1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include <net/devlink.h>
5#include "ice_sched.h"
6
7/**
8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9 * @pi: port information structure
10 * @info: Scheduler element information from firmware
11 *
12 * This function inserts the root node of the scheduling tree topology
13 * to the SW DB.
14 */
15static int
16ice_sched_add_root_node(struct ice_port_info *pi,
17			struct ice_aqc_txsched_elem_data *info)
18{
19	struct ice_sched_node *root;
20	struct ice_hw *hw;
21
22	if (!pi)
23		return -EINVAL;
24
25	hw = pi->hw;
26
27	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
28	if (!root)
29		return -ENOMEM;
30
31	/* coverity[suspicious_sizeof] */
32	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
33				      sizeof(*root), GFP_KERNEL);
34	if (!root->children) {
35		devm_kfree(ice_hw_to_dev(hw), root);
36		return -ENOMEM;
37	}
38
39	memcpy(&root->info, info, sizeof(*info));
40	pi->root = root;
41	return 0;
42}
43
44/**
45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
47 * @teid: node TEID to search
48 *
49 * This function searches for a node matching the TEID in the scheduling tree
50 * from the SW DB. The search is recursive and is restricted by the number of
51 * layers it has searched through; stopping at the max supported layer.
52 *
53 * This function needs to be called when holding the port_info->sched_lock
54 */
55struct ice_sched_node *
56ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
57{
58	u16 i;
59
60	/* The TEID is same as that of the start_node */
61	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
62		return start_node;
63
64	/* The node has no children or is at the max layer */
65	if (!start_node->num_children ||
66	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
67	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
68		return NULL;
69
70	/* Check if TEID matches to any of the children nodes */
71	for (i = 0; i < start_node->num_children; i++)
72		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
73			return start_node->children[i];
74
75	/* Search within each child's sub-tree */
76	for (i = 0; i < start_node->num_children; i++) {
77		struct ice_sched_node *tmp;
78
79		tmp = ice_sched_find_node_by_teid(start_node->children[i],
80						  teid);
81		if (tmp)
82			return tmp;
83	}
84
85	return NULL;
86}
87
88/**
89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
90 * @hw: pointer to the HW struct
91 * @cmd_opc: cmd opcode
92 * @elems_req: number of elements to request
93 * @buf: pointer to buffer
94 * @buf_size: buffer size in bytes
95 * @elems_resp: returns total number of elements response
96 * @cd: pointer to command details structure or NULL
97 *
98 * This function sends a scheduling elements cmd (cmd_opc)
99 */
100static int
101ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
102			    u16 elems_req, void *buf, u16 buf_size,
103			    u16 *elems_resp, struct ice_sq_cd *cd)
104{
105	struct ice_aqc_sched_elem_cmd *cmd;
106	struct ice_aq_desc desc;
107	int status;
108
109	cmd = &desc.params.sched_elem_cmd;
110	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
111	cmd->num_elem_req = cpu_to_le16(elems_req);
112	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
113	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
114	if (!status && elems_resp)
115		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
116
117	return status;
118}
119
120/**
121 * ice_aq_query_sched_elems - query scheduler elements
122 * @hw: pointer to the HW struct
123 * @elems_req: number of elements to query
124 * @buf: pointer to buffer
125 * @buf_size: buffer size in bytes
126 * @elems_ret: returns total number of elements returned
127 * @cd: pointer to command details structure or NULL
128 *
129 * Query scheduling elements (0x0404)
130 */
131int
132ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
133			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
134			 u16 *elems_ret, struct ice_sq_cd *cd)
135{
136	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
137					   elems_req, (void *)buf, buf_size,
138					   elems_ret, cd);
139}
140
141/**
142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
143 * @pi: port information structure
144 * @layer: Scheduler layer of the node
145 * @info: Scheduler element information from firmware
146 * @prealloc_node: preallocated ice_sched_node struct for SW DB
147 *
148 * This function inserts a scheduler node to the SW DB.
149 */
150int
151ice_sched_add_node(struct ice_port_info *pi, u8 layer,
152		   struct ice_aqc_txsched_elem_data *info,
153		   struct ice_sched_node *prealloc_node)
154{
155	struct ice_aqc_txsched_elem_data elem;
156	struct ice_sched_node *parent;
157	struct ice_sched_node *node;
158	struct ice_hw *hw;
159	int status;
160
161	if (!pi)
162		return -EINVAL;
163
164	hw = pi->hw;
165
166	/* A valid parent node should be there */
167	parent = ice_sched_find_node_by_teid(pi->root,
168					     le32_to_cpu(info->parent_teid));
169	if (!parent) {
170		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
171			  le32_to_cpu(info->parent_teid));
172		return -EINVAL;
173	}
174
175	/* query the current node information from FW before adding it
176	 * to the SW DB
177	 */
178	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
179	if (status)
180		return status;
181
182	if (prealloc_node)
183		node = prealloc_node;
184	else
185		node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
186	if (!node)
187		return -ENOMEM;
188	if (hw->max_children[layer]) {
189		/* coverity[suspicious_sizeof] */
190		node->children = devm_kcalloc(ice_hw_to_dev(hw),
191					      hw->max_children[layer],
192					      sizeof(*node), GFP_KERNEL);
193		if (!node->children) {
194			devm_kfree(ice_hw_to_dev(hw), node);
195			return -ENOMEM;
196		}
197	}
198
199	node->in_use = true;
200	node->parent = parent;
201	node->tx_sched_layer = layer;
202	parent->children[parent->num_children++] = node;
203	node->info = elem;
204	return 0;
205}
206
207/**
208 * ice_aq_delete_sched_elems - delete scheduler elements
209 * @hw: pointer to the HW struct
210 * @grps_req: number of groups to delete
211 * @buf: pointer to buffer
212 * @buf_size: buffer size in bytes
213 * @grps_del: returns total number of elements deleted
214 * @cd: pointer to command details structure or NULL
215 *
216 * Delete scheduling elements (0x040F)
217 */
218static int
219ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
220			  struct ice_aqc_delete_elem *buf, u16 buf_size,
221			  u16 *grps_del, struct ice_sq_cd *cd)
222{
223	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
224					   grps_req, (void *)buf, buf_size,
225					   grps_del, cd);
226}
227
228/**
229 * ice_sched_remove_elems - remove nodes from HW
230 * @hw: pointer to the HW struct
231 * @parent: pointer to the parent node
232 * @node_teid: node teid to be deleted
233 *
234 * This function remove nodes from HW
235 */
236static int
237ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
238		       u32 node_teid)
239{
240	DEFINE_RAW_FLEX(struct ice_aqc_delete_elem, buf, teid, 1);
241	u16 buf_size = __struct_size(buf);
242	u16 num_groups_removed = 0;
243	int status;
244
245	buf->hdr.parent_teid = parent->info.node_teid;
246	buf->hdr.num_elems = cpu_to_le16(1);
247	buf->teid[0] = cpu_to_le32(node_teid);
248
249	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
250					   &num_groups_removed, NULL);
251	if (status || num_groups_removed != 1)
252		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
253			  hw->adminq.sq_last_status);
254
255	return status;
256}
257
258/**
259 * ice_sched_get_first_node - get the first node of the given layer
260 * @pi: port information structure
261 * @parent: pointer the base node of the subtree
262 * @layer: layer number
263 *
264 * This function retrieves the first node of the given layer from the subtree
265 */
266static struct ice_sched_node *
267ice_sched_get_first_node(struct ice_port_info *pi,
268			 struct ice_sched_node *parent, u8 layer)
269{
270	return pi->sib_head[parent->tc_num][layer];
271}
272
273/**
274 * ice_sched_get_tc_node - get pointer to TC node
275 * @pi: port information structure
276 * @tc: TC number
277 *
278 * This function returns the TC node pointer
279 */
280struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
281{
282	u8 i;
283
284	if (!pi || !pi->root)
285		return NULL;
286	for (i = 0; i < pi->root->num_children; i++)
287		if (pi->root->children[i]->tc_num == tc)
288			return pi->root->children[i];
289	return NULL;
290}
291
292/**
293 * ice_free_sched_node - Free a Tx scheduler node from SW DB
294 * @pi: port information structure
295 * @node: pointer to the ice_sched_node struct
296 *
297 * This function frees up a node from SW DB as well as from HW
298 *
299 * This function needs to be called with the port_info->sched_lock held
300 */
301void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
302{
303	struct ice_sched_node *parent;
304	struct ice_hw *hw = pi->hw;
305	u8 i, j;
306
307	/* Free the children before freeing up the parent node
308	 * The parent array is updated below and that shifts the nodes
309	 * in the array. So always pick the first child if num children > 0
310	 */
311	while (node->num_children)
312		ice_free_sched_node(pi, node->children[0]);
313
314	/* Leaf, TC and root nodes can't be deleted by SW */
315	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
316	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
317	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
318	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
319		u32 teid = le32_to_cpu(node->info.node_teid);
320
321		ice_sched_remove_elems(hw, node->parent, teid);
322	}
323	parent = node->parent;
324	/* root has no parent */
325	if (parent) {
326		struct ice_sched_node *p;
327
328		/* update the parent */
329		for (i = 0; i < parent->num_children; i++)
330			if (parent->children[i] == node) {
331				for (j = i + 1; j < parent->num_children; j++)
332					parent->children[j - 1] =
333						parent->children[j];
334				parent->num_children--;
335				break;
336			}
337
338		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
339		while (p) {
340			if (p->sibling == node) {
341				p->sibling = node->sibling;
342				break;
343			}
344			p = p->sibling;
345		}
346
347		/* update the sibling head if head is getting removed */
348		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
349			pi->sib_head[node->tc_num][node->tx_sched_layer] =
350				node->sibling;
351	}
352
353	devm_kfree(ice_hw_to_dev(hw), node->children);
354	kfree(node->name);
355	xa_erase(&pi->sched_node_ids, node->id);
356	devm_kfree(ice_hw_to_dev(hw), node);
357}
358
359/**
360 * ice_aq_get_dflt_topo - gets default scheduler topology
361 * @hw: pointer to the HW struct
362 * @lport: logical port number
363 * @buf: pointer to buffer
364 * @buf_size: buffer size in bytes
365 * @num_branches: returns total number of queue to port branches
366 * @cd: pointer to command details structure or NULL
367 *
368 * Get default scheduler topology (0x400)
369 */
370static int
371ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
372		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
373		     u8 *num_branches, struct ice_sq_cd *cd)
374{
375	struct ice_aqc_get_topo *cmd;
376	struct ice_aq_desc desc;
377	int status;
378
379	cmd = &desc.params.get_topo;
380	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
381	cmd->port_num = lport;
382	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
383	if (!status && num_branches)
384		*num_branches = cmd->num_branches;
385
386	return status;
387}
388
389/**
390 * ice_aq_add_sched_elems - adds scheduling element
391 * @hw: pointer to the HW struct
392 * @grps_req: the number of groups that are requested to be added
393 * @buf: pointer to buffer
394 * @buf_size: buffer size in bytes
395 * @grps_added: returns total number of groups added
396 * @cd: pointer to command details structure or NULL
397 *
398 * Add scheduling elements (0x0401)
399 */
400static int
401ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
402		       struct ice_aqc_add_elem *buf, u16 buf_size,
403		       u16 *grps_added, struct ice_sq_cd *cd)
404{
405	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
406					   grps_req, (void *)buf, buf_size,
407					   grps_added, cd);
408}
409
410/**
411 * ice_aq_cfg_sched_elems - configures scheduler elements
412 * @hw: pointer to the HW struct
413 * @elems_req: number of elements to configure
414 * @buf: pointer to buffer
415 * @buf_size: buffer size in bytes
416 * @elems_cfgd: returns total number of elements configured
417 * @cd: pointer to command details structure or NULL
418 *
419 * Configure scheduling elements (0x0403)
420 */
421static int
422ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
423		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
424		       u16 *elems_cfgd, struct ice_sq_cd *cd)
425{
426	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
427					   elems_req, (void *)buf, buf_size,
428					   elems_cfgd, cd);
429}
430
431/**
432 * ice_aq_move_sched_elems - move scheduler element (just 1 group)
433 * @hw: pointer to the HW struct
434 * @buf: pointer to buffer
435 * @buf_size: buffer size in bytes
436 * @grps_movd: returns total number of groups moved
437 *
438 * Move scheduling elements (0x0408)
439 */
440int
441ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf,
442			u16 buf_size, u16 *grps_movd)
443{
444	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
445					   1, buf, buf_size, grps_movd, NULL);
446}
447
448/**
449 * ice_aq_suspend_sched_elems - suspend scheduler elements
450 * @hw: pointer to the HW struct
451 * @elems_req: number of elements to suspend
452 * @buf: pointer to buffer
453 * @buf_size: buffer size in bytes
454 * @elems_ret: returns total number of elements suspended
455 * @cd: pointer to command details structure or NULL
456 *
457 * Suspend scheduling elements (0x0409)
458 */
459static int
460ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
461			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
462{
463	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
464					   elems_req, (void *)buf, buf_size,
465					   elems_ret, cd);
466}
467
468/**
469 * ice_aq_resume_sched_elems - resume scheduler elements
470 * @hw: pointer to the HW struct
471 * @elems_req: number of elements to resume
472 * @buf: pointer to buffer
473 * @buf_size: buffer size in bytes
474 * @elems_ret: returns total number of elements resumed
475 * @cd: pointer to command details structure or NULL
476 *
477 * resume scheduling elements (0x040A)
478 */
479static int
480ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
481			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
482{
483	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
484					   elems_req, (void *)buf, buf_size,
485					   elems_ret, cd);
486}
487
488/**
489 * ice_aq_query_sched_res - query scheduler resource
490 * @hw: pointer to the HW struct
491 * @buf_size: buffer size in bytes
492 * @buf: pointer to buffer
493 * @cd: pointer to command details structure or NULL
494 *
495 * Query scheduler resource allocation (0x0412)
496 */
497static int
498ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
499		       struct ice_aqc_query_txsched_res_resp *buf,
500		       struct ice_sq_cd *cd)
501{
502	struct ice_aq_desc desc;
503
504	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
505	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
506}
507
508/**
509 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
510 * @hw: pointer to the HW struct
511 * @num_nodes: number of nodes
512 * @node_teids: array of node teids to be suspended or resumed
513 * @suspend: true means suspend / false means resume
514 *
515 * This function suspends or resumes HW nodes
516 */
517int
518ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
519			       bool suspend)
520{
521	u16 i, buf_size, num_elem_ret = 0;
522	__le32 *buf;
523	int status;
524
525	buf_size = sizeof(*buf) * num_nodes;
526	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
527	if (!buf)
528		return -ENOMEM;
529
530	for (i = 0; i < num_nodes; i++)
531		buf[i] = cpu_to_le32(node_teids[i]);
532
533	if (suspend)
534		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
535						    buf_size, &num_elem_ret,
536						    NULL);
537	else
538		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
539						   buf_size, &num_elem_ret,
540						   NULL);
541	if (status || num_elem_ret != num_nodes)
542		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
543
544	devm_kfree(ice_hw_to_dev(hw), buf);
545	return status;
546}
547
548/**
549 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
550 * @hw: pointer to the HW struct
551 * @vsi_handle: VSI handle
552 * @tc: TC number
553 * @new_numqs: number of queues
554 */
555static int
556ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
557{
558	struct ice_vsi_ctx *vsi_ctx;
559	struct ice_q_ctx *q_ctx;
560	u16 idx;
561
562	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
563	if (!vsi_ctx)
