11573Srgrimes// SPDX-License-Identifier: GPL-2.0
21573Srgrimes/* Copyright (c) 2019, Intel Corporation. */
31573Srgrimes
41573Srgrimes#include "ice_common.h"
51573Srgrimes#include "ice_flow.h"
61573Srgrimes#include <net/gre.h>
71573Srgrimes
81573Srgrimes/* Describe properties of a protocol header field */
91573Srgrimesstruct ice_flow_field_info {
101573Srgrimes	enum ice_flow_seg_hdr hdr;
111573Srgrimes	s16 off;	/* Offset from start of a protocol header, in bits */
121573Srgrimes	u16 size;	/* Size of fields in bits */
131573Srgrimes	u16 mask;	/* 16-bit mask for field */
141573Srgrimes};
151573Srgrimes
161573Srgrimes#define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
171573Srgrimes	.hdr = _hdr, \
181573Srgrimes	.off = (_offset_bytes) * BITS_PER_BYTE, \
191573Srgrimes	.size = (_size_bytes) * BITS_PER_BYTE, \
201573Srgrimes	.mask = 0, \
211573Srgrimes}
221573Srgrimes
231573Srgrimes#define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
241573Srgrimes	.hdr = _hdr, \
251573Srgrimes	.off = (_offset_bytes) * BITS_PER_BYTE, \
261573Srgrimes	.size = (_size_bytes) * BITS_PER_BYTE, \
271573Srgrimes	.mask = _mask, \
281573Srgrimes}
291573Srgrimes
301573Srgrimes/* Table containing properties of supported protocol header fields */
311573Srgrimesstatic const
321573Srgrimesstruct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
331573Srgrimes	/* Ether */
341573Srgrimes	/* ICE_FLOW_FIELD_IDX_ETH_DA */
3582496Sbde	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
361573Srgrimes	/* ICE_FLOW_FIELD_IDX_ETH_SA */
3782496Sbde	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
3882496Sbde	/* ICE_FLOW_FIELD_IDX_S_VLAN */
3982496Sbde	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)),
4082496Sbde	/* ICE_FLOW_FIELD_IDX_C_VLAN */
411573Srgrimes	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)),
421573Srgrimes	/* ICE_FLOW_FIELD_IDX_ETH_TYPE */
431573Srgrimes	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)),
441573Srgrimes	/* IPv4 / IPv6 */
451573Srgrimes	/* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
4682496Sbde	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc),
4711659Sphk	/* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
4882496Sbde	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0),
4917141Sjkh	/* ICE_FLOW_FIELD_IDX_IPV4_TTL */
501573Srgrimes	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00),
511573Srgrimes	/* ICE_FLOW_FIELD_IDX_IPV4_PROT */
521573Srgrimes	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff),
531573Srgrimes	/* ICE_FLOW_FIELD_IDX_IPV6_TTL */
541573Srgrimes	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff),
551573Srgrimes	/* ICE_FLOW_FIELD_IDX_IPV6_PROT */
561573Srgrimes	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00),
571573Srgrimes	/* ICE_FLOW_FIELD_IDX_IPV4_SA */
581573Srgrimes	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
591573Srgrimes	/* ICE_FLOW_FIELD_IDX_IPV4_DA */
601573Srgrimes	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
611573Srgrimes	/* ICE_FLOW_FIELD_IDX_IPV6_SA */
621573Srgrimes	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
6382496Sbde	/* ICE_FLOW_FIELD_IDX_IPV6_DA */
641573Srgrimes	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
651573Srgrimes	/* Transport */
661573Srgrimes	/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
671573Srgrimes	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
68	/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
69	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
70	/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
71	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
72	/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
73	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
74	/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
75	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
76	/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
77	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
78	/* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
79	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1),
80	/* ARP */
81	/* ICE_FLOW_FIELD_IDX_ARP_SIP */
82	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)),
