1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2021, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_lib.h"
6#include "ice_trace.h"
7
8#define E810_OUT_PROP_DELAY_NS 1
9
10#define UNKNOWN_INCVAL_E82X 0x100000000ULL
11
12static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13	/* name    idx   func         chan */
14	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
15	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
16	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
18	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
19};
20
21/**
22 * ice_get_sma_config_e810t
23 * @hw: pointer to the hw struct
24 * @ptp_pins: pointer to the ptp_pin_desc struture
25 *
26 * Read the configuration of the SMA control logic and put it into the
27 * ptp_pin_desc structure
28 */
29static int
30ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
31{
32	u8 data, i;
33	int status;
34
35	/* Read initial pin state */
36	status = ice_read_sma_ctrl_e810t(hw, &data);
37	if (status)
38		return status;
39
40	/* initialize with defaults */
41	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42		strscpy(ptp_pins[i].name, ice_pin_desc_e810t[i].name,
43			sizeof(ptp_pins[i].name));
44		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
47	}
48
49	/* Parse SMA1/UFL1 */
50	switch (data & ICE_SMA1_MASK_E810T) {
51	case ICE_SMA1_MASK_E810T:
52	default:
53		ptp_pins[SMA1].func = PTP_PF_NONE;
54		ptp_pins[UFL1].func = PTP_PF_NONE;
55		break;
56	case ICE_SMA1_DIR_EN_E810T:
57		ptp_pins[SMA1].func = PTP_PF_PEROUT;
58		ptp_pins[UFL1].func = PTP_PF_NONE;
59		break;
60	case ICE_SMA1_TX_EN_E810T:
61		ptp_pins[SMA1].func = PTP_PF_EXTTS;
62		ptp_pins[UFL1].func = PTP_PF_NONE;
63		break;
64	case 0:
65		ptp_pins[SMA1].func = PTP_PF_EXTTS;
66		ptp_pins[UFL1].func = PTP_PF_PEROUT;
67		break;
68	}
69
70	/* Parse SMA2/UFL2 */
71	switch (data & ICE_SMA2_MASK_E810T) {
72	case ICE_SMA2_MASK_E810T:
73	default:
74		ptp_pins[SMA2].func = PTP_PF_NONE;
75		ptp_pins[UFL2].func = PTP_PF_NONE;
76		break;
77	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78		ptp_pins[SMA2].func = PTP_PF_EXTTS;
79		ptp_pins[UFL2].func = PTP_PF_NONE;
80		break;
81	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82		ptp_pins[SMA2].func = PTP_PF_PEROUT;
83		ptp_pins[UFL2].func = PTP_PF_NONE;
84		break;
85	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86		ptp_pins[SMA2].func = PTP_PF_NONE;
87		ptp_pins[UFL2].func = PTP_PF_EXTTS;
88		break;
89	case ICE_SMA2_DIR_EN_E810T:
90		ptp_pins[SMA2].func = PTP_PF_PEROUT;
91		ptp_pins[UFL2].func = PTP_PF_EXTTS;
92		break;
93	}
94
95	return 0;
96}
97
98/**
99 * ice_ptp_set_sma_config_e810t
100 * @hw: pointer to the hw struct
101 * @ptp_pins: pointer to the ptp_pin_desc struture
102 *
103 * Set the configuration of the SMA control logic based on the configuration in
104 * num_pins parameter
105 */
106static int
107ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108			     const struct ptp_pin_desc *ptp_pins)
109{
110	int status;
111	u8 data;
112
113	/* SMA1 and UFL1 cannot be set to TX at the same time */
114	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
116		return -EINVAL;
117
118	/* SMA2 and UFL2 cannot be set to RX at the same time */
119	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
121		return -EINVAL;
122
123	/* Read initial pin state value */
124	status = ice_read_sma_ctrl_e810t(hw, &data);
125	if (status)
126		return status;
127
128	/* Set the right sate based on the desired configuration */
129	data &= ~ICE_SMA1_MASK_E810T;
130	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131	    ptp_pins[UFL1].func == PTP_PF_NONE) {
132		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133		data |= ICE_SMA1_MASK_E810T;
134	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135		   ptp_pins[UFL1].func == PTP_PF_NONE) {
136		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137		data |= ICE_SMA1_TX_EN_E810T;
138	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140		/* U.FL 1 TX will always enable SMA 1 RX */
141		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146		   ptp_pins[UFL1].func == PTP_PF_NONE) {
147		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148		data |= ICE_SMA1_DIR_EN_E810T;
149	}
150
151	data &= ~ICE_SMA2_MASK_E810T;
152	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153	    ptp_pins[UFL2].func == PTP_PF_NONE) {
154		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155		data |= ICE_SMA2_MASK_E810T;
156	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157			ptp_pins[UFL2].func == PTP_PF_NONE) {
158		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159		data |= (ICE_SMA2_TX_EN_E810T |
160			 ICE_SMA2_UFL2_RX_DIS_E810T);
161	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166		   ptp_pins[UFL2].func == PTP_PF_NONE) {
167		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168		data |= (ICE_SMA2_DIR_EN_E810T |
169			 ICE_SMA2_UFL2_RX_DIS_E810T);
170	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173		data |= ICE_SMA2_DIR_EN_E810T;
174	}
175
176	return ice_write_sma_ctrl_e810t(hw, data);
177}
178
179/**
180 * ice_ptp_set_sma_e810t
181 * @info: the driver's PTP info structure
182 * @pin: pin index in kernel structure
183 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
184 *
185 * Set the configuration of a single SMA pin
186 */
187static int
188ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189		      enum ptp_pin_function func)
190{
191	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192	struct ice_pf *pf = ptp_info_to_pf(info);
193	struct ice_hw *hw = &pf->hw;
194	int err;
195
196	if (pin < SMA1 || func > PTP_PF_PEROUT)
197		return -EOPNOTSUPP;
198
199	err = ice_get_sma_config_e810t(hw, ptp_pins);
200	if (err)
201		return err;
202
203	/* Disable the same function on the other pin sharing the channel */
204	if (pin == SMA1 && ptp_pins[UFL1].func == func)
205		ptp_pins[UFL1].func = PTP_PF_NONE;
206	if (pin == UFL1 && ptp_pins[SMA1].func == func)
207		ptp_pins[SMA1].func = PTP_PF_NONE;
208
209	if (pin == SMA2 && ptp_pins[UFL2].func == func)
210		ptp_pins[UFL2].func = PTP_PF_NONE;
211	if (pin == UFL2 && ptp_pins[SMA2].func == func)
212		ptp_pins[SMA2].func = PTP_PF_NONE;
213
214	/* Set up new pin function in the temp table */
215	ptp_pins[pin].func = func;
216
217	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
218}
219
220/**
221 * ice_verify_pin_e810t
222 * @info: the driver's PTP info structure
223 * @pin: Pin index
224 * @func: Assigned function
225 * @chan: Assigned channel
226 *
227 * Verify if pin supports requested pin function. If the Check pins consistency.
228 * Reconfigure the SMA logic attached to the given pin to enable its
229 * desired functionality
230 */
231static int
232ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233		     enum ptp_pin_function func, unsigned int chan)
234{
235	/* Don't allow channel reassignment */
236	if (chan != ice_pin_desc_e810t[pin].chan)
237		return -EOPNOTSUPP;
238
239	/* Check if functions are properly assigned */
240	switch (func) {
241	case PTP_PF_NONE:
242		break;
243	case PTP_PF_EXTTS:
244		if (pin == UFL1)
245			return -EOPNOTSUPP;
246		break;
247	case PTP_PF_PEROUT:
248		if (pin == UFL2 || pin == GNSS)
249			return -EOPNOTSUPP;
250		break;
251	case PTP_PF_PHYSYNC:
252		return -EOPNOTSUPP;
253	}
254
255	return ice_ptp_set_sma_e810t(info, pin, func);
256}
257
258/**
259 * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
260 * @pf: Board private structure
261 *
262 * Program the device to respond appropriately to the Tx timestamp interrupt
263 * cause.
264 */
265static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
266{
267	struct ice_hw *hw = &pf->hw;
268	bool enable;
269	u32 val;
270
271	switch (pf->ptp.tx_interrupt_mode) {
272	case ICE_PTP_TX_INTERRUPT_ALL:
273		/* React to interrupts across all quads. */
274		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
275		enable = true;
276		break;
277	case ICE_PTP_TX_INTERRUPT_NONE:
278		/* Do not react to interrupts on any quad. */
279		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
280		enable = false;
281		break;
282	case ICE_PTP_TX_INTERRUPT_SELF:
283	default:
284		enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
285		break;
286	}
287
288	/* Configure the Tx timestamp interrupt */
289	val = rd32(hw, PFINT_OICR_ENA);
290	if (enable)
291		val |= PFINT_OICR_TSYN_TX_M;
292	else
293		val &= ~PFINT_OICR_TSYN_TX_M;
294	wr32(hw, PFINT_OICR_ENA, val);
295}
296
297/**
298 * ice_set_rx_tstamp - Enable or disable Rx timestamping
299 * @pf: The PF pointer to search in
300 * @on: bool value for whether timestamps are enabled or disabled
301 */
302static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
303{
304	struct ice_vsi *vsi;
305	u16 i;
306
307	vsi = ice_get_main_vsi(pf);
308	if (!vsi || !vsi->rx_rings)
309		return;
310
311	/* Set the timestamp flag for all the Rx rings */
312	ice_for_each_rxq(vsi, i) {
313		if (!vsi->rx_rings[i])
314			continue;
315		vsi->rx_rings[i]->ptp_rx = on;
316	}
317}
318
319/**
320 * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
321 * @pf: Board private structure
322 *
323 * Called during preparation for reset to temporarily disable timestamping on
324 * the device. Called during remove to disable timestamping while cleaning up
325 * driver resources.
326 */
327static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
328{
329	struct ice_hw *hw = &pf->hw;
330	u32 val;
331
332	val = rd32(hw, PFINT_OICR_ENA);
333	val &= ~PFINT_OICR_TSYN_TX_M;
334	wr32(hw, PFINT_OICR_ENA, val);
335
336	ice_set_rx_tstamp(pf, false);
337}
338
339/**
340 * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
341 * @pf: Board private structure
342 *
343 * Called at the end of rebuild to restore timestamp configuration after
344 * a device reset.
345 */
346void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
347{
348	struct ice_hw *hw = &pf->hw;
349	bool enable_rx;
350
351	ice_ptp_cfg_tx_interrupt(pf);
352
353	enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
354	ice_set_rx_tstamp(pf, enable_rx);
355
356	/* Trigger an immediate software interrupt to ensure that timestamps
357	 * which occurred during reset are handled now.
358	 */
359	wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
360	ice_flush(hw);
361}
362
363/**
364 * ice_ptp_read_src_clk_reg - Read the source clock register
365 * @pf: Board private structure
366 * @sts: Optional parameter for holding a pair of system timestamps from
367 *       the system clock. Will be ignored if NULL is given.
368 */
369static u64
370ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
371{
372	struct ice_hw *hw = &pf->hw;
373	u32 hi, lo, lo2;
374	u8 tmr_idx;
375
376	tmr_idx = ice_get_ptp_src_clock_index(hw);
377	/* Read the system timestamp pre PHC read */
378	ptp_read_system_prets(sts);
379
380	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
381
382	/* Read the system timestamp post PHC read */
383	ptp_read_system_postts(sts);
384
385	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
386	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
387
388	if (lo2 < lo) {
389		/* if TIME_L rolled over read TIME_L again and update
390		 * system timestamps
391		 */
392		ptp_read_system_prets(sts);
393		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
394		ptp_read_system_postts(sts);
395		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
396	}
397
398	return ((u64)hi << 32) | lo;
399}
400
401/**
402 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
403 * @cached_phc_time: recently cached copy of PHC time
404 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
405 *
406 * Hardware captures timestamps which contain only 32 bits of nominal
407 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
408 * Note that the captured timestamp values may be 40 bits, but the lower
409 * 8 bits are sub-nanoseconds and generally discarded.
410 *
411 * Extend the 32bit nanosecond timestamp using the following algorithm and
412 * assumptions:
413 *
414 * 1) have a recently cached copy of the PHC time
415 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
416 *    seconds) before or after the PHC time was captured.
