IPV4_OFOS,	14 },
144	{ ICE_NVGRE,		34 },
145	{ ICE_MAC_IL,		42 },
146	{ ICE_ETYPE_IL,		54 },
147	{ ICE_IPV4_IL,		56 },
148	{ ICE_UDP_ILOS,		76 },
149	{ ICE_PROTOCOL_LAST,	0 },
150};
151
152ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
153	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
154	0x00, 0x00, 0x00, 0x00,
155	0x00, 0x00, 0x00, 0x00,
156
157	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
158
159	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
160	0x00, 0x00, 0x00, 0x00,
161	0x00, 0x2F, 0x00, 0x00,
162	0x00, 0x00, 0x00, 0x00,
163	0x00, 0x00, 0x00, 0x00,
164
165	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
166	0x00, 0x00, 0x00, 0x00,
167
168	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
169	0x00, 0x00, 0x00, 0x00,
170	0x00, 0x00, 0x00, 0x00,
171
172	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
173
174	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
175	0x00, 0x00, 0x00, 0x00,
176	0x00, 0x11, 0x00, 0x00,
177	0x00, 0x00, 0x00, 0x00,
178	0x00, 0x00, 0x00, 0x00,
179
180	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
181	0x00, 0x08, 0x00, 0x00,
182};
183
184ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
185	{ ICE_MAC_OFOS,		0 },
186	{ ICE_ETYPE_OL,		12 },
187	{ ICE_IPV4_OFOS,	14 },
188	{ ICE_UDP_OF,		34 },
189	{ ICE_VXLAN,		42 },
190	{ ICE_GENEVE,		42 },
191	{ ICE_VXLAN_GPE,	42 },
192	{ ICE_MAC_IL,		50 },
193	{ ICE_ETYPE_IL,		62 },
194	{ ICE_IPV4_IL,		64 },
195	{ ICE_TCP_IL,		84 },
196	{ ICE_PROTOCOL_LAST,	0 },
197};
198
199ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
200	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
201	0x00, 0x00, 0x00, 0x00,
202	0x00, 0x00, 0x00, 0x00,
203
204	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
205
206	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
207	0x00, 0x01, 0x00, 0x00,
208	0x40, 0x11, 0x00, 0x00,
209	0x00, 0x00, 0x00, 0x00,
210	0x00, 0x00, 0x00, 0x00,
211
212	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
213	0x00, 0x46, 0x00, 0x00,
214
215	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
216	0x00, 0x00, 0x00, 0x00,
217
218	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
219	0x00, 0x00, 0x00, 0x00,
220	0x00, 0x00, 0x00, 0x00,
221
222	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
223
224	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
225	0x00, 0x01, 0x00, 0x00,
226	0x40, 0x06, 0x00, 0x00,
227	0x00, 0x00, 0x00, 0x00,
228	0x00, 0x00, 0x00, 0x00,
229
230	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
231	0x00, 0x00, 0x00, 0x00,
232	0x00, 0x00, 0x00, 0x00,
233	0x50, 0x02, 0x20, 0x00,
234	0x00, 0x00, 0x00, 0x00
235};
236
237ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
238	{ ICE_MAC_OFOS,		0 },
239	{ ICE_ETYPE_OL,		12 },
240	{ ICE_IPV4_OFOS,	14 },
241	{ ICE_UDP_OF,		34 },
242	{ ICE_VXLAN,		42 },
243	{ ICE_GENEVE,		42 },
244	{ ICE_VXLAN_GPE,	42 },
245	{ ICE_MAC_IL,		50 },
246	{ ICE_ETYPE_IL,		62 },
247	{ ICE_IPV4_IL,		64 },
248	{ ICE_UDP_ILOS,		84 },
249	{ ICE_PROTOCOL_LAST,	0 },
250};
251
252ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
253	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
254	0x00, 0x00, 0x00, 0x00,
255	0x00, 0x00, 0x00, 0x00,
256
257	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
258
259	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
260	0x00, 0x01, 0x00, 0x00,
261	0x00, 0x11, 0x00, 0x00,
262	0x00, 0x00, 0x00, 0x00,
263	0x00, 0x00, 0x00, 0x00,
264
265	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
266	0x00, 0x3a, 0x00, 0x00,
267
268	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
269	0x00, 0x00, 0x00, 0x00,
270
271	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
272	0x00, 0x00, 0x00, 0x00,
273	0x00, 0x00, 0x00, 0x00,
274
275	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
276
277	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
278	0x00, 0x01, 0x00, 0x00,
279	0x00, 0x11, 0x00, 0x00,
280	0x00, 0x00, 0x00, 0x00,
281	0x00, 0x00, 0x00, 0x00,
282
283	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
284	0x00, 0x08, 0x00, 0x00,
285};
286
287ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
288	{ ICE_MAC_OFOS,		0 },
289	{ ICE_ETYPE_OL,		12 },
290	{ ICE_IPV4_OFOS,	14 },
291	{ ICE_NVGRE,		34 },
292	{ ICE_MAC_IL,		42 },
293	{ ICE_ETYPE_IL,		54 },
294	{ ICE_IPV6_IL,		56 },
295	{ ICE_TCP_IL,		96 },
296	{ ICE_PROTOCOL_LAST,	0 },
297};
298
299ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
300	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
301	0x00, 0x00, 0x00, 0x00,
302	0x00, 0x00, 0x00, 0x00,
303
304	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
305
306	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
307	0x00, 0x00, 0x00, 0x00,
308	0x00, 0x2F, 0x00, 0x00,
309	0x00, 0x00, 0x00, 0x00,
310	0x00, 0x00, 0x00, 0x00,
311
312	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
313	0x00, 0x00, 0x00, 0x00,
314
315	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
316	0x00, 0x00, 0x00, 0x00,
317	0x00, 0x00, 0x00, 0x00,
318
319	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
320
321	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
322	0x00, 0x08, 0x06, 0x40,
323	0x00, 0x00, 0x00, 0x00,
324	0x00, 0x00, 0x00, 0x00,
325	0x00, 0x00, 0x00, 0x00,
326	0x00, 0x00, 0x00, 0x00,
327	0x00, 0x00, 0x00, 0x00,
328	0x00, 0x00, 0x00, 0x00,
329	0x00, 0x00, 0x00, 0x00,
330	0x00, 0x00, 0x00, 0x00,
331
332	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
333	0x00, 0x00, 0x00, 0x00,
334	0x00, 0x00, 0x00, 0x00,
335	0x50, 0x02, 0x20, 0x00,
336	0x00, 0x00, 0x00, 0x00
337};
338
339ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
340	{ ICE_MAC_OFOS,		0 },
341	{ ICE_ETYPE_OL,		12 },
342	{ ICE_IPV4_OFOS,	14 },
343	{ ICE_NVGRE,		34 },
344	{ ICE_MAC_IL,		42 },
345	{ ICE_ETYPE_IL,		54 },
346	{ ICE_IPV6_IL,		56 },
347	{ ICE_UDP_ILOS,		96 },
348	{ ICE_PROTOCOL_LAST,	0 },
349};
350
351ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
352	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
353	0x00, 0x00, 0x00, 0x00,
354	0x00, 0x00, 0x00, 0x00,
355
356	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
357
358	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
359	0x00, 0x00, 0x00, 0x00,
360	0x00, 0x2F, 0x00, 0x00,
361	0x00, 0x00, 0x00, 0x00,
362	0x00, 0x00, 0x00, 0x00,
363
364	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
365	0x00, 0x00, 0x00, 0x00,
366
367	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
368	0x00, 0x00, 0x00, 0x00,
369	0x00, 0x00, 0x00, 0x00,
370
371	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
372
373	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
374	0x00, 0x08, 0x11, 0x40,
375	0x00, 0x00, 0x00, 0x00,
376	0x00, 0x00, 0x00, 0x00,
377	0x00, 0x00, 0x00, 0x00,
378	0x00, 0x00, 0x00, 0x00,
379	0x00, 0x00, 0x00, 0x00,
380	0x00, 0x00, 0x00, 0x00,
381	0x00, 0x00, 0x00, 0x00,
382	0x00, 0x00, 0x00, 0x00,
383
384	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
385	0x00, 0x08, 0x00, 0x00,
386};
387
388ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
389	{ ICE_MAC_OFOS,		0 },
390	{ ICE_ETYPE_OL,		12 },
391	{ ICE_IPV4_OFOS,	14 },
392	{ ICE_UDP_OF,		34 },
393	{ ICE_VXLAN,		42 },
394	{ ICE_GENEVE,		42 },
395	{ ICE_VXLAN_GPE,	42 },
396	{ ICE_MAC_IL,		50 },
397	{ ICE_ETYPE_IL,		62 },
398	{ ICE_IPV6_IL,		64 },
399	{ ICE_TCP_IL,		104 },
400	{ ICE_PROTOCOL_LAST,	0 },
401};
402
403ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
404	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
405	0x00, 0x00, 0x00, 0x00,
406	0x00, 0x00, 0x00, 0x00,
407
408	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
409
410	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
411	0x00, 0x01, 0x00, 0x00,
412	0x40, 0x11, 0x00, 0x00,
413	0x00, 0x00, 0x00, 0x00,
414	0x00, 0x00, 0x00, 0x00,
415
416	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
417	0x00, 0x5a, 0x00, 0x00,
418
419	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
420	0x00, 0x00, 0x00, 0x00,
421
422	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
423	0x00, 0x00, 0x00, 0x00,
424	0x00, 0x00, 0x00, 0x00,
425
426	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
427
428	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
429	0x00, 0x08, 0x06, 0x40,
430	0x00, 0x00, 0x00, 0x00,
431	0x00, 0x00, 0x00, 0x00,
432	0x00, 0x00, 0x00, 0x00,
433	0x00, 0x00, 0x00, 0x00,
434	0x00, 0x00, 0x00, 0x00,
435	0x00, 0x00, 0x00, 0x00,
436	0x00, 0x00, 0x00, 0x00,
437	0x00, 0x00, 0x00, 0x00,
438
439	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
440	0x00, 0x00, 0x00, 0x00,
441	0x00, 0x00, 0x00, 0x00,
442	0x50, 0x02, 0x20, 0x00,
443	0x00, 0x00, 0x00, 0x00
444};
445
446ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
447	{ ICE_MAC_OFOS,		0 },
448	{ ICE_ETYPE_OL,		12 },
449	{ ICE_IPV4_OFOS,	14 },
450	{ ICE_UDP_OF,		34 },
451	{ ICE_VXLAN,		42 },
452	{ ICE_GENEVE,		42 },
453	{ ICE_VXLAN_GPE,	42 },
454	{ ICE_MAC_IL,		50 },
455	{ ICE_ETYPE_IL,		62 },
456	{ ICE_IPV6_IL,		64 },
457	{ ICE_UDP_ILOS,		104 },
458	{ ICE_PROTOCOL_LAST,	0 },
459};
460
461ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
462	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
463	0x00, 0x00, 0x00, 0x00,
464	0x00, 0x00, 0x00, 0x00,
465
466	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
467
468	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
469	0x00, 0x01, 0x00, 0x00,
470	0x00, 0x11, 0x00, 0x00,
471	0x00, 0x00, 0x00, 0x00,
472	0x00, 0x00, 0x00, 0x00,
473
474	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
475	0x00, 0x4e, 0x00, 0x00,
476
477	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
478	0x00, 0x00, 0x00, 0x00,
479
480	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
481	0x00, 0x00, 0x00, 0x00,
482	0x00, 0x00, 0x00, 0x00,
483
484	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
485
486	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
487	0x00, 0x08, 0x11, 0x40,
488	0x00, 0x00, 0x00, 0x00,
489	0x00, 0x00, 0x00, 0x00,
490	0x00, 0x00, 0x00, 0x00,
491	0x00, 0x00, 0x00, 0x00,
492	0x00, 0x00, 0x00, 0x00,
493	0x00, 0x00, 0x00, 0x00,
494	0x00, 0x00, 0x00, 0x00,
495	0x00, 0x00, 0x00, 0x00,
496
497	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
498	0x00, 0x08, 0x00, 0x00,
499};
500
501/* offset info for MAC + IPv4 + UDP dummy packet */
502ICE_DECLARE_PKT_OFFSETS(udp) = {
503	{ ICE_MAC_OFOS,		0 },
504	{ ICE_ETYPE_OL,		12 },
505	{ ICE_IPV4_OFOS,	14 },
506	{ ICE_UDP_ILOS,		34 },
507	{ ICE_PROTOCOL_LAST,	0 },
508};
509
510/* Dummy packet for MAC + IPv4 + UDP */
511ICE_DECLARE_PKT_TEMPLATE(udp) = {
512	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
513	0x00, 0x00, 0x00, 0x00,
514	0x00, 0x00, 0x00, 0x00,
515
516	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
517
518	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
519	0x00, 0x01, 0x00, 0x00,
520	0x00, 0x11, 0x00, 0x00,
521	0x00, 0x00, 0x00, 0x00,
522	0x00, 0x00, 0x00, 0x00,
523
524	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
525	0x00, 0x08, 0x00, 0x00,
526
527	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
528};
529
530/* offset info for MAC + IPv4 + TCP dummy packet */
531ICE_DECLARE_PKT_OFFSETS(tcp) = {
532	{ ICE_MAC_OFOS,		0 },
533	{ ICE_ETYPE_OL,		12 },
534	{ ICE_IPV4_OFOS,	14 },
535	{ ICE_TCP_IL,		34 },
536	{ ICE_PROTOCOL_LAST,	0 },
537};
538
539/* Dummy packet for MAC + IPv4 + TCP */
540ICE_DECLARE_PKT_TEMPLATE(tcp) = {
541	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
542	0x00, 0x00, 0x00, 0x00,
543	0x00, 0x00, 0x00, 0x00,
544
545	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
546
547	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
548	0x00, 0x01, 0x00, 0x00,
549	0x00, 0x06, 0x00, 0x00,
550	0x00, 0x00, 0x00, 0x00,
551	0x00, 0x00, 0x00, 0x00,
552
553	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
554	0x00, 0x00, 0x00, 0x00,
555	0x00, 0x00, 0x00, 0x00,
556	0x50, 0x00, 0x00, 0x00,
557	0x00, 0x00, 0x00, 0x00,
558
559	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
560};
561
562ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
563	{ ICE_MAC_OFOS,		0 },
564	{ ICE_ETYPE_OL,		12 },
565	{ ICE_IPV6_OFOS,	14 },
566	{ ICE_TCP_IL,		54 },
567	{ ICE_PROTOCOL_LAST,	0 },
568};
569
570ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
571	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
572	0x00, 0x00, 0x00, 0x00,
573	0x00, 0x00, 0x00, 0x00,
574
575	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
576
577	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
578	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
579	0x00, 0x00, 0x00, 0x00,
580	0x00, 0x00, 0x00, 0x00,
581	0x00, 0x00, 0x00, 0x00,
582	0x00, 0x00, 0x00, 0x00,
583	0x00, 0x00, 0x00, 0x00,
584	0x00, 0x00, 0x00, 0x00,
585	0x00, 0x00, 0x00, 0x00,
586	0x00, 0x00, 0x00, 0x00,
587
588	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
589	0x00, 0x00, 0x00, 0x00,
590	0x00, 0x00, 0x00, 0x00,
591	0x50, 0x00, 0x00, 0x00,
592	0x00, 0x00, 0x00, 0x00,
593
594	0x00, 0x00, /* 2 bytes for 4 byte alignment */
595};
596
597/* IPv6 + UDP */
598ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
599	{ ICE_MAC_OFOS,		0 },
600	{ ICE_ETYPE_OL,		12 },
601	{ ICE_IPV6_OFOS,	14 },
602	{ ICE_UDP_ILOS,		54 },
603	{ ICE_PROTOCOL_LAST,	0 },
604};
605
606/* IPv6 + UDP dummy packet */
607ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
608	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
609	0x00, 0x00, 0x00, 0x00,
610	0x00, 0x00, 0x00, 0x00,
611
612	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
613
614	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
615	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
616	0x00, 0x00, 0x00, 0x00,
617	0x00, 0x00, 0x00, 0x00,
618	0x00, 0x00, 0x00, 0x00,
619	0x00, 0x00, 0x00, 0x00,
620	0x00, 0x00, 0x00, 0x00,
621	0x00, 0x00, 0x00, 0x00,
622	0x00, 0x00, 0x00, 0x00,
623	0x00, 0x00, 0x00, 0x00,
624
625	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
626	0x00, 0x10, 0x00, 0x00,
627
628	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
629	0x00, 0x00, 0x00, 0x00,
630
631	0x00, 0x00, /* 2 bytes for 4 byte alignment */
632};
633
634/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
635ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
636	{ ICE_MAC_OFOS,		0 },
637	{ ICE_IPV4_OFOS,	14 },
638	{ ICE_UDP_OF,		34 },
639	{ ICE_GTP,		42 },
640	{ ICE_IPV4_IL,		62 },
641	{ ICE_TCP_IL,		82 },
642	{ ICE_PROTOCOL_LAST,	0 },
643};
644
645ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
646	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
647	0x00, 0x00, 0x00, 0x00,
648	0x00, 0x00, 0x00, 0x00,
649	0x08, 0x00,
650
651	0x45, 0x00, 0x00, 0x58, /* IP 14 */
652	0x00, 0x00, 0x00, 0x00,
653	0x00, 0x11, 0x00, 0x00,
654	0x00, 0x00, 0x00, 0x00,
655	0x00, 0x00, 0x00, 0x00,
656
657	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
658	0x00, 0x44, 0x00, 0x00,
659
660	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
661	0x00, 0x00, 0x00, 0x00,
662	0x00, 0x00, 0x00, 0x85,
663
664	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
665	0x00, 0x00, 0x00, 0x00,
666
667	0x45, 0x00, 0x00, 0x28, /* IP 62 */
668	0x00, 0x00, 0x00, 0x00,
669	0x00, 0x06, 0x00, 0x00,
670	0x00, 0x00, 0x00, 0x00,
671	0x00, 0x00, 0x00, 0x00,
672
673	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
674	0x00, 0x00, 0x00, 0x00,
675	0x00, 0x00, 0x00, 0x00,
676	0x50, 0x00, 0x00, 0x00,
677	0x00, 0x00, 0x00, 0x00,
678
679	0x00, 0x00, /* 2 bytes for 4 byte alignment */
680};
681
682/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
683ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
684	{ ICE_MAC_OFOS,		0 },
685	{ ICE_IPV4_OFOS,	14 },
686	{ ICE_UDP_OF,		34 },
687	{ ICE_GTP,		42 },
688	{ ICE_IPV4_IL,		62 },
689	{ ICE_UDP_ILOS,		82 },
690	{ ICE_PROTOCOL_LAST,	0 },
691};
692
693ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
694	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
695	0x00, 0x00, 0x00, 0x00,
696	0x00, 0x00, 0x00, 0x00,
697	0x08, 0x00,
698
699	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
700	0x00, 0x00, 0x00, 0x00,
701	0x00, 0x11, 0x00, 0x00,
702	0x00, 0x00, 0x00, 0x00,
703	0x00, 0x00, 0x00, 0x00,
704
705	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
706	0x00, 0x38, 0x00, 0x00,
707
708	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
709	0x00, 0x00, 0x00, 0x00,
710	0x00, 0x00, 0x00, 0x85,
711
712	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
713	0x00, 0x00, 0x00, 0x00,
714
715	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
716	0x00, 0x00, 0x00, 0x00,
717	0x00, 0x11, 0x00, 0x00,
718	0x00, 0x00, 0x00, 0x00,
719	0x00, 0x00, 0x00, 0x00,
720
721	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
722	0x00, 0x08, 0x00, 0x00,
723
724	0x00, 0x00, /* 2 bytes for 4 byte alignment */
725};
726
727/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
728ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
729	{ ICE_MAC_OFOS,		0 },
730	{ ICE_IPV4_OFOS,	14 },
731	{ ICE_UDP_OF,		34 },
732	{ ICE_GTP,		42 },
733	{ ICE_IPV6_IL,		62 },
734	{ ICE_TCP_IL,		102 },
735	{ ICE_PROTOCOL_LAST,	0 },
736};
737
738ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
739	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
740	0x00, 0x00, 0x00, 0x00,
741	0x00, 0x00, 0x00, 0x00,
742	0x08, 0x00,
743
744	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
745	0x00, 0x00, 0x00, 0x00,
746	0x00, 0x11, 0x00, 0x00,
747	0x00, 0x00, 0x00, 0x00,
748	0x00, 0x00, 0x00, 0x00,
749
750	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
751	0x00, 0x58, 0x00, 0x00,
752
753	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
754	0x00, 0x00, 0x00, 0x00,
755	0x00, 0x00, 0x00, 0x85,
756
757	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
758	0x00, 0x00, 0x00, 0x00,
759
760	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
761	0x00, 0x14, 0x06, 0x00,
762	0x00, 0x00, 0x00, 0x00,
763	0x00, 0x00, 0x00, 0x00,
764	0x00, 0x00, 0x00, 0x00,
765	0x00, 0x00, 0x00, 0x00,
766	0x00, 0x00, 0x00, 0x00,
767	0x00, 0x00, 0x00, 0x00,
768	0x00, 0x00, 0x00, 0x00,
769	0x00, 0x00, 0x00, 0x00,
770
771	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
772	0x00, 0x00, 0x00, 0x00,
773	0x00, 0x00, 0x00, 0x00,
774	0x50, 0x00, 0x00, 0x00,
775	0x00, 0x00, 0x00, 0x00,
776
777	0x00, 0x00, /* 2 bytes for 4 byte alignment */
778};
779
780ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
781	{ ICE_MAC_OFOS,		0 },
782	{ ICE_IPV4_OFOS,	14 },
783	{ ICE_UDP_OF,		34 },
784	{ ICE_GTP,		42 },
785	{ ICE_IPV6_IL,		62 },
786	{ ICE_UDP_ILOS,		102 },
787	{ ICE_PROTOCOL_LAST,	0 },
788};
789
790ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
791	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
792	0x00, 0x00, 0x00, 0x00,
793	0x00, 0x00, 0x00, 0x00,
794	0x08, 0x00,
795
796	0x45, 0x00, 0x00, 0x60, /* IP 14 */
797	0x00, 0x00, 0x00, 0x00,
798	0x00, 0x11, 0x00, 0x00,
799	0x00, 0x00, 0x00, 0x00,
800	0x00, 0x00, 0x00, 0x00,
801
802	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
803	0x00, 0x4c, 0x00, 0x00,
804
805	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
806	0x00, 0x00, 0x00, 0x00,
807	0x00, 0x00, 0x00, 0x85,
808
809	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
810	0x00, 0x00, 0x00, 0x00,
811
812	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
813	0x00, 0x08, 0x11, 0x00,
814	0x00, 0x00, 0x00, 0x00,
815	0x00, 0x00, 0x00, 0x00,
816	0x00, 0x00, 0x00, 0x00,
817	0x00, 0x00, 0x00, 0x00,
818	0x00, 0x00, 0x00, 0x00,
819	0x00, 0x00, 0x00, 0x00,
820	0x00, 0x00, 0x00, 0x00,
821	0x00, 0x00, 0x00, 0x00,
822
823	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
824	0x00, 0x08, 0x00, 0x00,
825
826	0x00, 0x00, /* 2 bytes for 4 byte alignment */
827};
828
829ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
830	{ ICE_MAC_OFOS,		0 },
831	{ ICE_IPV6_OFOS,	14 },
832	{ ICE_UDP_OF,		54 },
833	{ ICE_GTP,		62 },
834	{ ICE_IPV4_IL,		82 },
835	{ ICE_TCP_IL,		102 },
836	{ ICE_PROTOCOL_LAST,	0 },
837};
838
839ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
840	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
841	0x00, 0x00, 0x00, 0x00,
842	0x00, 0x00, 0x00, 0x00,
843	0x86, 0xdd,
844
845	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
846	0x00, 0x44, 0x11, 0x00,
847	0x00, 0x00, 0x00, 0x00,
848	0x00, 0x00, 0x00, 0x00,
849	0x00, 0x00, 0x00, 0x00,
850	0x00, 0x00, 0x00, 0x00,
851	0x00, 0x00, 0x00, 0x00,
852	0x00, 0x00, 0x00, 0x00,
853	0x00, 0x00, 0x00, 0x00,
854	0x00, 0x00, 0x00, 0x00,
855
856	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
857	0x00, 0x44, 0x00, 0x00,
858
859	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
860	0x00, 0x00, 0x00, 0x00,
861	0x00, 0x00, 0x00, 0x85,
862
863	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
864	0x00, 0x00, 0x00, 0x00,
865
866	0x45, 0x00, 0x00, 0x28, /* IP 82 */
867	0x00, 0x00, 0x00, 0x00,
868	0x00, 0x06, 0x00, 0x00,
869	0x00, 0x00, 0x00, 0x00,
870	0x00, 0x00, 0x00, 0x00,
871
872	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
873	0x00, 0x00, 0x00, 0x00,
874	0x00, 0x00, 0x00, 0x00,
875	0x50, 0x00, 0x00, 0x00,
876	0x00, 0x00, 0x00, 0x00,
877
878	0x00, 0x00, /* 2 bytes for 4 byte alignment */
879};
880
881ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
882	{ ICE_MAC_OFOS,		0 },
883	{ ICE_IPV6_OFOS,	14 },
884	{ ICE_UDP_OF,		54 },
885	{ ICE_GTP,		62 },
886	{ ICE_IPV4_IL,		82 },
887	{ ICE_UDP_ILOS,		102 },
888	{ ICE_PROTOCOL_LAST,	0 },
889};
890
891ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
892	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
893	0x00, 0x00, 0x00, 0x00,
894	0x00, 0x00, 0x00, 0x00,
895	0x86, 0xdd,
896
897	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
898	0x00, 0x38, 0x11, 0x00,
899	0x00, 0x00, 0x00, 0x00,
900	0x00, 0x00, 0x00, 0x00,
901	0x00, 0x00, 0x00, 0x00,
902	0x00, 0x00, 0x00, 0x00,
903	0x00, 0x00, 0x00, 0x00,
904	0x00, 0x00, 0x00, 0x00,
905	0x00, 0x00, 0x00, 0x00,
906	0x00, 0x00, 0x00, 0x00,
907
908	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
909	0x00, 0x38, 0x00, 0x00,
910
911	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
912	0x00, 0x00, 0x00, 0x00,
913	0x00, 0x00, 0x00, 0x85,
914
915	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
916	0x00, 0x00, 0x00, 0x00,
917
918	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
919	0x00, 0x00, 0x00, 0x00,
920	0x00, 0x11, 0x00, 0x00,
921	0x00, 0x00, 0x00, 0x00,
922	0x00, 0x00, 0x00, 0x00,
923
924	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
925	0x00, 0x08, 0x00, 0x00,
926
927	0x00, 0x00, /* 2 bytes for 4 byte alignment */
928};
929
930ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
931	{ ICE_MAC_OFOS,		0 },
932	{ ICE_IPV6_OFOS,	14 },
933	{ ICE_UDP_OF,		54 },
934	{ ICE_GTP,		62 },
935	{ ICE_IPV6_IL,		82 },