564		return -EINVAL;
565	/* allocate LAN queue contexts */
566	if (!vsi_ctx->lan_q_ctx[tc]) {
567		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
568				     sizeof(*q_ctx), GFP_KERNEL);
569		if (!q_ctx)
570			return -ENOMEM;
571
572		for (idx = 0; idx < new_numqs; idx++) {
573			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
574			q_ctx[idx].q_teid = ICE_INVAL_TEID;
575		}
576
577		vsi_ctx->lan_q_ctx[tc] = q_ctx;
578		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
579		return 0;
580	}
581	/* num queues are increased, update the queue contexts */
582	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
583		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
584
585		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
586				     sizeof(*q_ctx), GFP_KERNEL);
587		if (!q_ctx)
588			return -ENOMEM;
589
590		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
591		       prev_num * sizeof(*q_ctx));
592		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
593
594		for (idx = prev_num; idx < new_numqs; idx++) {
595			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
596			q_ctx[idx].q_teid = ICE_INVAL_TEID;
597		}
598
599		vsi_ctx->lan_q_ctx[tc] = q_ctx;
600		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
601	}
602	return 0;
603}
604
605/**
606 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
607 * @hw: pointer to the HW struct
608 * @vsi_handle: VSI handle
609 * @tc: TC number
610 * @new_numqs: number of queues
611 */
612static int
613ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
614{
615	struct ice_vsi_ctx *vsi_ctx;
616	struct ice_q_ctx *q_ctx;
617
618	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
619	if (!vsi_ctx)
620		return -EINVAL;
621	/* allocate RDMA queue contexts */
622	if (!vsi_ctx->rdma_q_ctx[tc]) {
623		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
624						       new_numqs,
625						       sizeof(*q_ctx),
626						       GFP_KERNEL);
627		if (!vsi_ctx->rdma_q_ctx[tc])
628			return -ENOMEM;
629		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
630		return 0;
631	}
632	/* num queues are increased, update the queue contexts */
633	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
634		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
635
636		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
637				     sizeof(*q_ctx), GFP_KERNEL);
638		if (!q_ctx)
639			return -ENOMEM;
640		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
641		       prev_num * sizeof(*q_ctx));
642		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
643		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
644		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
645	}
646	return 0;
647}
648
649/**
650 * ice_aq_rl_profile - performs a rate limiting task
651 * @hw: pointer to the HW struct
652 * @opcode: opcode for add, query, or remove profile(s)
653 * @num_profiles: the number of profiles
654 * @buf: pointer to buffer
655 * @buf_size: buffer size in bytes
656 * @num_processed: number of processed add or remove profile(s) to return
657 * @cd: pointer to command details structure
658 *
659 * RL profile function to add, query, or remove profile(s)
660 */
661static int
662ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
663		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
664		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
665{
666	struct ice_aqc_rl_profile *cmd;
667	struct ice_aq_desc desc;
668	int status;
669
670	cmd = &desc.params.rl_profile;
671
672	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
673	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
674	cmd->num_profiles = cpu_to_le16(num_profiles);
675	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
676	if (!status && num_processed)
677		*num_processed = le16_to_cpu(cmd->num_processed);
678	return status;
679}
680
681/**
682 * ice_aq_add_rl_profile - adds rate limiting profile(s)
683 * @hw: pointer to the HW struct
684 * @num_profiles: the number of profile(s) to be add
685 * @buf: pointer to buffer
686 * @buf_size: buffer size in bytes
687 * @num_profiles_added: total number of profiles added to return
688 * @cd: pointer to command details structure
689 *
690 * Add RL profile (0x0410)
691 */
692static int
693ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
694		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
695		      u16 *num_profiles_added, struct ice_sq_cd *cd)
696{
697	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
698				 buf, buf_size, num_profiles_added, cd);
699}
700
701/**
702 * ice_aq_remove_rl_profile - removes RL profile(s)
703 * @hw: pointer to the HW struct
704 * @num_profiles: the number of profile(s) to remove
705 * @buf: pointer to buffer
706 * @buf_size: buffer size in bytes
707 * @num_profiles_removed: total number of profiles removed to return
708 * @cd: pointer to command details structure or NULL
709 *
710 * Remove RL profile (0x0415)
711 */
712static int
713ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
714			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
715			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
716{
717	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
718				 num_profiles, buf, buf_size,
719				 num_profiles_removed, cd);
720}
721
722/**
723 * ice_sched_del_rl_profile - remove RL profile
724 * @hw: pointer to the HW struct
725 * @rl_info: rate limit profile information
726 *
727 * If the profile ID is not referenced anymore, it removes profile ID with
728 * its associated parameters from HW DB,and locally. The caller needs to
729 * hold scheduler lock.
730 */
731static int
732ice_sched_del_rl_profile(struct ice_hw *hw,
733			 struct ice_aqc_rl_profile_info *rl_info)
734{
735	struct ice_aqc_rl_profile_elem *buf;
736	u16 num_profiles_removed;
737	u16 num_profiles = 1;
738	int status;
739
740	if (rl_info->prof_id_ref != 0)
741		return -EBUSY;
742
743	/* Safe to remove profile ID */
744	buf = &rl_info->profile;
745	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
746					  &num_profiles_removed, NULL);
747	if (status || num_profiles_removed != num_profiles)
748		return -EIO;
749
750	/* Delete stale entry now */
751	list_del(&rl_info->list_entry);
752	devm_kfree(ice_hw_to_dev(hw), rl_info);
753	return status;
754}
755
756/**
757 * ice_sched_clear_rl_prof - clears RL prof entries
758 * @pi: port information structure
759 *
760 * This function removes all RL profile from HW as well as from SW DB.
761 */
762static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
763{
764	u16 ln;
765
766	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
767		struct ice_aqc_rl_profile_info *rl_prof_elem;
768		struct ice_aqc_rl_profile_info *rl_prof_tmp;
769
770		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
771					 &pi->rl_prof_list[ln], list_entry) {
772			struct ice_hw *hw = pi->hw;
773			int status;
774
775			rl_prof_elem->prof_id_ref = 0;
776			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
777			if (status) {
778				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
779				/* On error, free mem required */
780				list_del(&rl_prof_elem->list_entry);
781				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
782			}
783		}
784	}
785}
786
787/**
788 * ice_sched_clear_agg - clears the aggregator related information
789 * @hw: pointer to the hardware structure
790 *
791 * This function removes aggregator list and free up aggregator related memory
792 * previously allocated.
793 */
794void ice_sched_clear_agg(struct ice_hw *hw)
795{
796	struct ice_sched_agg_info *agg_info;
797	struct ice_sched_agg_info *atmp;
798
799	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
800		struct ice_sched_agg_vsi_info *agg_vsi_info;
801		struct ice_sched_agg_vsi_info *vtmp;
802
803		list_for_each_entry_safe(agg_vsi_info, vtmp,
804					 &agg_info->agg_vsi_list, list_entry) {
805			list_del(&agg_vsi_info->list_entry);
806			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
807		}
808		list_del(&agg_info->list_entry);
809		devm_kfree(ice_hw_to_dev(hw), agg_info);
810	}
811}
812
813/**
814 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
815 * @pi: port information structure
816 *
817 * This function removes all the nodes from HW as well as from SW DB.
818 */
819static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
820{
821	if (!pi)
822		return;
823	/* remove RL profiles related lists */
824	ice_sched_clear_rl_prof(pi);
825	if (pi->root) {
826		ice_free_sched_node(pi, pi->root);
827		pi->root = NULL;
828	}
829}
830
831/**
832 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
833 * @pi: port information structure
834 *
835 * Cleanup scheduling elements from SW DB
836 */
837void ice_sched_clear_port(struct ice_port_info *pi)
838{
839	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
840		return;
841
842	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
843	mutex_lock(&pi->sched_lock);
844	ice_sched_clear_tx_topo(pi);
845	mutex_unlock(&pi->sched_lock);
846	mutex_destroy(&pi->sched_lock);
847}
848
849/**
850 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
851 * @hw: pointer to the HW struct
852 *
853 * Cleanup scheduling elements from SW DB for all the ports
854 */
855void ice_sched_cleanup_all(struct ice_hw *hw)
856{
857	if (!hw)
858		return;
859
860	devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
861	hw->layer_info = NULL;
862
863	ice_sched_clear_port(hw->port_info);
864
865	hw->num_tx_sched_layers = 0;
866	hw->num_tx_sched_phys_layers = 0;
867	hw->flattened_layers = 0;
868	hw->max_cgds = 0;
869}
870
871/**
872 * ice_sched_add_elems - add nodes to HW and SW DB
873 * @pi: port information structure
874 * @tc_node: pointer to the branch node
875 * @parent: pointer to the parent node
876 * @layer: layer number to add nodes
877 * @num_nodes: number of nodes
878 * @num_nodes_added: pointer to num nodes added
879 * @first_node_teid: if new nodes are added then return the TEID of first node
880 * @prealloc_nodes: preallocated nodes struct for software DB
881 *
882 * This function add nodes to HW as well as to SW DB for a given layer
883 */
884int
885ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
886		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
887		    u16 *num_nodes_added, u32 *first_node_teid,
888		    struct ice_sched_node **prealloc_nodes)
889{
890	struct ice_sched_node *prev, *new_node;
891	struct ice_aqc_add_elem *buf;
892	u16 i, num_groups_added = 0;
893	struct ice_hw *hw = pi->hw;
894	size_t buf_size;
895	int status = 0;
896	u32 teid;
897
898	buf_size = struct_size(buf, generic, num_nodes);
899	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
900	if (!buf)
901		return -ENOMEM;
902
903	buf->hdr.parent_teid = parent->info.node_teid;
904	buf->hdr.num_elems = cpu_to_le16(num_nodes);
905	for (i = 0; i < num_nodes; i++) {
906		buf->generic[i].parent_teid = parent->info.node_teid;
907		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
908		buf->generic[i].data.valid_sections =
909			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
910			ICE_AQC_ELEM_VALID_EIR;
911		buf->generic[i].data.generic = 0;
912		buf->generic[i].data.cir_bw.bw_profile_idx =
913			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
914		buf->generic[i].data.cir_bw.bw_alloc =
915			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
916		buf->generic[i].data.eir_bw.bw_profile_idx =
917			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
918		buf->generic[i].data.eir_bw.bw_alloc =
919			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
920	}
921
922	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
923					&num_groups_added, NULL);
924	if (status || num_groups_added != 1) {
925		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
926			  hw->adminq.sq_last_status);
927		devm_kfree(ice_hw_to_dev(hw), buf);
928		return -EIO;
929	}
930
931	*num_nodes_added = num_nodes;
932	/* add nodes to the SW DB */
933	for (i = 0; i < num_nodes; i++) {
934		if (prealloc_nodes)
935			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
936		else
937			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
938
939		if (status) {
940			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
941				  status);
942			break;
943		}
944
945		teid = le32_to_cpu(buf->generic[i].node_teid);
946		new_node = ice_sched_find_node_by_teid(parent, teid);
947		if (!new_node) {
948			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
949			break;
950		}
951
952		new_node->sibling = NULL;
953		new_node->tc_num = tc_node->tc_num;
954		new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
955		new_node->tx_share = ICE_SCHED_DFLT_BW;
956		new_node->tx_max = ICE_SCHED_DFLT_BW;
957		new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
958		if (!new_node->name)
959			return -ENOMEM;
960
961		status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
962				  GFP_KERNEL);
963		if (status) {
964			ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
965				  status);
966			break;
967		}
968
969		snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
970
971		/* add it to previous node sibling pointer */
972		/* Note: siblings are not linked across branches */
973		prev = ice_sched_get_first_node(pi, tc_node, layer);
974		if (prev && prev != new_node) {
975			while (prev->sibling)
976				prev = prev->sibling;
977			prev->sibling = new_node;
978		}
979
980		/* initialize the sibling head */
981		if (!pi->sib_head[tc_node->tc_num][layer])
982			pi->sib_head[tc_node->tc_num][layer] = new_node;
983
984		if (i == 0)
985			*first_node_teid = teid;
986	}
987
988	devm_kfree(ice_hw_to_dev(hw), buf);
989	return status;
990}
991
992/**
993 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
994 * @pi: port information structure
995 * @tc_node: pointer to TC node
996 * @parent: pointer to parent node
997 * @layer: layer number to add nodes
998 * @num_nodes: number of nodes to be added
999 * @first_node_teid: pointer to the first node TEID
1000 * @num_nodes_added: pointer to number of nodes added
1001 *
1002 * Add nodes into specific HW layer.
1003 */
1004static int
1005ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1006				struct ice_sched_node *tc_node,
1007				struct ice_sched_node *parent, u8 layer,
1008				u16 num_nodes, u32 *first_node_teid,
1009				u16 *num_nodes_added)
1010{
1011	u16 max_child_nodes;
1012
1013	*num_nodes_added = 0;
1014
1015	if (!num_nodes)
1016		return 0;
1017
1018	if (!parent || layer < pi->hw->sw_entry_point_layer)
1019		return -EINVAL;
1020
1021	/* max children per node per layer */
1022	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1023
1024	/* current number of children + required nodes exceed max children */
1025	if ((parent->num_children + num_nodes) > max_child_nodes) {
1026		/* Fail if the parent is a TC node */
1027		if (parent == tc_node)
1028			return -EIO;
1029		return -ENOSPC;
1030	}
1031
1032	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1033				   num_nodes_added, first_node_teid, NULL);
1034}
1035
1036/**
1037 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1038 * @pi: port information structure
1039 * @tc_node: pointer to TC node
1040 * @parent: pointer to parent node
1041 * @layer: layer number to add nodes
1042 * @num_nodes: number of nodes to be added
1043 * @first_node_teid: pointer to the first node TEID
1044 * @num_nodes_added: pointer to number of nodes added
1045 *
1046 * This function add nodes to a given layer.
1047 */
1048int
1049ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1050			     struct ice_sched_node *tc_node,
1051			     struct ice_sched_node *parent, u8 layer,
1052			     u16 num_nodes, u32 *first_node_teid,
1053			     u16 *num_nodes_added)
1054{
1055	u32 *first_teid_ptr = first_node_teid;
1056	u16 new_num_nodes = num_nodes;
1057	int status = 0;
1058
1059	*num_nodes_added = 0;
1060	while (*num_nodes_added < num_nodes) {
1061		u16 max_child_nodes, num_added = 0;
1062		u32 temp;
1063
1064		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1065							 layer,	new_num_nodes,
1066							 first_teid_ptr,
1067							 &num_added);
1068		if (!status)
1069			*num_nodes_added += num_added;
1070		/* added more nodes than requested ? */
1071		if (*num_nodes_added > num_nodes) {
1072			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1073				  *num_nodes_added);
1074			status = -EIO;
1075			break;
1076		}
1077		/* break if all the nodes are added successfully */
1078		if (!status && (*num_nodes_added == num_nodes))
1079			break;
1080		/* break if the error is not max limit */
1081		if (status && status != -ENOSPC)
1082			break;
1083		/* Exceeded the max children */
1084		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1085		/* utilize all the spaces if the parent is not full */
1086		if (parent->num_children < max_child_nodes) {
1087			new_num_nodes = max_child_nodes - parent->num_children;
1088		} else {
1089			/* This parent is full, try the next sibling */
1090			parent = parent->sibling;
1091			/* Don't modify the first node TEID memory if the
1092			 * first node was added already in the above call.