417 * 3) calculate the delta between the cached time and the timestamp
418 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
419 *    captured after the PHC time. In this case, the full timestamp is just
420 *    the cached PHC time plus the delta.
421 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
422 *    timestamp was captured *before* the PHC time, i.e. because the PHC
423 *    cache was updated after the timestamp was captured by hardware. In this
424 *    case, the full timestamp is the cached time minus the inverse delta.
425 *
426 * This algorithm works even if the PHC time was updated after a Tx timestamp
427 * was requested, but before the Tx timestamp event was reported from
428 * hardware.
429 *
430 * This calculation primarily relies on keeping the cached PHC time up to
431 * date. If the timestamp was captured more than 2^31 nanoseconds after the
432 * PHC time, it is possible that the lower 32bits of PHC time have
433 * overflowed more than once, and we might generate an incorrect timestamp.
434 *
435 * This is prevented by (a) periodically updating the cached PHC time once
436 * a second, and (b) discarding any Tx timestamp packet if it has waited for
437 * a timestamp for more than one second.
438 */
439static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
440{
441	u32 delta, phc_time_lo;
442	u64 ns;
443
444	/* Extract the lower 32 bits of the PHC time */
445	phc_time_lo = (u32)cached_phc_time;
446
447	/* Calculate the delta between the lower 32bits of the cached PHC
448	 * time and the in_tstamp value
449	 */
450	delta = (in_tstamp - phc_time_lo);
451
452	/* Do not assume that the in_tstamp is always more recent than the
453	 * cached PHC time. If the delta is large, it indicates that the
454	 * in_tstamp was taken in the past, and should be converted
455	 * forward.
456	 */
457	if (delta > (U32_MAX / 2)) {
458		/* reverse the delta calculation here */
459		delta = (phc_time_lo - in_tstamp);
460		ns = cached_phc_time - delta;
461	} else {
462		ns = cached_phc_time + delta;
463	}
464
465	return ns;
466}
467
468/**
469 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
470 * @pf: Board private structure
471 * @in_tstamp: Ingress/egress 40b timestamp value
472 *
473 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
474 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
475 *
476 *  *--------------------------------------------------------------*
477 *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
478 *  *--------------------------------------------------------------*
479 *
480 * The low bit is an indicator of whether the timestamp is valid. The next
481 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
482 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
483 *
484 * It is assumed that the caller verifies the timestamp is valid prior to
485 * calling this function.
486 *
487 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
488 * time stored in the device private PTP structure as the basis for timestamp
489 * extension.
490 *
491 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
492 * algorithm.
493 */
494static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
495{
496	const u64 mask = GENMASK_ULL(31, 0);
497	unsigned long discard_time;
498
499	/* Discard the hardware timestamp if the cached PHC time is too old */
500	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
501	if (time_is_before_jiffies(discard_time)) {
502		pf->ptp.tx_hwtstamp_discarded++;
503		return 0;
504	}
505
506	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
507				     (in_tstamp >> 8) & mask);
508}
509
510/**
511 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
512 * @tx: the PTP Tx timestamp tracker to check
513 *
514 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
515 * to accept new timestamp requests.
516 *
517 * Assumes the tx->lock spinlock is already held.
518 */
519static bool
520ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
521{
522	lockdep_assert_held(&tx->lock);
523
524	return tx->init && !tx->calibrating;
525}
526
527/**
528 * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
529 * @tx: the PTP Tx timestamp tracker
530 * @idx: index of the timestamp to request
531 */
532void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
533{
534	struct ice_ptp_port *ptp_port;
535	struct sk_buff *skb;
536	struct ice_pf *pf;
537
538	if (!tx->init)
539		return;
540
541	ptp_port = container_of(tx, struct ice_ptp_port, tx);
542	pf = ptp_port_to_pf(ptp_port);
543
544	/* Drop packets which have waited for more than 2 seconds */
545	if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
546		/* Count the number of Tx timestamps that timed out */
547		pf->ptp.tx_hwtstamp_timeouts++;
548
549		skb = tx->tstamps[idx].skb;
550		tx->tstamps[idx].skb = NULL;
551		clear_bit(idx, tx->in_use);
552
553		dev_kfree_skb_any(skb);
554		return;
555	}
556
557	ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
558
559	/* Write TS index to read to the PF register so the FW can read it */
560	wr32(&pf->hw, PF_SB_ATQBAL,
561	     TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) |
562	     TS_LL_READ_TS);
563	tx->last_ll_ts_idx_read = idx;
564}
565
566/**
567 * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
568 * @tx: the PTP Tx timestamp tracker
569 */
570void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
571{
572	struct skb_shared_hwtstamps shhwtstamps = {};
573	u8 idx = tx->last_ll_ts_idx_read;
574	struct ice_ptp_port *ptp_port;
575	u64 raw_tstamp, tstamp;
576	bool drop_ts = false;
577	struct sk_buff *skb;
578	struct ice_pf *pf;
579	u32 val;
580
581	if (!tx->init || tx->last_ll_ts_idx_read < 0)
582		return;
583
584	ptp_port = container_of(tx, struct ice_ptp_port, tx);
585	pf = ptp_port_to_pf(ptp_port);
586
587	ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
588
589	val = rd32(&pf->hw, PF_SB_ATQBAL);
590
591	/* When the bit is cleared, the TS is ready in the register */
592	if (val & TS_LL_READ_TS) {
593		dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
594		return;
595	}
596
597	/* High 8 bit value of the TS is on the bits 16:23 */
598	raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val);
599	raw_tstamp <<= 32;
600
601	/* Read the low 32 bit value */
602	raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH);
603
604	/* Devices using this interface always verify the timestamp differs
605	 * relative to the last cached timestamp value.
606	 */
607	if (raw_tstamp == tx->tstamps[idx].cached_tstamp)
608		return;
609
610	tx->tstamps[idx].cached_tstamp = raw_tstamp;
611	clear_bit(idx, tx->in_use);
612	skb = tx->tstamps[idx].skb;
613	tx->tstamps[idx].skb = NULL;
614	if (test_and_clear_bit(idx, tx->stale))
615		drop_ts = true;
616
617	if (!skb)
618		return;
619
620	if (drop_ts) {
621		dev_kfree_skb_any(skb);
622		return;
623	}
624
625	/* Extend the timestamp using cached PHC time */
626	tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
627	if (tstamp) {
628		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
629		ice_trace(tx_tstamp_complete, skb, idx);
630	}
631
632	skb_tstamp_tx(skb, &shhwtstamps);
633	dev_kfree_skb_any(skb);
634}
635
636/**
637 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
638 * @tx: the PTP Tx timestamp tracker
639 *
640 * Process timestamps captured by the PHY associated with this port. To do
641 * this, loop over each index with a waiting skb.
642 *
643 * If a given index has a valid timestamp, perform the following steps:
644 *
645 * 1) check that the timestamp request is not stale
646 * 2) check that a timestamp is ready and available in the PHY memory bank
647 * 3) read and copy the timestamp out of the PHY register
648 * 4) unlock the index by clearing the associated in_use bit
649 * 5) check if the timestamp is stale, and discard if so
650 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
651 * 7) send this 64 bit timestamp to the stack
652 *
653 * Note that we do not hold the tracking lock while reading the Tx timestamp.
654 * This is because reading the timestamp requires taking a mutex that might
655 * sleep.
656 *
657 * The only place where we set in_use is when a new timestamp is initiated
658 * with a slot index. This is only called in the hard xmit routine where an
659 * SKB has a request flag set. The only places where we clear this bit is this
660 * function, or during teardown when the Tx timestamp tracker is being
661 * removed. A timestamp index will never be re-used until the in_use bit for
662 * that index is cleared.
663 *
664 * If a Tx thread starts a new timestamp, we might not begin processing it
665 * right away but we will notice it at the end when we re-queue the task.
666 *
667 * If a Tx thread starts a new timestamp just after this function exits, the
668 * interrupt for that timestamp should re-trigger this function once
669 * a timestamp is ready.
670 *
671 * In cases where the PTP hardware clock was directly adjusted, some
672 * timestamps may not be able to safely use the timestamp extension math. In
673 * this case, software will set the stale bit for any outstanding Tx
674 * timestamps when the clock is adjusted. Then this function will discard
675 * those captured timestamps instead of sending them to the stack.
676 *
677 * If a Tx packet has been waiting for more than 2 seconds, it is not possible
678 * to correctly extend the timestamp using the cached PHC time. It is
679 * extremely unlikely that a packet will ever take this long to timestamp. If
680 * we detect a Tx timestamp request that has waited for this long we assume
681 * the packet will never be sent by hardware and discard it without reading
682 * the timestamp register.
683 */
684static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
685{
686	struct ice_ptp_port *ptp_port;
687	unsigned long flags;
688	struct ice_pf *pf;
689	struct ice_hw *hw;
690	u64 tstamp_ready;
691	bool link_up;
692	int err;
693	u8 idx;
694
695	ptp_port = container_of(tx, struct ice_ptp_port, tx);
696	pf = ptp_port_to_pf(ptp_port);
697	hw = &pf->hw;
698
699	/* Read the Tx ready status first */
700	if (tx->has_ready_bitmap) {
701		err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
702		if (err)
703			return;
704	}
705
706	/* Drop packets if the link went down */
707	link_up = ptp_port->link_up;
708
709	for_each_set_bit(idx, tx->in_use, tx->len) {
710		struct skb_shared_hwtstamps shhwtstamps = {};
711		u8 phy_idx = idx + tx->offset;
712		u64 raw_tstamp = 0, tstamp;
713		bool drop_ts = !link_up;
714		struct sk_buff *skb;
715
716		/* Drop packets which have waited for more than 2 seconds */
717		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
718			drop_ts = true;
719
720			/* Count the number of Tx timestamps that timed out */
721			pf->ptp.tx_hwtstamp_timeouts++;
722		}
723
724		/* Only read a timestamp from the PHY if its marked as ready
725		 * by the tstamp_ready register. This avoids unnecessary
726		 * reading of timestamps which are not yet valid. This is
727		 * important as we must read all timestamps which are valid
728		 * and only timestamps which are valid during each interrupt.
729		 * If we do not, the hardware logic for generating a new
730		 * interrupt can get stuck on some devices.
731		 */
732		if (tx->has_ready_bitmap &&
733		    !(tstamp_ready & BIT_ULL(phy_idx))) {
734			if (drop_ts)
735				goto skip_ts_read;
736
737			continue;
738		}
739
740		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
741
742		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
743		if (err && !drop_ts)
744			continue;
745
746		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
747
748		/* For PHYs which don't implement a proper timestamp ready
749		 * bitmap, verify that the timestamp value is different
750		 * from the last cached timestamp. If it is not, skip this for
751		 * now assuming it hasn't yet been captured by hardware.
752		 */
753		if (!drop_ts && !tx->has_ready_bitmap &&
754		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
755			continue;
756
757		/* Discard any timestamp value without the valid bit set */
758		if (!(raw_tstamp & ICE_PTP_TS_VALID))
759			drop_ts = true;
760
761skip_ts_read:
762		spin_lock_irqsave(&tx->lock, flags);
763		if (!tx->has_ready_bitmap && raw_tstamp)
764			tx->tstamps[idx].cached_tstamp = raw_tstamp;
765		clear_bit(idx, tx->in_use);
766		skb = tx->tstamps[idx].skb;
767		tx->tstamps[idx].skb = NULL;
768		if (test_and_clear_bit(idx, tx->stale))
769			drop_ts = true;
770		spin_unlock_irqrestore(&tx->lock, flags);
771
772		/* It is unlikely but possible that the SKB will have been
773		 * flushed at this point due to link change or teardown.