936	{ ICE_TCP_IL,		122 },
937	{ ICE_PROTOCOL_LAST,	0 },
938};
939
940ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
941	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
942	0x00, 0x00, 0x00, 0x00,
943	0x00, 0x00, 0x00, 0x00,
944	0x86, 0xdd,
945
946	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
947	0x00, 0x58, 0x11, 0x00,
948	0x00, 0x00, 0x00, 0x00,
949	0x00, 0x00, 0x00, 0x00,
950	0x00, 0x00, 0x00, 0x00,
951	0x00, 0x00, 0x00, 0x00,
952	0x00, 0x00, 0x00, 0x00,
953	0x00, 0x00, 0x00, 0x00,
954	0x00, 0x00, 0x00, 0x00,
955	0x00, 0x00, 0x00, 0x00,
956
957	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
958	0x00, 0x58, 0x00, 0x00,
959
960	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
961	0x00, 0x00, 0x00, 0x00,
962	0x00, 0x00, 0x00, 0x85,
963
964	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
965	0x00, 0x00, 0x00, 0x00,
966
967	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
968	0x00, 0x14, 0x06, 0x00,
969	0x00, 0x00, 0x00, 0x00,
970	0x00, 0x00, 0x00, 0x00,
971	0x00, 0x00, 0x00, 0x00,
972	0x00, 0x00, 0x00, 0x00,
973	0x00, 0x00, 0x00, 0x00,
974	0x00, 0x00, 0x00, 0x00,
975	0x00, 0x00, 0x00, 0x00,
976	0x00, 0x00, 0x00, 0x00,
977
978	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
979	0x00, 0x00, 0x00, 0x00,
980	0x00, 0x00, 0x00, 0x00,
981	0x50, 0x00, 0x00, 0x00,
982	0x00, 0x00, 0x00, 0x00,
983
984	0x00, 0x00, /* 2 bytes for 4 byte alignment */
985};
986
987ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
988	{ ICE_MAC_OFOS,		0 },
989	{ ICE_IPV6_OFOS,	14 },
990	{ ICE_UDP_OF,		54 },
991	{ ICE_GTP,		62 },
992	{ ICE_IPV6_IL,		82 },
993	{ ICE_UDP_ILOS,		122 },
994	{ ICE_PROTOCOL_LAST,	0 },
995};
996
997ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
998	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
999	0x00, 0x00, 0x00, 0x00,
1000	0x00, 0x00, 0x00, 0x00,
1001	0x86, 0xdd,
1002
1003	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004	0x00, 0x4c, 0x11, 0x00,
1005	0x00, 0x00, 0x00, 0x00,
1006	0x00, 0x00, 0x00, 0x00,
1007	0x00, 0x00, 0x00, 0x00,
1008	0x00, 0x00, 0x00, 0x00,
1009	0x00, 0x00, 0x00, 0x00,
1010	0x00, 0x00, 0x00, 0x00,
1011	0x00, 0x00, 0x00, 0x00,
1012	0x00, 0x00, 0x00, 0x00,
1013
1014	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015	0x00, 0x4c, 0x00, 0x00,
1016
1017	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018	0x00, 0x00, 0x00, 0x00,
1019	0x00, 0x00, 0x00, 0x85,
1020
1021	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022	0x00, 0x00, 0x00, 0x00,
1023
1024	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025	0x00, 0x08, 0x11, 0x00,
1026	0x00, 0x00, 0x00, 0x00,
1027	0x00, 0x00, 0x00, 0x00,
1028	0x00, 0x00, 0x00, 0x00,
1029	0x00, 0x00, 0x00, 0x00,
1030	0x00, 0x00, 0x00, 0x00,
1031	0x00, 0x00, 0x00, 0x00,
1032	0x00, 0x00, 0x00, 0x00,
1033	0x00, 0x00, 0x00, 0x00,
1034
1035	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036	0x00, 0x08, 0x00, 0x00,
1037
1038	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039};
1040
1041ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042	{ ICE_MAC_OFOS,		0 },
1043	{ ICE_IPV4_OFOS,	14 },
1044	{ ICE_UDP_OF,		34 },
1045	{ ICE_GTP_NO_PAY,	42 },
1046	{ ICE_PROTOCOL_LAST,	0 },
1047};
1048
1049ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051	0x00, 0x00, 0x00, 0x00,
1052	0x00, 0x00, 0x00, 0x00,
1053	0x08, 0x00,
1054
1055	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056	0x00, 0x00, 0x40, 0x00,
1057	0x40, 0x11, 0x00, 0x00,
1058	0x00, 0x00, 0x00, 0x00,
1059	0x00, 0x00, 0x00, 0x00,
1060
1061	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062	0x00, 0x00, 0x00, 0x00,
1063
1064	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065	0x00, 0x00, 0x00, 0x00,
1066	0x00, 0x00, 0x00, 0x85,
1067
1068	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069	0x00, 0x00, 0x00, 0x00,
1070
1071	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072	0x00, 0x00, 0x40, 0x00,
1073	0x40, 0x00, 0x00, 0x00,
1074	0x00, 0x00, 0x00, 0x00,
1075	0x00, 0x00, 0x00, 0x00,
1076	0x00, 0x00,
1077};
1078
1079ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080	{ ICE_MAC_OFOS,		0 },
1081	{ ICE_IPV6_OFOS,	14 },
1082	{ ICE_UDP_OF,		54 },
1083	{ ICE_GTP_NO_PAY,	62 },
1084	{ ICE_PROTOCOL_LAST,	0 },
1085};
1086
1087ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089	0x00, 0x00, 0x00, 0x00,
1090	0x00, 0x00, 0x00, 0x00,
1091	0x86, 0xdd,
1092
1093	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095	0x00, 0x00, 0x00, 0x00,
1096	0x00, 0x00, 0x00, 0x00,
1097	0x00, 0x00, 0x00, 0x00,
1098	0x00, 0x00, 0x00, 0x00,
1099	0x00, 0x00, 0x00, 0x00,
1100	0x00, 0x00, 0x00, 0x00,
1101	0x00, 0x00, 0x00, 0x00,
1102	0x00, 0x00, 0x00, 0x00,
1103
1104	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105	0x00, 0x00, 0x00, 0x00,
1106
1107	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108	0x00, 0x00, 0x00, 0x00,
1109
1110	0x00, 0x00,
1111};
1112
1113ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114	{ ICE_MAC_OFOS,		0 },
1115	{ ICE_ETYPE_OL,		12 },
1116	{ ICE_PPPOE,		14 },
1117	{ ICE_IPV4_OFOS,	22 },
1118	{ ICE_TCP_IL,		42 },
1119	{ ICE_PROTOCOL_LAST,	0 },
1120};
1121
1122ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124	0x00, 0x00, 0x00, 0x00,
1125	0x00, 0x00, 0x00, 0x00,
1126
1127	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1128
1129	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130	0x00, 0x16,
1131
1132	0x00, 0x21,		/* PPP Link Layer 20 */
1133
1134	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135	0x00, 0x01, 0x00, 0x00,
1136	0x00, 0x06, 0x00, 0x00,
1137	0x00, 0x00, 0x00, 0x00,
1138	0x00, 0x00, 0x00, 0x00,
1139
1140	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141	0x00, 0x00, 0x00, 0x00,
1142	0x00, 0x00, 0x00, 0x00,
1143	0x50, 0x00, 0x00, 0x00,
1144	0x00, 0x00, 0x00, 0x00,
1145
1146	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1147};
1148
1149ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150	{ ICE_MAC_OFOS,		0 },
1151	{ ICE_ETYPE_OL,		12 },
1152	{ ICE_PPPOE,		14 },
1153	{ ICE_IPV4_OFOS,	22 },
1154	{ ICE_UDP_ILOS,		42 },
1155	{ ICE_PROTOCOL_LAST,	0 },
1156};
1157
1158ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160	0x00, 0x00, 0x00, 0x00,
1161	0x00, 0x00, 0x00, 0x00,
1162
1163	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1164
1165	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166	0x00, 0x16,
1167
1168	0x00, 0x21,		/* PPP Link Layer 20 */
1169
1170	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171	0x00, 0x01, 0x00, 0x00,
1172	0x00, 0x11, 0x00, 0x00,
1173	0x00, 0x00, 0x00, 0x00,
1174	0x00, 0x00, 0x00, 0x00,
1175
1176	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177	0x00, 0x08, 0x00, 0x00,
1178
1179	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1180};
1181
1182ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183	{ ICE_MAC_OFOS,		0 },
1184	{ ICE_ETYPE_OL,		12 },
1185	{ ICE_PPPOE,		14 },
1186	{ ICE_IPV6_OFOS,	22 },
1187	{ ICE_TCP_IL,		62 },
1188	{ ICE_PROTOCOL_LAST,	0 },
1189};
1190
1191ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193	0x00, 0x00, 0x00, 0x00,
1194	0x00, 0x00, 0x00, 0x00,
1195
1196	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1197
1198	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199	0x00, 0x2a,
1200
1201	0x00, 0x57,		/* PPP Link Layer 20 */
1202
1203	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205	0x00, 0x00, 0x00, 0x00,
1206	0x00, 0x00, 0x00, 0x00,
1207	0x00, 0x00, 0x00, 0x00,
1208	0x00, 0x00, 0x00, 0x00,
1209	0x00, 0x00, 0x00, 0x00,
1210	0x00, 0x00, 0x00, 0x00,
1211	0x00, 0x00, 0x00, 0x00,
1212	0x00, 0x00, 0x00, 0x00,
1213
1214	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215	0x00, 0x00, 0x00, 0x00,
1216	0x00, 0x00, 0x00, 0x00,
1217	0x50, 0x00, 0x00, 0x00,
1218	0x00, 0x00, 0x00, 0x00,
1219
1220	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1221};
1222
1223ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224	{ ICE_MAC_OFOS,		0 },
1225	{ ICE_ETYPE_OL,		12 },
1226	{ ICE_PPPOE,		14 },
1227	{ ICE_IPV6_OFOS,	22 },
1228	{ ICE_UDP_ILOS,		62 },
1229	{ ICE_PROTOCOL_LAST,	0 },
1230};
1231
1232ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234	0x00, 0x00, 0x00, 0x00,
1235	0x00, 0x00, 0x00, 0x00,
1236
1237	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1238
1239	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240	0x00, 0x2a,
1241
1242	0x00, 0x57,		/* PPP Link Layer 20 */
1243
1244	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246	0x00, 0x00, 0x00, 0x00,
1247	0x00, 0x00, 0x00, 0x00,
1248	0x00, 0x00, 0x00, 0x00,
1249	0x00, 0x00, 0x00, 0x00,
1250	0x00, 0x00, 0x00, 0x00,
1251	0x00, 0x00, 0x00, 0x00,
1252	0x00, 0x00, 0x00, 0x00,
1253	0x00, 0x00, 0x00, 0x00,
1254
1255	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256	0x00, 0x08, 0x00, 0x00,
1257
1258	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1259};
1260
1261ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1262	{ ICE_MAC_OFOS,		0 },
1263	{ ICE_ETYPE_OL,		12 },
1264	{ ICE_IPV4_OFOS,	14 },
1265	{ ICE_L2TPV3,		34 },
1266	{ ICE_PROTOCOL_LAST,	0 },
1267};
1268
1269ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1270	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1271	0x00, 0x00, 0x00, 0x00,
1272	0x00, 0x00, 0x00, 0x00,
1273
1274	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1275
1276	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1277	0x00, 0x00, 0x40, 0x00,
1278	0x40, 0x73, 0x00, 0x00,
1279	0x00, 0x00, 0x00, 0x00,
1280	0x00, 0x00, 0x00, 0x00,
1281
1282	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1283	0x00, 0x00, 0x00, 0x00,
1284	0x00, 0x00, 0x00, 0x00,
1285	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1286};
1287
1288ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1289	{ ICE_MAC_OFOS,		0 },
1290	{ ICE_ETYPE_OL,		12 },
1291	{ ICE_IPV6_OFOS,	14 },
1292	{ ICE_L2TPV3,		54 },
1293	{ ICE_PROTOCOL_LAST,	0 },
1294};
1295
1296ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1297	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1298	0x00, 0x00, 0x00, 0x00,
1299	0x00, 0x00, 0x00, 0x00,
1300
1301	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1302
1303	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1304	0x00, 0x0c, 0x73, 0x40,
1305	0x00, 0x00, 0x00, 0x00,
1306	0x00, 0x00, 0x00, 0x00,
1307	0x00, 0x00, 0x00, 0x00,
1308	0x00, 0x00, 0x00, 0x00,
1309	0x00, 0x00, 0x00, 0x00,
1310	0x00, 0x00, 0x00, 0x00,
1311	0x00, 0x00, 0x00, 0x00,
1312	0x00, 0x00, 0x00, 0x00,
1313
1314	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1315	0x00, 0x00, 0x00, 0x00,
1316	0x00, 0x00, 0x00, 0x00,
1317	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1318};
1319
1320static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1321	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1322				  ICE_PKT_GTP_NOPAY),
1323	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1324					    ICE_PKT_OUTER_IPV6 |
1325					    ICE_PKT_INNER_IPV6 |
1326					    ICE_PKT_INNER_UDP),
1327	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1328					    ICE_PKT_OUTER_IPV6 |
1329					    ICE_PKT_INNER_IPV6),
1330	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1331					    ICE_PKT_OUTER_IPV6 |
1332					    ICE_PKT_INNER_UDP),
1333	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1334					    ICE_PKT_OUTER_IPV6),
1335	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1336	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1337					    ICE_PKT_INNER_IPV6 |
1338					    ICE_PKT_INNER_UDP),
1339	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1340					    ICE_PKT_INNER_IPV6),
1341	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1342					    ICE_PKT_INNER_UDP),
1343	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1344	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1345	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1346	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1347					ICE_PKT_INNER_UDP),
1348	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1349	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1350	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1351	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1352				      ICE_PKT_INNER_TCP),
1353	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1354	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1355	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1356	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1357					  ICE_PKT_INNER_IPV6 |
1358					  ICE_PKT_INNER_TCP),
1359	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1360	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1361	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1362	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1363					  ICE_PKT_INNER_IPV6),
1364	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1365	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1366	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1367	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1368	ICE_PKT_PROFILE(tcp, 0),
1369};
1370
1371/* this is a recipe to profile association bitmap */
1372static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1373			  ICE_MAX_NUM_PROFILES);
1374
1375/* this is a profile to recipe association bitmap */
1376static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1377			  ICE_MAX_NUM_RECIPES);
1378
1379/**
1380 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1381 * @hw: pointer to the HW struct
1382 *
1383 * Allocate memory for the entire recipe table and initialize the structures/
1384 * entries corresponding to basic recipes.
1385 */
1386int ice_init_def_sw_recp(struct ice_hw *hw)
1387{
1388	struct ice_sw_recipe *recps;
1389	u8 i;
1390
1391	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1392			     sizeof(*recps), GFP_KERNEL);
1393	if (!recps)
1394		return -ENOMEM;
1395
1396	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1397		recps[i].root_rid = i;
1398		INIT_LIST_HEAD(&recps[i].filt_rules);
1399		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1400		INIT_LIST_HEAD(&recps[i].rg_list);
1401		mutex_init(&recps[i].filt_rule_lock);
1402	}
1403
1404	hw->switch_info->recp_list = recps;
1405
1406	return 0;
1407}
1408
1409/**
1410 * ice_aq_get_sw_cfg - get switch configuration
1411 * @hw: pointer to the hardware structure
1412 * @buf: pointer to the result buffer
1413 * @buf_size: length of the buffer available for response
1414 * @req_desc: pointer to requested descriptor
1415 * @num_elems: pointer to number of elements
1416 * @cd: pointer to command details structure or NULL
1417 *
1418 * Get switch configuration (0x0200) to be placed in buf.
1419 * This admin command returns information such as initial VSI/port number
1420 * and switch ID it belongs to.
1421 *
1422 * NOTE: *req_desc is both an input/output parameter.
1423 * The caller of this function first calls this function with *request_desc set
1424 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1425 * configuration information has been returned; if non-zero (meaning not all
1426 * the information was returned), the caller should call this function again
1427 * with *req_desc set to the previous value returned by f/w to get the
1428 * next block of switch configuration information.
1429 *
1430 * *num_elems is output only parameter. This reflects the number of elements
1431 * in response buffer. The caller of this function to use *num_elems while
1432 * parsing the response buffer.
1433 */
1434static int
1435ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1436		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1437		  struct ice_sq_cd *cd)
1438{
1439	struct ice_aqc_get_sw_cfg *cmd;
1440	struct ice_aq_desc desc;
1441	int status;
1442
1443	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1444	cmd = &desc.params.get_sw_conf;
1445	cmd->element = cpu_to_le16(*req_desc);
1446
1447	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1448	if (!status) {
1449		*req_desc = le16_to_cpu(cmd->element);
1450		*num_elems = le16_to_cpu(cmd->num_elems);
1451	}
1452
1453	return status;
1454}
1455
1456/**
1457 * ice_aq_add_vsi
1458 * @hw: pointer to the HW struct
1459 * @vsi_ctx: pointer to a VSI context struct
1460 * @cd: pointer to command details structure or NULL
1461 *
1462 * Add a VSI context to the hardware (0x0210)
1463 */
1464static int
1465ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1466	       struct ice_sq_cd *cd)
1467{
1468	struct ice_aqc_add_update_free_vsi_resp *res;
1469	struct ice_aqc_add_get_update_free_vsi *cmd;
1470	struct ice_aq_desc desc;
1471	int status;
1472
1473	cmd = &desc.params.vsi_cmd;
1474	res = &desc.params.add_update_free_vsi_res;
1475
1476	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1477
1478	if (!vsi_ctx->alloc_from_pool)
1479		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1480					   ICE_AQ_VSI_IS_VALID);
1481	cmd->vf_id = vsi_ctx->vf_num;
1482
1483	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1484
1485	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1486
1487	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1488				 sizeof(vsi_ctx->info), cd);
1489
1490	if (!status) {
1491		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1492		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1493		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1494	}
1495
1496	return status;
1497}
1498
1499/**
1500 * ice_aq_free_vsi
1501 * @hw: pointer to the HW struct
1502 * @vsi_ctx: pointer to a VSI context struct
1503 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1504 * @cd: pointer to command details structure or NULL
1505 *
1506 * Free VSI context info from hardware (0x0213)
1507 */
1508static int
1509ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1510		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1511{
1512	struct ice_aqc_add_update_free_vsi_resp *resp;
1513	struct ice_aqc_add_get_update_free_vsi *cmd;
1514	struct ice_aq_desc desc;
1515	int status;
1516
1517	cmd = &desc.params.vsi_cmd;
1518	resp = &desc.params.add_update_free_vsi_res;
1519
1520	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1521
1522	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1523	if (keep_vsi_alloc)
1524		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1525
1526	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1527	if (!status) {
1528		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1529		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1530	}
1531
1532	return status;
1533}
1534
1535/**
1536 * ice_aq_update_vsi
1537 * @hw: pointer to the HW struct
1538 * @vsi_ctx: pointer to a VSI context struct
1539 * @cd: pointer to command details structure or NULL
1540 *
1541 * Update VSI context in the hardware (0x0211)
1542 */
1543static int
1544ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1545		  struct ice_sq_cd *cd)
1546{
1547	struct ice_aqc_add_update_free_vsi_resp *resp;
1548	struct ice_aqc_add_get_update_free_vsi *cmd;
1549	struct ice_aq_desc desc;
1550	int status;
1551
1552	cmd = &desc.params.vsi_cmd;
1553	resp = &desc.params.add_update_free_vsi_res;
1554
1555	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1556
1557	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1558
1559	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560
1561	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562				 sizeof(vsi_ctx->info), cd);
1563
1564	if (!status) {
1565		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1566		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1567	}
1568
1569	return status;
1570}
1571
1572/**
1573 * ice_is_vsi_valid - check whether the VSI is valid or not
1574 * @hw: pointer to the HW struct
1575 * @vsi_handle: VSI handle
1576 *
1577 * check whether the VSI is valid or not
1578 */
1579bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1580{
1581	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1582}
1583
1584/**
1585 * ice_get_hw_vsi_num - return the HW VSI number
1586 * @hw: pointer to the HW struct
1587 * @vsi_handle: VSI handle
1588 *
1589 * return the HW VSI number
1590 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1591 */
1592u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1593{
1594	return hw->vsi_ctx[vsi_handle]->vsi_num;
1595}
1596
1597/**
1598 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1599 * @hw: pointer to the HW struct
1600 * @vsi_handle: VSI handle
1601 *
1602 * return the VSI context entry for a given VSI handle
1603 */
1604struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1605{
1606	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1607}
1608
1609/**
1610 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1611 * @hw: pointer to the HW struct
1612 * @vsi_handle: VSI handle
1613 * @vsi: VSI context pointer
1614 *
1615 * save the VSI context entry for a given VSI handle
1616 */
1617static void
1618ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1619{
1620	hw->vsi_ctx[vsi_handle] = vsi;
1621}
1622
1623/**
1624 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1625 * @hw: pointer to the HW struct
1626 * @vsi_handle: VSI handle
1627 */
1628static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1629{
1630	struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1631	u8 i;
1632
1633	if (!vsi)
1634		return;
1635	ice_for_each_traffic_class(i) {
1636		devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1637		vsi->lan_q_ctx[i] = NULL;
1638		devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1639		vsi->rdma_q_ctx[i] = NULL;
1640	}
1641}
1642
1643/**
1644 * ice_clear_vsi_ctx - clear the VSI context entry
1645 * @hw: pointer to the HW struct
1646 * @vsi_handle: VSI handle
1647 *
1648 * clear the VSI context entry
1649 */
1650static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1651{
1652	struct ice_vsi_ctx *vsi;
1653
1654	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1655	if (vsi) {
1656		ice_clear_vsi_q_ctx(hw, vsi_handle);
1657		devm_kfree(ice_hw_to_dev(hw), vsi);
1658		hw->vsi_ctx[vsi_handle] = NULL;
1659	}
1660}
1661
1662/**
1663 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1664 * @hw: pointer to the HW struct
1665 */
1666void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1667{
1668	u16 i;
1669
1670	for (i = 0; i < ICE_MAX_VSI; i++)
1671		ice_clear_vsi_ctx(hw, i);
1672}
1673
1674/**
1675 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1676 * @hw: pointer to the HW struct
1677 * @vsi_handle: unique VSI handle provided by drivers
1678 * @vsi_ctx: pointer to a VSI context struct
1679 * @cd: pointer to command details structure or NULL
1680 *
1681 * Add a VSI context to the hardware also add it into the VSI handle list.