1093			 * Instead send some temp memory for all other
1094			 * recursive calls.
1095			 */
1096			if (num_added)
1097				first_teid_ptr = &temp;
1098
1099			new_num_nodes = num_nodes - *num_nodes_added;
1100		}
1101	}
1102	return status;
1103}
1104
1105/**
1106 * ice_sched_get_qgrp_layer - get the current queue group layer number
1107 * @hw: pointer to the HW struct
1108 *
1109 * This function returns the current queue group layer number
1110 */
1111static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1112{
1113	/* It's always total layers - 1, the array is 0 relative so -2 */
1114	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1115}
1116
1117/**
1118 * ice_sched_get_vsi_layer - get the current VSI layer number
1119 * @hw: pointer to the HW struct
1120 *
1121 * This function returns the current VSI layer number
1122 */
1123u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1124{
1125	/* Num Layers       VSI layer
1126	 *     9               6
1127	 *     7               4
1128	 *     5 or less       sw_entry_point_layer
1129	 */
1130	/* calculate the VSI layer based on number of layers. */
1131	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1132		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1133
1134		if (layer > hw->sw_entry_point_layer)
1135			return layer;
1136	}
1137	return hw->sw_entry_point_layer;
1138}
1139
1140/**
1141 * ice_sched_get_agg_layer - get the current aggregator layer number
1142 * @hw: pointer to the HW struct
1143 *
1144 * This function returns the current aggregator layer number
1145 */
1146u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1147{
1148	/* Num Layers       aggregator layer
1149	 *     9               4
1150	 *     7 or less       sw_entry_point_layer
1151	 */
1152	/* calculate the aggregator layer based on number of layers. */
1153	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1154		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1155
1156		if (layer > hw->sw_entry_point_layer)
1157			return layer;
1158	}
1159	return hw->sw_entry_point_layer;
1160}
1161
1162/**
1163 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1164 * @pi: port information structure
1165 *
1166 * This function removes the leaf node that was created by the FW
1167 * during initialization
1168 */
1169static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1170{
1171	struct ice_sched_node *node;
1172
1173	node = pi->root;
1174	while (node) {
1175		if (!node->num_children)
1176			break;
1177		node = node->children[0];
1178	}
1179	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1180		u32 teid = le32_to_cpu(node->info.node_teid);
1181		int status;
1182
1183		/* remove the default leaf node */
1184		status = ice_sched_remove_elems(pi->hw, node->parent, teid);
1185		if (!status)
1186			ice_free_sched_node(pi, node);
1187	}
1188}
1189
1190/**
1191 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1192 * @pi: port information structure
1193 *
1194 * This function frees all the nodes except root and TC that were created by
1195 * the FW during initialization
1196 */
1197static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1198{
1199	struct ice_sched_node *node;
1200
1201	ice_rm_dflt_leaf_node(pi);
1202
1203	/* remove the default nodes except TC and root nodes */
1204	node = pi->root;
1205	while (node) {
1206		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1207		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1208		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1209			ice_free_sched_node(pi, node);
1210			break;
1211		}
1212
1213		if (!node->num_children)
1214			break;
1215		node = node->children[0];
1216	}
1217}
1218
1219/**
1220 * ice_sched_init_port - Initialize scheduler by querying information from FW
1221 * @pi: port info structure for the tree to cleanup
1222 *
1223 * This function is the initial call to find the total number of Tx scheduler
1224 * resources, default topology created by firmware and storing the information
1225 * in SW DB.
1226 */
1227int ice_sched_init_port(struct ice_port_info *pi)
1228{
1229	struct ice_aqc_get_topo_elem *buf;
1230	struct ice_hw *hw;
1231	u8 num_branches;
1232	u16 num_elems;
1233	int status;
1234	u8 i, j;
1235
1236	if (!pi)
1237		return -EINVAL;
1238	hw = pi->hw;
1239
1240	/* Query the Default Topology from FW */
1241	buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1242	if (!buf)
1243		return -ENOMEM;
1244
1245	/* Query default scheduling tree topology */
1246	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1247				      &num_branches, NULL);
1248	if (status)
1249		goto err_init_port;
1250
1251	/* num_branches should be between 1-8 */
1252	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1253		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1254			  num_branches);
1255		status = -EINVAL;
1256		goto err_init_port;
1257	}
1258
1259	/* get the number of elements on the default/first branch */
1260	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1261
1262	/* num_elems should always be between 1-9 */
1263	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1264		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1265			  num_elems);
1266		status = -EINVAL;
1267		goto err_init_port;
1268	}
1269
1270	/* If the last node is a leaf node then the index of the queue group
1271	 * layer is two less than the number of elements.
1272	 */
1273	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1274	    ICE_AQC_ELEM_TYPE_LEAF)
1275		pi->last_node_teid =
1276			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1277	else
1278		pi->last_node_teid =
1279			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1280
1281	/* Insert the Tx Sched root node */
1282	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1283	if (status)
1284		goto err_init_port;
1285
1286	/* Parse the default tree and cache the information */
1287	for (i = 0; i < num_branches; i++) {
1288		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1289
1290		/* Skip root element as already inserted */
1291		for (j = 1; j < num_elems; j++) {
1292			/* update the sw entry point */
1293			if (buf[0].generic[j].data.elem_type ==
1294			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1295				hw->sw_entry_point_layer = j;
1296
1297			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1298			if (status)
1299				goto err_init_port;
1300		}
1301	}
1302
1303	/* Remove the default nodes. */
1304	if (pi->root)
1305		ice_sched_rm_dflt_nodes(pi);
1306
1307	/* initialize the port for handling the scheduler tree */
1308	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1309	mutex_init(&pi->sched_lock);
1310	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1311		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1312
1313err_init_port:
1314	if (status && pi->root) {
1315		ice_free_sched_node(pi, pi->root);
1316		pi->root = NULL;
1317	}
1318
1319	kfree(buf);
1320	return status;
1321}
1322
1323/**
1324 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1325 * @hw: pointer to the HW struct
1326 *
1327 * query FW for allocated scheduler resources and store in HW struct
1328 */
1329int ice_sched_query_res_alloc(struct ice_hw *hw)
1330{
1331	struct ice_aqc_query_txsched_res_resp *buf;
1332	__le16 max_sibl;
1333	int status = 0;
1334	u16 i;
1335
1336	if (hw->layer_info)
1337		return status;
1338
1339	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1340	if (!buf)
1341		return -ENOMEM;
1342
1343	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1344	if (status)
1345		goto sched_query_out;
1346
1347	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1348	hw->num_tx_sched_phys_layers =
1349		le16_to_cpu(buf->sched_props.phys_levels);
1350	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1351	hw->max_cgds = buf->sched_props.max_pf_cgds;
1352
1353	/* max sibling group size of current layer refers to the max children
1354	 * of the below layer node.
1355	 * layer 1 node max children will be layer 2 max sibling group size
1356	 * layer 2 node max children will be layer 3 max sibling group size
1357	 * and so on. This array will be populated from root (index 0) to
1358	 * qgroup layer 7. Leaf node has no children.
1359	 */
1360	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1361		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1362		hw->max_children[i] = le16_to_cpu(max_sibl);
1363	}
1364
1365	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1366				      (hw->num_tx_sched_layers *
1367				       sizeof(*hw->layer_info)),
1368				      GFP_KERNEL);
1369	if (!hw->layer_info) {
1370		status = -ENOMEM;
1371		goto sched_query_out;
1372	}
1373
1374sched_query_out:
1375	devm_kfree(ice_hw_to_dev(hw), buf);
1376	return status;
1377}
1378
1379/**
1380 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1381 * @hw: pointer to the HW struct
1382 *
1383 * Determine the PSM clock frequency and store in HW struct
1384 */
1385void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1386{
1387	u32 val, clk_src;
1388
1389	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1390	clk_src = FIELD_GET(GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M, val);
1391
1392#define PSM_CLK_SRC_367_MHZ 0x0
1393#define PSM_CLK_SRC_416_MHZ 0x1
1394#define PSM_CLK_SRC_446_MHZ 0x2
1395#define PSM_CLK_SRC_390_MHZ 0x3
1396
1397	switch (clk_src) {
1398	case PSM_CLK_SRC_367_MHZ:
1399		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1400		break;
1401	case PSM_CLK_SRC_416_MHZ:
1402		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1403		break;
1404	case PSM_CLK_SRC_446_MHZ:
1405		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1406		break;
1407	case PSM_CLK_SRC_390_MHZ:
1408		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1409		break;
1410	default:
1411		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1412			  clk_src);
1413		/* fall back to a safe default */
1414		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1415	}
1416}
1417
1418/**
1419 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1420 * @hw: pointer to the HW struct
1421 * @base: pointer to the base node
1422 * @node: pointer to the node to search
1423 *
1424 * This function checks whether a given node is part of the base node
1425 * subtree or not
1426 */
1427static bool
1428ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1429			       struct ice_sched_node *node)
1430{
1431	u8 i;
1432
1433	for (i = 0; i < base->num_children; i++) {
1434		struct ice_sched_node *child = base->children[i];
1435
1436		if (node == child)
1437			return true;
1438
1439		if (child->tx_sched_layer > node->tx_sched_layer)
1440			return false;
1441
1442		/* this recursion is intentional, and wouldn't
1443		 * go more than 8 calls
1444		 */
1445		if (ice_sched_find_node_in_subtree(hw, child, node))
1446			return true;
1447	}
1448	return false;
1449}
1450
1451/**
1452 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1453 * @pi: port information structure
1454 * @vsi_node: software VSI handle
1455 * @qgrp_node: first queue group node identified for scanning
1456 * @owner: LAN or RDMA
1457 *
1458 * This function retrieves a free LAN or RDMA queue group node by scanning
1459 * qgrp_node and its siblings for the queue group with the fewest number
1460 * of queues currently assigned.
1461 */
1462static struct ice_sched_node *
1463ice_sched_get_free_qgrp(struct ice_port_info *pi,
1464			struct ice_sched_node *vsi_node,
1465			struct ice_sched_node *qgrp_node, u8 owner)
1466{
1467	struct ice_sched_node *min_qgrp;
1468	u8 min_children;
1469
1470	if (!qgrp_node)
1471		return qgrp_node;
1472	min_children = qgrp_node->num_children;
1473	if (!min_children)
1474		return qgrp_node;
1475	min_qgrp = qgrp_node;
1476	/* scan all queue groups until find a node which has less than the
1477	 * minimum number of children. This way all queue group nodes get
1478	 * equal number of shares and active. The bandwidth will be equally
1479	 * distributed across all queues.
1480	 */
1481	while (qgrp_node) {
1482		/* make sure the qgroup node is part of the VSI subtree */
1483		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1484			if (qgrp_node->num_children < min_children &&
1485			    qgrp_node->owner == owner) {
1486				/* replace the new min queue group node */
1487				min_qgrp = qgrp_node;
1488				min_children = min_qgrp->num_children;
1489				/* break if it has no children, */
1490				if (!min_children)
1491					break;
1492			}
1493		qgrp_node = qgrp_node->sibling;
1494	}
1495	return min_qgrp;
1496}
1497
1498/**
1499 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1500 * @pi: port information structure
1501 * @vsi_handle: software VSI handle
1502 * @tc: branch number
1503 * @owner: LAN or RDMA
1504 *
1505 * This function retrieves a free LAN or RDMA queue group node
1506 */
1507struct ice_sched_node *
1508ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1509			   u8 owner)
1510{
1511	struct ice_sched_node *vsi_node, *qgrp_node;
1512	struct ice_vsi_ctx *vsi_ctx;
1513	u16 max_children;
1514	u8 qgrp_layer;
1515
1516	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1517	max_children = pi->hw->max_children[qgrp_layer];
1518
1519	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1520	if (!vsi_ctx)
1521		return NULL;
1522	vsi_node = vsi_ctx->sched.vsi_node[tc];
1523	/* validate invalid VSI ID */
1524	if (!vsi_node)
1525		return NULL;
1526
1527	/* get the first queue group node from VSI sub-tree */
1528	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1529	while (qgrp_node) {
1530		/* make sure the qgroup node is part of the VSI subtree */
1531		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1532			if (qgrp_node->num_children < max_children &&
1533			    qgrp_node->owner == owner)
1534				break;
1535		qgrp_node = qgrp_node->sibling;
1536	}
1537
1538	/* Select the best queue group */
1539	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1540}
1541
1542/**
1543 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1544 * @pi: pointer to the port information structure
1545 * @tc_node: pointer to the TC node
1546 * @vsi_handle: software VSI handle
1547 *
1548 * This function retrieves a VSI node for a given VSI ID from a given
1549 * TC branch
1550 */
1551static struct ice_sched_node *
1552ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1553		       u16 vsi_handle)
1554{
1555	struct ice_sched_node *node;
1556	u8 vsi_layer;
1557
1558	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1559	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1560
1561	/* Check whether it already exists */
1562	while (node) {
1563		if (node->vsi_handle == vsi_handle)
1564			return node;
1565		node = node->sibling;
1566	}
1567
1568	return node;
1569}
1570
1571/**
1572 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1573 * @pi: pointer to the port information structure
1574 * @tc_node: pointer to the TC node
1575 * @agg_id: aggregator ID
1576 *
1577 * This function retrieves an aggregator node for a given aggregator ID from
1578 * a given TC branch
1579 */
1580struct ice_sched_node *
1581ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1582		       u32 agg_id)
1583{
1584	struct ice_sched_node *node;
1585	struct ice_hw *hw = pi->hw;
1586	u8 agg_layer;
1587
1588	if (!hw)
1589		return NULL;
1590	agg_layer = ice_sched_get_agg_layer(hw);
1591	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1592
1593	/* Check whether it already exists */
1594	while (node) {
1595		if (node->agg_id == agg_id)
1596			return node;
1597		node = node->sibling;
1598	}
1599
1600	return node;
1601}
1602
1603/**
1604 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1605 * @hw: pointer to the HW struct
1606 * @num_qs: number of queues
1607 * @num_nodes: num nodes array
1608 *
1609 * This function calculates the number of VSI child nodes based on the
1610 * number of queues.
1611 */
1612static void
1613ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1614{
1615	u16 num = num_qs;
1616	u8 i, qgl, vsil;
1617
1618	qgl = ice_sched_get_qgrp_layer(hw);
1619	vsil = ice_sched_get_vsi_layer(hw);
1620
1621	/* calculate num nodes from queue group to VSI layer */
1622	for (i = qgl; i > vsil; i--) {
1623		/* round to the next integer if there is a remainder */
1624		num = DIV_ROUND_UP(num, hw->max_children[i]);
1625
1626		/* need at least one node */
1627		num_nodes[i] = num ? num : 1;
1628	}
1629}
1630
1631/**
1632 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1633 * @pi: port information structure
1634 * @vsi_handle: software VSI handle
1635 * @tc_node: pointer to the TC node
1636 * @num_nodes: pointer to the num nodes that needs to be added per layer
1637 * @owner: node owner (LAN or RDMA)
1638 *
1639 * This function adds the VSI child nodes to tree. It gets called for
1640 * LAN and RDMA separately.