774		 */
775		if (!skb)
776			continue;
777
778		if (drop_ts) {
779			dev_kfree_skb_any(skb);
780			continue;
781		}
782
783		/* Extend the timestamp using cached PHC time */
784		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
785		if (tstamp) {
786			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
787			ice_trace(tx_tstamp_complete, skb, idx);
788		}
789
790		skb_tstamp_tx(skb, &shhwtstamps);
791		dev_kfree_skb_any(skb);
792	}
793}
794
795/**
796 * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
797 * @pf: Board private structure
798 */
799static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
800{
801	struct ice_ptp_port *port;
802	unsigned int i;
803
804	mutex_lock(&pf->ptp.ports_owner.lock);
805	list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) {
806		struct ice_ptp_tx *tx = &port->tx;
807
808		if (!tx || !tx->init)
809			continue;
810
811		ice_ptp_process_tx_tstamp(tx);
812	}
813	mutex_unlock(&pf->ptp.ports_owner.lock);
814
815	for (i = 0; i < ICE_MAX_QUAD; i++) {
816		u64 tstamp_ready;
817		int err;
818
819		/* Read the Tx ready status first */
820		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
821		if (err)
822			break;
823		else if (tstamp_ready)
824			return ICE_TX_TSTAMP_WORK_PENDING;
825	}
826
827	return ICE_TX_TSTAMP_WORK_DONE;
828}
829
830/**
831 * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
832 * @tx: Tx tracking structure to initialize
833 *
834 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
835 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
836 */
837static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
838{
839	bool more_timestamps;
840	unsigned long flags;
841
842	if (!tx->init)
843		return ICE_TX_TSTAMP_WORK_DONE;
844
845	/* Process the Tx timestamp tracker */
846	ice_ptp_process_tx_tstamp(tx);
847
848	/* Check if there are outstanding Tx timestamps */
849	spin_lock_irqsave(&tx->lock, flags);
850	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
851	spin_unlock_irqrestore(&tx->lock, flags);
852
853	if (more_timestamps)
854		return ICE_TX_TSTAMP_WORK_PENDING;
855
856	return ICE_TX_TSTAMP_WORK_DONE;
857}
858
859/**
860 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
861 * @tx: Tx tracking structure to initialize
862 *
863 * Assumes that the length has already been initialized. Do not call directly,
864 * use the ice_ptp_init_tx_* instead.
865 */
866static int
867ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
868{
869	unsigned long *in_use, *stale;
870	struct ice_tx_tstamp *tstamps;
871
872	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
873	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
874	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
875
876	if (!tstamps || !in_use || !stale) {
877		kfree(tstamps);
878		bitmap_free(in_use);
879		bitmap_free(stale);
880
881		return -ENOMEM;
882	}
883
884	tx->tstamps = tstamps;
885	tx->in_use = in_use;
886	tx->stale = stale;
887	tx->init = 1;
888	tx->last_ll_ts_idx_read = -1;
889
890	spin_lock_init(&tx->lock);
891
892	return 0;
893}
894
895/**
896 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
897 * @pf: Board private structure
898 * @tx: the tracker to flush
899 *
900 * Called during teardown when a Tx tracker is being removed.
901 */
902static void
903ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
904{
905	struct ice_hw *hw = &pf->hw;
906	unsigned long flags;
907	u64 tstamp_ready;
908	int err;
909	u8 idx;
910
911	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
912	if (err) {
913		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
914			tx->block, err);
915
916		/* If we fail to read the Tx timestamp ready bitmap just
917		 * skip clearing the PHY timestamps.
918		 */
919		tstamp_ready = 0;
920	}
921
922	for_each_set_bit(idx, tx->in_use, tx->len) {
923		u8 phy_idx = idx + tx->offset;
924		struct sk_buff *skb;
925
926		/* In case this timestamp is ready, we need to clear it. */
927		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
928			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
929
930		spin_lock_irqsave(&tx->lock, flags);
931		skb = tx->tstamps[idx].skb;
932		tx->tstamps[idx].skb = NULL;
933		clear_bit(idx, tx->in_use);
934		clear_bit(idx, tx->stale);
935		spin_unlock_irqrestore(&tx->lock, flags);
936
937		/* Count the number of Tx timestamps flushed */
938		pf->ptp.tx_hwtstamp_flushed++;
939
940		/* Free the SKB after we've cleared the bit */
941		dev_kfree_skb_any(skb);
942	}
943}
944
945/**
946 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
947 * @tx: the tracker to mark
948 *
949 * Mark currently outstanding Tx timestamps as stale. This prevents sending
950 * their timestamp value to the stack. This is required to prevent extending
951 * the 40bit hardware timestamp incorrectly.
952 *
953 * This should be called when the PTP clock is modified such as after a set
954 * time request.
955 */
956static void
957ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
958{
959	unsigned long flags;
960
961	spin_lock_irqsave(&tx->lock, flags);
962	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
963	spin_unlock_irqrestore(&tx->lock, flags);
964}
965
966/**
967 * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock
968 * @pf: Board private structure
969 *
970 * Called by the clock owner to flush all the Tx timestamp trackers associated
971 * with the clock.
972 */
973static void
974ice_ptp_flush_all_tx_tracker(struct ice_pf *pf)
975{
976	struct ice_ptp_port *port;
977
978	list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member)
979		ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx);
980}
981
982/**
983 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
984 * @pf: Board private structure
985 * @tx: Tx tracking structure to release
986 *
987 * Free memory associated with the Tx timestamp tracker.
988 */
989static void
990ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
991{
992	unsigned long flags;
993
994	spin_lock_irqsave(&tx->lock, flags);
995	tx->init = 0;
996	spin_unlock_irqrestore(&tx->lock, flags);
997
998	/* wait for potentially outstanding interrupt to complete */
999	synchronize_irq(pf->oicr_irq.virq);
1000
1001	ice_ptp_flush_tx_tracker(pf, tx);
1002
1003	kfree(tx->tstamps);
1004	tx->tstamps = NULL;
1005
1006	bitmap_free(tx->in_use);
1007	tx->in_use = NULL;
1008
1009	bitmap_free(tx->stale);
1010	tx->stale = NULL;
1011
1012	tx->len = 0;
1013}
1014
1015/**
1016 * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
1017 * @pf: Board private structure
1018 * @tx: the Tx tracking structure to initialize
1019 * @port: the port this structure tracks
1020 *
1021 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
1022 * the timestamp block is shared for all ports in the same quad. To avoid
1023 * ports using the same timestamp index, logically break the block of
1024 * registers into chunks based on the port number.
1025 */
1026static int
1027ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
1028{
1029	tx->block = port / ICE_PORTS_PER_QUAD;
1030	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
1031	tx->len = INDEX_PER_PORT_E82X;
1032	tx->has_ready_bitmap = 1;
1033
1034	return ice_ptp_alloc_tx_tracker(tx);
1035}
1036
1037/**
1038 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
1039 * @pf: Board private structure
1040 * @tx: the Tx tracking structure to initialize
1041 *
1042 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
1043 * port has its own block of timestamps, independent of the other ports.
1044 */
1045static int
1046ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1047{
1048	tx->block = pf->hw.port_info->lport;
1049	tx->offset = 0;
1050	tx->len = INDEX_PER_PORT_E810;
1051	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
1052	 * verify new timestamps against cached copy of the last read
1053	 * timestamp.
1054	 */
1055	tx->has_ready_bitmap = 0;
1056
1057	return ice_ptp_alloc_tx_tracker(tx);
1058}
1059
1060/**
1061 * ice_ptp_update_cached_phctime - Update the cached PHC time values
1062 * @pf: Board specific private structure
1063 *
1064 * This function updates the system time values which are cached in the PF
1065 * structure and the Rx rings.
1066 *
1067 * This function must be called periodically to ensure that the cached value
1068 * is never more than 2 seconds old.
1069 *
1070 * Note that the cached copy in the PF PTP structure is always updated, even
1071 * if we can't update the copy in the Rx rings.
1072 *
1073 * Return:
1074 * * 0 - OK, successfully updated
1075 * * -EAGAIN - PF was busy, need to reschedule the update
1076 */
1077static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1078{
1079	struct device *dev = ice_pf_to_dev(pf);
1080	unsigned long update_before;
1081	u64 systime;
1082	int i;
1083
1084	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1085	if (pf->ptp.cached_phc_time &&
1086	    time_is_before_jiffies(update_before)) {
1087		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1088
1089		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1090			 jiffies_to_msecs(time_taken));
1091		pf->ptp.late_cached_phc_updates++;
1092	}
1093
1094	/* Read the current PHC time */
1095	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1096
1097	/* Update the cached PHC time stored in the PF structure */
1098	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1099	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1100
1101	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1102		return -EAGAIN;
1103
1104	ice_for_each_vsi(pf, i) {
1105		struct ice_vsi *vsi = pf->vsi[i];
1106		int j;
1107
1108		if (!vsi)
1109			continue;
1110
1111		if (vsi->type != ICE_VSI_PF)
1112			continue;
1113
1114		ice_for_each_rxq(vsi, j) {
1115			if (!vsi->rx_rings[j])
1116				continue;
1117			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1118		}
1119	}
1120	clear_bit(ICE_CFG_BUSY, pf->state);
1121
1122	return 0;
1123}
1124
1125/**
1126 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1127 * @pf: Board specific private structure
1128 *
1129 * This function must be called when the cached PHC time is no longer valid,
1130 * such as after a time adjustment. It marks any currently outstanding Tx
1131 * timestamps as stale and updates the cached PHC time for both the PF and Rx
1132 * rings.
1133 *
1134 * If updating the PHC time cannot be done immediately, a warning message is
1135 * logged and the work item is scheduled immediately to minimize the window
1136 * with a wrong cached timestamp.
1137 */
1138static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1139{
1140	struct device *dev = ice_pf_to_dev(pf);
1141	int err;
1142
1143	/* Update the cached PHC time immediately if possible, otherwise
1144	 * schedule the work item to execute soon.
1145	 */
1146	err = ice_ptp_update_cached_phctime(pf);
1147	if (err) {
1148		/* If another thread is updating the Rx rings, we won't
1149		 * properly reset them here. This could lead to reporting of
1150		 * invalid timestamps, but there isn't much we can do.
1151		 */
1152		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1153			 __func__);
1154
1155		/* Queue the work item to update the Rx rings when possible */
1156		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1157					   msecs_to_jiffies(10));
1158	}
1159
1160	/* Mark any outstanding timestamps as stale, since they might have
1161	 * been captured in hardware before the time update. This could lead
1162	 * to us extending them with the wrong cached value resulting in
1163	 * incorrect timestamp values.
1164	 */
1165	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1166}
1167
1168/**
1169 * ice_ptp_read_time - Read the time from the device
1170 * @pf: Board private structure
1171 * @ts: timespec structure to hold the current time value
1172 * @sts: Optional parameter for holding a pair of system timestamps from
1173 *       the system clock. Will be ignored if NULL is given.
1174 *
1175 * This function reads the source clock registers and stores them in a timespec.
1176 * However, since the registers are 64 bits of nanoseconds, we must convert the
1177 * result to a timespec before we can return.
1178 */
1179static void
1180ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1181		  struct ptp_system_timestamp *sts)
1182{
1183	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1184
1185	*ts = ns_to_timespec64(time_ns);
1186}
1187
1188/**
1189 * ice_ptp_write_init - Set PHC time to provided value
1190 * @pf: Board private structure
1191 * @ts: timespec structure that holds the new time value
1192 *
1193 * Set the PHC time to the specified time provided in the timespec.
1194 */
1195static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1196{
1197	u64 ns = timespec64_to_ns(ts);
1198	struct ice_hw *hw = &pf->hw;
1199
1200	return ice_ptp_init_time(hw, ns);
1201}
1202
1203/**
1204 * ice_ptp_write_adj - Adjust PHC clock time atomically
1205 * @pf: Board private structure
1206 * @adj: Adjustment in nanoseconds
1207 *
1208 * Perform an atomic adjustment of the PHC time by the specified number of
1209 * nanoseconds.
1210 */
1211static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1212{
1213	struct ice_hw *hw = &pf->hw;
1214
1215	return ice_ptp_adj_clock(hw, adj);
1216}
1217
1218/**
1219 * ice_base_incval - Get base timer increment value
1220 * @pf: Board private structure
1221 *
1222 * Look up the base timer increment value for this device. The base increment
1223 * value is used to define the nominal clock tick rate. This increment value
1224 * is programmed during device initialization. It is also used as the basis
1225 * for calculating adjustments using scaled_ppm.