1682 * If this function gets called after reset for existing VSIs then update
1683 * with the new HW VSI number in the corresponding VSI handle list entry.
1684 */
1685int
1686ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1687	    struct ice_sq_cd *cd)
1688{
1689	struct ice_vsi_ctx *tmp_vsi_ctx;
1690	int status;
1691
1692	if (vsi_handle >= ICE_MAX_VSI)
1693		return -EINVAL;
1694	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1695	if (status)
1696		return status;
1697	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1698	if (!tmp_vsi_ctx) {
1699		/* Create a new VSI context */
1700		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1701					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1702		if (!tmp_vsi_ctx) {
1703			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1704			return -ENOMEM;
1705		}
1706		*tmp_vsi_ctx = *vsi_ctx;
1707		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1708	} else {
1709		/* update with new HW VSI num */
1710		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1711	}
1712
1713	return 0;
1714}
1715
1716/**
1717 * ice_free_vsi- free VSI context from hardware and VSI handle list
1718 * @hw: pointer to the HW struct
1719 * @vsi_handle: unique VSI handle
1720 * @vsi_ctx: pointer to a VSI context struct
1721 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1722 * @cd: pointer to command details structure or NULL
1723 *
1724 * Free VSI context info from hardware as well as from VSI handle list
1725 */
1726int
1727ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1728	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1729{
1730	int status;
1731
1732	if (!ice_is_vsi_valid(hw, vsi_handle))
1733		return -EINVAL;
1734	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1735	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1736	if (!status)
1737		ice_clear_vsi_ctx(hw, vsi_handle);
1738	return status;
1739}
1740
1741/**
1742 * ice_update_vsi
1743 * @hw: pointer to the HW struct
1744 * @vsi_handle: unique VSI handle
1745 * @vsi_ctx: pointer to a VSI context struct
1746 * @cd: pointer to command details structure or NULL
1747 *
1748 * Update VSI context in the hardware
1749 */
1750int
1751ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1752	       struct ice_sq_cd *cd)
1753{
1754	if (!ice_is_vsi_valid(hw, vsi_handle))
1755		return -EINVAL;
1756	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1757	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1758}
1759
1760/**
1761 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1762 * @hw: pointer to HW struct
1763 * @vsi_handle: VSI SW index
1764 * @enable: boolean for enable/disable
1765 */
1766int
1767ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1768{
1769	struct ice_vsi_ctx *ctx, *cached_ctx;
1770	int status;
1771
1772	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1773	if (!cached_ctx)
1774		return -ENOENT;
1775
1776	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1777	if (!ctx)
1778		return -ENOMEM;
1779
1780	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1781	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1782	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1783
1784	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1785
1786	if (enable)
1787		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1788	else
1789		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1790
1791	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1792	if (!status) {
1793		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1794		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1795	}
1796
1797	kfree(ctx);
1798	return status;
1799}
1800
1801/**
1802 * ice_aq_alloc_free_vsi_list
1803 * @hw: pointer to the HW struct
1804 * @vsi_list_id: VSI list ID returned or used for lookup
1805 * @lkup_type: switch rule filter lookup type
1806 * @opc: switch rules population command type - pass in the command opcode
1807 *
1808 * allocates or free a VSI list resource
1809 */
1810static int
1811ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1812			   enum ice_sw_lkup_type lkup_type,
1813			   enum ice_adminq_opc opc)
1814{
1815	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1816	u16 buf_len = __struct_size(sw_buf);
1817	struct ice_aqc_res_elem *vsi_ele;
1818	int status;
1819
1820	sw_buf->num_elems = cpu_to_le16(1);
1821
1822	if (lkup_type == ICE_SW_LKUP_MAC ||
1823	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1824	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1825	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1826	    lkup_type == ICE_SW_LKUP_PROMISC ||
1827	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1828	    lkup_type == ICE_SW_LKUP_DFLT) {
1829		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1830	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1831		if (opc == ice_aqc_opc_alloc_res)
1832			sw_buf->res_type =
1833				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1834					    ICE_AQC_RES_TYPE_FLAG_SHARED);
1835		else
1836			sw_buf->res_type =
1837				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1838	} else {
1839		return -EINVAL;
1840	}
1841
1842	if (opc == ice_aqc_opc_free_res)
1843		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1844
1845	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1846	if (status)
1847		return status;
1848
1849	if (opc == ice_aqc_opc_alloc_res) {
1850		vsi_ele = &sw_buf->elem[0];
1851		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1852	}
1853
1854	return 0;
1855}
1856
1857/**
1858 * ice_aq_sw_rules - add/update/remove switch rules
1859 * @hw: pointer to the HW struct
1860 * @rule_list: pointer to switch rule population list
1861 * @rule_list_sz: total size of the rule list in bytes
1862 * @num_rules: number of switch rules in the rule_list
1863 * @opc: switch rules population command type - pass in the command opcode
1864 * @cd: pointer to command details structure or NULL
1865 *
1866 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1867 */
1868int
1869ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1870		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1871{
1872	struct ice_aq_desc desc;
1873	int status;
1874
1875	if (opc != ice_aqc_opc_add_sw_rules &&
1876	    opc != ice_aqc_opc_update_sw_rules &&
1877	    opc != ice_aqc_opc_remove_sw_rules)
1878		return -EINVAL;
1879
1880	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1881
1882	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1883	desc.params.sw_rules.num_rules_fltr_entry_index =
1884		cpu_to_le16(num_rules);
1885	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1886	if (opc != ice_aqc_opc_add_sw_rules &&
1887	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1888		status = -ENOENT;
1889
1890	return status;
1891}
1892
1893/**
1894 * ice_aq_add_recipe - add switch recipe
1895 * @hw: pointer to the HW struct
1896 * @s_recipe_list: pointer to switch rule population list
1897 * @num_recipes: number of switch recipes in the list
1898 * @cd: pointer to command details structure or NULL
1899 *
1900 * Add(0x0290)
1901 */
1902int
1903ice_aq_add_recipe(struct ice_hw *hw,
1904		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1905		  u16 num_recipes, struct ice_sq_cd *cd)
1906{
1907	struct ice_aqc_add_get_recipe *cmd;
1908	struct ice_aq_desc desc;
1909	u16 buf_size;
1910
1911	cmd = &desc.params.add_get_recipe;
1912	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1913
1914	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1915	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1916
1917	buf_size = num_recipes * sizeof(*s_recipe_list);
1918
1919	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1920}
1921
1922/**
1923 * ice_aq_get_recipe - get switch recipe
1924 * @hw: pointer to the HW struct
1925 * @s_recipe_list: pointer to switch rule population list
1926 * @num_recipes: pointer to the number of recipes (input and output)
1927 * @recipe_root: root recipe number of recipe(s) to retrieve
1928 * @cd: pointer to command details structure or NULL
1929 *
1930 * Get(0x0292)
1931 *
1932 * On input, *num_recipes should equal the number of entries in s_recipe_list.
1933 * On output, *num_recipes will equal the number of entries returned in
1934 * s_recipe_list.
1935 *
1936 * The caller must supply enough space in s_recipe_list to hold all possible
1937 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1938 */
1939int
1940ice_aq_get_recipe(struct ice_hw *hw,
1941		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1942		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1943{
1944	struct ice_aqc_add_get_recipe *cmd;
1945	struct ice_aq_desc desc;
1946	u16 buf_size;
1947	int status;
1948
1949	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1950		return -EINVAL;
1951
1952	cmd = &desc.params.add_get_recipe;
1953	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1954
1955	cmd->return_index = cpu_to_le16(recipe_root);
1956	cmd->num_sub_recipes = 0;
1957
1958	buf_size = *num_recipes * sizeof(*s_recipe_list);
1959
1960	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1961	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1962
1963	return status;
1964}
1965
1966/**
1967 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1968 * @hw: pointer to the HW struct
1969 * @params: parameters used to update the default recipe
1970 *
1971 * This function only supports updating default recipes and it only supports
1972 * updating a single recipe based on the lkup_idx at a time.
1973 *
1974 * This is done as a read-modify-write operation. First, get the current recipe
1975 * contents based on the recipe's ID. Then modify the field vector index and
1976 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1977 * the pre-existing recipe with the modifications.
1978 */
1979int
1980ice_update_recipe_lkup_idx(struct ice_hw *hw,
1981			   struct ice_update_recipe_lkup_idx_params *params)
1982{
1983	struct ice_aqc_recipe_data_elem *rcp_list;
1984	u16 num_recps = ICE_MAX_NUM_RECIPES;
1985	int status;
1986
1987	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1988	if (!rcp_list)
1989		return -ENOMEM;
1990
1991	/* read current recipe list from firmware */
1992	rcp_list->recipe_indx = params->rid;
1993	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1994	if (status) {
1995		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1996			  params->rid, status);
1997		goto error_out;
1998	}
1999
2000	/* only modify existing recipe's lkup_idx and mask if valid, while
2001	 * leaving all other fields the same, then update the recipe firmware
2002	 */
2003	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2004	if (params->mask_valid)
2005		rcp_list->content.mask[params->lkup_idx] =
2006			cpu_to_le16(params->mask);
2007
2008	if (params->ignore_valid)
2009		rcp_list->content.lkup_indx[params->lkup_idx] |=
2010			ICE_AQ_RECIPE_LKUP_IGNORE;
2011
2012	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2013	if (status)
2014		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2015			  params->rid, params->lkup_idx, params->fv_idx,
2016			  params->mask, params->mask_valid ? "true" : "false",
2017			  status);
2018
2019error_out:
2020	kfree(rcp_list);
2021	return status;
2022}
2023
2024/**
2025 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2026 * @hw: pointer to the HW struct
2027 * @profile_id: package profile ID to associate the recipe with
2028 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2029 * @cd: pointer to command details structure or NULL
2030 * Recipe to profile association (0x0291)
2031 */
2032int
2033ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2034			     struct ice_sq_cd *cd)
2035{
2036	struct ice_aqc_recipe_to_profile *cmd;
2037	struct ice_aq_desc desc;
2038
2039	cmd = &desc.params.recipe_to_profile;
2040	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2041	cmd->profile_id = cpu_to_le16(profile_id);
2042	/* Set the recipe ID bit in the bitmask to let the device know which
2043	 * profile we are associating the recipe to
2044	 */
2045	cmd->recipe_assoc = cpu_to_le64(r_assoc);
2046
2047	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2048}
2049
2050/**
2051 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2052 * @hw: pointer to the HW struct
2053 * @profile_id: package profile ID to associate the recipe with
2054 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2055 * @cd: pointer to command details structure or NULL
2056 * Associate profile ID with given recipe (0x0293)
2057 */
2058int
2059ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2060			     struct ice_sq_cd *cd)
2061{
2062	struct ice_aqc_recipe_to_profile *cmd;
2063	struct ice_aq_desc desc;
2064	int status;
2065
2066	cmd = &desc.params.recipe_to_profile;
2067	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2068	cmd->profile_id = cpu_to_le16(profile_id);
2069
2070	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2071	if (!status)
2072		*r_assoc = le64_to_cpu(cmd->recipe_assoc);
2073
2074	return status;
2075}
2076
2077/**
2078 * ice_alloc_recipe - add recipe resource
2079 * @hw: pointer to the hardware structure
2080 * @rid: recipe ID returned as response to AQ call
2081 */
2082int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2083{
2084	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2085	u16 buf_len = __struct_size(sw_buf);
2086	int status;
2087
2088	sw_buf->num_elems = cpu_to_le16(1);
2089	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2090					ICE_AQC_RES_TYPE_S) |
2091					ICE_AQC_RES_TYPE_FLAG_SHARED);
2092	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2093				       ice_aqc_opc_alloc_res);
2094	if (!status)
2095		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2096
2097	return status;
2098}
2099
2100/**
2101 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2102 * @hw: pointer to hardware structure
2103 *
2104 * This function is used to populate recipe_to_profile matrix where index to
2105 * this array is the recipe ID and the element is the mapping of which profiles
2106 * is this recipe mapped to.
2107 */
2108static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2109{
2110	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2111	u64 recp_assoc;
2112	u16 i;
2113
2114	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2115		u16 j;
2116
2117		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2118		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2119		if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2120			continue;
2121		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2122		bitmap_copy(profile_to_recipe[i], r_bitmap,
2123			    ICE_MAX_NUM_RECIPES);
2124		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2125			set_bit(i, recipe_to_profile[j]);
2126	}
2127}
2128
2129/**
2130 * ice_collect_result_idx - copy result index values
2131 * @buf: buffer that contains the result index
2132 * @recp: the recipe struct to copy data into
2133 */
2134static void
2135ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2136		       struct ice_sw_recipe *recp)
2137{
2138	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2139		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2140			recp->res_idxs);
2141}
2142
2143/**
2144 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2145 * @hw: pointer to hardware structure
2146 * @recps: struct that we need to populate
2147 * @rid: recipe ID that we are populating
2148 * @refresh_required: true if we should get recipe to profile mapping from FW
2149 *
2150 * This function is used to populate all the necessary entries into our
2151 * bookkeeping so that we have a current list of all the recipes that are
2152 * programmed in the firmware.
2153 */
2154static int
2155ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2156		    bool *refresh_required)
2157{
2158	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2159	struct ice_aqc_recipe_data_elem *tmp;
2160	u16 num_recps = ICE_MAX_NUM_RECIPES;
2161	struct ice_prot_lkup_ext *lkup_exts;
2162	u8 fv_word_idx = 0;
2163	u16 sub_recps;
2164	int status;
2165
2166	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2167
2168	/* we need a buffer big enough to accommodate all the recipes */
2169	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2170	if (!tmp)
2171		return -ENOMEM;
2172
2173	tmp[0].recipe_indx = rid;
2174	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2175	/* non-zero status meaning recipe doesn't exist */
2176	if (status)
2177		goto err_unroll;
2178
2179	/* Get recipe to profile map so that we can get the fv from lkups that
2180	 * we read for a recipe from FW. Since we want to minimize the number of
2181	 * times we make this FW call, just make one call and cache the copy
2182	 * until a new recipe is added. This operation is only required the
2183	 * first time to get the changes from FW. Then to search existing
2184	 * entries we don't need to update the cache again until another recipe
2185	 * gets added.
2186	 */
2187	if (*refresh_required) {
2188		ice_get_recp_to_prof_map(hw);
2189		*refresh_required = false;
2190	}
2191
2192	/* Start populating all the entries for recps[rid] based on lkups from
2193	 * firmware. Note that we are only creating the root recipe in our
2194	 * database.
2195	 */
2196	lkup_exts = &recps[rid].lkup_exts;
2197
2198	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2199		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2200		struct ice_recp_grp_entry *rg_entry;
2201		u8 i, prof, idx, prot = 0;
2202		bool is_root;
2203		u16 off = 0;
2204
2205		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2206					GFP_KERNEL);
2207		if (!rg_entry) {
2208			status = -ENOMEM;
2209			goto err_unroll;
2210		}
2211
2212		idx = root_bufs.recipe_indx;
2213		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2214
2215		/* Mark all result indices in this chain */
2216		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2217			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2218				result_bm);
2219
2220		/* get the first profile that is associated with rid */
2221		prof = find_first_bit(recipe_to_profile[idx],
2222				      ICE_MAX_NUM_PROFILES);
2223		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2224			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2225
2226			rg_entry->fv_idx[i] = lkup_indx;
2227			rg_entry->fv_mask[i] =
2228				le16_to_cpu(root_bufs.content.mask[i + 1]);
2229
2230			/* If the recipe is a chained recipe then all its
2231			 * child recipe's result will have a result index.
2232			 * To fill fv_words we should not use those result
2233			 * index, we only need the protocol ids and offsets.
2234			 * We will skip all the fv_idx which stores result
2235			 * index in them. We also need to skip any fv_idx which
2236			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2237			 * valid offset value.
2238			 */
2239			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2240			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2241			    rg_entry->fv_idx[i] == 0)
2242				continue;
2243
2244			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2245					  rg_entry->fv_idx[i], &prot, &off);
2246			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2247			lkup_exts->fv_words[fv_word_idx].off = off;
2248			lkup_exts->field_mask[fv_word_idx] =
2249				rg_entry->fv_mask[i];
2250			fv_word_idx++;
2251		}
2252		/* populate rg_list with the data from the child entry of this
2253		 * recipe
2254		 */
2255		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2256
2257		/* Propagate some data to the recipe database */
2258		recps[idx].is_root = !!is_root;
2259		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2260		recps[idx].need_pass_l2 = root_bufs.content.act_ctrl &
2261					  ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
2262		recps[idx].allow_pass_l2 = root_bufs.content.act_ctrl &
2263					   ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
2264		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2265		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2266			recps[idx].chain_idx = root_bufs.content.result_indx &
2267				~ICE_AQ_RECIPE_RESULT_EN;
2268			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2269		} else {
2270			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2271		}
2272
2273		if (!is_root)
2274			continue;
2275
2276		/* Only do the following for root recipes entries */
2277		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2278		       sizeof(recps[idx].r_bitmap));
2279		recps[idx].root_rid = root_bufs.content.rid &
2280			~ICE_AQ_RECIPE_ID_IS_ROOT;
2281		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2282	}
2283
2284	/* Complete initialization of the root recipe entry */
2285	lkup_exts->n_val_words = fv_word_idx;
2286	recps[rid].big_recp = (num_recps > 1);
2287	recps[rid].n_grp_count = (u8)num_recps;
2288	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2289					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2290					   GFP_KERNEL);
2291	if (!recps[rid].root_buf) {
2292		status = -ENOMEM;
2293		goto err_unroll;
2294	}
2295
2296	/* Copy result indexes */
2297	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2298	recps[rid].recp_created = true;
2299
2300err_unroll:
2301	kfree(tmp);
2302	return status;
2303}
2304
2305/* ice_init_port_info - Initialize port_info with switch configuration data
2306 * @pi: pointer to port_info
2307 * @vsi_port_num: VSI number or port number
2308 * @type: Type of switch element (port or VSI)
2309 * @swid: switch ID of the switch the element is attached to
2310 * @pf_vf_num: PF or VF number
2311 * @is_vf: true if the element is a VF, false otherwise
2312 */
2313static void
2314ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2315		   u16 swid, u16 pf_vf_num, bool is_vf)
2316{
2317	switch (type) {
2318	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2319		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2320		pi->sw_id = swid;
2321		pi->pf_vf_num = pf_vf_num;
2322		pi->is_vf = is_vf;
2323		break;
2324	default:
2325		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2326		break;
2327	}
2328}
2329
2330/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2331 * @hw: pointer to the hardware structure
2332 */
2333int ice_get_initial_sw_cfg(struct ice_hw *hw)
2334{
2335	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2336	u16 req_desc = 0;
2337	u16 num_elems;
2338	int status;
2339	u16 i;
2340
2341	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2342	if (!rbuf)
2343		return -ENOMEM;
2344
2345	/* Multiple calls to ice_aq_get_sw_cfg may be required
2346	 * to get all the switch configuration information. The need
2347	 * for additional calls is indicated by ice_aq_get_sw_cfg
2348	 * writing a non-zero value in req_desc
2349	 */
2350	do {
2351		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2352
2353		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2354					   &req_desc, &num_elems, NULL);
2355
2356		if (status)
2357			break;
2358
2359		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2360			u16 pf_vf_num, swid, vsi_port_num;
2361			bool is_vf = false;
2362			u8 res_type;
2363
2364			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2365				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2366
2367			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2368				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2369
2370			swid = le16_to_cpu(ele->swid);
2371
2372			if (le16_to_cpu(ele->pf_vf_num) &
2373			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2374				is_vf = true;
2375
2376			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2377					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2378
2379			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2380				/* FW VSI is not needed. Just continue. */
2381				continue;
2382			}
2383
2384			ice_init_port_info(hw->port_info, vsi_port_num,
2385					   res_type, swid, pf_vf_num, is_vf);
2386		}
2387	} while (req_desc && !status);
2388
2389	kfree(rbuf);
2390	return status;
2391}
2392
2393/**
2394 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2395 * @hw: pointer to the hardware structure
2396 * @fi: filter info structure to fill/update
2397 *
2398 * This helper function populates the lb_en and lan_en elements of the provided
2399 * ice_fltr_info struct using the switch's type and characteristics of the
2400 * switch rule being configured.
2401 */
2402static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2403{
2404	fi->lb_en = false;
2405	fi->lan_en = false;
2406	if ((fi->flag & ICE_FLTR_TX) &&
2407	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2408	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2409	     fi->fltr_act == ICE_FWD_TO_Q ||
2410	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2411		/* Setting LB for prune actions will result in replicated
2412		 * packets to the internal switch that will be dropped.
2413		 */
2414		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2415			fi->lb_en = true;
2416
2417		/* Set lan_en to TRUE if
2418		 * 1. The switch is a VEB AND
2419		 * 2
2420		 * 2.1 The lookup is a directional lookup like ethertype,
2421		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2422		 * and default-port OR
2423		 * 2.2 The lookup is VLAN, OR
2424		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2425		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2426		 *
2427		 * OR
2428		 *
2429		 * The switch is a VEPA.
2430		 *
2431		 * In all other cases, the LAN enable has to be set to false.
2432		 */
2433		if (hw->evb_veb) {
2434			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2435			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2436			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2437			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2438			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2439			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2440			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2441			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2442			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2443			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2444				fi->lan_en = true;
2445		} else {
2446			fi->lan_en = true;
2447		}
2448	}
2449}
2450
2451/**
2452 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2453 * @eth_hdr: pointer to buffer to populate
2454 */
2455void ice_fill_eth_hdr(u8 *eth_hdr)
2456{
2457	memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2458}
2459
2460/**
2461 * ice_fill_sw_rule - Helper function to fill switch rule structure
2462 * @hw: pointer to the hardware structure
2463 * @f_info: entry containing packet forwarding information
2464 * @s_rule: switch rule structure to be filled in based on mac_entry
2465 * @opc: switch rules population command type - pass in the command opcode
2466 */
2467static void
2468ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2469		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2470		 enum ice_adminq_opc opc)
2471{
2472	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2473	u16 vlan_tpid = ETH_P_8021Q;
2474	void *daddr = NULL;
2475	u16 eth_hdr_sz;
2476	u8 *eth_hdr;
2477	u32 act = 0;
2478	__be16 *off;
2479	u8 q_rgn;
2480
2481	if (opc == ice_aqc_opc_remove_sw_rules) {
2482		s_rule->act = 0;
2483		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2484		s_rule->hdr_len = 0;
2485		return;
2486	}
2487
2488	eth_hdr_sz = sizeof(dummy_eth_header);
2489	eth_hdr = s_rule->hdr_data;
2490
2491	/* initialize the ether header with a dummy header */
2492	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2493	ice_fill_sw_info(hw, f_info);
2494
2495	switch (f_info->fltr_act) {
2496	case ICE_FWD_TO_VSI:
2497		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2498				  f_info->fwd_id.hw_vsi_id);
2499		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2500			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2501				ICE_SINGLE_ACT_VALID_BIT;
2502		break;
2503	case ICE_FWD_TO_VSI_LIST:
2504		act |= ICE_SINGLE_ACT_VSI_LIST;
2505		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2506				  f_info->fwd_id.vsi_list_id);
2507		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2508			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2509				ICE_SINGLE_ACT_VALID_BIT;
2510		break;
2511	case ICE_FWD_TO_Q:
2512		act |= ICE_SINGLE_ACT_TO_Q;
2513		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2514				  f_info->fwd_id.q_id);
2515		break;
2516	case ICE_DROP_PACKET:
2517		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2518			ICE_SINGLE_ACT_VALID_BIT;
2519		break;
2520	case ICE_FWD_TO_QGRP:
2521		q_rgn = f_info->qgrp_size > 0 ?