1641 */
1642static int
1643ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1644			      struct ice_sched_node *tc_node, u16 *num_nodes,
1645			      u8 owner)
1646{
1647	struct ice_sched_node *parent, *node;
1648	struct ice_hw *hw = pi->hw;
1649	u32 first_node_teid;
1650	u16 num_added = 0;
1651	u8 i, qgl, vsil;
1652
1653	qgl = ice_sched_get_qgrp_layer(hw);
1654	vsil = ice_sched_get_vsi_layer(hw);
1655	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1656	for (i = vsil + 1; i <= qgl; i++) {
1657		int status;
1658
1659		if (!parent)
1660			return -EIO;
1661
1662		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1663						      num_nodes[i],
1664						      &first_node_teid,
1665						      &num_added);
1666		if (status || num_nodes[i] != num_added)
1667			return -EIO;
1668
1669		/* The newly added node can be a new parent for the next
1670		 * layer nodes
1671		 */
1672		if (num_added) {
1673			parent = ice_sched_find_node_by_teid(tc_node,
1674							     first_node_teid);
1675			node = parent;
1676			while (node) {
1677				node->owner = owner;
1678				node = node->sibling;
1679			}
1680		} else {
1681			parent = parent->children[0];
1682		}
1683	}
1684
1685	return 0;
1686}
1687
1688/**
1689 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1690 * @pi: pointer to the port info structure
1691 * @tc_node: pointer to TC node
1692 * @num_nodes: pointer to num nodes array
1693 *
1694 * This function calculates the number of supported nodes needed to add this
1695 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1696 * layers
1697 */
1698static void
1699ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1700				 struct ice_sched_node *tc_node, u16 *num_nodes)
1701{
1702	struct ice_sched_node *node;
1703	u8 vsil;
1704	int i;
1705
1706	vsil = ice_sched_get_vsi_layer(pi->hw);
1707	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1708		/* Add intermediate nodes if TC has no children and
1709		 * need at least one node for VSI
1710		 */
1711		if (!tc_node->num_children || i == vsil) {
1712			num_nodes[i]++;
1713		} else {
1714			/* If intermediate nodes are reached max children
1715			 * then add a new one.
1716			 */
1717			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1718			/* scan all the siblings */
1719			while (node) {
1720				if (node->num_children < pi->hw->max_children[i])
1721					break;
1722				node = node->sibling;
1723			}
1724
1725			/* tree has one intermediate node to add this new VSI.
1726			 * So no need to calculate supported nodes for below
1727			 * layers.
1728			 */
1729			if (node)
1730				break;
1731			/* all the nodes are full, allocate a new one */
1732			num_nodes[i]++;
1733		}
1734}
1735
1736/**
1737 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1738 * @pi: port information structure
1739 * @vsi_handle: software VSI handle
1740 * @tc_node: pointer to TC node
1741 * @num_nodes: pointer to num nodes array
1742 *
1743 * This function adds the VSI supported nodes into Tx tree including the
1744 * VSI, its parent and intermediate nodes in below layers
1745 */
1746static int
1747ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1748				struct ice_sched_node *tc_node, u16 *num_nodes)
1749{
1750	struct ice_sched_node *parent = tc_node;
1751	u32 first_node_teid;
1752	u16 num_added = 0;
1753	u8 i, vsil;
1754
1755	if (!pi)
1756		return -EINVAL;
1757
1758	vsil = ice_sched_get_vsi_layer(pi->hw);
1759	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1760		int status;
1761
1762		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1763						      i, num_nodes[i],
1764						      &first_node_teid,
1765						      &num_added);
1766		if (status || num_nodes[i] != num_added)
1767			return -EIO;
1768
1769		/* The newly added node can be a new parent for the next
1770		 * layer nodes
1771		 */
1772		if (num_added)
1773			parent = ice_sched_find_node_by_teid(tc_node,
1774							     first_node_teid);
1775		else
1776			parent = parent->children[0];
1777
1778		if (!parent)
1779			return -EIO;
1780
1781		if (i == vsil)
1782			parent->vsi_handle = vsi_handle;
1783	}
1784
1785	return 0;
1786}
1787
1788/**
1789 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1790 * @pi: port information structure
1791 * @vsi_handle: software VSI handle
1792 * @tc: TC number
1793 *
1794 * This function adds a new VSI into scheduler tree
1795 */
1796static int
1797ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1798{
1799	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1800	struct ice_sched_node *tc_node;
1801
1802	tc_node = ice_sched_get_tc_node(pi, tc);
1803	if (!tc_node)
1804		return -EINVAL;
1805
1806	/* calculate number of supported nodes needed for this VSI */
1807	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1808
1809	/* add VSI supported nodes to TC subtree */
1810	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1811					       num_nodes);
1812}
1813
1814/**
1815 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1816 * @pi: port information structure
1817 * @vsi_handle: software VSI handle
1818 * @tc: TC number
1819 * @new_numqs: new number of max queues
1820 * @owner: owner of this subtree
1821 *
1822 * This function updates the VSI child nodes based on the number of queues
1823 */
1824static int
1825ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1826				 u8 tc, u16 new_numqs, u8 owner)
1827{
1828	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1829	struct ice_sched_node *vsi_node;
1830	struct ice_sched_node *tc_node;
1831	struct ice_vsi_ctx *vsi_ctx;
1832	struct ice_hw *hw = pi->hw;
1833	u16 prev_numqs;
1834	int status = 0;
1835
1836	tc_node = ice_sched_get_tc_node(pi, tc);
1837	if (!tc_node)
1838		return -EIO;
1839
1840	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1841	if (!vsi_node)
1842		return -EIO;
1843
1844	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1845	if (!vsi_ctx)
1846		return -EINVAL;
1847
1848	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1849		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1850	else
1851		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1852	/* num queues are not changed or less than the previous number */
1853	if (new_numqs <= prev_numqs)
1854		return status;
1855	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1856		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1857		if (status)
1858			return status;
1859	} else {
1860		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1861		if (status)
1862			return status;
1863	}
1864
1865	if (new_numqs)
1866		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1867	/* Keep the max number of queue configuration all the time. Update the
1868	 * tree only if number of queues > previous number of queues. This may
1869	 * leave some extra nodes in the tree if number of queues < previous
1870	 * number but that wouldn't harm anything. Removing those extra nodes
1871	 * may complicate the code if those nodes are part of SRL or
1872	 * individually rate limited.
1873	 */
1874	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1875					       new_num_nodes, owner);
1876	if (status)
1877		return status;
1878	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1879		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1880	else
1881		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1882
1883	return 0;
1884}
1885
1886/**
1887 * ice_sched_cfg_vsi - configure the new/existing VSI
1888 * @pi: port information structure
1889 * @vsi_handle: software VSI handle
1890 * @tc: TC number
1891 * @maxqs: max number of queues
1892 * @owner: LAN or RDMA
1893 * @enable: TC enabled or disabled
1894 *
1895 * This function adds/updates VSI nodes based on the number of queues. If TC is
1896 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1897 * disabled then suspend the VSI if it is not already.
1898 */
1899int
1900ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1901		  u8 owner, bool enable)
1902{
1903	struct ice_sched_node *vsi_node, *tc_node;
1904	struct ice_vsi_ctx *vsi_ctx;
1905	struct ice_hw *hw = pi->hw;
1906	int status = 0;
1907
1908	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1909	tc_node = ice_sched_get_tc_node(pi, tc);
1910	if (!tc_node)
1911		return -EINVAL;
1912	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1913	if (!vsi_ctx)
1914		return -EINVAL;
1915	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1916
1917	/* suspend the VSI if TC is not enabled */
1918	if (!enable) {
1919		if (vsi_node && vsi_node->in_use) {
1920			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1921
1922			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1923								true);
1924			if (!status)
1925				vsi_node->in_use = false;
1926		}
1927		return status;
1928	}
1929
1930	/* TC is enabled, if it is a new VSI then add it to the tree */
1931	if (!vsi_node) {
1932		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1933		if (status)
1934			return status;
1935
1936		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1937		if (!vsi_node)
1938			return -EIO;
1939
1940		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1941		vsi_node->in_use = true;
1942		/* invalidate the max queues whenever VSI gets added first time
1943		 * into the scheduler tree (boot or after reset). We need to
1944		 * recreate the child nodes all the time in these cases.
1945		 */
1946		vsi_ctx->sched.max_lanq[tc] = 0;
1947		vsi_ctx->sched.max_rdmaq[tc] = 0;
1948	}
1949
1950	/* update the VSI child nodes */
1951	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1952						  owner);
1953	if (status)
1954		return status;
1955
1956	/* TC is enabled, resume the VSI if it is in the suspend state */
1957	if (!vsi_node->in_use) {
1958		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1959
1960		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1961		if (!status)
1962			vsi_node->in_use = true;
1963	}
1964
1965	return status;
1966}
1967
1968/**
1969 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1970 * @pi: port information structure
1971 * @vsi_handle: software VSI handle
1972 *
1973 * This function removes single aggregator VSI info entry from
1974 * aggregator list.
1975 */
1976static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1977{
1978	struct ice_sched_agg_info *agg_info;
1979	struct ice_sched_agg_info *atmp;
1980
1981	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1982				 list_entry) {
1983		struct ice_sched_agg_vsi_info *agg_vsi_info;
1984		struct ice_sched_agg_vsi_info *vtmp;
1985
1986		list_for_each_entry_safe(agg_vsi_info, vtmp,
1987					 &agg_info->agg_vsi_list, list_entry)
1988			if (agg_vsi_info->vsi_handle == vsi_handle) {
1989				list_del(&agg_vsi_info->list_entry);
1990				devm_kfree(ice_hw_to_dev(pi->hw),
1991					   agg_vsi_info);
1992				return;
1993			}
1994	}
1995}
1996
1997/**
1998 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1999 * @node: pointer to the sub-tree node
2000 *
2001 * This function checks for a leaf node presence in a given sub-tree node.
2002 */
2003static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2004{
2005	u8 i;
2006
2007	for (i = 0; i < node->num_children; i++)
2008		if (ice_sched_is_leaf_node_present(node->children[i]))
2009			return true;
2010	/* check for a leaf node */
2011	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2012}
2013
2014/**
2015 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2016 * @pi: port information structure
2017 * @vsi_handle: software VSI handle
2018 * @owner: LAN or RDMA
2019 *
2020 * This function removes the VSI and its LAN or RDMA children nodes from the
2021 * scheduler tree.
2022 */
2023static int
2024ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2025{
2026	struct ice_vsi_ctx *vsi_ctx;
2027	int status = -EINVAL;
2028	u8 i;
2029
2030	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2031	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2032		return status;
2033	mutex_lock(&pi->sched_lock);
2034	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2035	if (!vsi_ctx)
2036		goto exit_sched_rm_vsi_cfg;
2037
2038	ice_for_each_traffic_class(i) {
2039		struct ice_sched_node *vsi_node, *tc_node;
2040		u8 j = 0;
2041
2042		tc_node = ice_sched_get_tc_node(pi, i);
2043		if (!tc_node)
2044			continue;
2045
2046		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2047		if (!vsi_node)
2048			continue;
2049
2050		if (ice_sched_is_leaf_node_present(vsi_node)) {
2051			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2052			status = -EBUSY;
2053			goto exit_sched_rm_vsi_cfg;
2054		}
2055		while (j < vsi_node->num_children) {
2056			if (vsi_node->children[j]->owner == owner) {
2057				ice_free_sched_node(pi, vsi_node->children[j]);
2058
2059				/* reset the counter again since the num
2060				 * children will be updated after node removal
2061				 */
2062				j = 0;
2063			} else {
2064				j++;
2065			}
2066		}
2067		/* remove the VSI if it has no children */
2068		if (!vsi_node->num_children) {
2069			ice_free_sched_node(pi, vsi_node);
2070			vsi_ctx->sched.vsi_node[i] = NULL;
2071
2072			/* clean up aggregator related VSI info if any */
2073			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2074		}
2075		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2076			vsi_ctx->sched.max_lanq[i] = 0;
2077		else
2078			vsi_ctx->sched.max_rdmaq[i] = 0;
2079	}
2080	status = 0;
2081
2082exit_sched_rm_vsi_cfg:
2083	mutex_unlock(&pi->sched_lock);
2084	return status;
2085}
2086
2087/**
2088 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2089 * @pi: port information structure
2090 * @vsi_handle: software VSI handle
2091 *
2092 * This function clears the VSI and its LAN children nodes from scheduler tree
2093 * for all TCs.
2094 */
2095int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2096{
2097	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2098}
2099
2100/**
2101 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2102 * @pi: port information structure
2103 * @vsi_handle: software VSI handle
2104 *
2105 * This function clears the VSI and its RDMA children nodes from scheduler tree
2106 * for all TCs.
2107 */
2108int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2109{
2110	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2111}
2112
2113/**
2114 * ice_get_agg_info - get the aggregator ID
2115 * @hw: pointer to the hardware structure
2116 * @agg_id: aggregator ID
2117 *
2118 * This function validates aggregator ID. The function returns info if
2119 * aggregator ID is present in list otherwise it returns null.
2120 */
2121static struct ice_sched_agg_info *
2122ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2123{
2124	struct ice_sched_agg_info *agg_info;
2125
2126	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2127		if (agg_info->agg_id == agg_id)
2128			return agg_info;
2129
2130	return NULL;
2131}
2132
2133/**
2134 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2135 * @hw: pointer to the HW struct
2136 * @node: pointer to a child node
2137 * @num_nodes: num nodes count array
2138 *
2139 * This function walks through the aggregator subtree to find a free parent
2140 * node
2141 */
2142struct ice_sched_node *
2143ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2144			      u16 *num_nodes)
2145{
2146	u8 l = node->tx_sched_layer;
2147	u8 vsil, i;
2148
2149	vsil = ice_sched_get_vsi_layer(hw);
2150
2151	/* Is it VSI parent layer ? */
2152	if (l == vsil - 1)
2153		return (node->num_children < hw->max_children[l]) ? node : NULL;
2154
2155	/* We have intermediate nodes. Let's walk through the subtree. If the
2156	 * intermediate node has space to add a new node then clear the count
2157	 */
2158	if (node->num_children < hw->max_children[l])
2159		num_nodes[l] = 0;
2160	/* The below recursive call is intentional and wouldn't go more than
2161	 * 2 or 3 iterations.
2162	 */
2163
2164	for (i = 0; i < node->num_children; i++) {
2165		struct ice_sched_node *parent;
2166
2167		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2168						       num_nodes);
2169		if (parent)
2170			return parent;
2171	}
2172
2173	return NULL;
2174}
2175
2176/**
2177 * ice_sched_update_parent - update the new parent in SW DB
2178 * @new_parent: pointer to a new parent node
2179 * @node: pointer to a child node
2180 *
2181 * This function removes the child from the old parent and adds it to a new
2182 * parent
2183 */
2184void
2185ice_sched_update_parent(struct ice_sched_node *new_parent,
2186			struct ice_sched_node *node)
2187{
2188	struct ice_sched_node *old_parent;
2189	u8 i, j;
2190
2191	old_parent = node->parent;
2192
2193	/* update the old parent children */
2194	for (i = 0; i < old_parent->num_children; i++)
2195		if (old_parent->children[i] == node) {
2196			for (j = i + 1; j < old_parent->num_children; j++)
2197				old_parent->children[j - 1] =
2198					old_parent->children[j];
2199			old_parent->num_children--;
2200			break;
2201		}
2202
2203	/* now move the node to a new parent */
2204	new_parent->children[new_parent->num_children++] = node;
2205	node->parent = new_parent;
2206	node->info.parent_teid = new_parent->info.node_teid;
2207}
2208
2209/**
2210 * ice_sched_move_nodes - move child nodes to a given parent
2211 * @pi: port information structure
2212 * @parent: pointer to parent node
2213 * @num_items: number of child nodes to be moved
2214 * @list: pointer to child node teids
2215 *
2216 * This function move the child nodes to a given parent.