83	/* ICE_FLOW_FIELD_IDX_ARP_DIP */
84	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)),
85	/* ICE_FLOW_FIELD_IDX_ARP_SHA */
86	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
87	/* ICE_FLOW_FIELD_IDX_ARP_DHA */
88	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
89	/* ICE_FLOW_FIELD_IDX_ARP_OP */
90	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)),
91	/* ICMP */
92	/* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
93	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1),
94	/* ICE_FLOW_FIELD_IDX_ICMP_CODE */
95	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1),
96	/* GRE */
97	/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
98	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
99			  sizeof_field(struct gre_full_hdr, key)),
100	/* GTP */
101	/* ICE_FLOW_FIELD_IDX_GTPC_TEID */
102	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)),
103	/* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
104	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)),
105	/* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
106	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)),
107	/* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
108	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16),
109			      0x3f00),
110	/* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
111	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)),
112	/* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
113	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)),
114	/* PPPoE */
115	/* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
116	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)),
117	/* PFCP */
118	/* ICE_FLOW_FIELD_IDX_PFCP_SEID */
119	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)),
120	/* L2TPv3 */
121	/* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
122	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)),
123	/* ESP */
124	/* ICE_FLOW_FIELD_IDX_ESP_SPI */
125	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)),
126	/* AH */
127	/* ICE_FLOW_FIELD_IDX_AH_SPI */
128	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)),
129	/* NAT_T_ESP */
130	/* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
131	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)),
132};
133
134/* Bitmaps indicating relevant packet types for a particular protocol header
135 *
136 * Packet types for packets with an Outer/First/Single MAC header
137 */
138static const u32 ice_ptypes_mac_ofos[] = {
139	0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
140	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
141	0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000,
142	0x00000000, 0x00000000, 0x00000000, 0x00000000,
143	0x00000000, 0x00000000, 0x00000000, 0x00000000,
144	0x00000000, 0x00000000, 0x00000000, 0x00000000,
145	0x00000000, 0x00000000, 0x00000000, 0x00000000,
146	0x00000000, 0x00000000, 0x00000000, 0x00000000,
147};
148
149/* Packet types for packets with an Innermost/Last MAC VLAN header */
150static const u32 ice_ptypes_macvlan_il[] = {
151	0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
152	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
153	0x00000000, 0x00000000, 0x00000000, 0x00000000,
154	0x00000000, 0x00000000, 0x00000000, 0x00000000,
155	0x00000000, 0x00000000, 0x00000000, 0x00000000,
156	0x00000000, 0x00000000, 0x00000000, 0x00000000,
157	0x00000000, 0x00000000, 0x00000000, 0x00000000,
158	0x00000000, 0x00000000, 0x00000000, 0x00000000,
159};
160
161/* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
162 * include IPv4 other PTYPEs
163 */
164static const u32 ice_ptypes_ipv4_ofos[] = {
165	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
166	0x00000000, 0x00000155, 0x00000000, 0x00000000,
167	0x00000000, 0x000FC000, 0x00000000, 0x00000000,
168	0x00000000, 0x00000000, 0x00000000, 0x00000000,
169	0x00000000, 0x00000000, 0x00000000, 0x00000000,
170	0x00000000, 0x00000000, 0x00000000, 0x00000000,
171	0x00000000, 0x00000000, 0x00000000, 0x00000000,
172	0x00000000, 0x00000000, 0x00000000, 0x00000000,
173};
174
175/* Packet types for packets with an Outer/First/Single IPv4 header, includes