2522			(u8)ilog2(f_info->qgrp_size) : 0;
2523		act |= ICE_SINGLE_ACT_TO_Q;
2524		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2525				  f_info->fwd_id.q_id);
2526		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2527		break;
2528	default:
2529		return;
2530	}
2531
2532	if (f_info->lb_en)
2533		act |= ICE_SINGLE_ACT_LB_ENABLE;
2534	if (f_info->lan_en)
2535		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2536
2537	switch (f_info->lkup_type) {
2538	case ICE_SW_LKUP_MAC:
2539		daddr = f_info->l_data.mac.mac_addr;
2540		break;
2541	case ICE_SW_LKUP_VLAN:
2542		vlan_id = f_info->l_data.vlan.vlan_id;
2543		if (f_info->l_data.vlan.tpid_valid)
2544			vlan_tpid = f_info->l_data.vlan.tpid;
2545		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2546		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2547			act |= ICE_SINGLE_ACT_PRUNE;
2548			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2549		}
2550		break;
2551	case ICE_SW_LKUP_ETHERTYPE_MAC:
2552		daddr = f_info->l_data.ethertype_mac.mac_addr;
2553		fallthrough;
2554	case ICE_SW_LKUP_ETHERTYPE:
2555		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2556		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2557		break;
2558	case ICE_SW_LKUP_MAC_VLAN:
2559		daddr = f_info->l_data.mac_vlan.mac_addr;
2560		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2561		break;
2562	case ICE_SW_LKUP_PROMISC_VLAN:
2563		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2564		fallthrough;
2565	case ICE_SW_LKUP_PROMISC:
2566		daddr = f_info->l_data.mac_vlan.mac_addr;
2567		break;
2568	default:
2569		break;
2570	}
2571
2572	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2573		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2574		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2575
2576	/* Recipe set depending on lookup type */
2577	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2578	s_rule->src = cpu_to_le16(f_info->src);
2579	s_rule->act = cpu_to_le32(act);
2580
2581	if (daddr)
2582		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2583
2584	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2585		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2586		*off = cpu_to_be16(vlan_id);
2587		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2588		*off = cpu_to_be16(vlan_tpid);
2589	}
2590
2591	/* Create the switch rule with the final dummy Ethernet header */
2592	if (opc != ice_aqc_opc_update_sw_rules)
2593		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2594}
2595
2596/**
2597 * ice_add_marker_act
2598 * @hw: pointer to the hardware structure
2599 * @m_ent: the management entry for which sw marker needs to be added
2600 * @sw_marker: sw marker to tag the Rx descriptor with
2601 * @l_id: large action resource ID
2602 *
2603 * Create a large action to hold software marker and update the switch rule
2604 * entry pointed by m_ent with newly created large action
2605 */
2606static int
2607ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2608		   u16 sw_marker, u16 l_id)
2609{
2610	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2611	struct ice_sw_rule_lg_act *lg_act;
2612	/* For software marker we need 3 large actions
2613	 * 1. FWD action: FWD TO VSI or VSI LIST
2614	 * 2. GENERIC VALUE action to hold the profile ID
2615	 * 3. GENERIC VALUE action to hold the software marker ID
2616	 */
2617	const u16 num_lg_acts = 3;
2618	u16 lg_act_size;
2619	u16 rules_size;
2620	int status;
2621	u32 act;
2622	u16 id;
2623
2624	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2625		return -EINVAL;
2626
2627	/* Create two back-to-back switch rules and submit them to the HW using
2628	 * one memory buffer:
2629	 *    1. Large Action
2630	 *    2. Look up Tx Rx
2631	 */
2632	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2633	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2634	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2635	if (!lg_act)
2636		return -ENOMEM;
2637
2638	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2639
2640	/* Fill in the first switch rule i.e. large action */
2641	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2642	lg_act->index = cpu_to_le16(l_id);
2643	lg_act->size = cpu_to_le16(num_lg_acts);
2644
2645	/* First action VSI forwarding or VSI list forwarding depending on how
2646	 * many VSIs
2647	 */
2648	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2649		m_ent->fltr_info.fwd_id.hw_vsi_id;
2650
2651	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2652	act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2653	if (m_ent->vsi_count > 1)
2654		act |= ICE_LG_ACT_VSI_LIST;
2655	lg_act->act[0] = cpu_to_le32(act);
2656
2657	/* Second action descriptor type */
2658	act = ICE_LG_ACT_GENERIC;
2659
2660	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2661	lg_act->act[1] = cpu_to_le32(act);
2662
2663	act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2664			 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2665
2666	/* Third action Marker value */
2667	act |= ICE_LG_ACT_GENERIC;
2668	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2669
2670	lg_act->act[2] = cpu_to_le32(act);
2671
2672	/* call the fill switch rule to fill the lookup Tx Rx structure */
2673	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2674			 ice_aqc_opc_update_sw_rules);
2675
2676	/* Update the action to point to the large action ID */
2677	act = ICE_SINGLE_ACT_PTR;
2678	act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2679	rx_tx->act = cpu_to_le32(act);
2680
2681	/* Use the filter rule ID of the previously created rule with single
2682	 * act. Once the update happens, hardware will treat this as large
2683	 * action
2684	 */
2685	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2686
2687	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2688				 ice_aqc_opc_update_sw_rules, NULL);
2689	if (!status) {
2690		m_ent->lg_act_idx = l_id;
2691		m_ent->sw_marker_id = sw_marker;
2692	}
2693
2694	devm_kfree(ice_hw_to_dev(hw), lg_act);
2695	return status;
2696}
2697
2698/**
2699 * ice_create_vsi_list_map
2700 * @hw: pointer to the hardware structure
2701 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2702 * @num_vsi: number of VSI handles in the array
2703 * @vsi_list_id: VSI list ID generated as part of allocate resource
2704 *
2705 * Helper function to create a new entry of VSI list ID to VSI mapping
2706 * using the given VSI list ID
2707 */
2708static struct ice_vsi_list_map_info *
2709ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2710			u16 vsi_list_id)
2711{
2712	struct ice_switch_info *sw = hw->switch_info;
2713	struct ice_vsi_list_map_info *v_map;
2714	int i;
2715
2716	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2717	if (!v_map)
2718		return NULL;
2719
2720	v_map->vsi_list_id = vsi_list_id;
2721	v_map->ref_cnt = 1;
2722	for (i = 0; i < num_vsi; i++)
2723		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2724
2725	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2726	return v_map;
2727}
2728
2729/**
2730 * ice_update_vsi_list_rule
2731 * @hw: pointer to the hardware structure
2732 * @vsi_handle_arr: array of VSI handles to form a VSI list
2733 * @num_vsi: number of VSI handles in the array
2734 * @vsi_list_id: VSI list ID generated as part of allocate resource
2735 * @remove: Boolean value to indicate if this is a remove action
2736 * @opc: switch rules population command type - pass in the command opcode
2737 * @lkup_type: lookup type of the filter
2738 *
2739 * Call AQ command to add a new switch rule or update existing switch rule
2740 * using the given VSI list ID
2741 */
2742static int
2743ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2744			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2745			 enum ice_sw_lkup_type lkup_type)
2746{
2747	struct ice_sw_rule_vsi_list *s_rule;
2748	u16 s_rule_size;
2749	u16 rule_type;
2750	int status;
2751	int i;
2752
2753	if (!num_vsi)
2754		return -EINVAL;
2755
2756	if (lkup_type == ICE_SW_LKUP_MAC ||
2757	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2758	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2759	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2760	    lkup_type == ICE_SW_LKUP_PROMISC ||
2761	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2762	    lkup_type == ICE_SW_LKUP_DFLT)
2763		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2764			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2765	else if (lkup_type == ICE_SW_LKUP_VLAN)
2766		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2767			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2768	else
2769		return -EINVAL;
2770
2771	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2772	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2773	if (!s_rule)
2774		return -ENOMEM;
2775	for (i = 0; i < num_vsi; i++) {
2776		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2777			status = -EINVAL;
2778			goto exit;
2779		}
2780		/* AQ call requires hw_vsi_id(s) */
2781		s_rule->vsi[i] =
2782			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2783	}
2784
2785	s_rule->hdr.type = cpu_to_le16(rule_type);
2786	s_rule->number_vsi = cpu_to_le16(num_vsi);
2787	s_rule->index = cpu_to_le16(vsi_list_id);
2788
2789	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2790
2791exit:
2792	devm_kfree(ice_hw_to_dev(hw), s_rule);
2793	return status;
2794}
2795
2796/**
2797 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2798 * @hw: pointer to the HW struct
2799 * @vsi_handle_arr: array of VSI handles to form a VSI list
2800 * @num_vsi: number of VSI handles in the array
2801 * @vsi_list_id: stores the ID of the VSI list to be created
2802 * @lkup_type: switch rule filter's lookup type
2803 */
2804static int
2805ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2806			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2807{
2808	int status;
2809
2810	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2811					    ice_aqc_opc_alloc_res);
2812	if (status)
2813		return status;
2814
2815	/* Update the newly created VSI list to include the specified VSIs */
2816	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2817					*vsi_list_id, false,
2818					ice_aqc_opc_add_sw_rules, lkup_type);
2819}
2820
2821/**
2822 * ice_create_pkt_fwd_rule
2823 * @hw: pointer to the hardware structure
2824 * @f_entry: entry containing packet forwarding information
2825 *
2826 * Create switch rule with given filter information and add an entry
2827 * to the corresponding filter management list to track this switch rule
2828 * and VSI mapping
2829 */
2830static int
2831ice_create_pkt_fwd_rule(struct ice_hw *hw,
2832			struct ice_fltr_list_entry *f_entry)
2833{
2834	struct ice_fltr_mgmt_list_entry *fm_entry;
2835	struct ice_sw_rule_lkup_rx_tx *s_rule;
2836	enum ice_sw_lkup_type l_type;
2837	struct ice_sw_recipe *recp;
2838	int status;
2839
2840	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2841			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2842			      GFP_KERNEL);
2843	if (!s_rule)
2844		return -ENOMEM;
2845	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2846				GFP_KERNEL);
2847	if (!fm_entry) {
2848		status = -ENOMEM;
2849		goto ice_create_pkt_fwd_rule_exit;
2850	}
2851
2852	fm_entry->fltr_info = f_entry->fltr_info;
2853
2854	/* Initialize all the fields for the management entry */
2855	fm_entry->vsi_count = 1;
2856	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2857	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2858	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2859
2860	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2861			 ice_aqc_opc_add_sw_rules);
2862
2863	status = ice_aq_sw_rules(hw, s_rule,
2864				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2865				 ice_aqc_opc_add_sw_rules, NULL);
2866	if (status) {
2867		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2868		goto ice_create_pkt_fwd_rule_exit;
2869	}
2870
2871	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2872	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2873
2874	/* The book keeping entries will get removed when base driver
2875	 * calls remove filter AQ command
2876	 */
2877	l_type = fm_entry->fltr_info.lkup_type;
2878	recp = &hw->switch_info->recp_list[l_type];
2879	list_add(&fm_entry->list_entry, &recp->filt_rules);
2880
2881ice_create_pkt_fwd_rule_exit:
2882	devm_kfree(ice_hw_to_dev(hw), s_rule);
2883	return status;
2884}
2885
2886/**
2887 * ice_update_pkt_fwd_rule
2888 * @hw: pointer to the hardware structure
2889 * @f_info: filter information for switch rule
2890 *
2891 * Call AQ command to update a previously created switch rule with a
2892 * VSI list ID
2893 */
2894static int
2895ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2896{
2897	struct ice_sw_rule_lkup_rx_tx *s_rule;
2898	int status;
2899
2900	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2901			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2902			      GFP_KERNEL);
2903	if (!s_rule)
2904		return -ENOMEM;
2905
2906	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2907
2908	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2909
2910	/* Update switch rule with new rule set to forward VSI list */
2911	status = ice_aq_sw_rules(hw, s_rule,
2912				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2913				 ice_aqc_opc_update_sw_rules, NULL);
2914
2915	devm_kfree(ice_hw_to_dev(hw), s_rule);
2916	return status;
2917}
2918
2919/**
2920 * ice_update_sw_rule_bridge_mode
2921 * @hw: pointer to the HW struct
2922 *
2923 * Updates unicast switch filter rules based on VEB/VEPA mode
2924 */
2925int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2926{
2927	struct ice_switch_info *sw = hw->switch_info;
2928	struct ice_fltr_mgmt_list_entry *fm_entry;
2929	struct list_head *rule_head;
2930	struct mutex *rule_lock; /* Lock to protect filter rule list */
2931	int status = 0;
2932
2933	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2934	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2935
2936	mutex_lock(rule_lock);
2937	list_for_each_entry(fm_entry, rule_head, list_entry) {
2938		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2939		u8 *addr = fi->l_data.mac.mac_addr;
2940
2941		/* Update unicast Tx rules to reflect the selected
2942		 * VEB/VEPA mode
2943		 */
2944		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2945		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2946		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2947		     fi->fltr_act == ICE_FWD_TO_Q ||
2948		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2949			status = ice_update_pkt_fwd_rule(hw, fi);
2950			if (status)
2951				break;
2952		}
2953	}
2954
2955	mutex_unlock(rule_lock);
2956
2957	return status;
2958}
2959
2960/**
2961 * ice_add_update_vsi_list
2962 * @hw: pointer to the hardware structure
2963 * @m_entry: pointer to current filter management list entry
2964 * @cur_fltr: filter information from the book keeping entry
2965 * @new_fltr: filter information with the new VSI to be added
2966 *
2967 * Call AQ command to add or update previously created VSI list with new VSI.
2968 *
2969 * Helper function to do book keeping associated with adding filter information
2970 * The algorithm to do the book keeping is described below :
2971 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2972 *	if only one VSI has been added till now
2973 *		Allocate a new VSI list and add two VSIs
2974 *		to this list using switch rule command
2975 *		Update the previously created switch rule with the
2976 *		newly created VSI list ID
2977 *	if a VSI list was previously created
2978 *		Add the new VSI to the previously created VSI list set
2979 *		using the update switch rule command
2980 */
2981static int
2982ice_add_update_vsi_list(struct ice_hw *hw,
2983			struct ice_fltr_mgmt_list_entry *m_entry,
2984			struct ice_fltr_info *cur_fltr,
2985			struct ice_fltr_info *new_fltr)
2986{
2987	u16 vsi_list_id = 0;
2988	int status = 0;
2989
2990	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2991	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2992		return -EOPNOTSUPP;
2993
2994	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2995	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2996	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2997	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2998		return -EOPNOTSUPP;
2999
3000	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3001		/* Only one entry existed in the mapping and it was not already
3002		 * a part of a VSI list. So, create a VSI list with the old and
3003		 * new VSIs.
3004		 */
3005		struct ice_fltr_info tmp_fltr;
3006		u16 vsi_handle_arr[2];
3007
3008		/* A rule already exists with the new VSI being added */
3009		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3010			return -EEXIST;
3011
3012		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3013		vsi_handle_arr[1] = new_fltr->vsi_handle;
3014		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3015						  &vsi_list_id,
3016						  new_fltr->lkup_type);
3017		if (status)
3018			return status;
3019
3020		tmp_fltr = *new_fltr;
3021		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3022		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3023		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3024		/* Update the previous switch rule of "MAC forward to VSI" to
3025		 * "MAC fwd to VSI list"
3026		 */
3027		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3028		if (status)
3029			return status;
3030
3031		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3032		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3033		m_entry->vsi_list_info =
3034			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3035						vsi_list_id);
3036
3037		if (!m_entry->vsi_list_info)
3038			return -ENOMEM;
3039
3040		/* If this entry was large action then the large action needs
3041		 * to be updated to point to FWD to VSI list
3042		 */
3043		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3044			status =
3045			    ice_add_marker_act(hw, m_entry,
3046					       m_entry->sw_marker_id,
3047					       m_entry->lg_act_idx);
3048	} else {
3049		u16 vsi_handle = new_fltr->vsi_handle;
3050		enum ice_adminq_opc opcode;
3051
3052		if (!m_entry->vsi_list_info)
3053			return -EIO;
3054
3055		/* A rule already exists with the new VSI being added */
3056		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3057			return 0;
3058
3059		/* Update the previously created VSI list set with
3060		 * the new VSI ID passed in
3061		 */
3062		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3063		opcode = ice_aqc_opc_update_sw_rules;
3064
3065		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3066						  vsi_list_id, false, opcode,
3067						  new_fltr->lkup_type);
3068		/* update VSI list mapping info with new VSI ID */
3069		if (!status)
3070			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3071	}
3072	if (!status)
3073		m_entry->vsi_count++;
3074	return status;
3075}
3076
3077/**
3078 * ice_find_rule_entry - Search a rule entry
3079 * @hw: pointer to the hardware structure
3080 * @recp_id: lookup type for which the specified rule needs to be searched
3081 * @f_info: rule information
3082 *
3083 * Helper function to search for a given rule entry
3084 * Returns pointer to entry storing the rule if found
3085 */
3086static struct ice_fltr_mgmt_list_entry *
3087ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3088{
3089	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3090	struct ice_switch_info *sw = hw->switch_info;
3091	struct list_head *list_head;
3092
3093	list_head = &sw->recp_list[recp_id].filt_rules;
3094	list_for_each_entry(list_itr, list_head, list_entry) {
3095		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3096			    sizeof(f_info->l_data)) &&
3097		    f_info->flag == list_itr->fltr_info.flag) {
3098			ret = list_itr;
3099			break;
3100		}
3101	}
3102	return ret;
3103}
3104
3105/**
3106 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3107 * @hw: pointer to the hardware structure
3108 * @recp_id: lookup type for which VSI lists needs to be searched
3109 * @vsi_handle: VSI handle to be found in VSI list
3110 * @vsi_list_id: VSI list ID found containing vsi_handle
3111 *
3112 * Helper function to search a VSI list with single entry containing given VSI
3113 * handle element. This can be extended further to search VSI list with more
3114 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3115 */
3116struct ice_vsi_list_map_info *
3117ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3118			u16 *vsi_list_id)
3119{
3120	struct ice_vsi_list_map_info *map_info = NULL;
3121	struct ice_switch_info *sw = hw->switch_info;
3122	struct ice_fltr_mgmt_list_entry *list_itr;
3123	struct list_head *list_head;
3124
3125	list_head = &sw->recp_list[recp_id].filt_rules;
3126	list_for_each_entry(list_itr, list_head, list_entry) {
3127		if (list_itr->vsi_list_info) {
3128			map_info = list_itr->vsi_list_info;
3129			if (test_bit(vsi_handle, map_info->vsi_map)) {
3130				*vsi_list_id = map_info->vsi_list_id;
3131				return map_info;
3132			}
3133		}
3134	}
3135	return NULL;
3136}
3137
3138/**
3139 * ice_add_rule_internal - add rule for a given lookup type
3140 * @hw: pointer to the hardware structure
3141 * @recp_id: lookup type (recipe ID) for which rule has to be added
3142 * @f_entry: structure containing MAC forwarding information
3143 *
3144 * Adds or updates the rule lists for a given recipe
3145 */
3146static int
3147ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3148		      struct ice_fltr_list_entry *f_entry)
3149{
3150	struct ice_switch_info *sw = hw->switch_info;
3151	struct ice_fltr_info *new_fltr, *cur_fltr;
3152	struct ice_fltr_mgmt_list_entry *m_entry;
3153	struct mutex *rule_lock; /* Lock to protect filter rule list */
3154	int status = 0;
3155
3156	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3157		return -EINVAL;
3158	f_entry->fltr_info.fwd_id.hw_vsi_id =
3159		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3160
3161	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3162
3163	mutex_lock(rule_lock);
3164	new_fltr = &f_entry->fltr_info;
3165	if (new_fltr->flag & ICE_FLTR_RX)
3166		new_fltr->src = hw->port_info->lport;
3167	else if (new_fltr->flag & ICE_FLTR_TX)
3168		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3169
3170	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3171	if (!m_entry) {
3172		mutex_unlock(rule_lock);
3173		return ice_create_pkt_fwd_rule(hw, f_entry);
3174	}
3175
3176	cur_fltr = &m_entry->fltr_info;
3177	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3178	mutex_unlock(rule_lock);
3179
3180	return status;
3181}
3182
3183/**
3184 * ice_remove_vsi_list_rule
3185 * @hw: pointer to the hardware structure
3186 * @vsi_list_id: VSI list ID generated as part of allocate resource
3187 * @lkup_type: switch rule filter lookup type
3188 *
3189 * The VSI list should be emptied before this function is called to remove the
3190 * VSI list.
3191 */
3192static int
3193ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3194			 enum ice_sw_lkup_type lkup_type)
3195{
3196	struct ice_sw_rule_vsi_list *s_rule;
3197	u16 s_rule_size;
3198	int status;
3199
3200	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3201	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3202	if (!s_rule)
3203		return -ENOMEM;
3204
3205	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3206	s_rule->index = cpu_to_le16(vsi_list_id);
3207
3208	/* Free the vsi_list resource that we allocated. It is assumed that the
3209	 * list is empty at this point.
3210	 */
3211	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3212					    ice_aqc_opc_free_res);
3213
3214	devm_kfree(ice_hw_to_dev(hw), s_rule);
3215	return status;
3216}
3217
3218/**
3219 * ice_rem_update_vsi_list
3220 * @hw: pointer to the hardware structure
3221 * @vsi_handle: VSI handle of the VSI to remove
3222 * @fm_list: filter management entry for which the VSI list management needs to
3223 *           be done
3224 */
3225static int
3226ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3227			struct ice_fltr_mgmt_list_entry *fm_list)
3228{
3229	enum ice_sw_lkup_type lkup_type;
3230	u16 vsi_list_id;
3231	int status = 0;
3232
3233	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3234	    fm_list->vsi_count == 0)
3235		return -EINVAL;
3236
3237	/* A rule with the VSI being removed does not exist */
3238	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3239		return -ENOENT;
3240
3241	lkup_type = fm_list->fltr_info.lkup_type;
3242	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3243	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3244					  ice_aqc_opc_update_sw_rules,
3245					  lkup_type);
3246	if (status)
3247		return status;
3248
3249	fm_list->vsi_count--;
3250	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3251
3252	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3253		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3254		struct ice_vsi_list_map_info *vsi_list_info =
3255			fm_list->vsi_list_info;
3256		u16 rem_vsi_handle;
3257
3258		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3259						ICE_MAX_VSI);
3260		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3261			return -EIO;
3262
3263		/* Make sure VSI list is empty before removing it below */
3264		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3265						  vsi_list_id, true,
3266						  ice_aqc_opc_update_sw_rules,
3267						  lkup_type);
3268		if (status)
3269			return status;
3270
3271		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3272		tmp_fltr_info.fwd_id.hw_vsi_id =
3273			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3274		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3275		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3276		if (status) {
3277			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3278				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3279			return status;
3280		}
3281
3282		fm_list->fltr_info = tmp_fltr_info;
3283	}
3284
3285	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3286	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3287		struct ice_vsi_list_map_info *vsi_list_info =
3288			fm_list->vsi_list_info;
3289
3290		/* Remove the VSI list since it is no longer used */
3291		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3292		if (status) {
3293			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3294				  vsi_list_id, status);
3295			return status;
3296		}
3297
3298		list_del(&vsi_list_info->list_entry);
3299		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3300		fm_list->vsi_list_info = NULL;
3301	}
3302
3303	return status;
3304}
3305
3306/**
3307 * ice_remove_rule_internal - Remove a filter rule of a given type
3308 * @hw: pointer to the hardware structure
3309 * @recp_id: recipe ID for which the rule needs to removed
3310 * @f_entry: rule entry containing filter information
3311 */
3312static int
3313ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3314			 struct ice_fltr_list_entry *f_entry)
3315{
3316	struct ice_switch_info *sw = hw->switch_info;
3317	struct ice_fltr_mgmt_list_entry *list_elem;
3318	struct mutex *rule_lock; /* Lock to protect filter rule list */
3319	bool remove_rule = false;
3320	u16 vsi_handle;
3321	int status = 0;
3322
3323	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3324		return -EINVAL;
3325	f_entry->fltr_info.fwd_id.hw_vsi_id =
3326		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3327
3328	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3329	mutex_lock(rule_lock);
3330	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3331	if (!list_elem) {
3332		status = -ENOENT;
3333		goto exit;
3334	}
3335
3336	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3337		remove_rule = true;
3338	} else if (!list_elem->vsi_list_info) {
3339		status = -ENOENT;
3340		goto exit;
3341	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3342		/* a ref_cnt > 1 indicates that the vsi_list is being
3343		 * shared by multiple rules. Decrement the ref_cnt and
3344		 * remove this rule, but do not modify the list, as it
3345		 * is in-use by other rules.