2217 */
2218int
2219ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2220		     u16 num_items, u32 *list)
2221{
2222	DEFINE_RAW_FLEX(struct ice_aqc_move_elem, buf, teid, 1);
2223	u16 buf_len = __struct_size(buf);
2224	struct ice_sched_node *node;
2225	u16 i, grps_movd = 0;
2226	struct ice_hw *hw;
2227	int status = 0;
2228
2229	hw = pi->hw;
2230
2231	if (!parent || !num_items)
2232		return -EINVAL;
2233
2234	/* Does parent have enough space */
2235	if (parent->num_children + num_items >
2236	    hw->max_children[parent->tx_sched_layer])
2237		return -ENOSPC;
2238
2239	for (i = 0; i < num_items; i++) {
2240		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2241		if (!node) {
2242			status = -EINVAL;
2243			break;
2244		}
2245
2246		buf->hdr.src_parent_teid = node->info.parent_teid;
2247		buf->hdr.dest_parent_teid = parent->info.node_teid;
2248		buf->teid[0] = node->info.node_teid;
2249		buf->hdr.num_elems = cpu_to_le16(1);
2250		status = ice_aq_move_sched_elems(hw, buf, buf_len, &grps_movd);
2251		if (status && grps_movd != 1) {
2252			status = -EIO;
2253			break;
2254		}
2255
2256		/* update the SW DB */
2257		ice_sched_update_parent(parent, node);
2258	}
2259
2260	return status;
2261}
2262
2263/**
2264 * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2265 * @pi: port information structure
2266 * @vsi_handle: software VSI handle
2267 * @agg_id: aggregator ID
2268 * @tc: TC number
2269 *
2270 * This function moves a VSI to an aggregator node or its subtree.
2271 * Intermediate nodes may be created if required.
2272 */
2273static int
2274ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2275			  u8 tc)
2276{
2277	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2278	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2279	u32 first_node_teid, vsi_teid;
2280	u16 num_nodes_added;
2281	u8 aggl, vsil, i;
2282	int status;
2283
2284	tc_node = ice_sched_get_tc_node(pi, tc);
2285	if (!tc_node)
2286		return -EIO;
2287
2288	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2289	if (!agg_node)
2290		return -ENOENT;
2291
2292	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2293	if (!vsi_node)
2294		return -ENOENT;
2295
2296	/* Is this VSI already part of given aggregator? */
2297	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2298		return 0;
2299
2300	aggl = ice_sched_get_agg_layer(pi->hw);
2301	vsil = ice_sched_get_vsi_layer(pi->hw);
2302
2303	/* set intermediate node count to 1 between aggregator and VSI layers */
2304	for (i = aggl + 1; i < vsil; i++)
2305		num_nodes[i] = 1;
2306
2307	/* Check if the aggregator subtree has any free node to add the VSI */
2308	for (i = 0; i < agg_node->num_children; i++) {
2309		parent = ice_sched_get_free_vsi_parent(pi->hw,
2310						       agg_node->children[i],
2311						       num_nodes);
2312		if (parent)
2313			goto move_nodes;
2314	}
2315
2316	/* add new nodes */
2317	parent = agg_node;
2318	for (i = aggl + 1; i < vsil; i++) {
2319		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2320						      num_nodes[i],
2321						      &first_node_teid,
2322						      &num_nodes_added);
2323		if (status || num_nodes[i] != num_nodes_added)
2324			return -EIO;
2325
2326		/* The newly added node can be a new parent for the next
2327		 * layer nodes
2328		 */
2329		if (num_nodes_added)
2330			parent = ice_sched_find_node_by_teid(tc_node,
2331							     first_node_teid);
2332		else
2333			parent = parent->children[0];
2334
2335		if (!parent)
2336			return -EIO;
2337	}
2338
2339move_nodes:
2340	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2341	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2342}
2343
2344/**
2345 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2346 * @pi: port information structure
2347 * @agg_info: aggregator info
2348 * @tc: traffic class number
2349 * @rm_vsi_info: true or false
2350 *
2351 * This function move all the VSI(s) to the default aggregator and delete
2352 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2353 * caller holds the scheduler lock.
2354 */
2355static int
2356ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2357			     struct ice_sched_agg_info *agg_info, u8 tc,
2358			     bool rm_vsi_info)
2359{
2360	struct ice_sched_agg_vsi_info *agg_vsi_info;
2361	struct ice_sched_agg_vsi_info *tmp;
2362	int status = 0;
2363
2364	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2365				 list_entry) {
2366		u16 vsi_handle = agg_vsi_info->vsi_handle;
2367
2368		/* Move VSI to default aggregator */
2369		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2370			continue;
2371
2372		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2373						   ICE_DFLT_AGG_ID, tc);
2374		if (status)
2375			break;
2376
2377		clear_bit(tc, agg_vsi_info->tc_bitmap);
2378		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2379			list_del(&agg_vsi_info->list_entry);
2380			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2381		}
2382	}
2383
2384	return status;
2385}
2386
2387/**
2388 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2389 * @pi: port information structure
2390 * @node: node pointer
2391 *
2392 * This function checks whether the aggregator is attached with any VSI or not.
2393 */
2394static bool
2395ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2396{
2397	u8 vsil, i;
2398
2399	vsil = ice_sched_get_vsi_layer(pi->hw);
2400	if (node->tx_sched_layer < vsil - 1) {
2401		for (i = 0; i < node->num_children; i++)
2402			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2403				return true;
2404		return false;
2405	} else {
2406		return node->num_children ? true : false;
2407	}
2408}
2409
2410/**
2411 * ice_sched_rm_agg_cfg - remove the aggregator node
2412 * @pi: port information structure
2413 * @agg_id: aggregator ID
2414 * @tc: TC number
2415 *
2416 * This function removes the aggregator node and intermediate nodes if any
2417 * from the given TC
2418 */
2419static int
2420ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2421{
2422	struct ice_sched_node *tc_node, *agg_node;
2423	struct ice_hw *hw = pi->hw;
2424
2425	tc_node = ice_sched_get_tc_node(pi, tc);
2426	if (!tc_node)
2427		return -EIO;
2428
2429	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2430	if (!agg_node)
2431		return -ENOENT;
2432
2433	/* Can't remove the aggregator node if it has children */
2434	if (ice_sched_is_agg_inuse(pi, agg_node))
2435		return -EBUSY;
2436
2437	/* need to remove the whole subtree if aggregator node is the
2438	 * only child.
2439	 */
2440	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2441		struct ice_sched_node *parent = agg_node->parent;
2442
2443		if (!parent)
2444			return -EIO;
2445
2446		if (parent->num_children > 1)
2447			break;
2448
2449		agg_node = parent;
2450	}
2451
2452	ice_free_sched_node(pi, agg_node);
2453	return 0;
2454}
2455
2456/**
2457 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2458 * @pi: port information structure
2459 * @agg_info: aggregator ID
2460 * @tc: TC number
2461 * @rm_vsi_info: bool value true or false
2462 *
2463 * This function removes aggregator reference to VSI of given TC. It removes
2464 * the aggregator configuration completely for requested TC. The caller needs
2465 * to hold the scheduler lock.
2466 */
2467static int
2468ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2469		  u8 tc, bool rm_vsi_info)
2470{
2471	int status = 0;
2472
2473	/* If nothing to remove - return success */
2474	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2475		goto exit_rm_agg_cfg_tc;
2476
2477	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2478	if (status)
2479		goto exit_rm_agg_cfg_tc;
2480
2481	/* Delete aggregator node(s) */
2482	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2483	if (status)
2484		goto exit_rm_agg_cfg_tc;
2485
2486	clear_bit(tc, agg_info->tc_bitmap);
2487exit_rm_agg_cfg_tc:
2488	return status;
2489}
2490
2491/**
2492 * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2493 * @pi: port information structure
2494 * @agg_id: aggregator ID
2495 * @tc_bitmap: 8 bits TC bitmap
2496 *
2497 * Save aggregator TC bitmap. This function needs to be called with scheduler
2498 * lock held.
2499 */
2500static int
2501ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2502		       unsigned long *tc_bitmap)
2503{
2504	struct ice_sched_agg_info *agg_info;
2505
2506	agg_info = ice_get_agg_info(pi->hw, agg_id);
2507	if (!agg_info)
2508		return -EINVAL;
2509	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2510		    ICE_MAX_TRAFFIC_CLASS);
2511	return 0;
2512}
2513
2514/**
2515 * ice_sched_add_agg_cfg - create an aggregator node
2516 * @pi: port information structure
2517 * @agg_id: aggregator ID
2518 * @tc: TC number
2519 *
2520 * This function creates an aggregator node and intermediate nodes if required
2521 * for the given TC
2522 */
2523static int
2524ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2525{
2526	struct ice_sched_node *parent, *agg_node, *tc_node;
2527	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2528	struct ice_hw *hw = pi->hw;
2529	u32 first_node_teid;
2530	u16 num_nodes_added;
2531	int status = 0;
2532	u8 i, aggl;
2533
2534	tc_node = ice_sched_get_tc_node(pi, tc);
2535	if (!tc_node)
2536		return -EIO;
2537
2538	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2539	/* Does Agg node already exist ? */
2540	if (agg_node)
2541		return status;
2542
2543	aggl = ice_sched_get_agg_layer(hw);
2544
2545	/* need one node in Agg layer */
2546	num_nodes[aggl] = 1;
2547
2548	/* Check whether the intermediate nodes have space to add the
2549	 * new aggregator. If they are full, then SW needs to allocate a new
2550	 * intermediate node on those layers
2551	 */
2552	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2553		parent = ice_sched_get_first_node(pi, tc_node, i);
2554
2555		/* scan all the siblings */
2556		while (parent) {
2557			if (parent->num_children < hw->max_children[i])
2558				break;
2559			parent = parent->sibling;
2560		}
2561
2562		/* all the nodes are full, reserve one for this layer */
2563		if (!parent)
2564			num_nodes[i]++;
2565	}
2566
2567	/* add the aggregator node */
2568	parent = tc_node;
2569	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2570		if (!parent)
2571			return -EIO;
2572
2573		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2574						      num_nodes[i],
2575						      &first_node_teid,
2576						      &num_nodes_added);
2577		if (status || num_nodes[i] != num_nodes_added)
2578			return -EIO;
2579
2580		/* The newly added node can be a new parent for the next
2581		 * layer nodes
2582		 */
2583		if (num_nodes_added) {
2584			parent = ice_sched_find_node_by_teid(tc_node,
2585							     first_node_teid);
2586			/* register aggregator ID with the aggregator node */
2587			if (parent && i == aggl)
2588				parent->agg_id = agg_id;
2589		} else {
2590			parent = parent->children[0];
2591		}
2592	}
2593
2594	return 0;
2595}
2596
2597/**
2598 * ice_sched_cfg_agg - configure aggregator node
2599 * @pi: port information structure
2600 * @agg_id: aggregator ID
2601 * @agg_type: aggregator type queue, VSI, or aggregator group
2602 * @tc_bitmap: bits TC bitmap
2603 *
2604 * It registers a unique aggregator node into scheduler services. It
2605 * allows a user to register with a unique ID to track it's resources.
2606 * The aggregator type determines if this is a queue group, VSI group
2607 * or aggregator group. It then creates the aggregator node(s) for requested
2608 * TC(s) or removes an existing aggregator node including its configuration
2609 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2610 * resources and remove aggregator ID.
2611 * This function needs to be called with scheduler lock held.
2612 */
2613static int
2614ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2615		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2616{
2617	struct ice_sched_agg_info *agg_info;
2618	struct ice_hw *hw = pi->hw;
2619	int status = 0;
2620	u8 tc;
2621
2622	agg_info = ice_get_agg_info(hw, agg_id);
2623	if (!agg_info) {
2624		/* Create new entry for new aggregator ID */
2625		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2626					GFP_KERNEL);
2627		if (!agg_info)
2628			return -ENOMEM;
2629
2630		agg_info->agg_id = agg_id;
2631		agg_info->agg_type = agg_type;
2632		agg_info->tc_bitmap[0] = 0;
2633
2634		/* Initialize the aggregator VSI list head */
2635		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2636
2637		/* Add new entry in aggregator list */
2638		list_add(&agg_info->list_entry, &hw->agg_list);
2639	}
2640	/* Create aggregator node(s) for requested TC(s) */
2641	ice_for_each_traffic_class(tc) {
2642		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2643			/* Delete aggregator cfg TC if it exists previously */
2644			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2645			if (status)
2646				break;
2647			continue;
2648		}
2649
2650		/* Check if aggregator node for TC already exists */
2651		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2652			continue;
2653
2654		/* Create new aggregator node for TC */
2655		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2656		if (status)
2657			break;
2658
2659		/* Save aggregator node's TC information */
2660		set_bit(tc, agg_info->tc_bitmap);
2661	}
2662
2663	return status;
2664}
2665
2666/**
2667 * ice_cfg_agg - config aggregator node
2668 * @pi: port information structure
2669 * @agg_id: aggregator ID
2670 * @agg_type: aggregator type queue, VSI, or aggregator group
2671 * @tc_bitmap: bits TC bitmap
2672 *
2673 * This function configures aggregator node(s).
2674 */
2675int
2676ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2677	    u8 tc_bitmap)
2678{
2679	unsigned long bitmap = tc_bitmap;
2680	int status;
2681
2682	mutex_lock(&pi->sched_lock);
2683	status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2684	if (!status)
2685		status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2686	mutex_unlock(&pi->sched_lock);
2687	return status;
2688}
2689
2690/**
2691 * ice_get_agg_vsi_info - get the aggregator ID
2692 * @agg_info: aggregator info
2693 * @vsi_handle: software VSI handle
2694 *
2695 * The function returns aggregator VSI info based on VSI handle. This function
2696 * needs to be called with scheduler lock held.
2697 */
2698static struct ice_sched_agg_vsi_info *
2699ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2700{
2701	struct ice_sched_agg_vsi_info *agg_vsi_info;
2702
2703	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2704		if (agg_vsi_info->vsi_handle == vsi_handle)
2705			return agg_vsi_info;
2706
2707	return NULL;
2708}
2709
2710/**
2711 * ice_get_vsi_agg_info - get the aggregator info of VSI
2712 * @hw: pointer to the hardware structure
2713 * @vsi_handle: Sw VSI handle
2714 *
2715 * The function returns aggregator info of VSI represented via vsi_handle. The
2716 * VSI has in this case a different aggregator than the default one. This
2717 * function needs to be called with scheduler lock held.