176 * IPv4 other PTYPEs
177 */
178static const u32 ice_ptypes_ipv4_ofos_all[] = {
179	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
180	0x00000000, 0x00000155, 0x00000000, 0x00000000,
181	0x00000000, 0x000FC000, 0x83E0F800, 0x00000101,
182	0x00000000, 0x00000000, 0x00000000, 0x00000000,
183	0x00000000, 0x00000000, 0x00000000, 0x00000000,
184	0x00000000, 0x00000000, 0x00000000, 0x00000000,
185	0x00000000, 0x00000000, 0x00000000, 0x00000000,
186	0x00000000, 0x00000000, 0x00000000, 0x00000000,
187};
188
189/* Packet types for packets with an Innermost/Last IPv4 header */
190static const u32 ice_ptypes_ipv4_il[] = {
191	0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
192	0x0000000E, 0x00000000, 0x00000000, 0x00000000,
193	0x00000000, 0x00000000, 0x001FF800, 0x00000000,
194	0x00000000, 0x00000000, 0x00000000, 0x00000000,
195	0x00000000, 0x00000000, 0x00000000, 0x00000000,
196	0x00000000, 0x00000000, 0x00000000, 0x00000000,
197	0x00000000, 0x00000000, 0x00000000, 0x00000000,
198	0x00000000, 0x00000000, 0x00000000, 0x00000000,
199};
200
201/* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
202 * include IPv6 other PTYPEs
203 */
204static const u32 ice_ptypes_ipv6_ofos[] = {
205	0x00000000, 0x00000000, 0x77000000, 0x10002000,
206	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
207	0x00000000, 0x03F00000, 0x00000000, 0x00000000,
208	0x00000000, 0x00000000, 0x00000000, 0x00000000,
209	0x00000000, 0x00000000, 0x00000000, 0x00000000,
210	0x00000000, 0x00000000, 0x00000000, 0x00000000,
211	0x00000000, 0x00000000, 0x00000000, 0x00000000,
212	0x00000000, 0x00000000, 0x00000000, 0x00000000,
213};
214
215/* Packet types for packets with an Outer/First/Single IPv6 header, includes
216 * IPv6 other PTYPEs
217 */
218static const u32 ice_ptypes_ipv6_ofos_all[] = {
219	0x00000000, 0x00000000, 0x77000000, 0x10002000,
220	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
221	0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206,
222	0x00000000, 0x00000000, 0x00000000, 0x00000000,
223	0x00000000, 0x00000000, 0x00000000, 0x00000000,
224	0x00000000, 0x00000000, 0x00000000, 0x00000000,
225	0x00000000, 0x00000000, 0x00000000, 0x00000000,
226	0x00000000, 0x00000000, 0x00000000, 0x00000000,
227};
228
229/* Packet types for packets with an Innermost/Last IPv6 header */
230static const u32 ice_ptypes_ipv6_il[] = {
231	0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
232	0x00000770, 0x00000000, 0x00000000, 0x00000000,
233	0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
234	0x00000000, 0x00000000, 0x00000000, 0x00000000,
235	0x00000000, 0x00000000, 0x00000000, 0x00000000,
236	0x00000000, 0x00000000, 0x00000000, 0x00000000,
237	0x00000000, 0x00000000, 0x00000000, 0x00000000,
238	0x00000000, 0x00000000, 0x00000000, 0x00000000,
239};
240
241/* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
242static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
243	0x10C00000, 0x04000800, 0x00000000, 0x00000000,
244	0x00000000, 0x00000000, 0x00000000, 0x00000000,
245	0x00000000, 0x00000000, 0x00000000, 0x00000000,
246	0x00000000, 0x00000000, 0x00000000, 0x00000000,
247	0x00000000, 0x00000000, 0x00000000, 0x00000000,
248	0x00000000, 0x00000000, 0x00000000, 0x00000000,
249	0x00000000, 0x00000000, 0x00000000, 0x00000000,
250	0x00000000, 0x00000000, 0x00000000, 0x00000000,
251};
252
253/* Packet types for packets with an Outermost/First ARP header */
254static const u32 ice_ptypes_arp_of[] = {
255	0x00000800, 0x00000000, 0x00000000, 0x00000000,
256	0x00000000, 0x00000000, 0x00000000, 0x00000000,
257	0x00000000, 0x00000000, 0x00000000, 0x00000000,
258	0x00000000, 0x00000000, 0x00000000, 0x00000000,
259	0x00000000, 0x00000000, 0x00000000, 0x00000000,
260	0x00000000, 0x00000000, 0x00000000, 0x00000000,
261	0x00000000, 0x00000000, 0x00000000, 0x00000000,
262	0x00000000, 0x00000000, 0x00000000, 0x00000000,
263};
264
265/* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
266static const u32 ice_ptypes_ipv4_il_no_l4[] = {
267	0x60000000, 0x18043008, 0x80000002, 0x6010c021,
268	0x00000008, 0x00000000, 0x00000000, 0x00000000,
269	0x00000000, 0x00000000, 0x00000000, 0x00000000,
270	0x00000000, 0x00000000, 0x00000000, 0x00000000,