3346		 */
3347		list_elem->vsi_list_info->ref_cnt--;
3348		remove_rule = true;
3349	} else {
3350		/* a ref_cnt of 1 indicates the vsi_list is only used
3351		 * by one rule. However, the original removal request is only
3352		 * for a single VSI. Update the vsi_list first, and only
3353		 * remove the rule if there are no further VSIs in this list.
3354		 */
3355		vsi_handle = f_entry->fltr_info.vsi_handle;
3356		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3357		if (status)
3358			goto exit;
3359		/* if VSI count goes to zero after updating the VSI list */
3360		if (list_elem->vsi_count == 0)
3361			remove_rule = true;
3362	}
3363
3364	if (remove_rule) {
3365		/* Remove the lookup rule */
3366		struct ice_sw_rule_lkup_rx_tx *s_rule;
3367
3368		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3369				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3370				      GFP_KERNEL);
3371		if (!s_rule) {
3372			status = -ENOMEM;
3373			goto exit;
3374		}
3375
3376		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3377				 ice_aqc_opc_remove_sw_rules);
3378
3379		status = ice_aq_sw_rules(hw, s_rule,
3380					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3381					 1, ice_aqc_opc_remove_sw_rules, NULL);
3382
3383		/* Remove a book keeping from the list */
3384		devm_kfree(ice_hw_to_dev(hw), s_rule);
3385
3386		if (status)
3387			goto exit;
3388
3389		list_del(&list_elem->list_entry);
3390		devm_kfree(ice_hw_to_dev(hw), list_elem);
3391	}
3392exit:
3393	mutex_unlock(rule_lock);
3394	return status;
3395}
3396
3397/**
3398 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3399 * @hw: pointer to the hardware structure
3400 * @vlan_id: VLAN ID
3401 * @vsi_handle: check MAC filter for this VSI
3402 */
3403bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3404{
3405	struct ice_fltr_mgmt_list_entry *entry;
3406	struct list_head *rule_head;
3407	struct ice_switch_info *sw;
3408	struct mutex *rule_lock; /* Lock to protect filter rule list */
3409	u16 hw_vsi_id;
3410
3411	if (vlan_id > ICE_MAX_VLAN_ID)
3412		return false;
3413
3414	if (!ice_is_vsi_valid(hw, vsi_handle))
3415		return false;
3416
3417	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3418	sw = hw->switch_info;
3419	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3420	if (!rule_head)
3421		return false;
3422
3423	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3424	mutex_lock(rule_lock);
3425	list_for_each_entry(entry, rule_head, list_entry) {
3426		struct ice_fltr_info *f_info = &entry->fltr_info;
3427		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3428		struct ice_vsi_list_map_info *map_info;
3429
3430		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3431			continue;
3432
3433		if (f_info->flag != ICE_FLTR_TX ||
3434		    f_info->src_id != ICE_SRC_ID_VSI ||
3435		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3436			continue;
3437
3438		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3439		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3440		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3441			continue;
3442
3443		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3444			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3445				continue;
3446		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3447			/* If filter_action is FWD_TO_VSI_LIST, make sure
3448			 * that VSI being checked is part of VSI list
3449			 */
3450			if (entry->vsi_count == 1 &&
3451			    entry->vsi_list_info) {
3452				map_info = entry->vsi_list_info;
3453				if (!test_bit(vsi_handle, map_info->vsi_map))
3454					continue;
3455			}
3456		}
3457
3458		if (vlan_id == entry_vlan_id) {
3459			mutex_unlock(rule_lock);
3460			return true;
3461		}
3462	}
3463	mutex_unlock(rule_lock);
3464
3465	return false;
3466}
3467
3468/**
3469 * ice_add_mac - Add a MAC address based filter rule
3470 * @hw: pointer to the hardware structure
3471 * @m_list: list of MAC addresses and forwarding information
3472 */
3473int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3474{
3475	struct ice_fltr_list_entry *m_list_itr;
3476	int status = 0;
3477
3478	if (!m_list || !hw)
3479		return -EINVAL;
3480
3481	list_for_each_entry(m_list_itr, m_list, list_entry) {
3482		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3483		u16 vsi_handle;
3484		u16 hw_vsi_id;
3485
3486		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3487		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3488		if (!ice_is_vsi_valid(hw, vsi_handle))
3489			return -EINVAL;
3490		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3491		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3492		/* update the src in case it is VSI num */
3493		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3494			return -EINVAL;
3495		m_list_itr->fltr_info.src = hw_vsi_id;
3496		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3497		    is_zero_ether_addr(add))
3498			return -EINVAL;
3499
3500		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3501							   m_list_itr);
3502		if (m_list_itr->status)
3503			return m_list_itr->status;
3504	}
3505
3506	return status;
3507}
3508
3509/**
3510 * ice_add_vlan_internal - Add one VLAN based filter rule
3511 * @hw: pointer to the hardware structure
3512 * @f_entry: filter entry containing one VLAN information
3513 */
3514static int
3515ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3516{
3517	struct ice_switch_info *sw = hw->switch_info;
3518	struct ice_fltr_mgmt_list_entry *v_list_itr;
3519	struct ice_fltr_info *new_fltr, *cur_fltr;
3520	enum ice_sw_lkup_type lkup_type;
3521	u16 vsi_list_id = 0, vsi_handle;
3522	struct mutex *rule_lock; /* Lock to protect filter rule list */
3523	int status = 0;
3524
3525	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3526		return -EINVAL;
3527
3528	f_entry->fltr_info.fwd_id.hw_vsi_id =
3529		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3530	new_fltr = &f_entry->fltr_info;
3531
3532	/* VLAN ID should only be 12 bits */
3533	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3534		return -EINVAL;
3535
3536	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3537		return -EINVAL;
3538
3539	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3540	lkup_type = new_fltr->lkup_type;
3541	vsi_handle = new_fltr->vsi_handle;
3542	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3543	mutex_lock(rule_lock);
3544	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3545	if (!v_list_itr) {
3546		struct ice_vsi_list_map_info *map_info = NULL;
3547
3548		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3549			/* All VLAN pruning rules use a VSI list. Check if
3550			 * there is already a VSI list containing VSI that we
3551			 * want to add. If found, use the same vsi_list_id for
3552			 * this new VLAN rule or else create a new list.
3553			 */
3554			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3555							   vsi_handle,
3556							   &vsi_list_id);
3557			if (!map_info) {
3558				status = ice_create_vsi_list_rule(hw,
3559								  &vsi_handle,
3560								  1,
3561								  &vsi_list_id,
3562								  lkup_type);
3563				if (status)
3564					goto exit;
3565			}
3566			/* Convert the action to forwarding to a VSI list. */
3567			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3568			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3569		}
3570
3571		status = ice_create_pkt_fwd_rule(hw, f_entry);
3572		if (!status) {
3573			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3574							 new_fltr);
3575			if (!v_list_itr) {
3576				status = -ENOENT;
3577				goto exit;
3578			}
3579			/* reuse VSI list for new rule and increment ref_cnt */
3580			if (map_info) {
3581				v_list_itr->vsi_list_info = map_info;
3582				map_info->ref_cnt++;
3583			} else {
3584				v_list_itr->vsi_list_info =
3585					ice_create_vsi_list_map(hw, &vsi_handle,
3586								1, vsi_list_id);
3587			}
3588		}
3589	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3590		/* Update existing VSI list to add new VSI ID only if it used
3591		 * by one VLAN rule.
3592		 */
3593		cur_fltr = &v_list_itr->fltr_info;
3594		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3595						 new_fltr);
3596	} else {
3597		/* If VLAN rule exists and VSI list being used by this rule is
3598		 * referenced by more than 1 VLAN rule. Then create a new VSI
3599		 * list appending previous VSI with new VSI and update existing
3600		 * VLAN rule to point to new VSI list ID
3601		 */
3602		struct ice_fltr_info tmp_fltr;
3603		u16 vsi_handle_arr[2];
3604		u16 cur_handle;
3605
3606		/* Current implementation only supports reusing VSI list with
3607		 * one VSI count. We should never hit below condition
3608		 */
3609		if (v_list_itr->vsi_count > 1 &&
3610		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3611			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3612			status = -EIO;
3613			goto exit;
3614		}
3615
3616		cur_handle =
3617			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3618				       ICE_MAX_VSI);
3619
3620		/* A rule already exists with the new VSI being added */
3621		if (cur_handle == vsi_handle) {
3622			status = -EEXIST;
3623			goto exit;
3624		}
3625
3626		vsi_handle_arr[0] = cur_handle;
3627		vsi_handle_arr[1] = vsi_handle;
3628		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3629						  &vsi_list_id, lkup_type);
3630		if (status)
3631			goto exit;
3632
3633		tmp_fltr = v_list_itr->fltr_info;
3634		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3635		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3636		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3637		/* Update the previous switch rule to a new VSI list which
3638		 * includes current VSI that is requested
3639		 */
3640		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3641		if (status)
3642			goto exit;
3643
3644		/* before overriding VSI list map info. decrement ref_cnt of
3645		 * previous VSI list
3646		 */
3647		v_list_itr->vsi_list_info->ref_cnt--;
3648
3649		/* now update to newly created list */
3650		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3651		v_list_itr->vsi_list_info =
3652			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3653						vsi_list_id);
3654		v_list_itr->vsi_count++;
3655	}
3656
3657exit:
3658	mutex_unlock(rule_lock);
3659	return status;
3660}
3661
3662/**
3663 * ice_add_vlan - Add VLAN based filter rule
3664 * @hw: pointer to the hardware structure
3665 * @v_list: list of VLAN entries and forwarding information
3666 */
3667int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3668{
3669	struct ice_fltr_list_entry *v_list_itr;
3670
3671	if (!v_list || !hw)
3672		return -EINVAL;
3673
3674	list_for_each_entry(v_list_itr, v_list, list_entry) {
3675		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3676			return -EINVAL;
3677		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3678		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3679		if (v_list_itr->status)
3680			return v_list_itr->status;
3681	}
3682	return 0;
3683}
3684
3685/**
3686 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3687 * @hw: pointer to the hardware structure
3688 * @em_list: list of ether type MAC filter, MAC is optional
3689 *
3690 * This function requires the caller to populate the entries in
3691 * the filter list with the necessary fields (including flags to
3692 * indicate Tx or Rx rules).
3693 */
3694int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3695{
3696	struct ice_fltr_list_entry *em_list_itr;
3697
3698	if (!em_list || !hw)
3699		return -EINVAL;
3700
3701	list_for_each_entry(em_list_itr, em_list, list_entry) {
3702		enum ice_sw_lkup_type l_type =
3703			em_list_itr->fltr_info.lkup_type;
3704
3705		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3706		    l_type != ICE_SW_LKUP_ETHERTYPE)
3707			return -EINVAL;
3708
3709		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3710							    em_list_itr);
3711		if (em_list_itr->status)
3712			return em_list_itr->status;
3713	}
3714	return 0;
3715}
3716
3717/**
3718 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3719 * @hw: pointer to the hardware structure
3720 * @em_list: list of ethertype or ethertype MAC entries
3721 */
3722int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3723{
3724	struct ice_fltr_list_entry *em_list_itr, *tmp;
3725
3726	if (!em_list || !hw)
3727		return -EINVAL;
3728
3729	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3730		enum ice_sw_lkup_type l_type =
3731			em_list_itr->fltr_info.lkup_type;
3732
3733		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3734		    l_type != ICE_SW_LKUP_ETHERTYPE)
3735			return -EINVAL;
3736
3737		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3738							       em_list_itr);
3739		if (em_list_itr->status)
3740			return em_list_itr->status;
3741	}
3742	return 0;
3743}
3744
3745/**
3746 * ice_rem_sw_rule_info
3747 * @hw: pointer to the hardware structure
3748 * @rule_head: pointer to the switch list structure that we want to delete
3749 */
3750static void
3751ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3752{
3753	if (!list_empty(rule_head)) {
3754		struct ice_fltr_mgmt_list_entry *entry;
3755		struct ice_fltr_mgmt_list_entry *tmp;
3756
3757		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3758			list_del(&entry->list_entry);
3759			devm_kfree(ice_hw_to_dev(hw), entry);
3760		}
3761	}
3762}
3763
3764/**
3765 * ice_rem_adv_rule_info
3766 * @hw: pointer to the hardware structure
3767 * @rule_head: pointer to the switch list structure that we want to delete
3768 */
3769static void
3770ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3771{
3772	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3773	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3774
3775	if (list_empty(rule_head))
3776		return;
3777
3778	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3779		list_del(&lst_itr->list_entry);
3780		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3781		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3782	}
3783}
3784
3785/**
3786 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3787 * @pi: pointer to the port_info structure
3788 * @vsi_handle: VSI handle to set as default
3789 * @set: true to add the above mentioned switch rule, false to remove it
3790 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3791 *
3792 * add filter rule to set/unset given VSI as default VSI for the switch
3793 * (represented by swid)
3794 */
3795int
3796ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3797		 u8 direction)
3798{
3799	struct ice_fltr_list_entry f_list_entry;
3800	struct ice_fltr_info f_info;
3801	struct ice_hw *hw = pi->hw;
3802	u16 hw_vsi_id;
3803	int status;
3804
3805	if (!ice_is_vsi_valid(hw, vsi_handle))
3806		return -EINVAL;
3807
3808	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3809
3810	memset(&f_info, 0, sizeof(f_info));
3811
3812	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3813	f_info.flag = direction;
3814	f_info.fltr_act = ICE_FWD_TO_VSI;
3815	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3816	f_info.vsi_handle = vsi_handle;
3817
3818	if (f_info.flag & ICE_FLTR_RX) {
3819		f_info.src = hw->port_info->lport;
3820		f_info.src_id = ICE_SRC_ID_LPORT;
3821	} else if (f_info.flag & ICE_FLTR_TX) {
3822		f_info.src_id = ICE_SRC_ID_VSI;
3823		f_info.src = hw_vsi_id;
3824	}
3825	f_list_entry.fltr_info = f_info;
3826
3827	if (set)
3828		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3829					       &f_list_entry);
3830	else
3831		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3832						  &f_list_entry);
3833
3834	return status;
3835}
3836
3837/**
3838 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3839 * @fm_entry: filter entry to inspect
3840 * @vsi_handle: VSI handle to compare with filter info
3841 */
3842static bool
3843ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3844{
3845	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3846		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3847		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3848		 fm_entry->vsi_list_info &&
3849		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3850}
3851
3852/**
3853 * ice_check_if_dflt_vsi - check if VSI is default VSI
3854 * @pi: pointer to the port_info structure
3855 * @vsi_handle: vsi handle to check for in filter list
3856 * @rule_exists: indicates if there are any VSI's in the rule list
3857 *
3858 * checks if the VSI is in a default VSI list, and also indicates
3859 * if the default VSI list is empty
3860 */
3861bool
3862ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3863		      bool *rule_exists)
3864{
3865	struct ice_fltr_mgmt_list_entry *fm_entry;
3866	struct ice_sw_recipe *recp_list;
3867	struct list_head *rule_head;
3868	struct mutex *rule_lock; /* Lock to protect filter rule list */
3869	bool ret = false;
3870
3871	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3872	rule_lock = &recp_list->filt_rule_lock;
3873	rule_head = &recp_list->filt_rules;
3874
3875	mutex_lock(rule_lock);
3876
3877	if (rule_exists && !list_empty(rule_head))
3878		*rule_exists = true;
3879
3880	list_for_each_entry(fm_entry, rule_head, list_entry) {
3881		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3882			ret = true;
3883			break;
3884		}
3885	}
3886
3887	mutex_unlock(rule_lock);
3888
3889	return ret;
3890}
3891
3892/**
3893 * ice_remove_mac - remove a MAC address based filter rule
3894 * @hw: pointer to the hardware structure
3895 * @m_list: list of MAC addresses and forwarding information
3896 *
3897 * This function removes either a MAC filter rule or a specific VSI from a
3898 * VSI list for a multicast MAC address.
3899 *
3900 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3901 * be aware that this call will only work if all the entries passed into m_list
3902 * were added previously. It will not attempt to do a partial remove of entries
3903 * that were found.
3904 */
3905int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3906{
3907	struct ice_fltr_list_entry *list_itr, *tmp;
3908
3909	if (!m_list)
3910		return -EINVAL;
3911
3912	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3913		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3914		u16 vsi_handle;
3915
3916		if (l_type != ICE_SW_LKUP_MAC)
3917			return -EINVAL;
3918
3919		vsi_handle = list_itr->fltr_info.vsi_handle;
3920		if (!ice_is_vsi_valid(hw, vsi_handle))
3921			return -EINVAL;
3922
3923		list_itr->fltr_info.fwd_id.hw_vsi_id =
3924					ice_get_hw_vsi_num(hw, vsi_handle);
3925
3926		list_itr->status = ice_remove_rule_internal(hw,
3927							    ICE_SW_LKUP_MAC,
3928							    list_itr);
3929		if (list_itr->status)
3930			return list_itr->status;
3931	}
3932	return 0;
3933}
3934
3935/**
3936 * ice_remove_vlan - Remove VLAN based filter rule
3937 * @hw: pointer to the hardware structure
3938 * @v_list: list of VLAN entries and forwarding information
3939 */
3940int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3941{
3942	struct ice_fltr_list_entry *v_list_itr, *tmp;
3943
3944	if (!v_list || !hw)
3945		return -EINVAL;
3946
3947	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3948		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3949
3950		if (l_type != ICE_SW_LKUP_VLAN)
3951			return -EINVAL;
3952		v_list_itr->status = ice_remove_rule_internal(hw,
3953							      ICE_SW_LKUP_VLAN,
3954							      v_list_itr);
3955		if (v_list_itr->status)
3956			return v_list_itr->status;
3957	}
3958	return 0;
3959}
3960
3961/**
3962 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3963 * @hw: pointer to the hardware structure
3964 * @vsi_handle: VSI handle to remove filters from
3965 * @vsi_list_head: pointer to the list to add entry to
3966 * @fi: pointer to fltr_info of filter entry to copy & add
3967 *
3968 * Helper function, used when creating a list of filters to remove from
3969 * a specific VSI. The entry added to vsi_list_head is a COPY of the
3970 * original filter entry, with the exception of fltr_info.fltr_act and
3971 * fltr_info.fwd_id fields. These are set such that later logic can
3972 * extract which VSI to remove the fltr from, and pass on that information.
3973 */
3974static int
3975ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3976			       struct list_head *vsi_list_head,
3977			       struct ice_fltr_info *fi)
3978{
3979	struct ice_fltr_list_entry *tmp;
3980
3981	/* this memory is freed up in the caller function
3982	 * once filters for this VSI are removed
3983	 */
3984	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
3985	if (!tmp)
3986		return -ENOMEM;
3987
3988	tmp->fltr_info = *fi;
3989
3990	/* Overwrite these fields to indicate which VSI to remove filter from,
3991	 * so find and remove logic can extract the information from the
3992	 * list entries. Note that original entries will still have proper
3993	 * values.
3994	 */
3995	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3996	tmp->fltr_info.vsi_handle = vsi_handle;
3997	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3998
3999	list_add(&tmp->list_entry, vsi_list_head);
4000
4001	return 0;
4002}
4003
4004/**
4005 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4006 * @hw: pointer to the hardware structure
4007 * @vsi_handle: VSI handle to remove filters from
4008 * @lkup_list_head: pointer to the list that has certain lookup type filters
4009 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4010 *
4011 * Locates all filters in lkup_list_head that are used by the given VSI,
4012 * and adds COPIES of those entries to vsi_list_head (intended to be used
4013 * to remove the listed filters).
4014 * Note that this means all entries in vsi_list_head must be explicitly
4015 * deallocated by the caller when done with list.
4016 */
4017static int
4018ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4019			 struct list_head *lkup_list_head,
4020			 struct list_head *vsi_list_head)
4021{
4022	struct ice_fltr_mgmt_list_entry *fm_entry;
4023	int status = 0;
4024
4025	/* check to make sure VSI ID is valid and within boundary */
4026	if (!ice_is_vsi_valid(hw, vsi_handle))
4027		return -EINVAL;
4028
4029	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4030		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4031			continue;
4032
4033		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4034							vsi_list_head,
4035							&fm_entry->fltr_info);
4036		if (status)
4037			return status;
4038	}
4039	return status;
4040}
4041
4042/**
4043 * ice_determine_promisc_mask
4044 * @fi: filter info to parse
4045 *
4046 * Helper function to determine which ICE_PROMISC_ mask corresponds
4047 * to given filter into.
4048 */
4049static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4050{
4051	u16 vid = fi->l_data.mac_vlan.vlan_id;
4052	u8 *macaddr = fi->l_data.mac.mac_addr;
4053	bool is_tx_fltr = false;
4054	u8 promisc_mask = 0;
4055
4056	if (fi->flag == ICE_FLTR_TX)
4057		is_tx_fltr = true;
4058
4059	if (is_broadcast_ether_addr(macaddr))
4060		promisc_mask |= is_tx_fltr ?
4061			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4062	else if (is_multicast_ether_addr(macaddr))
4063		promisc_mask |= is_tx_fltr ?
4064			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4065	else if (is_unicast_ether_addr(macaddr))
4066		promisc_mask |= is_tx_fltr ?
4067			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4068	if (vid)
4069		promisc_mask |= is_tx_fltr ?
4070			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4071
4072	return promisc_mask;
4073}
4074
4075/**
4076 * ice_remove_promisc - Remove promisc based filter rules
4077 * @hw: pointer to the hardware structure
4078 * @recp_id: recipe ID for which the rule needs to removed
4079 * @v_list: list of promisc entries
4080 */
4081static int
4082ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4083{
4084	struct ice_fltr_list_entry *v_list_itr, *tmp;
4085
4086	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4087		v_list_itr->status =
4088			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4089		if (v_list_itr->status)
4090			return v_list_itr->status;
4091	}
4092	return 0;
4093}
4094
4095/**
4096 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4097 * @hw: pointer to the hardware structure
4098 * @vsi_handle: VSI handle to clear mode
4099 * @promisc_mask: mask of promiscuous config bits to clear
4100 * @vid: VLAN ID to clear VLAN promiscuous
4101 */
4102int
4103ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4104		      u16 vid)
4105{
4106	struct ice_switch_info *sw = hw->switch_info;
4107	struct ice_fltr_list_entry *fm_entry, *tmp;
4108	struct list_head remove_list_head;
4109	struct ice_fltr_mgmt_list_entry *itr;
4110	struct list_head *rule_head;
4111	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4112	int status = 0;
4113	u8 recipe_id;
4114
4115	if (!ice_is_vsi_valid(hw, vsi_handle))
4116		return -EINVAL;
4117
4118	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4119		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4120	else
4121		recipe_id = ICE_SW_LKUP_PROMISC;
4122
4123	rule_head = &sw->recp_list[recipe_id].filt_rules;
4124	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4125
4126	INIT_LIST_HEAD(&remove_list_head);
4127
4128	mutex_lock(rule_lock);
4129	list_for_each_entry(itr, rule_head, list_entry) {
4130		struct ice_fltr_info *fltr_info;
4131		u8 fltr_promisc_mask = 0;
4132
4133		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4134			continue;
4135		fltr_info = &itr->fltr_info;
4136
4137		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4138		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4139			continue;
4140
4141		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4142
4143		/* Skip if filter is not completely specified by given mask */
4144		if (fltr_promisc_mask & ~promisc_mask)
4145			continue;
4146
4147		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4148							&remove_list_head,
4149							fltr_info);
4150		if (status) {
4151			mutex_unlock(rule_lock);
4152			goto free_fltr_list;
4153		}
4154	}
4155	mutex_unlock(rule_lock);
4156
4157	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4158
4159free_fltr_list:
4160	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4161		list_del(&fm_entry->list_entry);
4162		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4163	}
4164
4165	return status;
4166}
4167
4168/**
4169 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4170 * @hw: pointer to the hardware structure
4171 * @vsi_handle: VSI handle to configure
4172 * @promisc_mask: mask of promiscuous config bits
4173 * @vid: VLAN ID to set VLAN promiscuous
4174 */
4175int
4176ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4177{
4178	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4179	struct ice_fltr_list_entry f_list_entry;
4180	struct ice_fltr_info new_fltr;
4181	bool is_tx_fltr;
4182	int status = 0;
4183	u16 hw_vsi_id;
4184	int pkt_type;
4185	u8 recipe_id;
4186
4187	if (!ice_is_vsi_valid(hw, vsi_handle))
4188		return -EINVAL;
4189	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4190
4191	memset(&new_fltr, 0, sizeof(new_fltr));
4192
4193	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4194		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4195		new_fltr.l_data.mac_vlan.vlan_id = vid;
4196		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4197	} else {
4198		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4199		recipe_id = ICE_SW_LKUP_PROMISC;
4200	}
4201
4202	/* Separate filters must be set for each direction/packet type
4203	 * combination, so we will loop over the mask value, store the
4204	 * individual type, and clear it out in the input mask as it
4205	 * is found.