1226 */
1227static u64 ice_base_incval(struct ice_pf *pf)
1228{
1229	struct ice_hw *hw = &pf->hw;
1230	u64 incval;
1231
1232	if (ice_is_e810(hw))
1233		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1234	else if (ice_e82x_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1235		incval = ice_e82x_nominal_incval(ice_e82x_time_ref(hw));
1236	else
1237		incval = UNKNOWN_INCVAL_E82X;
1238
1239	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1240		incval);
1241
1242	return incval;
1243}
1244
1245/**
1246 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1247 * @port: PTP port for which Tx FIFO is checked
1248 */
1249static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1250{
1251	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1252	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1253	struct ice_pf *pf;
1254	struct ice_hw *hw;
1255	u32 val, phy_sts;
1256	int err;
1257
1258	pf = ptp_port_to_pf(port);
1259	hw = &pf->hw;
1260
1261	if (port->tx_fifo_busy_cnt == FIFO_OK)
1262		return 0;
1263
1264	/* need to read FIFO state */
1265	if (offs == 0 || offs == 1)
1266		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1267					     &val);
1268	else
1269		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1270					     &val);
1271
1272	if (err) {
1273		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1274			port->port_num, err);
1275		return err;
1276	}
1277
1278	if (offs & 0x1)
1279		phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
1280	else
1281		phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);
1282
1283	if (phy_sts & FIFO_EMPTY) {
1284		port->tx_fifo_busy_cnt = FIFO_OK;
1285		return 0;
1286	}
1287
1288	port->tx_fifo_busy_cnt++;
1289
1290	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1291		port->tx_fifo_busy_cnt, port->port_num);
1292
1293	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1294		dev_dbg(ice_pf_to_dev(pf),
1295			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1296			port->port_num, quad);
1297		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1298		port->tx_fifo_busy_cnt = FIFO_OK;
1299		return 0;
1300	}
1301
1302	return -EAGAIN;
1303}
1304
1305/**
1306 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1307 * @work: Pointer to the kthread_work structure for this task
1308 *
1309 * Check whether hardware has completed measuring the Tx and Rx offset values
1310 * used to configure and enable vernier timestamp calibration.
1311 *
1312 * Once the offset in either direction is measured, configure the associated
1313 * registers with the calibrated offset values and enable timestamping. The Tx
1314 * and Rx directions are configured independently as soon as their associated
1315 * offsets are known.
1316 *
1317 * This function reschedules itself until both Tx and Rx calibration have
1318 * completed.
1319 */
1320static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1321{
1322	struct ice_ptp_port *port;
1323	struct ice_pf *pf;
1324	struct ice_hw *hw;
1325	int tx_err;
1326	int rx_err;
1327
1328	port = container_of(work, struct ice_ptp_port, ov_work.work);
1329	pf = ptp_port_to_pf(port);
1330	hw = &pf->hw;
1331
1332	if (ice_is_reset_in_progress(pf->state)) {
1333		/* wait for device driver to complete reset */
1334		kthread_queue_delayed_work(pf->ptp.kworker,
1335					   &port->ov_work,
1336					   msecs_to_jiffies(100));
1337		return;
1338	}
1339
1340	tx_err = ice_ptp_check_tx_fifo(port);
1341	if (!tx_err)
1342		tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1343	rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1344	if (tx_err || rx_err) {
1345		/* Tx and/or Rx offset not yet configured, try again later */
1346		kthread_queue_delayed_work(pf->ptp.kworker,
1347					   &port->ov_work,
1348					   msecs_to_jiffies(100));
1349		return;
1350	}
1351}
1352
1353/**
1354 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1355 * @ptp_port: PTP port to stop
1356 */
1357static int
1358ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1359{
1360	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1361	u8 port = ptp_port->port_num;
1362	struct ice_hw *hw = &pf->hw;
1363	int err;
1364
1365	if (ice_is_e810(hw))
1366		return 0;
1367
1368	mutex_lock(&ptp_port->ps_lock);
1369
1370	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1371
1372	err = ice_stop_phy_timer_e82x(hw, port, true);
1373	if (err)
1374		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1375			port, err);
1376
1377	mutex_unlock(&ptp_port->ps_lock);
1378
1379	return err;
1380}
1381
1382/**
1383 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1384 * @ptp_port: PTP port for which the PHY start is set
1385 *
1386 * Start the PHY timestamping block, and initiate Vernier timestamping
1387 * calibration. If timestamping cannot be calibrated (such as if link is down)
1388 * then disable the timestamping block instead.
1389 */
1390static int
1391ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1392{
1393	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1394	u8 port = ptp_port->port_num;
1395	struct ice_hw *hw = &pf->hw;
1396	unsigned long flags;
1397	int err;
1398
1399	if (ice_is_e810(hw))
1400		return 0;
1401
1402	if (!ptp_port->link_up)
1403		return ice_ptp_port_phy_stop(ptp_port);
1404
1405	mutex_lock(&ptp_port->ps_lock);
1406
1407	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1408
1409	/* temporarily disable Tx timestamps while calibrating PHY offset */
1410	spin_lock_irqsave(&ptp_port->tx.lock, flags);
1411	ptp_port->tx.calibrating = true;
1412	spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1413	ptp_port->tx_fifo_busy_cnt = 0;
1414
1415	/* Start the PHY timer in Vernier mode */
1416	err = ice_start_phy_timer_e82x(hw, port);
1417	if (err)
1418		goto out_unlock;
1419
1420	/* Enable Tx timestamps right away */
1421	spin_lock_irqsave(&ptp_port->tx.lock, flags);
1422	ptp_port->tx.calibrating = false;
1423	spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1424
1425	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1426
1427out_unlock:
1428	if (err)
1429		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1430			port, err);
1431
1432	mutex_unlock(&ptp_port->ps_lock);
1433
1434	return err;
1435}
1436
1437/**
1438 * ice_ptp_link_change - Reconfigure PTP after link status change
1439 * @pf: Board private structure
1440 * @port: Port for which the PHY start is set
1441 * @linkup: Link is up or down
1442 */
1443void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1444{
1445	struct ice_ptp_port *ptp_port;
1446	struct ice_hw *hw = &pf->hw;
1447
1448	if (pf->ptp.state != ICE_PTP_READY)
1449		return;
1450
1451	if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1452		return;
1453
1454	ptp_port = &pf->ptp.port;
1455	if (WARN_ON_ONCE(ptp_port->port_num != port))
1456		return;
1457
1458	/* Update cached link status for this port immediately */
1459	ptp_port->link_up = linkup;
1460
1461	switch (hw->phy_model) {
1462	case ICE_PHY_E810:
1463		/* Do not reconfigure E810 PHY */
1464		return;
1465	case ICE_PHY_E82X:
1466		ice_ptp_port_phy_restart(ptp_port);
1467		return;
1468	default:
1469		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1470	}
1471}
1472
1473/**
1474 * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings
1475 * @pf: PF private structure
1476 * @ena: bool value to enable or disable interrupt
1477 * @threshold: Minimum number of packets at which intr is triggered
1478 *
1479 * Utility function to enable or disable Tx timestamp interrupt and threshold
1480 */
1481static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold)
1482{
1483	struct ice_hw *hw = &pf->hw;
1484	int err = 0;
1485	int quad;
1486	u32 val;
1487
1488	ice_ptp_reset_ts_memory(hw);
1489
1490	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1491		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1492					     &val);
1493		if (err)
1494			break;
1495
1496		if (ena) {
1497			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1498			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1499			val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M,
1500					  threshold);
1501		} else {
1502			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1503		}
1504
1505		err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1506					      val);
1507		if (err)
1508			break;
1509	}
1510
1511	if (err)
1512		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1513			err);
1514	return err;
1515}
1516
1517/**
1518 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1519 * @pf: Board private structure
1520 */
1521static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1522{
1523	ice_ptp_port_phy_restart(&pf->ptp.port);
1524}
1525
1526/**
1527 * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1528 * @pf: Board private structure
1529 */
1530static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1531{
1532	struct list_head *entry;
1533
1534	list_for_each(entry, &pf->ptp.ports_owner.ports) {
1535		struct ice_ptp_port *port = list_entry(entry,
1536						       struct ice_ptp_port,
1537						       list_member);
1538
1539		if (port->link_up)
1540			ice_ptp_port_phy_restart(port);
1541	}
1542}
1543
1544/**
1545 * ice_ptp_adjfine - Adjust clock increment rate
1546 * @info: the driver's PTP info structure
1547 * @scaled_ppm: Parts per million with 16-bit fractional field
1548 *
1549 * Adjust the frequency of the clock by the indicated scaled ppm from the
1550 * base frequency.
1551 */
1552static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1553{
1554	struct ice_pf *pf = ptp_info_to_pf(info);
1555	struct ice_hw *hw = &pf->hw;
1556	u64 incval;
1557	int err;
1558
1559	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1560	err = ice_ptp_write_incval_locked(hw, incval);
1561	if (err) {
1562		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1563			err);
1564		return -EIO;
1565	}
1566
1567	return 0;
1568}
1569
1570/**
1571 * ice_ptp_extts_event - Process PTP external clock event
1572 * @pf: Board private structure
1573 */
1574void ice_ptp_extts_event(struct ice_pf *pf)
1575{
1576	struct ptp_clock_event event;
1577	struct ice_hw *hw = &pf->hw;
1578	u8 chan, tmr_idx;
1579	u32 hi, lo;
1580
1581	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1582	/* Event time is captured by one of the two matched registers
1583	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1584	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1585	 * Event is defined in GLTSYN_EVNT_0 register
1586	 */
1587	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1588		/* Check if channel is enabled */
1589		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1590			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1591			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1592			event.timestamp = (((u64)hi) << 32) | lo;
1593			event.type = PTP_CLOCK_EXTTS;
1594			event.index = chan;
1595
1596			/* Fire event */
1597			ptp_clock_event(pf->ptp.clock, &event);
1598			pf->ptp.ext_ts_irq &= ~(1 << chan);
1599		}
1600	}
1601}
1602
1603/**
1604 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1605 * @pf: Board private structure
1606 * @ena: true to enable; false to disable
1607 * @chan: GPIO channel (0-3)
1608 * @gpio_pin: GPIO pin
1609 * @extts_flags: request flags from the ptp_extts_request.flags
1610 */
1611static int
1612ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1613		  unsigned int extts_flags)
1614{
1615	u32 func, aux_reg, gpio_reg, irq_reg;
1616	struct ice_hw *hw = &pf->hw;
1617	u8 tmr_idx;
1618
1619	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1620		return -EINVAL;
1621
1622	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1623
1624	irq_reg = rd32(hw, PFINT_OICR_ENA);
1625
1626	if (ena) {
1627		/* Enable the interrupt */
1628		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1629		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1630
1631#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1632#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1633
1634		/* set event level to requested edge */
1635		if (extts_flags & PTP_FALLING_EDGE)
1636			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1637		if (extts_flags & PTP_RISING_EDGE)
1638			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1639
1640		/* Write GPIO CTL reg.
1641		 * 0x1 is input sampled by EVENT register(channel)
1642		 * + num_in_channels * tmr_idx
1643		 */
1644		func = 1 + chan + (tmr_idx * 3);
1645		gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func);
1646		pf->ptp.ext_ts_chan |= (1 << chan);
1647	} else {
1648		/* clear the values we set to reset defaults */
1649		aux_reg = 0;
1650		gpio_reg = 0;
1651		pf->ptp.ext_ts_chan &= ~(1 << chan);
1652		if (!pf->ptp.ext_ts_chan)
1653			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1654	}
1655
1656	wr32(hw, PFINT_OICR_ENA, irq_reg);
1657	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1658	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1659
1660	return 0;
1661}
1662
1663/**
1664 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1665 * @pf: Board private structure
1666 * @chan: GPIO channel (0-3)
1667 * @config: desired periodic clk configuration. NULL will disable channel
1668 * @store: If set to true the values will be stored
1669 *
1670 * Configure the internal clock generator modules to generate the clock wave of
1671 * specified period.