271	0x00000000, 0x00000000, 0x00000000, 0x00000000,
272	0x00000000, 0x00000000, 0x00000000, 0x00000000,
273	0x00000000, 0x00000000, 0x00000000, 0x00000000,
274	0x00000000, 0x00000000, 0x00000000, 0x00000000,
275};
276
277/* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
278static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
279	0x00000000, 0x00000000, 0x43000000, 0x10002000,
280	0x00000000, 0x00000000, 0x00000000, 0x00000000,
281	0x00000000, 0x00000000, 0x00000000, 0x00000000,
282	0x00000000, 0x00000000, 0x00000000, 0x00000000,
283	0x00000000, 0x00000000, 0x00000000, 0x00000000,
284	0x00000000, 0x00000000, 0x00000000, 0x00000000,
285	0x00000000, 0x00000000, 0x00000000, 0x00000000,
286	0x00000000, 0x00000000, 0x00000000, 0x00000000,
287};
288
289/* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
290static const u32 ice_ptypes_ipv6_il_no_l4[] = {
291	0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
292	0x00000430, 0x00000000, 0x00000000, 0x00000000,
293	0x00000000, 0x00000000, 0x00000000, 0x00000000,
294	0x00000000, 0x00000000, 0x00000000, 0x00000000,
295	0x00000000, 0x00000000, 0x00000000, 0x00000000,
296	0x00000000, 0x00000000, 0x00000000, 0x00000000,
297	0x00000000, 0x00000000, 0x00000000, 0x00000000,
298	0x00000000, 0x00000000, 0x00000000, 0x00000000,
299};
300
301/* UDP Packet types for non-tunneled packets or tunneled
302 * packets with inner UDP.
303 */
304static const u32 ice_ptypes_udp_il[] = {
305	0x81000000, 0x20204040, 0x04000010, 0x80810102,
306	0x00000040, 0x00000000, 0x00000000, 0x00000000,
307	0x00000000, 0x00410000, 0x90842000, 0x00000007,
308	0x00000000, 0x00000000, 0x00000000, 0x00000000,
309	0x00000000, 0x00000000, 0x00000000, 0x00000000,
310	0x00000000, 0x00000000, 0x00000000, 0x00000000,
311	0x00000000, 0x00000000, 0x00000000, 0x00000000,
312	0x00000000, 0x00000000, 0x00000000, 0x00000000,
313};
314
315/* Packet types for packets with an Innermost/Last TCP header */
316static const u32 ice_ptypes_tcp_il[] = {
317	0x04000000, 0x80810102, 0x10000040, 0x02040408,
318	0x00000102, 0x00000000, 0x00000000, 0x00000000,
319	0x00000000, 0x00820000, 0x21084000, 0x00000000,
320	0x00000000, 0x00000000, 0x00000000, 0x00000000,
321	0x00000000, 0x00000000, 0x00000000, 0x00000000,
322	0x00000000, 0x00000000, 0x00000000, 0x00000000,
323	0x00000000, 0x00000000, 0x00000000, 0x00000000,
324	0x00000000, 0x00000000, 0x00000000, 0x00000000,
325};
326
327/* Packet types for packets with an Innermost/Last SCTP header */
328static const u32 ice_ptypes_sctp_il[] = {
329	0x08000000, 0x01020204, 0x20000081, 0x04080810,
330	0x00000204, 0x00000000, 0x00000000, 0x00000000,
331	0x00000000, 0x01040000, 0x00000000, 0x00000000,
332	0x00000000, 0x00000000, 0x00000000, 0x00000000,
333	0x00000000, 0x00000000, 0x00000000, 0x00000000,
334	0x00000000, 0x00000000, 0x00000000, 0x00000000,
335	0x00000000, 0x00000000, 0x00000000, 0x00000000,
336	0x00000000, 0x00000000, 0x00000000, 0x00000000,
337};
338
339/* Packet types for packets with an Outermost/First ICMP header */
340static const u32 ice_ptypes_icmp_of[] = {
341	0x10000000, 0x00000000, 0x00000000, 0x00000000,
342	0x00000000, 0x00000000, 0x00000000, 0x00000000,
343	0x00000000, 0x00000000, 0x00000000, 0x00000000,
344	0x00000000, 0x00000000, 0x00000000, 0x00000000,
345	0x00000000, 0x00000000, 0x00000000, 0x00000000,
346	0x00000000, 0x00000000, 0x00000000, 0x00000000,
347	0x00000000, 0x00000000, 0x00000000, 0x00000000,
348	0x00000000, 0x00000000, 0x00000000, 0x00000000,
349};
350
351/* Packet types for packets with an Innermost/Last ICMP header */
352static const u32 ice_ptypes_icmp_il[] = {
353	0x00000000, 0x02040408, 0x40000102, 0x08101020,
354	0x00000408, 0x00000000, 0x00000000, 0x00000000,
355	0x00000000, 0x00000000, 0x42108000, 0x00000000,
356	0x00000000, 0x00000000, 0x00000000, 0x00000000,
357	0x00000000, 0x00000000, 0x00000000, 0x00000000,
358	0x00000000, 0x00000000, 0x00000000, 0x00000000,
359	0x00000000, 0x00000000, 0x00000000, 0x00000000,
360	0x00000000, 0x00000000, 0x00000000, 0x00000000,
361};
362
363/* Packet types for packets with an Outermost/First GRE header */
364static const u32 ice_ptypes_gre_of[] = {