2718 */
2719static struct ice_sched_agg_info *
2720ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2721{
2722	struct ice_sched_agg_info *agg_info;
2723
2724	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2725		struct ice_sched_agg_vsi_info *agg_vsi_info;
2726
2727		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2728		if (agg_vsi_info)
2729			return agg_info;
2730	}
2731	return NULL;
2732}
2733
2734/**
2735 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2736 * @pi: port information structure
2737 * @agg_id: aggregator ID
2738 * @vsi_handle: software VSI handle
2739 * @tc_bitmap: TC bitmap of enabled TC(s)
2740 *
2741 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2742 * lock held.
2743 */
2744static int
2745ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2746			   unsigned long *tc_bitmap)
2747{
2748	struct ice_sched_agg_vsi_info *agg_vsi_info;
2749	struct ice_sched_agg_info *agg_info;
2750
2751	agg_info = ice_get_agg_info(pi->hw, agg_id);
2752	if (!agg_info)
2753		return -EINVAL;
2754	/* check if entry already exist */
2755	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2756	if (!agg_vsi_info)
2757		return -EINVAL;
2758	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2759		    ICE_MAX_TRAFFIC_CLASS);
2760	return 0;
2761}
2762
2763/**
2764 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2765 * @pi: port information structure
2766 * @agg_id: aggregator ID
2767 * @vsi_handle: software VSI handle
2768 * @tc_bitmap: TC bitmap of enabled TC(s)
2769 *
2770 * This function moves VSI to a new or default aggregator node. If VSI is
2771 * already associated to the aggregator node then no operation is performed on
2772 * the tree. This function needs to be called with scheduler lock held.
2773 */
2774static int
2775ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2776			   u16 vsi_handle, unsigned long *tc_bitmap)
2777{
2778	struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2779	struct ice_sched_agg_info *agg_info, *old_agg_info;
2780	struct ice_hw *hw = pi->hw;
2781	int status = 0;
2782	u8 tc;
2783
2784	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2785		return -EINVAL;
2786	agg_info = ice_get_agg_info(hw, agg_id);
2787	if (!agg_info)
2788		return -EINVAL;
2789	/* If the VSI is already part of another aggregator then update
2790	 * its VSI info list
2791	 */
2792	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2793	if (old_agg_info && old_agg_info != agg_info) {
2794		struct ice_sched_agg_vsi_info *vtmp;
2795
2796		list_for_each_entry_safe(iter, vtmp,
2797					 &old_agg_info->agg_vsi_list,
2798					 list_entry)
2799			if (iter->vsi_handle == vsi_handle) {
2800				old_agg_vsi_info = iter;
2801				break;
2802			}
2803	}
2804
2805	/* check if entry already exist */
2806	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2807	if (!agg_vsi_info) {
2808		/* Create new entry for VSI under aggregator list */
2809		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2810					    sizeof(*agg_vsi_info), GFP_KERNEL);
2811		if (!agg_vsi_info)
2812			return -EINVAL;
2813
2814		/* add VSI ID into the aggregator list */
2815		agg_vsi_info->vsi_handle = vsi_handle;
2816		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2817	}
2818	/* Move VSI node to new aggregator node for requested TC(s) */
2819	ice_for_each_traffic_class(tc) {
2820		if (!ice_is_tc_ena(*tc_bitmap, tc))
2821			continue;
2822
2823		/* Move VSI to new aggregator */
2824		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2825		if (status)
2826			break;
2827
2828		set_bit(tc, agg_vsi_info->tc_bitmap);
2829		if (old_agg_vsi_info)
2830			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2831	}
2832	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2833		list_del(&old_agg_vsi_info->list_entry);
2834		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2835	}
2836	return status;
2837}
2838
2839/**
2840 * ice_sched_rm_unused_rl_prof - remove unused RL profile
2841 * @pi: port information structure
2842 *
2843 * This function removes unused rate limit profiles from the HW and
2844 * SW DB. The caller needs to hold scheduler lock.
2845 */
2846static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2847{
2848	u16 ln;
2849
2850	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2851		struct ice_aqc_rl_profile_info *rl_prof_elem;
2852		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2853
2854		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2855					 &pi->rl_prof_list[ln], list_entry) {
2856			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2857				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2858		}
2859	}
2860}
2861
2862/**
2863 * ice_sched_update_elem - update element
2864 * @hw: pointer to the HW struct
2865 * @node: pointer to node
2866 * @info: node info to update
2867 *
2868 * Update the HW DB, and local SW DB of node. Update the scheduling
2869 * parameters of node from argument info data buffer (Info->data buf) and
2870 * returns success or error on config sched element failure. The caller
2871 * needs to hold scheduler lock.
2872 */
2873static int
2874ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2875		      struct ice_aqc_txsched_elem_data *info)
2876{
2877	struct ice_aqc_txsched_elem_data buf;
2878	u16 elem_cfgd = 0;
2879	u16 num_elems = 1;
2880	int status;
2881
2882	buf = *info;
2883	/* Parent TEID is reserved field in this aq call */
2884	buf.parent_teid = 0;
2885	/* Element type is reserved field in this aq call */
2886	buf.data.elem_type = 0;
2887	/* Flags is reserved field in this aq call */
2888	buf.data.flags = 0;
2889
2890	/* Update HW DB */
2891	/* Configure element node */
2892	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2893					&elem_cfgd, NULL);
2894	if (status || elem_cfgd != num_elems) {
2895		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2896		return -EIO;
2897	}
2898
2899	/* Config success case */
2900	/* Now update local SW DB */
2901	/* Only copy the data portion of info buffer */
2902	node->info.data = info->data;
2903	return status;
2904}
2905
2906/**
2907 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2908 * @hw: pointer to the HW struct
2909 * @node: sched node to configure
2910 * @rl_type: rate limit type CIR, EIR, or shared
2911 * @bw_alloc: BW weight/allocation
2912 *
2913 * This function configures node element's BW allocation.
2914 */
2915static int
2916ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2917			    enum ice_rl_type rl_type, u16 bw_alloc)
2918{
2919	struct ice_aqc_txsched_elem_data buf;
2920	struct ice_aqc_txsched_elem *data;
2921
2922	buf = node->info;
2923	data = &buf.data;
2924	if (rl_type == ICE_MIN_BW) {
2925		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2926		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2927	} else if (rl_type == ICE_MAX_BW) {
2928		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2929		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2930	} else {
2931		return -EINVAL;
2932	}
2933
2934	/* Configure element */
2935	return ice_sched_update_elem(hw, node, &buf);
2936}
2937
2938/**
2939 * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2940 * @pi: port information structure
2941 * @agg_id: aggregator ID
2942 * @vsi_handle: software VSI handle
2943 * @tc_bitmap: TC bitmap of enabled TC(s)
2944 *
2945 * Move or associate VSI to a new or default aggregator node.
2946 */
2947int
2948ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2949		    u8 tc_bitmap)
2950{
2951	unsigned long bitmap = tc_bitmap;
2952	int status;
2953
2954	mutex_lock(&pi->sched_lock);
2955	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2956					    (unsigned long *)&bitmap);
2957	if (!status)
2958		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2959						    (unsigned long *)&bitmap);
2960	mutex_unlock(&pi->sched_lock);
2961	return status;
2962}
2963
2964/**
2965 * ice_set_clear_cir_bw - set or clear CIR BW
2966 * @bw_t_info: bandwidth type information structure
2967 * @bw: bandwidth in Kbps - Kilo bits per sec
2968 *
2969 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2970 */
2971static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2972{
2973	if (bw == ICE_SCHED_DFLT_BW) {
2974		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2975		bw_t_info->cir_bw.bw = 0;
2976	} else {
2977		/* Save type of BW information */
2978		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2979		bw_t_info->cir_bw.bw = bw;
2980	}
2981}
2982
2983/**
2984 * ice_set_clear_eir_bw - set or clear EIR BW
2985 * @bw_t_info: bandwidth type information structure
2986 * @bw: bandwidth in Kbps - Kilo bits per sec
2987 *
2988 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2989 */
2990static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2991{
2992	if (bw == ICE_SCHED_DFLT_BW) {
2993		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2994		bw_t_info->eir_bw.bw = 0;
2995	} else {
2996		/* EIR BW and Shared BW profiles are mutually exclusive and
2997		 * hence only one of them may be set for any given element.
2998		 * First clear earlier saved shared BW information.
2999		 */
3000		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3001		bw_t_info->shared_bw = 0;
3002		/* save EIR BW information */
3003		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3004		bw_t_info->eir_bw.bw = bw;
3005	}
3006}
3007
3008/**
3009 * ice_set_clear_shared_bw - set or clear shared BW
3010 * @bw_t_info: bandwidth type information structure
3011 * @bw: bandwidth in Kbps - Kilo bits per sec
3012 *
3013 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3014 */
3015static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3016{
3017	if (bw == ICE_SCHED_DFLT_BW) {
3018		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3019		bw_t_info->shared_bw = 0;
3020	} else {
3021		/* EIR BW and Shared BW profiles are mutually exclusive and
3022		 * hence only one of them may be set for any given element.
3023		 * First clear earlier saved EIR BW information.
3024		 */
3025		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3026		bw_t_info->eir_bw.bw = 0;
3027		/* save shared BW information */
3028		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3029		bw_t_info->shared_bw = bw;
3030	}
3031}
3032
3033/**
3034 * ice_sched_save_vsi_bw - save VSI node's BW information
3035 * @pi: port information structure
3036 * @vsi_handle: sw VSI handle
3037 * @tc: traffic class
3038 * @rl_type: rate limit type min, max, or shared
3039 * @bw: bandwidth in Kbps - Kilo bits per sec
3040 *
3041 * Save BW information of VSI type node for post replay use.
3042 */
3043static int
3044ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3045		      enum ice_rl_type rl_type, u32 bw)
3046{
3047	struct ice_vsi_ctx *vsi_ctx;
3048
3049	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3050		return -EINVAL;
3051	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3052	if (!vsi_ctx)
3053		return -EINVAL;
3054	switch (rl_type) {
3055	case ICE_MIN_BW:
3056		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3057		break;
3058	case ICE_MAX_BW:
3059		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3060		break;
3061	case ICE_SHARED_BW:
3062		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3063		break;
3064	default:
3065		return -EINVAL;
3066	}
3067	return 0;
3068}
3069
3070/**
3071 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3072 * @hw: pointer to the HW struct
3073 * @bw: bandwidth in Kbps
3074 *
3075 * This function calculates the wakeup parameter of RL profile.
3076 */
3077static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3078{
3079	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3080	s32 wakeup_f_int;
3081	u16 wakeup = 0;
3082
3083	/* Get the wakeup integer value */
3084	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3085	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3086	if (wakeup_int > 63) {
3087		wakeup = (u16)((1 << 15) | wakeup_int);
3088	} else {
3089		/* Calculate fraction value up to 4 decimals
3090		 * Convert Integer value to a constant multiplier
3091		 */
3092		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3093		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3094					   hw->psm_clk_freq, bytes_per_sec);
3095
3096		/* Get Fraction value */
3097		wakeup_f = wakeup_a - wakeup_b;
3098
3099		/* Round up the Fractional value via Ceil(Fractional value) */
3100		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3101			wakeup_f += 1;
3102
3103		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3104					       ICE_RL_PROF_MULTIPLIER);
3105		wakeup |= (u16)(wakeup_int << 9);
3106		wakeup |= (u16)(0x1ff & wakeup_f_int);
3107	}
3108
3109	return wakeup;
3110}
3111
3112/**
3113 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3114 * @hw: pointer to the HW struct
3115 * @bw: bandwidth in Kbps
3116 * @profile: profile parameters to return
3117 *
3118 * This function converts the BW to profile structure format.
3119 */
3120static int
3121ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3122			   struct ice_aqc_rl_profile_elem *profile)
3123{
3124	s64 bytes_per_sec, ts_rate, mv_tmp;
3125	int status = -EINVAL;
3126	bool found = false;
3127	s32 encode = 0;
3128	s64 mv = 0;
3129	s32 i;
3130
3131	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3132	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3133		return status;
3134
3135	/* Bytes per second from Kbps */
3136	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3137
3138	/* encode is 6 bits but really useful are 5 bits */
3139	for (i = 0; i < 64; i++) {
3140		u64 pow_result = BIT_ULL(i);
3141
3142		ts_rate = div64_long((s64)hw->psm_clk_freq,
3143				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3144		if (ts_rate <= 0)
3145			continue;
3146
3147		/* Multiplier value */
3148		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3149				    ts_rate);
3150
3151		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3152		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3153
3154		/* First multiplier value greater than the given
3155		 * accuracy bytes
3156		 */
3157		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3158			encode = i;
3159			found = true;
3160			break;
3161		}
3162	}
3163	if (found) {
3164		u16 wm;
3165
3166		wm = ice_sched_calc_wakeup(hw, bw);
3167		profile->rl_multiply = cpu_to_le16(mv);
3168		profile->wake_up_calc = cpu_to_le16(wm);
3169		profile->rl_encode = cpu_to_le16(encode);
3170		status = 0;
3171	} else {
3172		status = -ENOENT;
3173	}
3174
3175	return status;
3176}
3177
3178/**
3179 * ice_sched_add_rl_profile - add RL profile
3180 * @pi: port information structure
3181 * @rl_type: type of rate limit BW - min, max, or shared
3182 * @bw: bandwidth in Kbps - Kilo bits per sec
3183 * @layer_num: specifies in which layer to create profile
3184 *
3185 * This function first checks the existing list for corresponding BW
3186 * parameter. If it exists, it returns the associated profile otherwise
3187 * it creates a new rate limit profile for requested BW, and adds it to
3188 * the HW DB and local list. It returns the new profile or null on error.
3189 * The caller needs to hold the scheduler lock.
3190 */
3191static struct ice_aqc_rl_profile_info *
3192ice_sched_add_rl_profile(struct ice_port_info *pi,
3193			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3194{
3195	struct ice_aqc_rl_profile_info *rl_prof_elem;
3196	u16 profiles_added = 0, num_profiles = 1;
3197	struct ice_aqc_rl_profile_elem *buf;
3198	struct ice_hw *hw;
3199	u8 profile_type;
3200	int status;
3201
3202	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3203		return NULL;
3204	switch (rl_type) {
3205	case ICE_MIN_BW:
3206		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3207		break;
3208	case ICE_MAX_BW:
3209		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3210		break;
3211	case ICE_SHARED_BW:
3212		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3213		break;
3214	default:
3215		return NULL;
3216	}
3217
3218	if (!pi)
3219		return NULL;
3220	hw = pi->hw;
3221	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3222			    list_entry)
3223		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3224		    profile_type && rl_prof_elem->bw == bw)
3225			/* Return existing profile ID info */
3226			return rl_prof_elem;
3227
3228	/* Create new profile ID */
3229	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3230				    GFP_KERNEL);
3231
3232	if (!rl_prof_elem)
3233		return NULL;
3234
3235	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3236	if (status)
3237		goto exit_add_rl_prof;
3238
3239	rl_prof_elem->bw = bw;
3240	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3241	rl_prof_elem->profile.level = layer_num + 1;
3242	rl_prof_elem->profile.flags = profile_type;
3243	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3244
3245	/* Create new entry in HW DB */
3246	buf = &rl_prof_elem->profile;
3247	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3248				       &profiles_added, NULL);
3249	if (status || profiles_added != num_profiles)
3250		goto exit_add_rl_prof;
3251
3252	/* Good entry - add in the list */
3253	rl_prof_elem->prof_id_ref = 0;
3254	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3255	return rl_prof_elem;
3256
3257exit_add_rl_prof:
3258	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3259	return NULL;
3260}
3261
3262/**
3263 * ice_sched_cfg_node_bw_lmt - configure node sched params
3264 * @hw: pointer to the HW struct
3265 * @node: sched node to configure
3266 * @rl_type: rate limit type CIR, EIR, or shared
3267 * @rl_prof_id: rate limit profile ID
3268 *
3269 * This function configures node element's BW limit.