1672 */
1673static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1674			      struct ice_perout_channel *config, bool store)
1675{
1676	u64 current_time, period, start_time, phase;
1677	struct ice_hw *hw = &pf->hw;
1678	u32 func, val, gpio_pin;
1679	u8 tmr_idx;
1680
1681	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1682
1683	/* 0. Reset mode & out_en in AUX_OUT */
1684	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1685
1686	/* If we're disabling the output, clear out CLKO and TGT and keep
1687	 * output level low
1688	 */
1689	if (!config || !config->ena) {
1690		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1691		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1692		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1693
1694		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1695		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1696		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1697
1698		/* Store the value if requested */
1699		if (store)
1700			memset(&pf->ptp.perout_channels[chan], 0,
1701			       sizeof(struct ice_perout_channel));
1702
1703		return 0;
1704	}
1705	period = config->period;
1706	start_time = config->start_time;
1707	div64_u64_rem(start_time, period, &phase);
1708	gpio_pin = config->gpio_pin;
1709
1710	/* 1. Write clkout with half of required period value */
1711	if (period & 0x1) {
1712		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1713		goto err;
1714	}
1715
1716	period >>= 1;
1717
1718	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1719	 */
1720#define MIN_PULSE 3
1721	if (period <= MIN_PULSE || period > U32_MAX) {
1722		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1723			MIN_PULSE * 2);
1724		goto err;
1725	}
1726
1727	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1728
1729	/* Allow time for programming before start_time is hit */
1730	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1731
1732	/* if start time is in the past start the timer at the nearest second
1733	 * maintaining phase
1734	 */
1735	if (start_time < current_time)
1736		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1737				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1738
1739	if (ice_is_e810(hw))
1740		start_time -= E810_OUT_PROP_DELAY_NS;
1741	else
1742		start_time -= ice_e82x_pps_delay(ice_e82x_time_ref(hw));
1743
1744	/* 2. Write TARGET time */
1745	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1746	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1747
1748	/* 3. Write AUX_OUT register */
1749	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1750	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1751
1752	/* 4. write GPIO CTL reg */
1753	func = 8 + chan + (tmr_idx * 4);
1754	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1755	      FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func);
1756	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1757
1758	/* Store the value if requested */
1759	if (store) {
1760		memcpy(&pf->ptp.perout_channels[chan], config,
1761		       sizeof(struct ice_perout_channel));
1762		pf->ptp.perout_channels[chan].start_time = phase;
1763	}
1764
1765	return 0;
1766err:
1767	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1768	return -EFAULT;
1769}
1770
1771/**
1772 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1773 * @pf: pointer to the PF structure
1774 *
1775 * Disable all currently configured clock outputs. This is necessary before
1776 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1777 * re-enable the clocks again.
1778 */
1779static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1780{
1781	uint i;
1782
1783	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1784		if (pf->ptp.perout_channels[i].ena)
1785			ice_ptp_cfg_clkout(pf, i, NULL, false);
1786}
1787
1788/**
1789 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1790 * @pf: pointer to the PF structure
1791 *
1792 * Enable all currently configured clock outputs. Use this after
1793 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1794 * their configuration.
1795 */
1796static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1797{
1798	uint i;
1799
1800	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1801		if (pf->ptp.perout_channels[i].ena)
1802			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1803					   false);
1804}
1805
1806/**
1807 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1808 * @info: the driver's PTP info structure
1809 * @rq: The requested feature to change
1810 * @on: Enable/disable flag
1811 */
1812static int
1813ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1814			 struct ptp_clock_request *rq, int on)
1815{
1816	struct ice_pf *pf = ptp_info_to_pf(info);
1817	struct ice_perout_channel clk_cfg = {0};
1818	bool sma_pres = false;
1819	unsigned int chan;
1820	u32 gpio_pin;
1821	int err;
1822
1823	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1824		sma_pres = true;
1825
1826	switch (rq->type) {
1827	case PTP_CLK_REQ_PEROUT:
1828		chan = rq->perout.index;
1829		if (sma_pres) {
1830			if (chan == ice_pin_desc_e810t[SMA1].chan)
1831				clk_cfg.gpio_pin = GPIO_20;
1832			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1833				clk_cfg.gpio_pin = GPIO_22;
1834			else
1835				return -1;
1836		} else if (ice_is_e810t(&pf->hw)) {
1837			if (chan == 0)
1838				clk_cfg.gpio_pin = GPIO_20;
1839			else
1840				clk_cfg.gpio_pin = GPIO_22;
1841		} else if (chan == PPS_CLK_GEN_CHAN) {
1842			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1843		} else {
1844			clk_cfg.gpio_pin = chan;
1845		}
1846
1847		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1848				   rq->perout.period.nsec);
1849		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1850				       rq->perout.start.nsec);
1851		clk_cfg.ena = !!on;
1852
1853		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1854		break;
1855	case PTP_CLK_REQ_EXTTS:
1856		chan = rq->extts.index;
1857		if (sma_pres) {
1858			if (chan < ice_pin_desc_e810t[SMA2].chan)
1859				gpio_pin = GPIO_21;
1860			else
1861				gpio_pin = GPIO_23;
1862		} else if (ice_is_e810t(&pf->hw)) {
1863			if (chan == 0)
1864				gpio_pin = GPIO_21;
1865			else
1866				gpio_pin = GPIO_23;
1867		} else {
1868			gpio_pin = chan;
1869		}
1870
1871		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1872					rq->extts.flags);
1873		break;
1874	default:
1875		return -EOPNOTSUPP;
1876	}
1877
1878	return err;
1879}
1880
1881/**
1882 * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
1883 * @info: the driver's PTP info structure
1884 * @rq: The requested feature to change
1885 * @on: Enable/disable flag
1886 */
1887static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
1888				    struct ptp_clock_request *rq, int on)
1889{
1890	struct ice_pf *pf = ptp_info_to_pf(info);
1891	struct ice_perout_channel clk_cfg = {0};
1892	int err;
1893
1894	switch (rq->type) {
1895	case PTP_CLK_REQ_PPS:
1896		clk_cfg.gpio_pin = PPS_PIN_INDEX;
1897		clk_cfg.period = NSEC_PER_SEC;
1898		clk_cfg.ena = !!on;
1899
1900		err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
1901		break;
1902	case PTP_CLK_REQ_EXTTS:
1903		err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index,
1904					TIME_SYNC_PIN_INDEX, rq->extts.flags);
1905		break;
1906	default:
1907		return -EOPNOTSUPP;
1908	}
1909
1910	return err;
1911}
1912
1913/**
1914 * ice_ptp_gettimex64 - Get the time of the clock
1915 * @info: the driver's PTP info structure
1916 * @ts: timespec64 structure to hold the current time value
1917 * @sts: Optional parameter for holding a pair of system timestamps from
1918 *       the system clock. Will be ignored if NULL is given.
1919 *
1920 * Read the device clock and return the correct value on ns, after converting it
1921 * into a timespec struct.
1922 */
1923static int
1924ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1925		   struct ptp_system_timestamp *sts)
1926{
1927	struct ice_pf *pf = ptp_info_to_pf(info);
1928	struct ice_hw *hw = &pf->hw;
1929
1930	if (!ice_ptp_lock(hw)) {
1931		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1932		return -EBUSY;
1933	}
1934
1935	ice_ptp_read_time(pf, ts, sts);
1936	ice_ptp_unlock(hw);
1937
1938	return 0;
1939}
1940
1941/**
1942 * ice_ptp_settime64 - Set the time of the clock
1943 * @info: the driver's PTP info structure
1944 * @ts: timespec64 structure that holds the new time value
1945 *
1946 * Set the device clock to the user input value. The conversion from timespec
1947 * to ns happens in the write function.
1948 */
1949static int
1950ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1951{
1952	struct ice_pf *pf = ptp_info_to_pf(info);
1953	struct timespec64 ts64 = *ts;
1954	struct ice_hw *hw = &pf->hw;
1955	int err;
1956
1957	/* For Vernier mode, we need to recalibrate after new settime
1958	 * Start with disabling timestamp block
1959	 */
1960	if (pf->ptp.port.link_up)
1961		ice_ptp_port_phy_stop(&pf->ptp.port);
1962
1963	if (!ice_ptp_lock(hw)) {
1964		err = -EBUSY;
1965		goto exit;
1966	}
1967
1968	/* Disable periodic outputs */
1969	ice_ptp_disable_all_clkout(pf);
1970
1971	err = ice_ptp_write_init(pf, &ts64);
1972	ice_ptp_unlock(hw);
1973
1974	if (!err)
1975		ice_ptp_reset_cached_phctime(pf);
1976
1977	/* Reenable periodic outputs */
1978	ice_ptp_enable_all_clkout(pf);
1979
1980	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
1981	if (hw->phy_model == ICE_PHY_E82X)
1982		ice_ptp_restart_all_phy(pf);
1983exit:
1984	if (err) {
1985		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1986		return err;
1987	}
1988
1989	return 0;
1990}
1991
1992/**
1993 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1994 * @info: the driver's PTP info structure
1995 * @delta: Offset in nanoseconds to adjust the time by
1996 */
1997static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1998{
1999	struct timespec64 now, then;
2000	int ret;
2001
2002	then = ns_to_timespec64(delta);
2003	ret = ice_ptp_gettimex64(info, &now, NULL);
2004	if (ret)
2005		return ret;
2006	now = timespec64_add(now, then);
2007
2008	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
2009}
2010
2011/**
2012 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
2013 * @info: the driver's PTP info structure
2014 * @delta: Offset in nanoseconds to adjust the time by
2015 */
2016static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
2017{
2018	struct ice_pf *pf = ptp_info_to_pf(info);
2019	struct ice_hw *hw = &pf->hw;
2020	struct device *dev;
2021	int err;
2022
2023	dev = ice_pf_to_dev(pf);
2024
2025	/* Hardware only supports atomic adjustments using signed 32-bit
2026	 * integers. For any adjustment outside this range, perform
2027	 * a non-atomic get->adjust->set flow.
2028	 */
2029	if (delta > S32_MAX || delta < S32_MIN) {
2030		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
2031		return ice_ptp_adjtime_nonatomic(info, delta);
2032	}
2033
2034	if (!ice_ptp_lock(hw)) {
2035		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
2036		return -EBUSY;
2037	}
2038
2039	/* Disable periodic outputs */
2040	ice_ptp_disable_all_clkout(pf);
2041
2042	err = ice_ptp_write_adj(pf, delta);
2043
2044	/* Reenable periodic outputs */
2045	ice_ptp_enable_all_clkout(pf);
2046
2047	ice_ptp_unlock(hw);
2048
2049	if (err) {
2050		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
2051		return err;
2052	}
2053
2054	ice_ptp_reset_cached_phctime(pf);
2055
2056	return 0;
2057}
2058
2059#ifdef CONFIG_ICE_HWTS
2060/**
2061 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
2062 * @device: Current device time
2063 * @system: System counter value read synchronously with device time
2064 * @ctx: Context provided by timekeeping code
2065 *
2066 * Read device and system (ART) clock simultaneously and return the corrected
2067 * clock values in ns.
2068 */
2069static int
2070ice_ptp_get_syncdevicetime(ktime_t *device,
2071			   struct system_counterval_t *system,
2072			   void *ctx)
2073{
2074	struct ice_pf *pf = (struct ice_pf *)ctx;
2075	struct ice_hw *hw = &pf->hw;
2076	u32 hh_lock, hh_art_ctl;
2077	int i;
2078
2079#define MAX_HH_HW_LOCK_TRIES	5
2080#define MAX_HH_CTL_LOCK_TRIES	100
2081
2082	for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
2083		/* Get the HW lock */
2084		hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2085		if (hh_lock & PFHH_SEM_BUSY_M) {
2086			usleep_range(10000, 15000);
2087			continue;
2088		}
2089		break;
2090	}
2091	if (hh_lock & PFHH_SEM_BUSY_M) {
2092		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
2093		return -EBUSY;
2094	}
2095
2096	/* Program cmd to master timer */
2097	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2098
2099	/* Start the ART and device clock sync sequence */
2100	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2101	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
2102	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
2103
2104	for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
2105		/* Wait for sync to complete */
2106		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2107		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
2108			udelay(1);
2109			continue;
2110		} else {
2111			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
2112			u64 hh_ts;
2113
2114			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2115			/* Read ART time */
2116			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2117			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2118			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2119			*system = convert_art_ns_to_tsc(hh_ts);
2120			/* Read Device source clock time */
2121			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2122			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2123			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2124			*device = ns_to_ktime(hh_ts);
2125			break;
2126		}
2127	}
2128
2129	/* Clear the master timer */
2130	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2131
2132	/* Release HW lock */
2133	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2134	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2135	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2136
2137	if (i == MAX_HH_CTL_LOCK_TRIES)
2138		return -ETIMEDOUT;
2139
2140	return 0;
2141}
2142
2143/**
2144 * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
2145 * @info: the driver's PTP info structure
2146 * @cts: The memory to fill the cross timestamp info
2147 *
2148 * Capture a cross timestamp between the ART and the device PTP hardware
2149 * clock. Fill the cross timestamp information and report it back to the
2150 * caller.