365	0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
366	0x0000017E, 0x00000000, 0x00000000, 0x00000000,
367	0x00000000, 0x00000000, 0x00000000, 0x00000000,
368	0x00000000, 0x00000000, 0x00000000, 0x00000000,
369	0x00000000, 0x00000000, 0x00000000, 0x00000000,
370	0x00000000, 0x00000000, 0x00000000, 0x00000000,
371	0x00000000, 0x00000000, 0x00000000, 0x00000000,
372	0x00000000, 0x00000000, 0x00000000, 0x00000000,
373};
374
375/* Packet types for packets with an Innermost/Last MAC header */
376static const u32 ice_ptypes_mac_il[] = {
377	0x00000000, 0x00000000, 0x00000000, 0x00000000,
378	0x00000000, 0x00000000, 0x00000000, 0x00000000,
379	0x00000000, 0x00000000, 0x00000000, 0x00000000,
380	0x00000000, 0x00000000, 0x00000000, 0x00000000,
381	0x00000000, 0x00000000, 0x00000000, 0x00000000,
382	0x00000000, 0x00000000, 0x00000000, 0x00000000,
383	0x00000000, 0x00000000, 0x00000000, 0x00000000,
384	0x00000000, 0x00000000, 0x00000000, 0x00000000,
385};
386
387/* Packet types for GTPC */
388static const u32 ice_ptypes_gtpc[] = {
389	0x00000000, 0x00000000, 0x00000000, 0x00000000,
390	0x00000000, 0x00000000, 0x00000000, 0x00000000,
391	0x00000000, 0x00000000, 0x00000180, 0x00000000,
392	0x00000000, 0x00000000, 0x00000000, 0x00000000,
393	0x00000000, 0x00000000, 0x00000000, 0x00000000,
394	0x00000000, 0x00000000, 0x00000000, 0x00000000,
395	0x00000000, 0x00000000, 0x00000000, 0x00000000,
396	0x00000000, 0x00000000, 0x00000000, 0x00000000,
397};
398
399/* Packet types for GTPC with TEID */
400static const u32 ice_ptypes_gtpc_tid[] = {
401	0x00000000, 0x00000000, 0x00000000, 0x00000000,
402	0x00000000, 0x00000000, 0x00000000, 0x00000000,
403	0x00000000, 0x00000000, 0x00000060, 0x00000000,
404	0x00000000, 0x00000000, 0x00000000, 0x00000000,
405	0x00000000, 0x00000000, 0x00000000, 0x00000000,
406	0x00000000, 0x00000000, 0x00000000, 0x00000000,
407	0x00000000, 0x00000000, 0x00000000, 0x00000000,
408	0x00000000, 0x00000000, 0x00000000, 0x00000000,
409};
410
411/* Packet types for GTPU */
412static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
413	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
414	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
415	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
416	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
417	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
418	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
419	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
420	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
421	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
422	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
423	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
424	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
425	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
426	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
427	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
428	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
429	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
430	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
431	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
432	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
433};
434
435static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
436	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
437	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
438	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
439	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
440	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
441	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
442	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
443	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
444	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
445	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
446	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
447	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
448	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
449	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
450	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