3270 */
3271static int
3272ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3273			  enum ice_rl_type rl_type, u16 rl_prof_id)
3274{
3275	struct ice_aqc_txsched_elem_data buf;
3276	struct ice_aqc_txsched_elem *data;
3277
3278	buf = node->info;
3279	data = &buf.data;
3280	switch (rl_type) {
3281	case ICE_MIN_BW:
3282		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3283		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3284		break;
3285	case ICE_MAX_BW:
3286		/* EIR BW and Shared BW profiles are mutually exclusive and
3287		 * hence only one of them may be set for any given element
3288		 */
3289		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3290			return -EIO;
3291		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3292		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3293		break;
3294	case ICE_SHARED_BW:
3295		/* Check for removing shared BW */
3296		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3297			/* remove shared profile */
3298			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3299			data->srl_id = 0; /* clear SRL field */
3300
3301			/* enable back EIR to default profile */
3302			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3303			data->eir_bw.bw_profile_idx =
3304				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3305			break;
3306		}
3307		/* EIR BW and Shared BW profiles are mutually exclusive and
3308		 * hence only one of them may be set for any given element
3309		 */
3310		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3311		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3312			    ICE_SCHED_DFLT_RL_PROF_ID))
3313			return -EIO;
3314		/* EIR BW is set to default, disable it */
3315		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3316		/* Okay to enable shared BW now */
3317		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3318		data->srl_id = cpu_to_le16(rl_prof_id);
3319		break;
3320	default:
3321		/* Unknown rate limit type */
3322		return -EINVAL;
3323	}
3324
3325	/* Configure element */
3326	return ice_sched_update_elem(hw, node, &buf);
3327}
3328
3329/**
3330 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3331 * @node: sched node
3332 * @rl_type: rate limit type
3333 *
3334 * If existing profile matches, it returns the corresponding rate
3335 * limit profile ID, otherwise it returns an invalid ID as error.
3336 */
3337static u16
3338ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3339			      enum ice_rl_type rl_type)
3340{
3341	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3342	struct ice_aqc_txsched_elem *data;
3343
3344	data = &node->info.data;
3345	switch (rl_type) {
3346	case ICE_MIN_BW:
3347		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3348			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3349		break;
3350	case ICE_MAX_BW:
3351		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3352			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3353		break;
3354	case ICE_SHARED_BW:
3355		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3356			rl_prof_id = le16_to_cpu(data->srl_id);
3357		break;
3358	default:
3359		break;
3360	}
3361
3362	return rl_prof_id;
3363}
3364
3365/**
3366 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3367 * @pi: port information structure
3368 * @rl_type: type of rate limit BW - min, max, or shared
3369 * @layer_index: layer index
3370 *
3371 * This function returns requested profile creation layer.
3372 */
3373static u8
3374ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3375			    u8 layer_index)
3376{
3377	struct ice_hw *hw = pi->hw;
3378
3379	if (layer_index >= hw->num_tx_sched_layers)
3380		return ICE_SCHED_INVAL_LAYER_NUM;
3381	switch (rl_type) {
3382	case ICE_MIN_BW:
3383		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3384			return layer_index;
3385		break;
3386	case ICE_MAX_BW:
3387		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3388			return layer_index;
3389		break;
3390	case ICE_SHARED_BW:
3391		/* if current layer doesn't support SRL profile creation
3392		 * then try a layer up or down.
3393		 */
3394		if (hw->layer_info[layer_index].max_srl_profiles)
3395			return layer_index;
3396		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3397			 hw->layer_info[layer_index + 1].max_srl_profiles)
3398			return layer_index + 1;
3399		else if (layer_index > 0 &&
3400			 hw->layer_info[layer_index - 1].max_srl_profiles)
3401			return layer_index - 1;
3402		break;
3403	default:
3404		break;
3405	}
3406	return ICE_SCHED_INVAL_LAYER_NUM;
3407}
3408
3409/**
3410 * ice_sched_get_srl_node - get shared rate limit node
3411 * @node: tree node
3412 * @srl_layer: shared rate limit layer
3413 *
3414 * This function returns SRL node to be used for shared rate limit purpose.
3415 * The caller needs to hold scheduler lock.
3416 */
3417static struct ice_sched_node *
3418ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3419{
3420	if (srl_layer > node->tx_sched_layer)
3421		return node->children[0];
3422	else if (srl_layer < node->tx_sched_layer)
3423		/* Node can't be created without a parent. It will always
3424		 * have a valid parent except root node.
3425		 */
3426		return node->parent;
3427	else
3428		return node;
3429}
3430
3431/**
3432 * ice_sched_rm_rl_profile - remove RL profile ID
3433 * @pi: port information structure
3434 * @layer_num: layer number where profiles are saved
3435 * @profile_type: profile type like EIR, CIR, or SRL
3436 * @profile_id: profile ID to remove
3437 *
3438 * This function removes rate limit profile from layer 'layer_num' of type
3439 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3440 * scheduler lock.
3441 */
3442static int
3443ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3444			u16 profile_id)
3445{
3446	struct ice_aqc_rl_profile_info *rl_prof_elem;
3447	int status = 0;
3448
3449	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3450		return -EINVAL;
3451	/* Check the existing list for RL profile */
3452	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3453			    list_entry)
3454		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3455		    profile_type &&
3456		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3457		    profile_id) {
3458			if (rl_prof_elem->prof_id_ref)
3459				rl_prof_elem->prof_id_ref--;
3460
3461			/* Remove old profile ID from database */
3462			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3463			if (status && status != -EBUSY)
3464				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3465			break;
3466		}
3467	if (status == -EBUSY)
3468		status = 0;
3469	return status;
3470}
3471
3472/**
3473 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3474 * @pi: port information structure
3475 * @node: pointer to node structure
3476 * @rl_type: rate limit type min, max, or shared
3477 * @layer_num: layer number where RL profiles are saved
3478 *
3479 * This function configures node element's BW rate limit profile ID of
3480 * type CIR, EIR, or SRL to default. This function needs to be called
3481 * with the scheduler lock held.
3482 */
3483static int
3484ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3485			   struct ice_sched_node *node,
3486			   enum ice_rl_type rl_type, u8 layer_num)
3487{
3488	struct ice_hw *hw;
3489	u8 profile_type;
3490	u16 rl_prof_id;
3491	u16 old_id;
3492	int status;
3493
3494	hw = pi->hw;
3495	switch (rl_type) {
3496	case ICE_MIN_BW:
3497		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3498		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3499		break;
3500	case ICE_MAX_BW:
3501		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3502		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3503		break;
3504	case ICE_SHARED_BW:
3505		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3506		/* No SRL is configured for default case */
3507		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3508		break;
3509	default:
3510		return -EINVAL;
3511	}
3512	/* Save existing RL prof ID for later clean up */
3513	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3514	/* Configure BW scheduling parameters */
3515	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3516	if (status)
3517		return status;
3518
3519	/* Remove stale RL profile ID */
3520	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3521	    old_id == ICE_SCHED_INVAL_PROF_ID)
3522		return 0;
3523
3524	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3525}
3526
3527/**
3528 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3529 * @pi: port information structure
3530 * @node: pointer to node structure
3531 * @layer_num: layer number where rate limit profiles are saved
3532 * @rl_type: rate limit type min, max, or shared
3533 * @bw: bandwidth value
3534 *
3535 * This function prepares node element's bandwidth to SRL or EIR exclusively.
3536 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3537 * them may be set for any given element. This function needs to be called
3538 * with the scheduler lock held.
3539 */
3540static int
3541ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3542			   struct ice_sched_node *node,
3543			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3544{
3545	if (rl_type == ICE_SHARED_BW) {
3546		/* SRL node passed in this case, it may be different node */
3547		if (bw == ICE_SCHED_DFLT_BW)
3548			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3549			 * enables EIR to default. EIR is not set in this
3550			 * case, so no additional action is required.
3551			 */
3552			return 0;
3553
3554		/* SRL being configured, set EIR to default here.
3555		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3556		 * configures SRL
3557		 */
3558		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3559						  layer_num);
3560	} else if (rl_type == ICE_MAX_BW &&
3561		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3562		/* Remove Shared profile. Set default shared BW call
3563		 * removes shared profile for a node.
3564		 */
3565		return ice_sched_set_node_bw_dflt(pi, node,
3566						  ICE_SHARED_BW,
3567						  layer_num);
3568	}
3569	return 0;
3570}
3571
3572/**
3573 * ice_sched_set_node_bw - set node's bandwidth
3574 * @pi: port information structure
3575 * @node: tree node
3576 * @rl_type: rate limit type min, max, or shared
3577 * @bw: bandwidth in Kbps - Kilo bits per sec
3578 * @layer_num: layer number
3579 *
3580 * This function adds new profile corresponding to requested BW, configures
3581 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3582 * ID from local database. The caller needs to hold scheduler lock.
3583 */
3584int
3585ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3586		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3587{
3588	struct ice_aqc_rl_profile_info *rl_prof_info;
3589	struct ice_hw *hw = pi->hw;
3590	u16 old_id, rl_prof_id;
3591	int status = -EINVAL;
3592
3593	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3594	if (!rl_prof_info)
3595		return status;
3596
3597	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3598
3599	/* Save existing RL prof ID for later clean up */
3600	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3601	/* Configure BW scheduling parameters */
3602	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3603	if (status)
3604		return status;
3605
3606	/* New changes has been applied */
3607	/* Increment the profile ID reference count */
3608	rl_prof_info->prof_id_ref++;
3609
3610	/* Check for old ID removal */
3611	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3612	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3613		return 0;
3614
3615	return ice_sched_rm_rl_profile(pi, layer_num,
3616				       rl_prof_info->profile.flags &
3617				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3618}
3619
3620/**
3621 * ice_sched_set_node_priority - set node's priority
3622 * @pi: port information structure
3623 * @node: tree node
3624 * @priority: number 0-7 representing priority among siblings
3625 *
3626 * This function sets priority of a node among it's siblings.
3627 */
3628int
3629ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3630			    u16 priority)
3631{
3632	struct ice_aqc_txsched_elem_data buf;
3633	struct ice_aqc_txsched_elem *data;
3634
3635	buf = node->info;
3636	data = &buf.data;
3637
3638	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3639	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3640
3641	return ice_sched_update_elem(pi->hw, node, &buf);
3642}
3643
3644/**
3645 * ice_sched_set_node_weight - set node's weight
3646 * @pi: port information structure
3647 * @node: tree node
3648 * @weight: number 1-200 representing weight for WFQ
3649 *
3650 * This function sets weight of the node for WFQ algorithm.
3651 */
3652int
3653ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3654{
3655	struct ice_aqc_txsched_elem_data buf;
3656	struct ice_aqc_txsched_elem *data;
3657
3658	buf = node->info;
3659	data = &buf.data;
3660
3661	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3662			       ICE_AQC_ELEM_VALID_GENERIC;
3663	data->cir_bw.bw_alloc = cpu_to_le16(weight);
3664	data->eir_bw.bw_alloc = cpu_to_le16(weight);
3665
3666	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3667
3668	return ice_sched_update_elem(pi->hw, node, &buf);
3669}
3670
3671/**
3672 * ice_sched_set_node_bw_lmt - set node's BW limit
3673 * @pi: port information structure
3674 * @node: tree node
3675 * @rl_type: rate limit type min, max, or shared
3676 * @bw: bandwidth in Kbps - Kilo bits per sec
3677 *
3678 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3679 * EIR, or SRL. The caller needs to hold scheduler lock.
3680 */
3681int
3682ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3683			  enum ice_rl_type rl_type, u32 bw)
3684{
3685	struct ice_sched_node *cfg_node = node;
3686	int status;
3687
3688	struct ice_hw *hw;
3689	u8 layer_num;
3690
3691	if (!pi)
3692		return -EINVAL;
3693	hw = pi->hw;
3694	/* Remove unused RL profile IDs from HW and SW DB */
3695	ice_sched_rm_unused_rl_prof(pi);
3696	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3697						node->tx_sched_layer);
3698	if (layer_num >= hw->num_tx_sched_layers)
3699		return -EINVAL;
3700
3701	if (rl_type == ICE_SHARED_BW) {
3702		/* SRL node may be different */
3703		cfg_node = ice_sched_get_srl_node(node, layer_num);
3704		if (!cfg_node)
3705			return -EIO;
3706	}
3707	/* EIR BW and Shared BW profiles are mutually exclusive and
3708	 * hence only one of them may be set for any given element
3709	 */
3710	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3711					    bw);
3712	if (status)
3713		return status;
3714	if (bw == ICE_SCHED_DFLT_BW)
3715		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3716						  layer_num);
3717	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3718}
3719
3720/**
3721 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3722 * @pi: port information structure
3723 * @node: pointer to node structure
3724 * @rl_type: rate limit type min, max, or shared
3725 *
3726 * This function configures node element's BW rate limit profile ID of
3727 * type CIR, EIR, or SRL to default. This function needs to be called
3728 * with the scheduler lock held.
3729 */
3730static int
3731ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3732			       struct ice_sched_node *node,
3733			       enum ice_rl_type rl_type)
3734{
3735	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3736					 ICE_SCHED_DFLT_BW);
3737}
3738
3739/**
3740 * ice_sched_validate_srl_node - Check node for SRL applicability
3741 * @node: sched node to configure
3742 * @sel_layer: selected SRL layer
3743 *
3744 * This function checks if the SRL can be applied to a selected layer node on
3745 * behalf of the requested node (first argument). This function needs to be
3746 * called with scheduler lock held.
3747 */
3748static int
3749ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3750{
3751	/* SRL profiles are not available on all layers. Check if the
3752	 * SRL profile can be applied to a node above or below the
3753	 * requested node. SRL configuration is possible only if the
3754	 * selected layer's node has single child.
3755	 */
3756	if (sel_layer == node->tx_sched_layer ||
3757	    ((sel_layer == node->tx_sched_layer + 1) &&
3758	    node->num_children == 1) ||
3759	    ((sel_layer == node->tx_sched_layer - 1) &&
3760	    (node->parent && node->parent->num_children == 1)))
3761		return 0;
3762
3763	return -EIO;
3764}
3765
3766/**
3767 * ice_sched_save_q_bw - save queue node's BW information
3768 * @q_ctx: queue context structure
3769 * @rl_type: rate limit type min, max, or shared
3770 * @bw: bandwidth in Kbps - Kilo bits per sec
3771 *
3772 * Save BW information of queue type node for post replay use.
3773 */
3774static int
3775ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3776{
3777	switch (rl_type) {
3778	case ICE_MIN_BW:
3779		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3780		break;
3781	case ICE_MAX_BW:
3782		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3783		break;
3784	case ICE_SHARED_BW:
3785		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3786		break;
3787	default:
3788		return -EINVAL;
3789	}
3790	return 0;
3791}
3792
3793/**
3794 * ice_sched_set_q_bw_lmt - sets queue BW limit
3795 * @pi: port information structure
3796 * @vsi_handle: sw VSI handle
3797 * @tc: traffic class
3798 * @q_handle: software queue handle
3799 * @rl_type: min, max, or shared
3800 * @bw: bandwidth in Kbps
3801 *
3802 * This function sets BW limit of queue scheduling node.