4206	 */
4207	while (promisc_mask) {
4208		u8 *mac_addr;
4209
4210		pkt_type = 0;
4211		is_tx_fltr = false;
4212
4213		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4214			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4215			pkt_type = UCAST_FLTR;
4216		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4217			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4218			pkt_type = UCAST_FLTR;
4219			is_tx_fltr = true;
4220		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4221			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4222			pkt_type = MCAST_FLTR;
4223		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4224			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4225			pkt_type = MCAST_FLTR;
4226			is_tx_fltr = true;
4227		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4228			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4229			pkt_type = BCAST_FLTR;
4230		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4231			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4232			pkt_type = BCAST_FLTR;
4233			is_tx_fltr = true;
4234		}
4235
4236		/* Check for VLAN promiscuous flag */
4237		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4238			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4239		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4240			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4241			is_tx_fltr = true;
4242		}
4243
4244		/* Set filter DA based on packet type */
4245		mac_addr = new_fltr.l_data.mac.mac_addr;
4246		if (pkt_type == BCAST_FLTR) {
4247			eth_broadcast_addr(mac_addr);
4248		} else if (pkt_type == MCAST_FLTR ||
4249			   pkt_type == UCAST_FLTR) {
4250			/* Use the dummy ether header DA */
4251			ether_addr_copy(mac_addr, dummy_eth_header);
4252			if (pkt_type == MCAST_FLTR)
4253				mac_addr[0] |= 0x1;	/* Set multicast bit */
4254		}
4255
4256		/* Need to reset this to zero for all iterations */
4257		new_fltr.flag = 0;
4258		if (is_tx_fltr) {
4259			new_fltr.flag |= ICE_FLTR_TX;
4260			new_fltr.src = hw_vsi_id;
4261		} else {
4262			new_fltr.flag |= ICE_FLTR_RX;
4263			new_fltr.src = hw->port_info->lport;
4264		}
4265
4266		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4267		new_fltr.vsi_handle = vsi_handle;
4268		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4269		f_list_entry.fltr_info = new_fltr;
4270
4271		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4272		if (status)
4273			goto set_promisc_exit;
4274	}
4275
4276set_promisc_exit:
4277	return status;
4278}
4279
4280/**
4281 * ice_set_vlan_vsi_promisc
4282 * @hw: pointer to the hardware structure
4283 * @vsi_handle: VSI handle to configure
4284 * @promisc_mask: mask of promiscuous config bits
4285 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4286 *
4287 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4288 */
4289int
4290ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4291			 bool rm_vlan_promisc)
4292{
4293	struct ice_switch_info *sw = hw->switch_info;
4294	struct ice_fltr_list_entry *list_itr, *tmp;
4295	struct list_head vsi_list_head;
4296	struct list_head *vlan_head;
4297	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4298	u16 vlan_id;
4299	int status;
4300
4301	INIT_LIST_HEAD(&vsi_list_head);
4302	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4303	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4304	mutex_lock(vlan_lock);
4305	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4306					  &vsi_list_head);
4307	mutex_unlock(vlan_lock);
4308	if (status)
4309		goto free_fltr_list;
4310
4311	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4312		/* Avoid enabling or disabling VLAN zero twice when in double
4313		 * VLAN mode
4314		 */
4315		if (ice_is_dvm_ena(hw) &&
4316		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4317			continue;
4318
4319		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4320		if (rm_vlan_promisc)
4321			status = ice_clear_vsi_promisc(hw, vsi_handle,
4322						       promisc_mask, vlan_id);
4323		else
4324			status = ice_set_vsi_promisc(hw, vsi_handle,
4325						     promisc_mask, vlan_id);
4326		if (status && status != -EEXIST)
4327			break;
4328	}
4329
4330free_fltr_list:
4331	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4332		list_del(&list_itr->list_entry);
4333		devm_kfree(ice_hw_to_dev(hw), list_itr);
4334	}
4335	return status;
4336}
4337
4338/**
4339 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4340 * @hw: pointer to the hardware structure
4341 * @vsi_handle: VSI handle to remove filters from
4342 * @lkup: switch rule filter lookup type
4343 */
4344static void
4345ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4346			 enum ice_sw_lkup_type lkup)
4347{
4348	struct ice_switch_info *sw = hw->switch_info;
4349	struct ice_fltr_list_entry *fm_entry;
4350	struct list_head remove_list_head;
4351	struct list_head *rule_head;
4352	struct ice_fltr_list_entry *tmp;
4353	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4354	int status;
4355
4356	INIT_LIST_HEAD(&remove_list_head);
4357	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4358	rule_head = &sw->recp_list[lkup].filt_rules;
4359	mutex_lock(rule_lock);
4360	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4361					  &remove_list_head);
4362	mutex_unlock(rule_lock);
4363	if (status)
4364		goto free_fltr_list;
4365
4366	switch (lkup) {
4367	case ICE_SW_LKUP_MAC:
4368		ice_remove_mac(hw, &remove_list_head);
4369		break;
4370	case ICE_SW_LKUP_VLAN:
4371		ice_remove_vlan(hw, &remove_list_head);
4372		break;
4373	case ICE_SW_LKUP_PROMISC:
4374	case ICE_SW_LKUP_PROMISC_VLAN:
4375		ice_remove_promisc(hw, lkup, &remove_list_head);
4376		break;
4377	case ICE_SW_LKUP_MAC_VLAN:
4378	case ICE_SW_LKUP_ETHERTYPE:
4379	case ICE_SW_LKUP_ETHERTYPE_MAC:
4380	case ICE_SW_LKUP_DFLT:
4381	case ICE_SW_LKUP_LAST:
4382	default:
4383		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4384		break;
4385	}
4386
4387free_fltr_list:
4388	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4389		list_del(&fm_entry->list_entry);
4390		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4391	}
4392}
4393
4394/**
4395 * ice_remove_vsi_fltr - Remove all filters for a VSI
4396 * @hw: pointer to the hardware structure
4397 * @vsi_handle: VSI handle to remove filters from
4398 */
4399void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4400{
4401	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4402	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4403	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4404	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4405	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4406	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4407	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4408	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4409}
4410
4411/**
4412 * ice_alloc_res_cntr - allocating resource counter
4413 * @hw: pointer to the hardware structure
4414 * @type: type of resource
4415 * @alloc_shared: if set it is shared else dedicated
4416 * @num_items: number of entries requested for FD resource type
4417 * @counter_id: counter index returned by AQ call
4418 */
4419int
4420ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4421		   u16 *counter_id)
4422{
4423	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4424	u16 buf_len = __struct_size(buf);
4425	int status;
4426
4427	buf->num_elems = cpu_to_le16(num_items);
4428	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4429				    alloc_shared);
4430
4431	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4432	if (status)
4433		return status;
4434
4435	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4436	return status;
4437}
4438
4439/**
4440 * ice_free_res_cntr - free resource counter
4441 * @hw: pointer to the hardware structure
4442 * @type: type of resource
4443 * @alloc_shared: if set it is shared else dedicated
4444 * @num_items: number of entries to be freed for FD resource type
4445 * @counter_id: counter ID resource which needs to be freed
4446 */
4447int
4448ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4449		  u16 counter_id)
4450{
4451	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4452	u16 buf_len = __struct_size(buf);
4453	int status;
4454
4455	buf->num_elems = cpu_to_le16(num_items);
4456	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4457				    alloc_shared);
4458	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4459
4460	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4461	if (status)
4462		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4463
4464	return status;
4465}
4466
4467#define ICE_PROTOCOL_ENTRY(id, ...) {		\
4468	.prot_type	= id,			\
4469	.offs		= {__VA_ARGS__},	\
4470}
4471
4472/**
4473 * ice_share_res - set a resource as shared or dedicated
4474 * @hw: hw struct of original owner of resource
4475 * @type: resource type
4476 * @shared: is the resource being set to shared
4477 * @res_id: resource id (descriptor)
4478 */
4479int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4480{
4481	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4482	u16 buf_len = __struct_size(buf);
4483	u16 res_type;
4484	int status;
4485
4486	buf->num_elems = cpu_to_le16(1);
4487	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4488	if (shared)
4489		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4490
4491	buf->res_type = cpu_to_le16(res_type);
4492	buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4493	status = ice_aq_alloc_free_res(hw, buf, buf_len,
4494				       ice_aqc_opc_share_res);
4495	if (status)
4496		ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4497			  type, res_id, shared ? "SHARED" : "DEDICATED");
4498
4499	return status;
4500}
4501
4502/* This is mapping table entry that maps every word within a given protocol
4503 * structure to the real byte offset as per the specification of that
4504 * protocol header.
4505 * for example dst address is 3 words in ethertype header and corresponding
4506 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4507 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4508 * matching entry describing its field. This needs to be updated if new
4509 * structure is added to that union.
4510 */
4511static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4512	ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4513	ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4514	ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4515	ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4516	ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4517	ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4518	ICE_PROTOCOL_ENTRY(ICE_IPV4_IL,	0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4519	ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4520			   20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4521	ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4522			   22, 24, 26, 28, 30, 32, 34, 36, 38),
4523	ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4524	ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4525	ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4526	ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4527	ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4528	ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4529	ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4530	ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4531	ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4532	ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4533	ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4534	ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4535	ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4536			   ICE_SOURCE_PORT_MDID_OFFSET,
4537			   ICE_PTYPE_MDID_OFFSET,
4538			   ICE_PACKET_LENGTH_MDID_OFFSET,
4539			   ICE_SOURCE_VSI_MDID_OFFSET,
4540			   ICE_PKT_VLAN_MDID_OFFSET,
4541			   ICE_PKT_TUNNEL_MDID_OFFSET,
4542			   ICE_PKT_TCP_MDID_OFFSET,
4543			   ICE_PKT_ERROR_MDID_OFFSET),
4544};
4545
4546static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4547	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4548	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4549	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4550	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4551	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4552	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4553	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4554	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4555	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4556	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4557	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4558	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4559	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4560	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4561	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4562	{ ICE_GTP,		ICE_UDP_OF_HW },
4563	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4564	{ ICE_PPPOE,		ICE_PPPOE_HW },
4565	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4566	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4567	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4568	{ ICE_HW_METADATA,      ICE_META_DATA_ID_HW },
4569};
4570
4571/**
4572 * ice_find_recp - find a recipe
4573 * @hw: pointer to the hardware structure
4574 * @lkup_exts: extension sequence to match
4575 * @rinfo: information regarding the rule e.g. priority and action info
4576 *
4577 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4578 */
4579static u16
4580ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4581	      const struct ice_adv_rule_info *rinfo)
4582{
4583	bool refresh_required = true;
4584	struct ice_sw_recipe *recp;
4585	u8 i;
4586
4587	/* Walk through existing recipes to find a match */
4588	recp = hw->switch_info->recp_list;
4589	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4590		/* If recipe was not created for this ID, in SW bookkeeping,
4591		 * check if FW has an entry for this recipe. If the FW has an
4592		 * entry update it in our SW bookkeeping and continue with the
4593		 * matching.
4594		 */
4595		if (!recp[i].recp_created)
4596			if (ice_get_recp_frm_fw(hw,
4597						hw->switch_info->recp_list, i,
4598						&refresh_required))
4599				continue;
4600
4601		/* Skip inverse action recipes */
4602		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4603		    ICE_AQ_RECIPE_ACT_INV_ACT)
4604			continue;
4605
4606		/* if number of words we are looking for match */
4607		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4608			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4609			struct ice_fv_word *be = lkup_exts->fv_words;
4610			u16 *cr = recp[i].lkup_exts.field_mask;
4611			u16 *de = lkup_exts->field_mask;
4612			bool found = true;
4613			u8 pe, qr;
4614
4615			/* ar, cr, and qr are related to the recipe words, while
4616			 * be, de, and pe are related to the lookup words
4617			 */
4618			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4619				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4620				     qr++) {
4621					if (ar[qr].off == be[pe].off &&
4622					    ar[qr].prot_id == be[pe].prot_id &&
4623					    cr[qr] == de[pe])
4624						/* Found the "pe"th word in the
4625						 * given recipe
4626						 */
4627						break;
4628				}
4629				/* After walking through all the words in the
4630				 * "i"th recipe if "p"th word was not found then
4631				 * this recipe is not what we are looking for.
4632				 * So break out from this loop and try the next
4633				 * recipe
4634				 */
4635				if (qr >= recp[i].lkup_exts.n_val_words) {
4636					found = false;
4637					break;
4638				}
4639			}
4640			/* If for "i"th recipe the found was never set to false
4641			 * then it means we found our match
4642			 * Also tun type and *_pass_l2 of recipe needs to be
4643			 * checked
4644			 */
4645			if (found && recp[i].tun_type == rinfo->tun_type &&
4646			    recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4647			    recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4648				return i; /* Return the recipe ID */
4649		}
4650	}
4651	return ICE_MAX_NUM_RECIPES;
4652}
4653
4654/**
4655 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4656 *
4657 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4658 * supported protocol array record for outer vlan has to be modified to
4659 * reflect the value proper for DVM.
4660 */
4661void ice_change_proto_id_to_dvm(void)
4662{
4663	u8 i;
4664
4665	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4666		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4667		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4668			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4669}
4670
4671/**
4672 * ice_prot_type_to_id - get protocol ID from protocol type
4673 * @type: protocol type
4674 * @id: pointer to variable that will receive the ID
4675 *
4676 * Returns true if found, false otherwise
4677 */
4678static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4679{
4680	u8 i;
4681
4682	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4683		if (ice_prot_id_tbl[i].type == type) {
4684			*id = ice_prot_id_tbl[i].protocol_id;
4685			return true;
4686		}
4687	return false;
4688}
4689
4690/**
4691 * ice_fill_valid_words - count valid words
4692 * @rule: advanced rule with lookup information
4693 * @lkup_exts: byte offset extractions of the words that are valid
4694 *
4695 * calculate valid words in a lookup rule using mask value
4696 */
4697static u8
4698ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4699		     struct ice_prot_lkup_ext *lkup_exts)
4700{
4701	u8 j, word, prot_id, ret_val;
4702
4703	if (!ice_prot_type_to_id(rule->type, &prot_id))
4704		return 0;
4705
4706	word = lkup_exts->n_val_words;
4707
4708	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4709		if (((u16 *)&rule->m_u)[j] &&
4710		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4711			/* No more space to accommodate */
4712			if (word >= ICE_MAX_CHAIN_WORDS)
4713				return 0;
4714			lkup_exts->fv_words[word].off =
4715				ice_prot_ext[rule->type].offs[j];
4716			lkup_exts->fv_words[word].prot_id =
4717				ice_prot_id_tbl[rule->type].protocol_id;
4718			lkup_exts->field_mask[word] =
4719				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4720			word++;
4721		}
4722
4723	ret_val = word - lkup_exts->n_val_words;
4724	lkup_exts->n_val_words = word;
4725
4726	return ret_val;
4727}
4728
4729/**
4730 * ice_create_first_fit_recp_def - Create a recipe grouping
4731 * @hw: pointer to the hardware structure
4732 * @lkup_exts: an array of protocol header extractions
4733 * @rg_list: pointer to a list that stores new recipe groups
4734 * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4735 *
4736 * Using first fit algorithm, take all the words that are still not done
4737 * and start grouping them in 4-word groups. Each group makes up one
4738 * recipe.
4739 */
4740static int
4741ice_create_first_fit_recp_def(struct ice_hw *hw,
4742			      struct ice_prot_lkup_ext *lkup_exts,
4743			      struct list_head *rg_list,
4744			      u8 *recp_cnt)
4745{
4746	struct ice_pref_recipe_group *grp = NULL;
4747	u8 j;
4748
4749	*recp_cnt = 0;
4750
4751	/* Walk through every word in the rule to check if it is not done. If so
4752	 * then this word needs to be part of a new recipe.
4753	 */
4754	for (j = 0; j < lkup_exts->n_val_words; j++)
4755		if (!test_bit(j, lkup_exts->done)) {
4756			if (!grp ||
4757			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4758				struct ice_recp_grp_entry *entry;
4759
4760				entry = devm_kzalloc(ice_hw_to_dev(hw),
4761						     sizeof(*entry),
4762						     GFP_KERNEL);
4763				if (!entry)
4764					return -ENOMEM;
4765				list_add(&entry->l_entry, rg_list);
4766				grp = &entry->r_group;
4767				(*recp_cnt)++;
4768			}
4769
4770			grp->pairs[grp->n_val_pairs].prot_id =
4771				lkup_exts->fv_words[j].prot_id;
4772			grp->pairs[grp->n_val_pairs].off =
4773				lkup_exts->fv_words[j].off;
4774			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4775			grp->n_val_pairs++;
4776		}
4777
4778	return 0;
4779}
4780
4781/**
4782 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4783 * @hw: pointer to the hardware structure
4784 * @fv_list: field vector with the extraction sequence information
4785 * @rg_list: recipe groupings with protocol-offset pairs
4786 *
4787 * Helper function to fill in the field vector indices for protocol-offset
4788 * pairs. These indexes are then ultimately programmed into a recipe.
4789 */
4790static int
4791ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4792		       struct list_head *rg_list)
4793{
4794	struct ice_sw_fv_list_entry *fv;
4795	struct ice_recp_grp_entry *rg;
4796	struct ice_fv_word *fv_ext;
4797
4798	if (list_empty(fv_list))
4799		return 0;
4800
4801	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4802			      list_entry);
4803	fv_ext = fv->fv_ptr->ew;
4804
4805	list_for_each_entry(rg, rg_list, l_entry) {
4806		u8 i;
4807
4808		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4809			struct ice_fv_word *pr;
4810			bool found = false;
4811			u16 mask;
4812			u8 j;
4813
4814			pr = &rg->r_group.pairs[i];
4815			mask = rg->r_group.mask[i];
4816
4817			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4818				if (fv_ext[j].prot_id == pr->prot_id &&
4819				    fv_ext[j].off == pr->off) {
4820					found = true;
4821
4822					/* Store index of field vector */
4823					rg->fv_idx[i] = j;
4824					rg->fv_mask[i] = mask;
4825					break;
4826				}
4827
4828			/* Protocol/offset could not be found, caller gave an
4829			 * invalid pair
4830			 */
4831			if (!found)
4832				return -EINVAL;
4833		}
4834	}
4835
4836	return 0;
4837}
4838
4839/**
4840 * ice_find_free_recp_res_idx - find free result indexes for recipe
4841 * @hw: pointer to hardware structure
4842 * @profiles: bitmap of profiles that will be associated with the new recipe
4843 * @free_idx: pointer to variable to receive the free index bitmap
4844 *
4845 * The algorithm used here is:
4846 *	1. When creating a new recipe, create a set P which contains all
4847 *	   Profiles that will be associated with our new recipe
4848 *
4849 *	2. For each Profile p in set P:
4850 *	    a. Add all recipes associated with Profile p into set R
4851 *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4852 *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4853 *		i. Or just assume they all have the same possible indexes:
4854 *			44, 45, 46, 47
4855 *			i.e., PossibleIndexes = 0x0000F00000000000
4856 *
4857 *	3. For each Recipe r in set R:
4858 *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4859 *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4860 *
4861 *	FreeIndexes will contain the bits indicating the indexes free for use,
4862 *      then the code needs to update the recipe[r].used_result_idx_bits to
4863 *      indicate which indexes were selected for use by this recipe.
4864 */
4865static u16
4866ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4867			   unsigned long *free_idx)
4868{
4869	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4870	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4871	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4872	u16 bit;
4873
4874	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4875	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4876
4877	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4878
4879	/* For each profile we are going to associate the recipe with, add the
4880	 * recipes that are associated with that profile. This will give us
4881	 * the set of recipes that our recipe may collide with. Also, determine
4882	 * what possible result indexes are usable given this set of profiles.
4883	 */
4884	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4885		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4886			  ICE_MAX_NUM_RECIPES);
4887		bitmap_and(possible_idx, possible_idx,
4888			   hw->switch_info->prof_res_bm[bit],
4889			   ICE_MAX_FV_WORDS);
4890	}
4891
4892	/* For each recipe that our new recipe may collide with, determine
4893	 * which indexes have been used.
4894	 */
4895	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4896		bitmap_or(used_idx, used_idx,
4897			  hw->switch_info->recp_list[bit].res_idxs,
4898			  ICE_MAX_FV_WORDS);
4899
4900	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4901
4902	/* return number of free indexes */
4903	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4904}
4905
4906/**
4907 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4908 * @hw: pointer to hardware structure
4909 * @rm: recipe management list entry
4910 * @profiles: bitmap of profiles that will be associated.
4911 */
4912static int
4913ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4914		  unsigned long *profiles)
4915{
4916	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4917	struct ice_aqc_recipe_content *content;
4918	struct ice_aqc_recipe_data_elem *tmp;
4919	struct ice_aqc_recipe_data_elem *buf;
4920	struct ice_recp_grp_entry *entry;
4921	u16 free_res_idx;
4922	u16 recipe_count;
4923	u8 chain_idx;
4924	u8 recps = 0;
4925	int status;
4926
4927	/* When more than one recipe are required, another recipe is needed to
4928	 * chain them together. Matching a tunnel metadata ID takes up one of
4929	 * the match fields in the chaining recipe reducing the number of
4930	 * chained recipes by one.
4931	 */
4932	 /* check number of free result indices */
4933	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
4934	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4935
4936	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4937		  free_res_idx, rm->n_grp_count);
4938
4939	if (rm->n_grp_count > 1) {
4940		if (rm->n_grp_count > free_res_idx)
4941			return -ENOSPC;
4942
4943		rm->n_grp_count++;
4944	}
4945
4946	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4947		return -ENOSPC;
4948
4949	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4950	if (!tmp)
4951		return -ENOMEM;
4952
4953	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4954			   GFP_KERNEL);
4955	if (!buf) {
4956		status = -ENOMEM;
4957		goto err_mem;
4958	}
4959
4960	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4961	recipe_count = ICE_MAX_NUM_RECIPES;
4962	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4963				   NULL);
4964	if (status || recipe_count == 0)
4965		goto err_unroll;
4966
4967	/* Allocate the recipe resources, and configure them according to the
4968	 * match fields from protocol headers and extracted field vectors.
4969	 */
4970	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4971	list_for_each_entry(entry, &rm->rg_list, l_entry) {
4972		u8 i;
4973
4974		status = ice_alloc_recipe(hw, &entry->rid);
4975		if (status)
4976			goto err_unroll;
4977
4978		content = &buf[recps].content;
4979
4980		/* Clear the result index of the located recipe, as this will be
4981		 * updated, if needed, later in the recipe creation process.
4982		 */
4983		tmp[0].content.result_indx = 0;
4984
4985		buf[recps] = tmp[0];
4986		buf[recps].recipe_indx = (u8)entry->rid;
4987		/* if the recipe is a non-root recipe RID should be programmed
4988		 * as 0 for the rules to be applied correctly.
4989		 */
4990		content->rid = 0;
4991		memset(&content->lkup_indx, 0,
4992		       sizeof(content->lkup_indx));
4993
4994		/* All recipes use look-up index 0 to match switch ID. */
4995		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4996		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
4997		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
4998		 * to be 0
4999		 */
5000		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5001			content->lkup_indx[i] = 0x80;
5002			content->mask[i] = 0;
5003		}
5004
5005		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5006			content->lkup_indx[i + 1] = entry->fv_idx[i];
5007			content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]);
5008		}
5009
5010		if (rm->n_grp_count > 1) {
5011			/* Checks to see if there really is a valid result index
5012			 * that can be used.