2151 *
2152 * This is only valid for E822 and E823 devices which have support for
2153 * generating the cross timestamp via PCIe PTM.
2154 *
2155 * In order to correctly correlate the ART timestamp back to the TSC time, the
2156 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2157 */
2158static int
2159ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2160			    struct system_device_crosststamp *cts)
2161{
2162	struct ice_pf *pf = ptp_info_to_pf(info);
2163
2164	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2165					     pf, NULL, cts);
2166}
2167#endif /* CONFIG_ICE_HWTS */
2168
2169/**
2170 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2171 * @pf: Board private structure
2172 * @ifr: ioctl data
2173 *
2174 * Copy the timestamping config to user buffer
2175 */
2176int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2177{
2178	struct hwtstamp_config *config;
2179
2180	if (pf->ptp.state != ICE_PTP_READY)
2181		return -EIO;
2182
2183	config = &pf->ptp.tstamp_config;
2184
2185	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2186		-EFAULT : 0;
2187}
2188
2189/**
2190 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2191 * @pf: Board private structure
2192 * @config: hwtstamp settings requested or saved
2193 */
2194static int
2195ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2196{
2197	switch (config->tx_type) {
2198	case HWTSTAMP_TX_OFF:
2199		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2200		break;
2201	case HWTSTAMP_TX_ON:
2202		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2203		break;
2204	default:
2205		return -ERANGE;
2206	}
2207
2208	switch (config->rx_filter) {
2209	case HWTSTAMP_FILTER_NONE:
2210		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2211		break;
2212	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2213	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2214	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2215	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2216	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2217	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2218	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2219	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2220	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2221	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2222	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2223	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2224	case HWTSTAMP_FILTER_NTP_ALL:
2225	case HWTSTAMP_FILTER_ALL:
2226		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2227		break;
2228	default:
2229		return -ERANGE;
2230	}
2231
2232	/* Immediately update the device timestamping mode */
2233	ice_ptp_restore_timestamp_mode(pf);
2234
2235	return 0;
2236}
2237
2238/**
2239 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2240 * @pf: Board private structure
2241 * @ifr: ioctl data
2242 *
2243 * Get the user config and store it
2244 */
2245int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2246{
2247	struct hwtstamp_config config;
2248	int err;
2249
2250	if (pf->ptp.state != ICE_PTP_READY)
2251		return -EAGAIN;
2252
2253	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2254		return -EFAULT;
2255
2256	err = ice_ptp_set_timestamp_mode(pf, &config);
2257	if (err)
2258		return err;
2259
2260	/* Return the actual configuration set */
2261	config = pf->ptp.tstamp_config;
2262
2263	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2264		-EFAULT : 0;
2265}
2266
2267/**
2268 * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2269 * @rx_desc: Receive descriptor
2270 * @pkt_ctx: Packet context to get the cached time
2271 *
2272 * The driver receives a notification in the receive descriptor with timestamp.
2273 */
2274u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2275			const struct ice_pkt_ctx *pkt_ctx)
2276{
2277	u64 ts_ns, cached_time;
2278	u32 ts_high;
2279
2280	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2281		return 0;
2282
2283	cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2284
2285	/* Do not report a timestamp if we don't have a cached PHC time */
2286	if (!cached_time)
2287		return 0;
2288
2289	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2290	 * PHC value, rather than accessing the PF. This also allows us to
2291	 * simply pass the upper 32bits of nanoseconds directly. Calling
2292	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2293	 * bits itself.
2294	 */
2295	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2296	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2297
2298	return ts_ns;
2299}
2300
2301/**
2302 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2303 * @pf: pointer to the PF structure
2304 * @info: PTP clock info structure
2305 *
2306 * Disable the OS access to the SMA pins. Called to clear out the OS
2307 * indications of pin support when we fail to setup the E810-T SMA control
2308 * register.
2309 */
2310static void
2311ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2312{
2313	struct device *dev = ice_pf_to_dev(pf);
2314
2315	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2316
2317	info->enable = NULL;
2318	info->verify = NULL;
2319	info->n_pins = 0;
2320	info->n_ext_ts = 0;
2321	info->n_per_out = 0;
2322}
2323
2324/**
2325 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2326 * @pf: pointer to the PF structure
2327 * @info: PTP clock info structure
2328 *
2329 * Finish setting up the SMA pins by allocating pin_config, and setting it up
2330 * according to the current status of the SMA. On failure, disable all of the
2331 * extended SMA pin support.
2332 */
2333static void
2334ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2335{
2336	struct device *dev = ice_pf_to_dev(pf);
2337	int err;
2338
2339	/* Allocate memory for kernel pins interface */
2340	info->pin_config = devm_kcalloc(dev, info->n_pins,
2341					sizeof(*info->pin_config), GFP_KERNEL);
2342	if (!info->pin_config) {
2343		ice_ptp_disable_sma_pins_e810t(pf, info);
2344		return;
2345	}
2346
2347	/* Read current SMA status */
2348	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2349	if (err)
2350		ice_ptp_disable_sma_pins_e810t(pf, info);
2351}
2352
2353/**
2354 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2355 * @pf: pointer to the PF instance
2356 * @info: PTP clock capabilities
2357 */
2358static void
2359ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2360{
2361	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2362		info->n_ext_ts = N_EXT_TS_E810;
2363		info->n_per_out = N_PER_OUT_E810T;
2364		info->n_pins = NUM_PTP_PINS_E810T;
2365		info->verify = ice_verify_pin_e810t;
2366
2367		/* Complete setup of the SMA pins */
2368		ice_ptp_setup_sma_pins_e810t(pf, info);
2369	} else if (ice_is_e810t(&pf->hw)) {
2370		info->n_ext_ts = N_EXT_TS_NO_SMA_E810T;
2371		info->n_per_out = N_PER_OUT_NO_SMA_E810T;
2372	} else {
2373		info->n_per_out = N_PER_OUT_E810;
2374		info->n_ext_ts = N_EXT_TS_E810;
2375	}
2376}
2377
2378/**
2379 * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
2380 * @pf: pointer to the PF instance
2381 * @info: PTP clock capabilities
2382 */
2383static void
2384ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2385{
2386	info->pps = 1;
2387	info->n_per_out = 0;
2388	info->n_ext_ts = 1;
2389}
2390
2391/**
2392 * ice_ptp_set_funcs_e82x - Set specialized functions for E82x support
2393 * @pf: Board private structure
2394 * @info: PTP info to fill
2395 *
2396 * Assign functions to the PTP capabiltiies structure for E82x devices.
2397 * Functions which operate across all device families should be set directly
2398 * in ice_ptp_set_caps. Only add functions here which are distinct for E82x
2399 * devices.
2400 */
2401static void
2402ice_ptp_set_funcs_e82x(struct ice_pf *pf, struct ptp_clock_info *info)
2403{
2404#ifdef CONFIG_ICE_HWTS
2405	if (boot_cpu_has(X86_FEATURE_ART) &&
2406	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2407		info->getcrosststamp = ice_ptp_getcrosststamp_e82x;
2408#endif /* CONFIG_ICE_HWTS */
2409}
2410
2411/**
2412 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2413 * @pf: Board private structure
2414 * @info: PTP info to fill
2415 *
2416 * Assign functions to the PTP capabiltiies structure for E810 devices.
2417 * Functions which operate across all device families should be set directly
2418 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2419 * devices.
2420 */
2421static void
2422ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2423{
2424	info->enable = ice_ptp_gpio_enable_e810;
2425	ice_ptp_setup_pins_e810(pf, info);
2426}
2427
2428/**
2429 * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
2430 * @pf: Board private structure
2431 * @info: PTP info to fill
2432 *
2433 * Assign functions to the PTP capabiltiies structure for E823 devices.
2434 * Functions which operate across all device families should be set directly
2435 * in ice_ptp_set_caps. Only add functions here which are distinct for e823
2436 * devices.
2437 */
2438static void
2439ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2440{
2441	ice_ptp_set_funcs_e82x(pf, info);
2442
2443	info->enable = ice_ptp_gpio_enable_e823;
2444	ice_ptp_setup_pins_e823(pf, info);
2445}
2446
2447/**
2448 * ice_ptp_set_caps - Set PTP capabilities
2449 * @pf: Board private structure
2450 */
2451static void ice_ptp_set_caps(struct ice_pf *pf)
2452{
2453	struct ptp_clock_info *info = &pf->ptp.info;
2454	struct device *dev = ice_pf_to_dev(pf);
2455
2456	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2457		 dev_driver_string(dev), dev_name(dev));
2458	info->owner = THIS_MODULE;
2459	info->max_adj = 100000000;
2460	info->adjtime = ice_ptp_adjtime;
2461	info->adjfine = ice_ptp_adjfine;
2462	info->gettimex64 = ice_ptp_gettimex64;
2463	info->settime64 = ice_ptp_settime64;
2464
2465	if (ice_is_e810(&pf->hw))
2466		ice_ptp_set_funcs_e810(pf, info);
2467	else if (ice_is_e823(&pf->hw))
2468		ice_ptp_set_funcs_e823(pf, info);
2469	else
2470		ice_ptp_set_funcs_e82x(pf, info);
2471}
2472
2473/**
2474 * ice_ptp_create_clock - Create PTP clock device for userspace
2475 * @pf: Board private structure
2476 *
2477 * This function creates a new PTP clock device. It only creates one if we
2478 * don't already have one. Will return error if it can't create one, but success
2479 * if we already have a device. Should be used by ice_ptp_init to create clock
2480 * initially, and prevent global resets from creating new clock devices.
2481 */
2482static long ice_ptp_create_clock(struct ice_pf *pf)
2483{
2484	struct ptp_clock_info *info;
2485	struct device *dev;
2486
2487	/* No need to create a clock device if we already have one */
2488	if (pf->ptp.clock)
2489		return 0;
2490
2491	ice_ptp_set_caps(pf);
2492
2493	info = &pf->ptp.info;
2494	dev = ice_pf_to_dev(pf);
2495
2496	/* Attempt to register the clock before enabling the hardware. */
2497	pf->ptp.clock = ptp_clock_register(info, dev);
2498	if (IS_ERR(pf->ptp.clock)) {
2499		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2500		return PTR_ERR(pf->ptp.clock);
2501	}
2502
2503	return 0;
2504}
2505
2506/**
2507 * ice_ptp_request_ts - Request an available Tx timestamp index
2508 * @tx: the PTP Tx timestamp tracker to request from
2509 * @skb: the SKB to associate with this timestamp request
2510 */
2511s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2512{
2513	unsigned long flags;
2514	u8 idx;
2515
2516	spin_lock_irqsave(&tx->lock, flags);
2517
2518	/* Check that this tracker is accepting new timestamp requests */
2519	if (!ice_ptp_is_tx_tracker_up(tx)) {
2520		spin_unlock_irqrestore(&tx->lock, flags);
2521		return -1;
2522	}
2523
2524	/* Find and set the first available index */
2525	idx = find_next_zero_bit(tx->in_use, tx->len,
2526				 tx->last_ll_ts_idx_read + 1);
2527	if (idx == tx->len)
2528		idx = find_first_zero_bit(tx->in_use, tx->len);
2529
2530	if (idx < tx->len) {
2531		/* We got a valid index that no other thread could have set. Store
2532		 * a reference to the skb and the start time to allow discarding old
2533		 * requests.
2534		 */
2535		set_bit(idx, tx->in_use);
2536		clear_bit(idx, tx->stale);
2537		tx->tstamps[idx].start = jiffies;
2538		tx->tstamps[idx].skb = skb_get(skb);
2539		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2540		ice_trace(tx_tstamp_request, skb, idx);
2541	}
2542
2543	spin_unlock_irqrestore(&tx->lock, flags);
2544
2545	/* return the appropriate PHY timestamp register index, -1 if no
2546	 * indexes were available.