3803 */
3804static int
3805ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3806		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3807{
3808	struct ice_sched_node *node;
3809	struct ice_q_ctx *q_ctx;
3810	int status = -EINVAL;
3811
3812	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3813		return -EINVAL;
3814	mutex_lock(&pi->sched_lock);
3815	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3816	if (!q_ctx)
3817		goto exit_q_bw_lmt;
3818	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3819	if (!node) {
3820		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3821		goto exit_q_bw_lmt;
3822	}
3823
3824	/* Return error if it is not a leaf node */
3825	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3826		goto exit_q_bw_lmt;
3827
3828	/* SRL bandwidth layer selection */
3829	if (rl_type == ICE_SHARED_BW) {
3830		u8 sel_layer; /* selected layer */
3831
3832		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3833							node->tx_sched_layer);
3834		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3835			status = -EINVAL;
3836			goto exit_q_bw_lmt;
3837		}
3838		status = ice_sched_validate_srl_node(node, sel_layer);
3839		if (status)
3840			goto exit_q_bw_lmt;
3841	}
3842
3843	if (bw == ICE_SCHED_DFLT_BW)
3844		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3845	else
3846		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3847
3848	if (!status)
3849		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3850
3851exit_q_bw_lmt:
3852	mutex_unlock(&pi->sched_lock);
3853	return status;
3854}
3855
3856/**
3857 * ice_cfg_q_bw_lmt - configure queue BW limit
3858 * @pi: port information structure
3859 * @vsi_handle: sw VSI handle
3860 * @tc: traffic class
3861 * @q_handle: software queue handle
3862 * @rl_type: min, max, or shared
3863 * @bw: bandwidth in Kbps
3864 *
3865 * This function configures BW limit of queue scheduling node.
3866 */
3867int
3868ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3869		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3870{
3871	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3872				      bw);
3873}
3874
3875/**
3876 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3877 * @pi: port information structure
3878 * @vsi_handle: sw VSI handle
3879 * @tc: traffic class
3880 * @q_handle: software queue handle
3881 * @rl_type: min, max, or shared
3882 *
3883 * This function configures BW default limit of queue scheduling node.
3884 */
3885int
3886ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3887		      u16 q_handle, enum ice_rl_type rl_type)
3888{
3889	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3890				      ICE_SCHED_DFLT_BW);
3891}
3892
3893/**
3894 * ice_sched_get_node_by_id_type - get node from ID type
3895 * @pi: port information structure
3896 * @id: identifier
3897 * @agg_type: type of aggregator
3898 * @tc: traffic class
3899 *
3900 * This function returns node identified by ID of type aggregator, and
3901 * based on traffic class (TC). This function needs to be called with
3902 * the scheduler lock held.
3903 */
3904static struct ice_sched_node *
3905ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3906			      enum ice_agg_type agg_type, u8 tc)
3907{
3908	struct ice_sched_node *node = NULL;
3909
3910	switch (agg_type) {
3911	case ICE_AGG_TYPE_VSI: {
3912		struct ice_vsi_ctx *vsi_ctx;
3913		u16 vsi_handle = (u16)id;
3914
3915		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3916			break;
3917		/* Get sched_vsi_info */
3918		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3919		if (!vsi_ctx)
3920			break;
3921		node = vsi_ctx->sched.vsi_node[tc];
3922		break;
3923	}
3924
3925	case ICE_AGG_TYPE_AGG: {
3926		struct ice_sched_node *tc_node;
3927
3928		tc_node = ice_sched_get_tc_node(pi, tc);
3929		if (tc_node)
3930			node = ice_sched_get_agg_node(pi, tc_node, id);
3931		break;
3932	}
3933
3934	default:
3935		break;
3936	}
3937
3938	return node;
3939}
3940
3941/**
3942 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3943 * @pi: port information structure
3944 * @id: ID (software VSI handle or AGG ID)
3945 * @agg_type: aggregator type (VSI or AGG type node)
3946 * @tc: traffic class
3947 * @rl_type: min or max
3948 * @bw: bandwidth in Kbps
3949 *
3950 * This function sets BW limit of VSI or Aggregator scheduling node
3951 * based on TC information from passed in argument BW.
3952 */
3953static int
3954ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3955				 enum ice_agg_type agg_type, u8 tc,
3956				 enum ice_rl_type rl_type, u32 bw)
3957{
3958	struct ice_sched_node *node;
3959	int status = -EINVAL;
3960
3961	if (!pi)
3962		return status;
3963
3964	if (rl_type == ICE_UNKNOWN_BW)
3965		return status;
3966
3967	mutex_lock(&pi->sched_lock);
3968	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3969	if (!node) {
3970		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3971		goto exit_set_node_bw_lmt_per_tc;
3972	}
3973	if (bw == ICE_SCHED_DFLT_BW)
3974		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3975	else
3976		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3977
3978exit_set_node_bw_lmt_per_tc:
3979	mutex_unlock(&pi->sched_lock);
3980	return status;
3981}
3982
3983/**
3984 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3985 * @pi: port information structure
3986 * @vsi_handle: software VSI handle
3987 * @tc: traffic class
3988 * @rl_type: min or max
3989 * @bw: bandwidth in Kbps
3990 *
3991 * This function configures BW limit of VSI scheduling node based on TC
3992 * information.
3993 */
3994int
3995ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3996			  enum ice_rl_type rl_type, u32 bw)
3997{
3998	int status;
3999
4000	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4001						  ICE_AGG_TYPE_VSI,
4002						  tc, rl_type, bw);
4003	if (!status) {
4004		mutex_lock(&pi->sched_lock);
4005		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4006		mutex_unlock(&pi->sched_lock);
4007	}
4008	return status;
4009}
4010
4011/**
4012 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4013 * @pi: port information structure
4014 * @vsi_handle: software VSI handle
4015 * @tc: traffic class
4016 * @rl_type: min or max
4017 *
4018 * This function configures default BW limit of VSI scheduling node based on TC
4019 * information.
4020 */
4021int
4022ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4023			       enum ice_rl_type rl_type)
4024{
4025	int status;
4026
4027	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4028						  ICE_AGG_TYPE_VSI,
4029						  tc, rl_type,
4030						  ICE_SCHED_DFLT_BW);
4031	if (!status) {
4032		mutex_lock(&pi->sched_lock);
4033		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4034					       ICE_SCHED_DFLT_BW);
4035		mutex_unlock(&pi->sched_lock);
4036	}
4037	return status;
4038}
4039
4040/**
4041 * ice_cfg_rl_burst_size - Set burst size value
4042 * @hw: pointer to the HW struct
4043 * @bytes: burst size in bytes
4044 *
4045 * This function configures/set the burst size to requested new value. The new
4046 * burst size value is used for future rate limit calls. It doesn't change the
4047 * existing or previously created RL profiles.
4048 */
4049int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4050{
4051	u16 burst_size_to_prog;
4052
4053	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4054	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4055		return -EINVAL;
4056	if (ice_round_to_num(bytes, 64) <=
4057	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4058		/* 64 byte granularity case */
4059		/* Disable MSB granularity bit */
4060		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4061		/* round number to nearest 64 byte granularity */
4062		bytes = ice_round_to_num(bytes, 64);
4063		/* The value is in 64 byte chunks */
4064		burst_size_to_prog |= (u16)(bytes / 64);
4065	} else {
4066		/* k bytes granularity case */
4067		/* Enable MSB granularity bit */
4068		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4069		/* round number to nearest 1024 granularity */
4070		bytes = ice_round_to_num(bytes, 1024);
4071		/* check rounding doesn't go beyond allowed */
4072		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4073			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4074		/* The value is in k bytes */
4075		burst_size_to_prog |= (u16)(bytes / 1024);
4076	}
4077	hw->max_burst_size = burst_size_to_prog;
4078	return 0;
4079}
4080
4081/**
4082 * ice_sched_replay_node_prio - re-configure node priority
4083 * @hw: pointer to the HW struct
4084 * @node: sched node to configure
4085 * @priority: priority value
4086 *
4087 * This function configures node element's priority value. It
4088 * needs to be called with scheduler lock held.
4089 */
4090static int
4091ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4092			   u8 priority)
4093{
4094	struct ice_aqc_txsched_elem_data buf;
4095	struct ice_aqc_txsched_elem *data;
4096	int status;
4097
4098	buf = node->info;
4099	data = &buf.data;
4100	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4101	data->generic = priority;
4102
4103	/* Configure element */
4104	status = ice_sched_update_elem(hw, node, &buf);
4105	return status;
4106}
4107
4108/**
4109 * ice_sched_replay_node_bw - replay node(s) BW
4110 * @hw: pointer to the HW struct
4111 * @node: sched node to configure
4112 * @bw_t_info: BW type information
4113 *
4114 * This function restores node's BW from bw_t_info. The caller needs
4115 * to hold the scheduler lock.
4116 */
4117static int
4118ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4119			 struct ice_bw_type_info *bw_t_info)
4120{
4121	struct ice_port_info *pi = hw->port_info;
4122	int status = -EINVAL;
4123	u16 bw_alloc;
4124
4125	if (!node)
4126		return status;
4127	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4128		return 0;
4129	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4130		status = ice_sched_replay_node_prio(hw, node,
4131						    bw_t_info->generic);
4132		if (status)
4133			return status;
4134	}
4135	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4136		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4137						   bw_t_info->cir_bw.bw);
4138		if (status)
4139			return status;
4140	}
4141	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4142		bw_alloc = bw_t_info->cir_bw.bw_alloc;
4143		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4144						     bw_alloc);
4145		if (status)
4146			return status;
4147	}
4148	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4149		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4150						   bw_t_info->eir_bw.bw);
4151		if (status)
4152			return status;
4153	}
4154	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4155		bw_alloc = bw_t_info->eir_bw.bw_alloc;
4156		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4157						     bw_alloc);
4158		if (status)
4159			return status;
4160	}
4161	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4162		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4163						   bw_t_info->shared_bw);
4164	return status;
4165}
4166
4167/**
4168 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4169 * @pi: port info struct
4170 * @tc_bitmap: 8 bits TC bitmap to check
4171 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4172 *
4173 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4174 * may be missing, it returns enabled TCs. This function needs to be called with
4175 * scheduler lock held.
4176 */
4177static void
4178ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4179			    unsigned long *tc_bitmap,
4180			    unsigned long *ena_tc_bitmap)
4181{
4182	u8 tc;
4183
4184	/* Some TC(s) may be missing after reset, adjust for replay */
4185	ice_for_each_traffic_class(tc)
4186		if (ice_is_tc_ena(*tc_bitmap, tc) &&
4187		    (ice_sched_get_tc_node(pi, tc)))
4188			set_bit(tc, ena_tc_bitmap);
4189}
4190
4191/**
4192 * ice_sched_replay_agg - recreate aggregator node(s)
4193 * @hw: pointer to the HW struct
4194 *
4195 * This function recreate aggregator type nodes which are not replayed earlier.
4196 * It also replay aggregator BW information. These aggregator nodes are not
4197 * associated with VSI type node yet.
4198 */
4199void ice_sched_replay_agg(struct ice_hw *hw)
4200{
4201	struct ice_port_info *pi = hw->port_info;
4202	struct ice_sched_agg_info *agg_info;
4203
4204	mutex_lock(&pi->sched_lock);
4205	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4206		/* replay aggregator (re-create aggregator node) */
4207		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4208				  ICE_MAX_TRAFFIC_CLASS)) {
4209			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4210			int status;
4211
4212			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4213			ice_sched_get_ena_tc_bitmap(pi,
4214						    agg_info->replay_tc_bitmap,
4215						    replay_bitmap);
4216			status = ice_sched_cfg_agg(hw->port_info,
4217						   agg_info->agg_id,
4218						   ICE_AGG_TYPE_AGG,
4219						   replay_bitmap);
4220			if (status) {
4221				dev_info(ice_hw_to_dev(hw),
4222					 "Replay agg id[%d] failed\n",
4223					 agg_info->agg_id);
4224				/* Move on to next one */
4225				continue;
4226			}
4227		}
4228	mutex_unlock(&pi->sched_lock);
4229}
4230
4231/**
4232 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4233 * @hw: pointer to the HW struct
4234 *
4235 * This function initialize aggregator(s) TC bitmap to zero. A required
4236 * preinit step for replaying aggregators.
4237 */
4238void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4239{
4240	struct ice_port_info *pi = hw->port_info;
4241	struct ice_sched_agg_info *agg_info;
4242
4243	mutex_lock(&pi->sched_lock);
4244	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4245		struct ice_sched_agg_vsi_info *agg_vsi_info;
4246
4247		agg_info->tc_bitmap[0] = 0;
4248		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4249				    list_entry)
4250			agg_vsi_info->tc_bitmap[0] = 0;
4251	}
4252	mutex_unlock(&pi->sched_lock);
4253}
4254
4255/**
4256 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4257 * @hw: pointer to the HW struct
4258 * @vsi_handle: software VSI handle
4259 *
4260 * This function replays aggregator node, VSI to aggregator type nodes, and
4261 * their node bandwidth information. This function needs to be called with
4262 * scheduler lock held.
4263 */
4264static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4265{
4266	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4267	struct ice_sched_agg_vsi_info *agg_vsi_info;
4268	struct ice_port_info *pi = hw->port_info;
4269	struct ice_sched_agg_info *agg_info;
4270	int status;
4271
4272	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4273	if (!ice_is_vsi_valid(hw, vsi_handle))
4274		return -EINVAL;
4275	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4276	if (!agg_info)
4277		return 0; /* Not present in list - default Agg case */
4278	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4279	if (!agg_vsi_info)
4280		return 0; /* Not present in list - default Agg case */
4281	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4282				    replay_bitmap);
4283	/* Replay aggregator node associated to vsi_handle */
4284	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4285				   ICE_AGG_TYPE_AGG, replay_bitmap);
4286	if (status)
4287		return status;
4288
4289	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4290	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4291				    replay_bitmap);
4292	/* Move this VSI (vsi_handle) to above aggregator */
4293	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4294					  replay_bitmap);
4295}
4296
4297/**
4298 * ice_replay_vsi_agg - replay VSI to aggregator node
4299 * @hw: pointer to the HW struct
4300 * @vsi_handle: software VSI handle
4301 *
4302 * This function replays association of VSI to aggregator type nodes, and
4303 * node bandwidth information.
4304 */
4305int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4306{
4307	struct ice_port_info *pi = hw->port_info;
4308	int status;
4309
4310	mutex_lock(&pi->sched_lock);
4311	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4312	mutex_unlock(&pi->sched_lock);
4313	return status;
4314}
4315
4316/**
4317 * ice_sched_replay_q_bw - replay queue type node BW
4318 * @pi: port information structure
4319 * @q_ctx: queue context structure
4320 *
4321 * This function replays queue type node bandwidth. This function needs to be
4322 * called with scheduler lock held.
4323 */
4324int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4325{
4326	struct ice_sched_node *q_node;
4327
4328	/* Following also checks the presence of node in tree */
4329	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4330	if (!q_node)
4331		return -EINVAL;
4332	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4333}
4334