5013			 */
5014			if (chain_idx >= ICE_MAX_FV_WORDS) {
5015				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5016				status = -ENOSPC;
5017				goto err_unroll;
5018			}
5019
5020			entry->chain_idx = chain_idx;
5021			content->result_indx =
5022				ICE_AQ_RECIPE_RESULT_EN |
5023				FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5024					   chain_idx);
5025			clear_bit(chain_idx, result_idx_bm);
5026			chain_idx = find_first_bit(result_idx_bm,
5027						   ICE_MAX_FV_WORDS);
5028		}
5029
5030		/* fill recipe dependencies */
5031		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5032			    ICE_MAX_NUM_RECIPES);
5033		set_bit(buf[recps].recipe_indx,
5034			(unsigned long *)buf[recps].recipe_bitmap);
5035		content->act_ctrl_fwd_priority = rm->priority;
5036
5037		if (rm->need_pass_l2)
5038			content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5039
5040		if (rm->allow_pass_l2)
5041			content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5042		recps++;
5043	}
5044
5045	if (rm->n_grp_count == 1) {
5046		rm->root_rid = buf[0].recipe_indx;
5047		set_bit(buf[0].recipe_indx, rm->r_bitmap);
5048		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5049		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5050			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5051			       sizeof(buf[0].recipe_bitmap));
5052		} else {
5053			status = -EINVAL;
5054			goto err_unroll;
5055		}
5056		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
5057		 * the recipe which is getting created if specified
5058		 * by user. Usually any advanced switch filter, which results
5059		 * into new extraction sequence, ended up creating a new recipe
5060		 * of type ROOT and usually recipes are associated with profiles
5061		 * Switch rule referreing newly created recipe, needs to have
5062		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5063		 * evaluation will not happen correctly. In other words, if
5064		 * switch rule to be evaluated on priority basis, then recipe
5065		 * needs to have priority, otherwise it will be evaluated last.
5066		 */
5067		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5068	} else {
5069		struct ice_recp_grp_entry *last_chain_entry;
5070		u16 rid, i;
5071
5072		/* Allocate the last recipe that will chain the outcomes of the
5073		 * other recipes together
5074		 */
5075		status = ice_alloc_recipe(hw, &rid);
5076		if (status)
5077			goto err_unroll;
5078
5079		content = &buf[recps].content;
5080
5081		buf[recps].recipe_indx = (u8)rid;
5082		content->rid = (u8)rid;
5083		content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5084		/* the new entry created should also be part of rg_list to
5085		 * make sure we have complete recipe
5086		 */
5087		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5088						sizeof(*last_chain_entry),
5089						GFP_KERNEL);
5090		if (!last_chain_entry) {
5091			status = -ENOMEM;
5092			goto err_unroll;
5093		}
5094		last_chain_entry->rid = rid;
5095		memset(&content->lkup_indx, 0, sizeof(content->lkup_indx));
5096		/* All recipes use look-up index 0 to match switch ID. */
5097		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5098		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5099		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5100			content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5101			content->mask[i] = 0;
5102		}
5103
5104		i = 1;
5105		/* update r_bitmap with the recp that is used for chaining */
5106		set_bit(rid, rm->r_bitmap);
5107		/* this is the recipe that chains all the other recipes so it
5108		 * should not have a chaining ID to indicate the same
5109		 */
5110		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5111		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5112			last_chain_entry->fv_idx[i] = entry->chain_idx;
5113			content->lkup_indx[i] = entry->chain_idx;
5114			content->mask[i++] = cpu_to_le16(0xFFFF);
5115			set_bit(entry->rid, rm->r_bitmap);
5116		}
5117		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5118		if (sizeof(buf[recps].recipe_bitmap) >=
5119		    sizeof(rm->r_bitmap)) {
5120			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5121			       sizeof(buf[recps].recipe_bitmap));
5122		} else {
5123			status = -EINVAL;
5124			goto err_unroll;
5125		}
5126		content->act_ctrl_fwd_priority = rm->priority;
5127
5128		recps++;
5129		rm->root_rid = (u8)rid;
5130	}
5131	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5132	if (status)
5133		goto err_unroll;
5134
5135	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5136	ice_release_change_lock(hw);
5137	if (status)
5138		goto err_unroll;
5139
5140	/* Every recipe that just got created add it to the recipe
5141	 * book keeping list
5142	 */
5143	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5144		struct ice_switch_info *sw = hw->switch_info;
5145		bool is_root, idx_found = false;
5146		struct ice_sw_recipe *recp;
5147		u16 idx, buf_idx = 0;
5148
5149		/* find buffer index for copying some data */
5150		for (idx = 0; idx < rm->n_grp_count; idx++)
5151			if (buf[idx].recipe_indx == entry->rid) {
5152				buf_idx = idx;
5153				idx_found = true;
5154			}
5155
5156		if (!idx_found) {
5157			status = -EIO;
5158			goto err_unroll;
5159		}
5160
5161		recp = &sw->recp_list[entry->rid];
5162		is_root = (rm->root_rid == entry->rid);
5163		recp->is_root = is_root;
5164
5165		recp->root_rid = entry->rid;
5166		recp->big_recp = (is_root && rm->n_grp_count > 1);
5167
5168		memcpy(&recp->ext_words, entry->r_group.pairs,
5169		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5170
5171		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5172		       sizeof(recp->r_bitmap));
5173
5174		/* Copy non-result fv index values and masks to recipe. This
5175		 * call will also update the result recipe bitmask.
5176		 */
5177		ice_collect_result_idx(&buf[buf_idx], recp);
5178
5179		/* for non-root recipes, also copy to the root, this allows
5180		 * easier matching of a complete chained recipe
5181		 */
5182		if (!is_root)
5183			ice_collect_result_idx(&buf[buf_idx],
5184					       &sw->recp_list[rm->root_rid]);
5185
5186		recp->n_ext_words = entry->r_group.n_val_pairs;
5187		recp->chain_idx = entry->chain_idx;
5188		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5189		recp->n_grp_count = rm->n_grp_count;
5190		recp->tun_type = rm->tun_type;
5191		recp->need_pass_l2 = rm->need_pass_l2;
5192		recp->allow_pass_l2 = rm->allow_pass_l2;
5193		recp->recp_created = true;
5194	}
5195	rm->root_buf = buf;
5196	kfree(tmp);
5197	return status;
5198
5199err_unroll:
5200err_mem:
5201	kfree(tmp);
5202	devm_kfree(ice_hw_to_dev(hw), buf);
5203	return status;
5204}
5205
5206/**
5207 * ice_create_recipe_group - creates recipe group
5208 * @hw: pointer to hardware structure
5209 * @rm: recipe management list entry
5210 * @lkup_exts: lookup elements
5211 */
5212static int
5213ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5214			struct ice_prot_lkup_ext *lkup_exts)
5215{
5216	u8 recp_count = 0;
5217	int status;
5218
5219	rm->n_grp_count = 0;
5220
5221	/* Create recipes for words that are marked not done by packing them
5222	 * as best fit.
5223	 */
5224	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5225					       &rm->rg_list, &recp_count);
5226	if (!status) {
5227		rm->n_grp_count += recp_count;
5228		rm->n_ext_words = lkup_exts->n_val_words;
5229		memcpy(&rm->ext_words, lkup_exts->fv_words,
5230		       sizeof(rm->ext_words));
5231		memcpy(rm->word_masks, lkup_exts->field_mask,
5232		       sizeof(rm->word_masks));
5233	}
5234
5235	return status;
5236}
5237
5238/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5239 * @hw: pointer to hardware structure
5240 * @rinfo: other information regarding the rule e.g. priority and action info
5241 * @bm: pointer to memory for returning the bitmap of field vectors
5242 */
5243static void
5244ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5245			 unsigned long *bm)
5246{
5247	enum ice_prof_type prof_type;
5248
5249	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5250
5251	switch (rinfo->tun_type) {
5252	case ICE_NON_TUN:
5253		prof_type = ICE_PROF_NON_TUN;
5254		break;
5255	case ICE_ALL_TUNNELS:
5256		prof_type = ICE_PROF_TUN_ALL;
5257		break;
5258	case ICE_SW_TUN_GENEVE:
5259	case ICE_SW_TUN_VXLAN:
5260		prof_type = ICE_PROF_TUN_UDP;
5261		break;
5262	case ICE_SW_TUN_NVGRE:
5263		prof_type = ICE_PROF_TUN_GRE;
5264		break;
5265	case ICE_SW_TUN_GTPU:
5266		prof_type = ICE_PROF_TUN_GTPU;
5267		break;
5268	case ICE_SW_TUN_GTPC:
5269		prof_type = ICE_PROF_TUN_GTPC;
5270		break;
5271	case ICE_SW_TUN_AND_NON_TUN:
5272	default:
5273		prof_type = ICE_PROF_ALL;
5274		break;
5275	}
5276
5277	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5278}
5279
5280/**
5281 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5282 * @hw: pointer to hardware structure
5283 * @lkups: lookup elements or match criteria for the advanced recipe, one
5284 *  structure per protocol header
5285 * @lkups_cnt: number of protocols
5286 * @rinfo: other information regarding the rule e.g. priority and action info
5287 * @rid: return the recipe ID of the recipe created
5288 */
5289static int
5290ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5291		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5292{
5293	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5294	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5295	struct ice_prot_lkup_ext *lkup_exts;
5296	struct ice_recp_grp_entry *r_entry;
5297	struct ice_sw_fv_list_entry *fvit;
5298	struct ice_recp_grp_entry *r_tmp;
5299	struct ice_sw_fv_list_entry *tmp;
5300	struct ice_sw_recipe *rm;
5301	int status = 0;
5302	u8 i;
5303
5304	if (!lkups_cnt)
5305		return -EINVAL;
5306
5307	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5308	if (!lkup_exts)
5309		return -ENOMEM;
5310
5311	/* Determine the number of words to be matched and if it exceeds a
5312	 * recipe's restrictions
5313	 */
5314	for (i = 0; i < lkups_cnt; i++) {
5315		u16 count;
5316
5317		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5318			status = -EIO;
5319			goto err_free_lkup_exts;
5320		}
5321
5322		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5323		if (!count) {
5324			status = -EIO;
5325			goto err_free_lkup_exts;
5326		}
5327	}
5328
5329	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5330	if (!rm) {
5331		status = -ENOMEM;
5332		goto err_free_lkup_exts;
5333	}
5334
5335	/* Get field vectors that contain fields extracted from all the protocol
5336	 * headers being programmed.
5337	 */
5338	INIT_LIST_HEAD(&rm->fv_list);
5339	INIT_LIST_HEAD(&rm->rg_list);
5340
5341	/* Get bitmap of field vectors (profiles) that are compatible with the
5342	 * rule request; only these will be searched in the subsequent call to
5343	 * ice_get_sw_fv_list.
5344	 */
5345	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5346
5347	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5348	if (status)
5349		goto err_unroll;
5350
5351	/* Group match words into recipes using preferred recipe grouping
5352	 * criteria.
5353	 */
5354	status = ice_create_recipe_group(hw, rm, lkup_exts);
5355	if (status)
5356		goto err_unroll;
5357
5358	/* set the recipe priority if specified */
5359	rm->priority = (u8)rinfo->priority;
5360
5361	rm->need_pass_l2 = rinfo->need_pass_l2;
5362	rm->allow_pass_l2 = rinfo->allow_pass_l2;
5363
5364	/* Find offsets from the field vector. Pick the first one for all the
5365	 * recipes.
5366	 */
5367	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5368	if (status)
5369		goto err_unroll;
5370
5371	/* get bitmap of all profiles the recipe will be associated with */
5372	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5373	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5374		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5375		set_bit((u16)fvit->profile_id, profiles);
5376	}
5377
5378	/* Look for a recipe which matches our requested fv / mask list */
5379	*rid = ice_find_recp(hw, lkup_exts, rinfo);
5380	if (*rid < ICE_MAX_NUM_RECIPES)
5381		/* Success if found a recipe that match the existing criteria */
5382		goto err_unroll;
5383
5384	rm->tun_type = rinfo->tun_type;
5385	/* Recipe we need does not exist, add a recipe */
5386	status = ice_add_sw_recipe(hw, rm, profiles);
5387	if (status)
5388		goto err_unroll;
5389
5390	/* Associate all the recipes created with all the profiles in the
5391	 * common field vector.
5392	 */
5393	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5394		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5395		u64 recp_assoc;
5396		u16 j;
5397
5398		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5399						      &recp_assoc, NULL);
5400		if (status)
5401			goto err_unroll;
5402
5403		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5404		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5405			  ICE_MAX_NUM_RECIPES);
5406		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5407		if (status)
5408			goto err_unroll;
5409
5410		bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5411		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5412						      recp_assoc, NULL);
5413		ice_release_change_lock(hw);
5414
5415		if (status)
5416			goto err_unroll;
5417
5418		/* Update profile to recipe bitmap array */
5419		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5420			    ICE_MAX_NUM_RECIPES);
5421
5422		/* Update recipe to profile bitmap array */
5423		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5424			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5425	}
5426
5427	*rid = rm->root_rid;
5428	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5429	       sizeof(*lkup_exts));
5430err_unroll:
5431	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5432		list_del(&r_entry->l_entry);
5433		devm_kfree(ice_hw_to_dev(hw), r_entry);
5434	}
5435
5436	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5437		list_del(&fvit->list_entry);
5438		devm_kfree(ice_hw_to_dev(hw), fvit);
5439	}
5440
5441	devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5442	kfree(rm);
5443
5444err_free_lkup_exts:
5445	kfree(lkup_exts);
5446
5447	return status;
5448}
5449
5450/**
5451 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5452 *
5453 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5454 * @num_vlan: number of VLAN tags
5455 */
5456static struct ice_dummy_pkt_profile *
5457ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5458			  u32 num_vlan)
5459{
5460	struct ice_dummy_pkt_profile *profile;
5461	struct ice_dummy_pkt_offsets *offsets;
5462	u32 buf_len, off, etype_off, i;
5463	u8 *pkt;
5464
5465	if (num_vlan < 1 || num_vlan > 2)
5466		return ERR_PTR(-EINVAL);
5467
5468	off = num_vlan * VLAN_HLEN;
5469
5470	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5471		  dummy_pkt->offsets_len;
5472	offsets = kzalloc(buf_len, GFP_KERNEL);
5473	if (!offsets)
5474		return ERR_PTR(-ENOMEM);
5475
5476	offsets[0] = dummy_pkt->offsets[0];
5477	if (num_vlan == 2) {
5478		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5479		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5480	} else if (num_vlan == 1) {
5481		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5482	}
5483
5484	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5485		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5486		offsets[i + num_vlan].offset =
5487			dummy_pkt->offsets[i].offset + off;
5488	}
5489	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5490
5491	etype_off = dummy_pkt->offsets[1].offset;
5492
5493	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5494		  dummy_pkt->pkt_len;
5495	pkt = kzalloc(buf_len, GFP_KERNEL);
5496	if (!pkt) {
5497		kfree(offsets);
5498		return ERR_PTR(-ENOMEM);
5499	}
5500
5501	memcpy(pkt, dummy_pkt->pkt, etype_off);
5502	memcpy(pkt + etype_off,
5503	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5504	       off);
5505	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5506	       dummy_pkt->pkt_len - etype_off);
5507
5508	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5509	if (!profile) {
5510		kfree(offsets);
5511		kfree(pkt);
5512		return ERR_PTR(-ENOMEM);
5513	}
5514
5515	profile->offsets = offsets;
5516	profile->pkt = pkt;
5517	profile->pkt_len = buf_len;
5518	profile->match |= ICE_PKT_KMALLOC;
5519
5520	return profile;
5521}
5522
5523/**
5524 * ice_find_dummy_packet - find dummy packet
5525 *
5526 * @lkups: lookup elements or match criteria for the advanced recipe, one
5527 *	   structure per protocol header
5528 * @lkups_cnt: number of protocols
5529 * @tun_type: tunnel type
5530 *
5531 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5532 */
5533static const struct ice_dummy_pkt_profile *
5534ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5535		      enum ice_sw_tunnel_type tun_type)
5536{
5537	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5538	u32 match = 0, vlan_count = 0;
5539	u16 i;
5540
5541	switch (tun_type) {
5542	case ICE_SW_TUN_GTPC:
5543		match |= ICE_PKT_TUN_GTPC;
5544		break;
5545	case ICE_SW_TUN_GTPU:
5546		match |= ICE_PKT_TUN_GTPU;
5547		break;
5548	case ICE_SW_TUN_NVGRE:
5549		match |= ICE_PKT_TUN_NVGRE;
5550		break;
5551	case ICE_SW_TUN_GENEVE:
5552	case ICE_SW_TUN_VXLAN:
5553		match |= ICE_PKT_TUN_UDP;
5554		break;
5555	default:
5556		break;
5557	}
5558
5559	for (i = 0; i < lkups_cnt; i++) {
5560		if (lkups[i].type == ICE_UDP_ILOS)
5561			match |= ICE_PKT_INNER_UDP;
5562		else if (lkups[i].type == ICE_TCP_IL)
5563			match |= ICE_PKT_INNER_TCP;
5564		else if (lkups[i].type == ICE_IPV6_OFOS)
5565			match |= ICE_PKT_OUTER_IPV6;
5566		else if (lkups[i].type == ICE_VLAN_OFOS ||
5567			 lkups[i].type == ICE_VLAN_EX)
5568			vlan_count++;
5569		else if (lkups[i].type == ICE_VLAN_IN)
5570			vlan_count++;
5571		else if (lkups[i].type == ICE_ETYPE_OL &&
5572			 lkups[i].h_u.ethertype.ethtype_id ==
5573				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5574			 lkups[i].m_u.ethertype.ethtype_id ==
5575				cpu_to_be16(0xFFFF))
5576			match |= ICE_PKT_OUTER_IPV6;
5577		else if (lkups[i].type == ICE_ETYPE_IL &&
5578			 lkups[i].h_u.ethertype.ethtype_id ==
5579				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5580			 lkups[i].m_u.ethertype.ethtype_id ==
5581				cpu_to_be16(0xFFFF))
5582			match |= ICE_PKT_INNER_IPV6;
5583		else if (lkups[i].type == ICE_IPV6_IL)
5584			match |= ICE_PKT_INNER_IPV6;
5585		else if (lkups[i].type == ICE_GTP_NO_PAY)
5586			match |= ICE_PKT_GTP_NOPAY;
5587		else if (lkups[i].type == ICE_PPPOE) {
5588			match |= ICE_PKT_PPPOE;
5589			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5590			    htons(PPP_IPV6))
5591				match |= ICE_PKT_OUTER_IPV6;
5592		} else if (lkups[i].type == ICE_L2TPV3)
5593			match |= ICE_PKT_L2TPV3;
5594	}
5595
5596	while (ret->match && (match & ret->match) != ret->match)
5597		ret++;
5598
5599	if (vlan_count != 0)
5600		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5601
5602	return ret;
5603}
5604
5605/**
5606 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5607 *
5608 * @lkups: lookup elements or match criteria for the advanced recipe, one
5609 *	   structure per protocol header
5610 * @lkups_cnt: number of protocols
5611 * @s_rule: stores rule information from the match criteria
5612 * @profile: dummy packet profile (the template, its size and header offsets)
5613 */
5614static int
5615ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5616			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5617			  const struct ice_dummy_pkt_profile *profile)
5618{
5619	u8 *pkt;
5620	u16 i;
5621
5622	/* Start with a packet with a pre-defined/dummy content. Then, fill
5623	 * in the header values to be looked up or matched.
5624	 */
5625	pkt = s_rule->hdr_data;
5626
5627	memcpy(pkt, profile->pkt, profile->pkt_len);
5628
5629	for (i = 0; i < lkups_cnt; i++) {
5630		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5631		enum ice_protocol_type type;
5632		u16 offset = 0, len = 0, j;
5633		bool found = false;
5634
5635		/* find the start of this layer; it should be found since this
5636		 * was already checked when search for the dummy packet
5637		 */
5638		type = lkups[i].type;
5639		/* metadata isn't present in the packet */
5640		if (type == ICE_HW_METADATA)
5641			continue;
5642
5643		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5644			if (type == offsets[j].type) {
5645				offset = offsets[j].offset;
5646				found = true;
5647				break;
5648			}
5649		}
5650		/* this should never happen in a correct calling sequence */
5651		if (!found)
5652			return -EINVAL;
5653
5654		switch (lkups[i].type) {
5655		case ICE_MAC_OFOS:
5656		case ICE_MAC_IL:
5657			len = sizeof(struct ice_ether_hdr);
5658			break;
5659		case ICE_ETYPE_OL:
5660		case ICE_ETYPE_IL:
5661			len = sizeof(struct ice_ethtype_hdr);
5662			break;
5663		case ICE_VLAN_OFOS:
5664		case ICE_VLAN_EX:
5665		case ICE_VLAN_IN:
5666			len = sizeof(struct ice_vlan_hdr);
5667			break;
5668		case ICE_IPV4_OFOS:
5669		case ICE_IPV4_IL:
5670			len = sizeof(struct ice_ipv4_hdr);
5671			break;
5672		case ICE_IPV6_OFOS:
5673		case ICE_IPV6_IL:
5674			len = sizeof(struct ice_ipv6_hdr);
5675			break;
5676		case ICE_TCP_IL:
5677		case ICE_UDP_OF:
5678		case ICE_UDP_ILOS:
5679			len = sizeof(struct ice_l4_hdr);
5680			break;
5681		case ICE_SCTP_IL:
5682			len = sizeof(struct ice_sctp_hdr);
5683			break;
5684		case ICE_NVGRE:
5685			len = sizeof(struct ice_nvgre_hdr);
5686			break;
5687		case ICE_VXLAN:
5688		case ICE_GENEVE:
5689			len = sizeof(struct ice_udp_tnl_hdr);
5690			break;
5691		case ICE_GTP_NO_PAY:
5692		case ICE_GTP:
5693			len = sizeof(struct ice_udp_gtp_hdr);
5694			break;
5695		case ICE_PPPOE:
5696			len = sizeof(struct ice_pppoe_hdr);
5697			break;
5698		case ICE_L2TPV3:
5699			len = sizeof(struct ice_l2tpv3_sess_hdr);
5700			break;
5701		default:
5702			return -EINVAL;
5703		}
5704
5705		/* the length should be a word multiple */
5706		if (len % ICE_BYTES_PER_WORD)
5707			return -EIO;
5708
5709		/* We have the offset to the header start, the length, the
5710		 * caller's header values and mask. Use this information to
5711		 * copy the data into the dummy packet appropriately based on
5712		 * the mask. Note that we need to only write the bits as
5713		 * indicated by the mask to make sure we don't improperly write
5714		 * over any significant packet data.