2547	 */
2548	if (idx >= tx->len)
2549		return -1;
2550	else
2551		return idx + tx->offset;
2552}
2553
2554/**
2555 * ice_ptp_process_ts - Process the PTP Tx timestamps
2556 * @pf: Board private structure
2557 *
2558 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2559 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2560 */
2561enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2562{
2563	switch (pf->ptp.tx_interrupt_mode) {
2564	case ICE_PTP_TX_INTERRUPT_NONE:
2565		/* This device has the clock owner handle timestamps for it */
2566		return ICE_TX_TSTAMP_WORK_DONE;
2567	case ICE_PTP_TX_INTERRUPT_SELF:
2568		/* This device handles its own timestamps */
2569		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2570	case ICE_PTP_TX_INTERRUPT_ALL:
2571		/* This device handles timestamps for all ports */
2572		return ice_ptp_tx_tstamp_owner(pf);
2573	default:
2574		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2575			  pf->ptp.tx_interrupt_mode);
2576		return ICE_TX_TSTAMP_WORK_DONE;
2577	}
2578}
2579
2580/**
2581 * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2582 * @pf: Board private structure
2583 *
2584 * The device PHY issues Tx timestamp interrupts to the driver for processing
2585 * timestamp data from the PHY. It will not interrupt again until all
2586 * current timestamp data is read. In rare circumstances, it is possible that
2587 * the driver fails to read all outstanding data.
2588 *
2589 * To avoid getting permanently stuck, periodically check if the PHY has
2590 * outstanding timestamp data. If so, trigger an interrupt from software to
2591 * process this data.
2592 */
2593static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2594{
2595	struct device *dev = ice_pf_to_dev(pf);
2596	struct ice_hw *hw = &pf->hw;
2597	bool trigger_oicr = false;
2598	unsigned int i;
2599
2600	if (ice_is_e810(hw))
2601		return;
2602
2603	if (!ice_pf_src_tmr_owned(pf))
2604		return;
2605
2606	for (i = 0; i < ICE_MAX_QUAD; i++) {
2607		u64 tstamp_ready;
2608		int err;
2609
2610		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2611		if (!err && tstamp_ready) {
2612			trigger_oicr = true;
2613			break;
2614		}
2615	}
2616
2617	if (trigger_oicr) {
2618		/* Trigger a software interrupt, to ensure this data
2619		 * gets processed.
2620		 */
2621		dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2622
2623		wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2624		ice_flush(hw);
2625	}
2626}
2627
2628static void ice_ptp_periodic_work(struct kthread_work *work)
2629{
2630	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2631	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2632	int err;
2633
2634	if (pf->ptp.state != ICE_PTP_READY)
2635		return;
2636
2637	err = ice_ptp_update_cached_phctime(pf);
2638
2639	ice_ptp_maybe_trigger_tx_interrupt(pf);
2640
2641	/* Run twice a second or reschedule if phc update failed */
2642	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2643				   msecs_to_jiffies(err ? 10 : 500));
2644}
2645
2646/**
2647 * ice_ptp_prepare_for_reset - Prepare PTP for reset
2648 * @pf: Board private structure
2649 * @reset_type: the reset type being performed
2650 */
2651void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
2652{
2653	struct ice_ptp *ptp = &pf->ptp;
2654	u8 src_tmr;
2655
2656	if (ptp->state != ICE_PTP_READY)
2657		return;
2658
2659	ptp->state = ICE_PTP_RESETTING;
2660
2661	/* Disable timestamping for both Tx and Rx */
2662	ice_ptp_disable_timestamp_mode(pf);
2663
2664	kthread_cancel_delayed_work_sync(&ptp->work);
2665
2666	if (reset_type == ICE_RESET_PFR)
2667		return;
2668
2669	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2670
2671	/* Disable periodic outputs */
2672	ice_ptp_disable_all_clkout(pf);
2673
2674	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2675
2676	/* Disable source clock */
2677	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2678
2679	/* Acquire PHC and system timer to restore after reset */
2680	ptp->reset_time = ktime_get_real_ns();
2681}
2682
2683/**
2684 * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset
2685 * @pf: Board private structure
2686 *
2687 * Companion function for ice_ptp_rebuild() which handles tasks that only the
2688 * PTP clock owner instance should perform.
2689 */
2690static int ice_ptp_rebuild_owner(struct ice_pf *pf)
2691{
2692	struct ice_ptp *ptp = &pf->ptp;
2693	struct ice_hw *hw = &pf->hw;
2694	struct timespec64 ts;
2695	u64 time_diff;
2696	int err;
2697
2698	err = ice_ptp_init_phc(hw);
2699	if (err)
2700		return err;
2701
2702	/* Acquire the global hardware lock */
2703	if (!ice_ptp_lock(hw)) {
2704		err = -EBUSY;
2705		return err;
2706	}
2707
2708	/* Write the increment time value to PHY and LAN */
2709	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2710	if (err) {
2711		ice_ptp_unlock(hw);
2712		return err;
2713	}
2714
2715	/* Write the initial Time value to PHY and LAN using the cached PHC
2716	 * time before the reset and time difference between stopping and
2717	 * starting the clock.
2718	 */
2719	if (ptp->cached_phc_time) {
2720		time_diff = ktime_get_real_ns() - ptp->reset_time;
2721		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2722	} else {
2723		ts = ktime_to_timespec64(ktime_get_real());
2724	}
2725	err = ice_ptp_write_init(pf, &ts);
2726	if (err) {
2727		ice_ptp_unlock(hw);
2728		return err;
2729	}
2730
2731	/* Release the global hardware lock */
2732	ice_ptp_unlock(hw);
2733
2734	/* Flush software tracking of any outstanding timestamps since we're
2735	 * about to flush the PHY timestamp block.
2736	 */
2737	ice_ptp_flush_all_tx_tracker(pf);
2738
2739	if (!ice_is_e810(hw)) {
2740		/* Enable quad interrupts */
2741		err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
2742		if (err)
2743			return err;
2744
2745		ice_ptp_restart_all_phy(pf);
2746	}
2747
2748	return 0;
2749}
2750
2751/**
2752 * ice_ptp_rebuild - Initialize PTP hardware clock support after reset
2753 * @pf: Board private structure
2754 * @reset_type: the reset type being performed
2755 */
2756void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
2757{
2758	struct ice_ptp *ptp = &pf->ptp;
2759	int err;
2760
2761	if (ptp->state == ICE_PTP_READY) {
2762		ice_ptp_prepare_for_reset(pf, reset_type);
2763	} else if (ptp->state != ICE_PTP_RESETTING) {
2764		err = -EINVAL;
2765		dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n");
2766		goto err;
2767	}
2768
2769	if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) {
2770		err = ice_ptp_rebuild_owner(pf);
2771		if (err)
2772			goto err;
2773	}
2774
2775	ptp->state = ICE_PTP_READY;
2776
2777	/* Start periodic work going */
2778	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2779
2780	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2781	return;
2782
2783err:
2784	ptp->state = ICE_PTP_ERROR;
2785	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2786}
2787
2788/**
2789 * ice_ptp_aux_dev_to_aux_pf - Get auxiliary PF handle for the auxiliary device
2790 * @aux_dev: auxiliary device to get the auxiliary PF for
2791 */
2792static struct ice_pf *
2793ice_ptp_aux_dev_to_aux_pf(struct auxiliary_device *aux_dev)
2794{
2795	struct ice_ptp_port *aux_port;
2796	struct ice_ptp *aux_ptp;
2797
2798	aux_port = container_of(aux_dev, struct ice_ptp_port, aux_dev);
2799	aux_ptp = container_of(aux_port, struct ice_ptp, port);
2800
2801	return container_of(aux_ptp, struct ice_pf, ptp);
2802}
2803
2804/**
2805 * ice_ptp_aux_dev_to_owner_pf - Get PF handle for the auxiliary device
2806 * @aux_dev: auxiliary device to get the PF for
2807 */
2808static struct ice_pf *
2809ice_ptp_aux_dev_to_owner_pf(struct auxiliary_device *aux_dev)
2810{
2811	struct ice_ptp_port_owner *ports_owner;
2812	struct auxiliary_driver *aux_drv;
2813	struct ice_ptp *owner_ptp;
2814
2815	if (!aux_dev->dev.driver)
2816		return NULL;
2817
2818	aux_drv = to_auxiliary_drv(aux_dev->dev.driver);
2819	ports_owner = container_of(aux_drv, struct ice_ptp_port_owner,
2820				   aux_driver);
2821	owner_ptp = container_of(ports_owner, struct ice_ptp, ports_owner);
2822	return container_of(owner_ptp, struct ice_pf, ptp);
2823}
2824
2825/**
2826 * ice_ptp_auxbus_probe - Probe auxiliary devices
2827 * @aux_dev: PF's auxiliary device
2828 * @id: Auxiliary device ID
2829 */
2830static int ice_ptp_auxbus_probe(struct auxiliary_device *aux_dev,
2831				const struct auxiliary_device_id *id)
2832{
2833	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2834	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2835
2836	if (WARN_ON(!owner_pf))
2837		return -ENODEV;
2838
2839	INIT_LIST_HEAD(&aux_pf->ptp.port.list_member);
2840	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2841	list_add(&aux_pf->ptp.port.list_member,
2842		 &owner_pf->ptp.ports_owner.ports);
2843	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2844
2845	return 0;
2846}
2847
2848/**
2849 * ice_ptp_auxbus_remove - Remove auxiliary devices from the bus
2850 * @aux_dev: PF's auxiliary device
2851 */
2852static void ice_ptp_auxbus_remove(struct auxiliary_device *aux_dev)
2853{
2854	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2855	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2856
2857	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2858	list_del(&aux_pf->ptp.port.list_member);
2859	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2860}
2861
2862/**
2863 * ice_ptp_auxbus_shutdown
2864 * @aux_dev: PF's auxiliary device
2865 */
2866static void ice_ptp_auxbus_shutdown(struct auxiliary_device *aux_dev)
2867{
2868	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2869}
2870
2871/**
2872 * ice_ptp_auxbus_suspend
2873 * @aux_dev: PF's auxiliary device
2874 * @state: power management state indicator
2875 */
2876static int
2877ice_ptp_auxbus_suspend(struct auxiliary_device *aux_dev, pm_message_t state)
2878{
2879	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2880	return 0;
2881}
2882
2883/**
2884 * ice_ptp_auxbus_resume
2885 * @aux_dev: PF's auxiliary device
2886 */
2887static int ice_ptp_auxbus_resume(struct auxiliary_device *aux_dev)
2888{
2889	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2890	return 0;
2891}
2892
2893/**
2894 * ice_ptp_auxbus_create_id_table - Create auxiliary device ID table
2895 * @pf: Board private structure
2896 * @name: auxiliary bus driver name
2897 */
2898static struct auxiliary_device_id *
2899ice_ptp_auxbus_create_id_table(struct ice_pf *pf, const char *name)
2900{
2901	struct auxiliary_device_id *ids;
2902
2903	/* Second id left empty to terminate the array */
2904	ids = devm_kcalloc(ice_pf_to_dev(pf), 2,
2905			   sizeof(struct auxiliary_device_id), GFP_KERNEL);
2906	if (!ids)
2907		return NULL;
2908
2909	snprintf(ids[0].name, sizeof(ids[0].name), "ice.%s", name);
2910
2911	return ids;
2912}
2913
2914/**
2915 * ice_ptp_register_auxbus_driver - Register PTP auxiliary bus driver
2916 * @pf: Board private structure
2917 */
2918static int ice_ptp_register_auxbus_driver(struct ice_pf *pf)
2919{
2920	struct auxiliary_driver *aux_driver;
2921	struct ice_ptp *ptp;
2922	struct device *dev;
2923	char *name;
2924	int err;
2925
2926	ptp = &pf->ptp;
2927	dev = ice_pf_to_dev(pf);
2928	aux_driver = &ptp->ports_owner.aux_driver;
2929	INIT_LIST_HEAD(&ptp->ports_owner.ports);
2930	mutex_init(&ptp->ports_owner.lock);
2931	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
2932			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
2933			      ice_get_ptp_src_clock_index(&pf->hw));
2934	if (!name)
2935		return -ENOMEM;
2936
2937	aux_driver->name = name;
2938	aux_driver->shutdown = ice_ptp_auxbus_shutdown;
2939	aux_driver->suspend = ice_ptp_auxbus_suspend;
2940	aux_driver->remove = ice_ptp_auxbus_remove;
2941	aux_driver->resume = ice_ptp_auxbus_resume;
2942	aux_driver->probe = ice_ptp_auxbus_probe;
2943	aux_driver->id_table = ice_ptp_auxbus_create_id_table(pf, name);
2944	if (!aux_driver->id_table)
2945		return -ENOMEM;
2946
2947	err = auxiliary_driver_register(aux_driver);
2948	if (err) {
2949		devm_kfree(dev, aux_driver->id_table);
2950		dev_err(dev, "Failed registering aux_driver, name <%s>\n",
2951			name);
2952	}
2953
2954	return err;
2955}
2956
2957/**
2958 * ice_ptp_unregister_auxbus_driver - Unregister PTP auxiliary bus driver
2959 * @pf: Board private structure
2960 */
2961static void ice_ptp_unregister_auxbus_driver(struct ice_pf *pf)
2962{
2963	struct auxiliary_driver *aux_driver = &pf->ptp.ports_owner.aux_driver;
2964
2965	auxiliary_driver_unregister(aux_driver);
2966	devm_kfree(ice_pf_to_dev(pf), aux_driver->id_table);
2967
2968	mutex_destroy(&pf->ptp.ports_owner.lock);
2969}
2970
2971/**
2972 * ice_ptp_clock_index - Get the PTP clock index for this device
2973 * @pf: Board private structure
2974 *
2975 * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
2976 * is associated.