5715		 */
5716		for (j = 0; j < len / sizeof(u16); j++) {
5717			u16 *ptr = (u16 *)(pkt + offset);
5718			u16 mask = lkups[i].m_raw[j];
5719
5720			if (!mask)
5721				continue;
5722
5723			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5724		}
5725	}
5726
5727	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5728
5729	return 0;
5730}
5731
5732/**
5733 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5734 * @hw: pointer to the hardware structure
5735 * @tun_type: tunnel type
5736 * @pkt: dummy packet to fill in
5737 * @offsets: offset info for the dummy packet
5738 */
5739static int
5740ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5741			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5742{
5743	u16 open_port, i;
5744
5745	switch (tun_type) {
5746	case ICE_SW_TUN_VXLAN:
5747		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5748			return -EIO;
5749		break;
5750	case ICE_SW_TUN_GENEVE:
5751		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5752			return -EIO;
5753		break;
5754	default:
5755		/* Nothing needs to be done for this tunnel type */
5756		return 0;
5757	}
5758
5759	/* Find the outer UDP protocol header and insert the port number */
5760	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5761		if (offsets[i].type == ICE_UDP_OF) {
5762			struct ice_l4_hdr *hdr;
5763			u16 offset;
5764
5765			offset = offsets[i].offset;
5766			hdr = (struct ice_l4_hdr *)&pkt[offset];
5767			hdr->dst_port = cpu_to_be16(open_port);
5768
5769			return 0;
5770		}
5771	}
5772
5773	return -EIO;
5774}
5775
5776/**
5777 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5778 * @hw: pointer to hw structure
5779 * @vlan_type: VLAN tag type
5780 * @pkt: dummy packet to fill in
5781 * @offsets: offset info for the dummy packet
5782 */
5783static int
5784ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5785			 const struct ice_dummy_pkt_offsets *offsets)
5786{
5787	u16 i;
5788
5789	/* Check if there is something to do */
5790	if (!vlan_type || !ice_is_dvm_ena(hw))
5791		return 0;
5792
5793	/* Find VLAN header and insert VLAN TPID */
5794	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5795		if (offsets[i].type == ICE_VLAN_OFOS ||
5796		    offsets[i].type == ICE_VLAN_EX) {
5797			struct ice_vlan_hdr *hdr;
5798			u16 offset;
5799
5800			offset = offsets[i].offset;
5801			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5802			hdr->type = cpu_to_be16(vlan_type);
5803
5804			return 0;
5805		}
5806	}
5807
5808	return -EIO;
5809}
5810
5811static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5812			    const struct ice_adv_rule_info *second)
5813{
5814	return first->sw_act.flag == second->sw_act.flag &&
5815	       first->tun_type == second->tun_type &&
5816	       first->vlan_type == second->vlan_type &&
5817	       first->src_vsi == second->src_vsi &&
5818	       first->need_pass_l2 == second->need_pass_l2 &&
5819	       first->allow_pass_l2 == second->allow_pass_l2;
5820}
5821
5822/**
5823 * ice_find_adv_rule_entry - Search a rule entry
5824 * @hw: pointer to the hardware structure
5825 * @lkups: lookup elements or match criteria for the advanced recipe, one
5826 *	   structure per protocol header
5827 * @lkups_cnt: number of protocols
5828 * @recp_id: recipe ID for which we are finding the rule
5829 * @rinfo: other information regarding the rule e.g. priority and action info
5830 *
5831 * Helper function to search for a given advance rule entry
5832 * Returns pointer to entry storing the rule if found
5833 */
5834static struct ice_adv_fltr_mgmt_list_entry *
5835ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5836			u16 lkups_cnt, u16 recp_id,
5837			struct ice_adv_rule_info *rinfo)
5838{
5839	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5840	struct ice_switch_info *sw = hw->switch_info;
5841	int i;
5842
5843	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5844			    list_entry) {
5845		bool lkups_matched = true;
5846
5847		if (lkups_cnt != list_itr->lkups_cnt)
5848			continue;
5849		for (i = 0; i < list_itr->lkups_cnt; i++)
5850			if (memcmp(&list_itr->lkups[i], &lkups[i],
5851				   sizeof(*lkups))) {
5852				lkups_matched = false;
5853				break;
5854			}
5855		if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5856		    lkups_matched)
5857			return list_itr;
5858	}
5859	return NULL;
5860}
5861
5862/**
5863 * ice_adv_add_update_vsi_list
5864 * @hw: pointer to the hardware structure
5865 * @m_entry: pointer to current adv filter management list entry
5866 * @cur_fltr: filter information from the book keeping entry
5867 * @new_fltr: filter information with the new VSI to be added
5868 *
5869 * Call AQ command to add or update previously created VSI list with new VSI.
5870 *
5871 * Helper function to do book keeping associated with adding filter information
5872 * The algorithm to do the booking keeping is described below :
5873 * When a VSI needs to subscribe to a given advanced filter
5874 *	if only one VSI has been added till now
5875 *		Allocate a new VSI list and add two VSIs
5876 *		to this list using switch rule command
5877 *		Update the previously created switch rule with the
5878 *		newly created VSI list ID
5879 *	if a VSI list was previously created
5880 *		Add the new VSI to the previously created VSI list set
5881 *		using the update switch rule command
5882 */
5883static int
5884ice_adv_add_update_vsi_list(struct ice_hw *hw,
5885			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5886			    struct ice_adv_rule_info *cur_fltr,
5887			    struct ice_adv_rule_info *new_fltr)
5888{
5889	u16 vsi_list_id = 0;
5890	int status;
5891
5892	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5893	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5894	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5895		return -EOPNOTSUPP;
5896
5897	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5898	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5899	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5900	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5901		return -EOPNOTSUPP;
5902
5903	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5904		 /* Only one entry existed in the mapping and it was not already
5905		  * a part of a VSI list. So, create a VSI list with the old and
5906		  * new VSIs.
5907		  */
5908		struct ice_fltr_info tmp_fltr;
5909		u16 vsi_handle_arr[2];
5910
5911		/* A rule already exists with the new VSI being added */
5912		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5913		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5914			return -EEXIST;
5915
5916		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5917		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5918		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5919						  &vsi_list_id,
5920						  ICE_SW_LKUP_LAST);
5921		if (status)
5922			return status;
5923
5924		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5925		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5926		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5927		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5928		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5929		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5930
5931		/* Update the previous switch rule of "forward to VSI" to
5932		 * "fwd to VSI list"
5933		 */
5934		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5935		if (status)
5936			return status;
5937
5938		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5939		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5940		m_entry->vsi_list_info =
5941			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5942						vsi_list_id);
5943	} else {
5944		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5945
5946		if (!m_entry->vsi_list_info)
5947			return -EIO;
5948
5949		/* A rule already exists with the new VSI being added */
5950		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5951			return 0;
5952
5953		/* Update the previously created VSI list set with
5954		 * the new VSI ID passed in
5955		 */
5956		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5957
5958		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5959						  vsi_list_id, false,
5960						  ice_aqc_opc_update_sw_rules,
5961						  ICE_SW_LKUP_LAST);
5962		/* update VSI list mapping info with new VSI ID */
5963		if (!status)
5964			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5965	}
5966	if (!status)
5967		m_entry->vsi_count++;
5968	return status;
5969}
5970
5971void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
5972{
5973	lkup->type = ICE_HW_METADATA;
5974	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
5975		cpu_to_be16(ICE_PKT_TUNNEL_MASK);
5976}
5977
5978void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
5979{
5980	lkup->type = ICE_HW_METADATA;
5981	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5982		cpu_to_be16(ICE_PKT_FROM_NETWORK);
5983}
5984
5985void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
5986{
5987	lkup->type = ICE_HW_METADATA;
5988	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5989		cpu_to_be16(ICE_PKT_VLAN_MASK);
5990}
5991
5992void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
5993{
5994	lkup->type = ICE_HW_METADATA;
5995	lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
5996}
5997
5998/**
5999 * ice_add_adv_rule - helper function to create an advanced switch rule
6000 * @hw: pointer to the hardware structure
6001 * @lkups: information on the words that needs to be looked up. All words
6002 * together makes one recipe
6003 * @lkups_cnt: num of entries in the lkups array
6004 * @rinfo: other information related to the rule that needs to be programmed
6005 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6006 *               ignored is case of error.
6007 *
6008 * This function can program only 1 rule at a time. The lkups is used to
6009 * describe the all the words that forms the "lookup" portion of the recipe.
6010 * These words can span multiple protocols. Callers to this function need to
6011 * pass in a list of protocol headers with lookup information along and mask
6012 * that determines which words are valid from the given protocol header.
6013 * rinfo describes other information related to this rule such as forwarding
6014 * IDs, priority of this rule, etc.
6015 */
6016int
6017ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6018		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6019		 struct ice_rule_query_data *added_entry)
6020{
6021	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6022	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6023	const struct ice_dummy_pkt_profile *profile;
6024	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6025	struct list_head *rule_head;
6026	struct ice_switch_info *sw;
6027	u16 word_cnt;
6028	u32 act = 0;
6029	int status;
6030	u8 q_rgn;
6031
6032	/* Initialize profile to result index bitmap */
6033	if (!hw->switch_info->prof_res_bm_init) {
6034		hw->switch_info->prof_res_bm_init = 1;
6035		ice_init_prof_result_bm(hw);
6036	}
6037
6038	if (!lkups_cnt)
6039		return -EINVAL;
6040
6041	/* get # of words we need to match */
6042	word_cnt = 0;
6043	for (i = 0; i < lkups_cnt; i++) {
6044		u16 j;
6045
6046		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6047			if (lkups[i].m_raw[j])
6048				word_cnt++;
6049	}
6050
6051	if (!word_cnt)
6052		return -EINVAL;
6053
6054	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6055		return -ENOSPC;
6056
6057	/* locate a dummy packet */
6058	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6059	if (IS_ERR(profile))
6060		return PTR_ERR(profile);
6061
6062	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6063	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6064	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6065	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6066	      rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6067	      rinfo->sw_act.fltr_act == ICE_NOP)) {
6068		status = -EIO;
6069		goto free_pkt_profile;
6070	}
6071
6072	vsi_handle = rinfo->sw_act.vsi_handle;
6073	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6074		status =  -EINVAL;
6075		goto free_pkt_profile;
6076	}
6077
6078	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6079	    rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6080	    rinfo->sw_act.fltr_act == ICE_NOP) {
6081		rinfo->sw_act.fwd_id.hw_vsi_id =
6082			ice_get_hw_vsi_num(hw, vsi_handle);
6083	}
6084
6085	if (rinfo->src_vsi)
6086		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6087	else
6088		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6089
6090	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6091	if (status)
6092		goto free_pkt_profile;
6093	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6094	if (m_entry) {
6095		/* we have to add VSI to VSI_LIST and increment vsi_count.
6096		 * Also Update VSI list so that we can change forwarding rule
6097		 * if the rule already exists, we will check if it exists with
6098		 * same vsi_id, if not then add it to the VSI list if it already
6099		 * exists if not then create a VSI list and add the existing VSI
6100		 * ID and the new VSI ID to the list
6101		 * We will add that VSI to the list
6102		 */
6103		status = ice_adv_add_update_vsi_list(hw, m_entry,
6104						     &m_entry->rule_info,
6105						     rinfo);
6106		if (added_entry) {
6107			added_entry->rid = rid;
6108			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6109			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6110		}
6111		goto free_pkt_profile;
6112	}
6113	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6114	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6115	if (!s_rule) {
6116		status = -ENOMEM;
6117		goto free_pkt_profile;
6118	}
6119
6120	if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6121		if (!rinfo->flags_info.act_valid) {
6122			act |= ICE_SINGLE_ACT_LAN_ENABLE;
6123			act |= ICE_SINGLE_ACT_LB_ENABLE;
6124		} else {
6125			act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6126							ICE_SINGLE_ACT_LB_ENABLE);
6127		}
6128	}
6129
6130	switch (rinfo->sw_act.fltr_act) {
6131	case ICE_FWD_TO_VSI:
6132		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6133				  rinfo->sw_act.fwd_id.hw_vsi_id);
6134		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6135		break;
6136	case ICE_FWD_TO_Q:
6137		act |= ICE_SINGLE_ACT_TO_Q;
6138		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6139				  rinfo->sw_act.fwd_id.q_id);
6140		break;
6141	case ICE_FWD_TO_QGRP:
6142		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6143			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6144		act |= ICE_SINGLE_ACT_TO_Q;
6145		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6146				  rinfo->sw_act.fwd_id.q_id);
6147		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6148		break;
6149	case ICE_DROP_PACKET:
6150		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6151		       ICE_SINGLE_ACT_VALID_BIT;
6152		break;
6153	case ICE_MIRROR_PACKET:
6154		act |= ICE_SINGLE_ACT_OTHER_ACTS;
6155		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6156				  rinfo->sw_act.fwd_id.hw_vsi_id);
6157		break;
6158	case ICE_NOP:
6159		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6160				  rinfo->sw_act.fwd_id.hw_vsi_id);
6161		act &= ~ICE_SINGLE_ACT_VALID_BIT;
6162		break;
6163	default:
6164		status = -EIO;
6165		goto err_ice_add_adv_rule;
6166	}
6167
6168	/* If there is no matching criteria for direction there
6169	 * is only one difference between Rx and Tx:
6170	 * - get switch id base on VSI number from source field (Tx)
6171	 * - get switch id base on port number (Rx)
6172	 *
6173	 * If matching on direction metadata is chose rule direction is
6174	 * extracted from type value set here.
6175	 */
6176	if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6177		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6178		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6179	} else {
6180		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6181		s_rule->src = cpu_to_le16(hw->port_info->lport);
6182	}
6183
6184	s_rule->recipe_id = cpu_to_le16(rid);
6185	s_rule->act = cpu_to_le32(act);
6186
6187	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6188	if (status)
6189		goto err_ice_add_adv_rule;
6190
6191	status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6192					 profile->offsets);
6193	if (status)
6194		goto err_ice_add_adv_rule;
6195
6196	status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6197					  s_rule->hdr_data,
6198					  profile->offsets);
6199	if (status)
6200		goto err_ice_add_adv_rule;
6201
6202	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6203				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6204				 NULL);
6205	if (status)
6206		goto err_ice_add_adv_rule;
6207	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6208				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6209				GFP_KERNEL);
6210	if (!adv_fltr) {
6211		status = -ENOMEM;
6212		goto err_ice_add_adv_rule;
6213	}
6214
6215	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6216				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6217	if (!adv_fltr->lkups) {
6218		status = -ENOMEM;
6219		goto err_ice_add_adv_rule;
6220	}
6221
6222	adv_fltr->lkups_cnt = lkups_cnt;
6223	adv_fltr->rule_info = *rinfo;
6224	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6225	sw = hw->switch_info;
6226	sw->recp_list[rid].adv_rule = true;
6227	rule_head = &sw->recp_list[rid].filt_rules;
6228
6229	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6230		adv_fltr->vsi_count = 1;
6231
6232	/* Add rule entry to book keeping list */
6233	list_add(&adv_fltr->list_entry, rule_head);
6234	if (added_entry) {
6235		added_entry->rid = rid;
6236		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6237		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6238	}
6239err_ice_add_adv_rule:
6240	if (status && adv_fltr) {
6241		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6242		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6243	}
6244
6245	kfree(s_rule);
6246
6247free_pkt_profile:
6248	if (profile->match & ICE_PKT_KMALLOC) {
6249		kfree(profile->offsets);
6250		kfree(profile->pkt);
6251		kfree(profile);
6252	}
6253
6254	return status;
6255}
6256
6257/**
6258 * ice_replay_vsi_fltr - Replay filters for requested VSI
6259 * @hw: pointer to the hardware structure
6260 * @vsi_handle: driver VSI handle
6261 * @recp_id: Recipe ID for which rules need to be replayed
6262 * @list_head: list for which filters need to be replayed
6263 *
6264 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6265 * It is required to pass valid VSI handle.
6266 */
6267static int
6268ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6269		    struct list_head *list_head)
6270{
6271	struct ice_fltr_mgmt_list_entry *itr;
6272	int status = 0;
6273	u16 hw_vsi_id;
6274
6275	if (list_empty(list_head))
6276		return status;
6277	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6278
6279	list_for_each_entry(itr, list_head, list_entry) {
6280		struct ice_fltr_list_entry f_entry;
6281
6282		f_entry.fltr_info = itr->fltr_info;
6283		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6284		    itr->fltr_info.vsi_handle == vsi_handle) {
6285			/* update the src in case it is VSI num */
6286			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6287				f_entry.fltr_info.src = hw_vsi_id;
6288			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6289			if (status)
6290				goto end;
6291			continue;
6292		}
6293		if (!itr->vsi_list_info ||
6294		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6295			continue;
6296		/* Clearing it so that the logic can add it back */
6297		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6298		f_entry.fltr_info.vsi_handle = vsi_handle;
6299		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6300		/* update the src in case it is VSI num */
6301		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6302			f_entry.fltr_info.src = hw_vsi_id;
6303		if (recp_id == ICE_SW_LKUP_VLAN)
6304			status = ice_add_vlan_internal(hw, &f_entry);
6305		else
6306			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6307		if (status)
6308			goto end;
6309	}
6310end:
6311	return status;
6312}
6313
6314/**
6315 * ice_adv_rem_update_vsi_list
6316 * @hw: pointer to the hardware structure
6317 * @vsi_handle: VSI handle of the VSI to remove
6318 * @fm_list: filter management entry for which the VSI list management needs to
6319 *	     be done
6320 */
6321static int
6322ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6323			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6324{
6325	struct ice_vsi_list_map_info *vsi_list_info;
6326	enum ice_sw_lkup_type lkup_type;
6327	u16 vsi_list_id;
6328	int status;
6329
6330	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6331	    fm_list->vsi_count == 0)
6332		return -EINVAL;
6333
6334	/* A rule with the VSI being removed does not exist */
6335	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6336		return -ENOENT;
6337
6338	lkup_type = ICE_SW_LKUP_LAST;
6339	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6340	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6341					  ice_aqc_opc_update_sw_rules,
6342					  lkup_type);
6343	if (status)
6344		return status;
6345
6346	fm_list->vsi_count--;
6347	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6348	vsi_list_info = fm_list->vsi_list_info;
6349	if (fm_list->vsi_count == 1) {
6350		struct ice_fltr_info tmp_fltr;
6351		u16 rem_vsi_handle;
6352
6353		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6354						ICE_MAX_VSI);
6355		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6356			return -EIO;
6357
6358		/* Make sure VSI list is empty before removing it below */
6359		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6360						  vsi_list_id, true,
6361						  ice_aqc_opc_update_sw_rules,
6362						  lkup_type);
6363		if (status)
6364			return status;
6365
6366		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6367		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6368		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6369		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6370		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6371		tmp_fltr.fwd_id.hw_vsi_id =
6372			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6373		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6374			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6375		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6376
6377		/* Update the previous switch rule of "MAC forward to VSI" to
6378		 * "MAC fwd to VSI list"
6379		 */
6380		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6381		if (status) {
6382			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6383				  tmp_fltr.fwd_id.hw_vsi_id, status);
6384			return status;
6385		}
6386		fm_list->vsi_list_info->ref_cnt--;
6387
6388		/* Remove the VSI list since it is no longer used */
6389		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6390		if (status) {
6391			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6392				  vsi_list_id, status);
6393			return status;
6394		}
6395
6396		list_del(&vsi_list_info->list_entry);
6397		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6398		fm_list->vsi_list_info = NULL;
6399	}
6400
6401	return status;
6402}
6403
6404/**
6405 * ice_rem_adv_rule - removes existing advanced switch rule
6406 * @hw: pointer to the hardware structure
6407 * @lkups: information on the words that needs to be looked up. All words
6408 *         together makes one recipe
6409 * @lkups_cnt: num of entries in the lkups array
6410 * @rinfo: Its the pointer to the rule information for the rule
6411 *
6412 * This function can be used to remove 1 rule at a time. The lkups is
6413 * used to describe all the words that forms the "lookup" portion of the
6414 * rule. These words can span multiple protocols. Callers to this function
6415 * need to pass in a list of protocol headers with lookup information along
6416 * and mask that determines which words are valid from the given protocol
6417 * header. rinfo describes other information related to this rule such as
6418 * forwarding IDs, priority of this rule, etc.
6419 */
6420static int
6421ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6422		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6423{
6424	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6425	struct ice_prot_lkup_ext lkup_exts;
6426	bool remove_rule = false;
6427	struct mutex *rule_lock; /* Lock to protect filter rule list */
6428	u16 i, rid, vsi_handle;
6429	int status = 0;
6430
6431	memset(&lkup_exts, 0, sizeof(lkup_exts));
6432	for (i = 0; i < lkups_cnt; i++) {
6433		u16 count;
6434
6435		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6436			return -EIO;
6437
6438		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6439		if (!count)
6440			return -EIO;
6441	}
6442
6443	rid = ice_find_recp(hw, &lkup_exts, rinfo);
6444	/* If did not find a recipe that match the existing criteria */
6445	if (rid == ICE_MAX_NUM_RECIPES)
6446		return -EINVAL;
6447
6448	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6449	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6450	/* the rule is already removed */
6451	if (!list_elem)
6452		return 0;
6453	mutex_lock(rule_lock);
6454	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6455		remove_rule = true;
6456	} else if (list_elem->vsi_count > 1) {
6457		remove_rule = false;
6458		vsi_handle = rinfo->sw_act.vsi_handle;
6459		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6460	} else {
6461		vsi_handle = rinfo->sw_act.vsi_handle;
6462		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6463		if (status) {
6464			mutex_unlock(rule_lock);
6465			return status;
6466		}
6467		if (list_elem->vsi_count == 0)
6468			remove_rule = true;
6469	}
6470	mutex_unlock(rule_lock);
6471	if (remove_rule) {
6472		struct ice_sw_rule_lkup_rx_tx *s_rule;
6473		u16 rule_buf_sz;
6474
6475		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6476		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6477		if (!s_rule)
6478			return -ENOMEM;
6479		s_rule->act = 0;
6480		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6481		s_rule->hdr_len = 0;
6482		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6483					 rule_buf_sz, 1,
6484					 ice_aqc_opc_remove_sw_rules, NULL);
6485		if (!status || status == -ENOENT) {
6486			struct ice_switch_info *sw = hw->switch_info;
6487
6488			mutex_lock(rule_lock);
6489			list_del(&list_elem->list_entry);
6490			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6491			devm_kfree(ice_hw_to_dev(hw), list_elem);
6492			mutex_unlock(rule_lock);
6493			if (list_empty(&sw->recp_list[rid].filt_rules))
6494				sw->recp_list[rid].adv_rule = false;
6495		}
6496		kfree(s_rule);
6497	}
6498	return status;
6499}
6500
6501/**
6502 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6503 * @hw: pointer to the hardware structure
6504 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6505 *
6506 * This function is used to remove 1 rule at a time. The removal is based on
6507 * the remove_entry parameter. This function will remove rule for a given
6508 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6509 */
6510int
6511ice_rem_adv_rule_by_id(struct ice_hw *hw,
6512		       struct ice_rule_query_data *remove_entry)
6513{
6514	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6515	struct list_head *list_head;
6516	struct ice_adv_rule_info rinfo;
6517	struct ice_switch_info *sw;
6518
6519	sw = hw->switch_info;
6520	if (!sw->recp_list[remove_entry->rid].recp_created)
6521		return -EINVAL;
6522	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6523	list_for_each_entry(list_itr, list_head, list_entry) {
6524		if (list_itr->rule_info.fltr_rule_id ==
6525		    remove_entry->rule_id) {
6526			rinfo = list_itr->rule_info;
6527			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6528			return ice_rem_adv_rule(hw, list_itr->lkups,
6529						list_itr->lkups_cnt, &rinfo);
6530		}
6531	}
6532	/* either list is empty or unable to find rule */
6533	return -ENOENT;
6534}
6535
6536/**
6537 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6538 * @hw: pointer to the hardware structure
6539 * @vsi_handle: driver VSI handle
6540 * @list_head: list for which filters need to be replayed
6541 *
6542 * Replay the advanced rule for the given VSI.
6543 */
6544static int
6545ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6546			struct list_head *list_head)
6547{
6548	struct ice_rule_query_data added_entry = { 0 };
6549	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6550	int status = 0;
6551
6552	if (list_empty(list_head))
6553		return status;
6554	list_for_each_entry(adv_fltr, list_head, list_entry) {
6555		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6556		u16 lk_cnt = adv_fltr->lkups_cnt;
6557
6558		if (vsi_handle != rinfo->sw_act.vsi_handle)
6559			continue;
6560		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6561					  &added_entry);
6562		if (status)
6563			break;
6564	}
6565	return status;
6566}
6567
6568/**
6569 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6570 * @hw: pointer to the hardware structure
6571 * @vsi_handle: driver VSI handle
6572 *
6573 * Replays filters for requested VSI via vsi_handle.
6574 */
6575int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6576{
6577	struct ice_switch_info *sw = hw->switch_info;
6578	int status;
6579	u8 i;
6580
6581	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6582		struct list_head *head;
6583
6584		head = &sw->recp_list[i].filt_replay_rules;
6585		if (!sw->recp_list[i].adv_rule)
6586			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6587		else
6588			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6589		if (status)
6590			return status;
6591	}
6592	return status;
6593}
6594
6595/**
6596 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6597 * @hw: pointer to the HW struct
6598 *
6599 * Deletes the filter replay rules.
6600 */
6601void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6602{
6603	struct ice_switch_info *sw = hw->switch_info;
6604	u8 i;
6605
6606	if (!sw)
6607		return;
6608
6609	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6610		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6611			struct list_head *l_head;
6612
6613			l_head = &sw->recp_list[i].filt_replay_rules;
6614			if (!sw->recp_list[i].adv_rule)
6615				ice_rem_sw_rule_info(hw, l_head);
6616			else
6617				ice_rem_adv_rule_info(hw, l_head);
6618		}
6619	}
6620}
6621