2977 */
2978int ice_ptp_clock_index(struct ice_pf *pf)
2979{
2980	struct auxiliary_device *aux_dev;
2981	struct ice_pf *owner_pf;
2982	struct ptp_clock *clock;
2983
2984	aux_dev = &pf->ptp.port.aux_dev;
2985	owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2986	if (!owner_pf)
2987		return -1;
2988	clock = owner_pf->ptp.clock;
2989
2990	return clock ? ptp_clock_index(clock) : -1;
2991}
2992
2993/**
2994 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2995 * @pf: Board private structure
2996 *
2997 * Setup and initialize a PTP clock device that represents the device hardware
2998 * clock. Save the clock index for other functions connected to the same
2999 * hardware resource.
3000 */
3001static int ice_ptp_init_owner(struct ice_pf *pf)
3002{
3003	struct ice_hw *hw = &pf->hw;
3004	struct timespec64 ts;
3005	int err;
3006
3007	err = ice_ptp_init_phc(hw);
3008	if (err) {
3009		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
3010			err);
3011		return err;
3012	}
3013
3014	/* Acquire the global hardware lock */
3015	if (!ice_ptp_lock(hw)) {
3016		err = -EBUSY;
3017		goto err_exit;
3018	}
3019
3020	/* Write the increment time value to PHY and LAN */
3021	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
3022	if (err) {
3023		ice_ptp_unlock(hw);
3024		goto err_exit;
3025	}
3026
3027	ts = ktime_to_timespec64(ktime_get_real());
3028	/* Write the initial Time value to PHY and LAN */
3029	err = ice_ptp_write_init(pf, &ts);
3030	if (err) {
3031		ice_ptp_unlock(hw);
3032		goto err_exit;
3033	}
3034
3035	/* Release the global hardware lock */
3036	ice_ptp_unlock(hw);
3037
3038	if (!ice_is_e810(hw)) {
3039		/* Enable quad interrupts */
3040		err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
3041		if (err)
3042			goto err_exit;
3043	}
3044
3045	/* Ensure we have a clock device */
3046	err = ice_ptp_create_clock(pf);
3047	if (err)
3048		goto err_clk;
3049
3050	err = ice_ptp_register_auxbus_driver(pf);
3051	if (err) {
3052		dev_err(ice_pf_to_dev(pf), "Failed to register PTP auxbus driver");
3053		goto err_aux;
3054	}
3055
3056	return 0;
3057err_aux:
3058	ptp_clock_unregister(pf->ptp.clock);
3059err_clk:
3060	pf->ptp.clock = NULL;
3061err_exit:
3062	return err;
3063}
3064
3065/**
3066 * ice_ptp_init_work - Initialize PTP work threads
3067 * @pf: Board private structure
3068 * @ptp: PF PTP structure
3069 */
3070static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
3071{
3072	struct kthread_worker *kworker;
3073
3074	/* Initialize work functions */
3075	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
3076
3077	/* Allocate a kworker for handling work required for the ports
3078	 * connected to the PTP hardware clock.
3079	 */
3080	kworker = kthread_create_worker(0, "ice-ptp-%s",
3081					dev_name(ice_pf_to_dev(pf)));
3082	if (IS_ERR(kworker))
3083		return PTR_ERR(kworker);
3084
3085	ptp->kworker = kworker;
3086
3087	/* Start periodic work going */
3088	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3089
3090	return 0;
3091}
3092
3093/**
3094 * ice_ptp_init_port - Initialize PTP port structure
3095 * @pf: Board private structure
3096 * @ptp_port: PTP port structure
3097 */
3098static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
3099{
3100	struct ice_hw *hw = &pf->hw;
3101
3102	mutex_init(&ptp_port->ps_lock);
3103
3104	switch (hw->phy_model) {
3105	case ICE_PHY_E810:
3106		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
3107	case ICE_PHY_E82X:
3108		kthread_init_delayed_work(&ptp_port->ov_work,
3109					  ice_ptp_wait_for_offsets);
3110
3111		return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
3112					    ptp_port->port_num);
3113	default:
3114		return -ENODEV;
3115	}
3116}
3117
3118/**
3119 * ice_ptp_release_auxbus_device
3120 * @dev: device that utilizes the auxbus
3121 */
3122static void ice_ptp_release_auxbus_device(struct device *dev)
3123{
3124	/* Doing nothing here, but handle to auxbux device must be satisfied */
3125}
3126
3127/**
3128 * ice_ptp_create_auxbus_device - Create PTP auxiliary bus device
3129 * @pf: Board private structure
3130 */
3131static int ice_ptp_create_auxbus_device(struct ice_pf *pf)
3132{
3133	struct auxiliary_device *aux_dev;
3134	struct ice_ptp *ptp;
3135	struct device *dev;
3136	char *name;
3137	int err;
3138	u32 id;
3139
3140	ptp = &pf->ptp;
3141	id = ptp->port.port_num;
3142	dev = ice_pf_to_dev(pf);
3143
3144	aux_dev = &ptp->port.aux_dev;
3145
3146	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
3147			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
3148			      ice_get_ptp_src_clock_index(&pf->hw));
3149	if (!name)
3150		return -ENOMEM;
3151
3152	aux_dev->name = name;
3153	aux_dev->id = id;
3154	aux_dev->dev.release = ice_ptp_release_auxbus_device;
3155	aux_dev->dev.parent = dev;
3156
3157	err = auxiliary_device_init(aux_dev);
3158	if (err)
3159		goto aux_err;
3160
3161	err = auxiliary_device_add(aux_dev);
3162	if (err) {
3163		auxiliary_device_uninit(aux_dev);
3164		goto aux_err;
3165	}
3166
3167	return 0;
3168aux_err:
3169	dev_err(dev, "Failed to create PTP auxiliary bus device <%s>\n", name);
3170	devm_kfree(dev, name);
3171	return err;
3172}
3173
3174/**
3175 * ice_ptp_remove_auxbus_device - Remove PTP auxiliary bus device
3176 * @pf: Board private structure
3177 */
3178static void ice_ptp_remove_auxbus_device(struct ice_pf *pf)
3179{
3180	struct auxiliary_device *aux_dev = &pf->ptp.port.aux_dev;
3181
3182	auxiliary_device_delete(aux_dev);
3183	auxiliary_device_uninit(aux_dev);
3184
3185	memset(aux_dev, 0, sizeof(*aux_dev));
3186}
3187
3188/**
3189 * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3190 * @pf: Board private structure
3191 *
3192 * Initialize the Tx timestamp interrupt mode for this device. For most device
3193 * types, each PF processes the interrupt and manages its own timestamps. For
3194 * E822-based devices, only the clock owner processes the timestamps. Other
3195 * PFs disable the interrupt and do not process their own timestamps.
3196 */
3197static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3198{
3199	switch (pf->hw.phy_model) {
3200	case ICE_PHY_E82X:
3201		/* E822 based PHY has the clock owner process the interrupt
3202		 * for all ports.
3203		 */
3204		if (ice_pf_src_tmr_owned(pf))
3205			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3206		else
3207			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3208		break;
3209	default:
3210		/* other PHY types handle their own Tx interrupt */
3211		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3212	}
3213}
3214
3215/**
3216 * ice_ptp_init - Initialize PTP hardware clock support
3217 * @pf: Board private structure
3218 *
3219 * Set up the device for interacting with the PTP hardware clock for all
3220 * functions, both the function that owns the clock hardware, and the
3221 * functions connected to the clock hardware.
3222 *
3223 * The clock owner will allocate and register a ptp_clock with the
3224 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3225 * items used for asynchronous work such as Tx timestamps and periodic work.
3226 */
3227void ice_ptp_init(struct ice_pf *pf)
3228{
3229	struct ice_ptp *ptp = &pf->ptp;
3230	struct ice_hw *hw = &pf->hw;
3231	int err;
3232
3233	ptp->state = ICE_PTP_INITIALIZING;
3234
3235	ice_ptp_init_phy_model(hw);
3236
3237	ice_ptp_init_tx_interrupt_mode(pf);
3238
3239	/* If this function owns the clock hardware, it must allocate and
3240	 * configure the PTP clock device to represent it.
3241	 */
3242	if (ice_pf_src_tmr_owned(pf)) {
3243		err = ice_ptp_init_owner(pf);
3244		if (err)
3245			goto err;
3246	}
3247
3248	ptp->port.port_num = hw->pf_id;
3249	err = ice_ptp_init_port(pf, &ptp->port);
3250	if (err)
3251		goto err;
3252
3253	/* Start the PHY timestamping block */
3254	ice_ptp_reset_phy_timestamping(pf);
3255
3256	/* Configure initial Tx interrupt settings */
3257	ice_ptp_cfg_tx_interrupt(pf);
3258
3259	err = ice_ptp_create_auxbus_device(pf);
3260	if (err)
3261		goto err;
3262
3263	ptp->state = ICE_PTP_READY;
3264
3265	err = ice_ptp_init_work(pf, ptp);
3266	if (err)
3267		goto err;
3268
3269	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3270	return;
3271
3272err:
3273	/* If we registered a PTP clock, release it */
3274	if (pf->ptp.clock) {
3275		ptp_clock_unregister(ptp->clock);
3276		pf->ptp.clock = NULL;
3277	}
3278	ptp->state = ICE_PTP_ERROR;
3279	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3280}
3281
3282/**
3283 * ice_ptp_release - Disable the driver/HW support and unregister the clock
3284 * @pf: Board private structure
3285 *
3286 * This function handles the cleanup work required from the initialization by
3287 * clearing out the important information and unregistering the clock
3288 */
3289void ice_ptp_release(struct ice_pf *pf)
3290{
3291	if (pf->ptp.state != ICE_PTP_READY)
3292		return;
3293
3294	pf->ptp.state = ICE_PTP_UNINIT;
3295
3296	/* Disable timestamping for both Tx and Rx */
3297	ice_ptp_disable_timestamp_mode(pf);
3298
3299	ice_ptp_remove_auxbus_device(pf);
3300
3301	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3302
3303	kthread_cancel_delayed_work_sync(&pf->ptp.work);
3304
3305	ice_ptp_port_phy_stop(&pf->ptp.port);
3306	mutex_destroy(&pf->ptp.port.ps_lock);
3307	if (pf->ptp.kworker) {
3308		kthread_destroy_worker(pf->ptp.kworker);
3309		pf->ptp.kworker = NULL;
3310	}
3311
3312	if (ice_pf_src_tmr_owned(pf))
3313		ice_ptp_unregister_auxbus_driver(pf);
3314
3315	if (!pf->ptp.clock)
3316		return;
3317
3318	/* Disable periodic outputs */
3319	ice_ptp_disable_all_clkout(pf);
3320
3321	ptp_clock_unregister(pf->ptp.clock);
3322	pf->ptp.clock = NULL;
3323
3324	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3325}
3326