451	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
452	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
453	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
454	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
455	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
456};
457
458static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
459	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
460	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
461	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
462	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
463	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
464	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
465	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
466	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
467	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
468	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
469	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
470	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
471	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
472	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
473	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
474	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
475	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
476	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
477	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
478	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
479};
480
481static const u32 ice_ptypes_gtpu[] = {
482	0x00000000, 0x00000000, 0x00000000, 0x00000000,
483	0x00000000, 0x00000000, 0x00000000, 0x00000000,
484	0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
485	0x00000000, 0x00000000, 0x00000000, 0x00000000,
486	0x00000000, 0x00000000, 0x00000000, 0x00000000,
487	0x00000000, 0x00000000, 0x00000000, 0x00000000,
488	0x00000000, 0x00000000, 0x00000000, 0x00000000,
489	0x00000000, 0x00000000, 0x00000000, 0x00000000,
490};
491
492/* Packet types for PPPoE */
493static const u32 ice_ptypes_pppoe[] = {
494	0x00000000, 0x00000000, 0x00000000, 0x00000000,
495	0x00000000, 0x00000000, 0x00000000, 0x00000000,
496	0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
497	0x00000000, 0x00000000, 0x00000000, 0x00000000,
498	0x00000000, 0x00000000, 0x00000000, 0x00000000,
499	0x00000000, 0x00000000, 0x00000000, 0x00000000,
500	0x00000000, 0x00000000, 0x00000000, 0x00000000,
501	0x00000000, 0x00000000, 0x00000000, 0x00000000,
502};
503
504/* Packet types for packets with PFCP NODE header */
505static const u32 ice_ptypes_pfcp_node[] = {
506	0x00000000, 0x00000000, 0x00000000, 0x00000000,
507	0x00000000, 0x00000000, 0x00000000, 0x00000000,
508	0x00000000, 0x00000000, 0x80000000, 0x00000002,
509	0x00000000, 0x00000000, 0x00000000, 0x00000000,
510	0x00000000, 0x00000000, 0x00000000, 0x00000000,
511	0x00000000, 0x00000000, 0x00000000, 0x00000000,
512	0x00000000, 0x00000000, 0x00000000, 0x00000000,
513	0x00000000, 0x00000000, 0x00000000, 0x00000000,
514};
515
516/* Packet types for packets with PFCP SESSION header */
517static const u32 ice_ptypes_pfcp_session[] = {
518	0x00000000, 0x00000000, 0x00000000, 0x00000000,
519	0x00000000, 0x00000000, 0x00000000, 0x00000000,
520	0x00000000, 0x00000000, 0x00000000, 0x00000005,
521	0x00000000, 0x00000000, 0x00000000, 0x00000000,
522	0x00000000, 0x00000000, 0x00000000, 0x00000000,
523	0x00000000, 0x00000000, 0x00000000, 0x00000000,
524	0x00000000, 0x00000000, 0x00000000, 0x00000000,
525	0x00000000, 0x00000000, 0x00000000, 0x00000000,
526};
527
528/* Packet types for L2TPv3 */
529static const u32 ice_ptypes_l2tpv3[] = {
530	0x00000000, 0x00000000, 0x00000000, 0x00000000,
531	0x00000000, 0x00000000, 0x00000000, 0x00000000,
532	0x00000000, 0x00000000, 0x00000000, 0x00000300,
533	0x00000000, 0x00000000, 0x00000000, 0x00000000,
534	0x00000000, 0x00000000, 0x00000000, 0x00000000,
535	0x00000000, 0x00000000, 0x00000000, 0x00000000,
536	0x00000000, 0x00000000, 0x00000000, 0x00000000,
537	0x00000000, 0x00000000, 0x00000000, 0x00000000,
538};
539
540/* Packet types for ESP */
541static const u32 ice_ptypes_esp[] = {
542	0x00000000, 0x00000000, 0x00000000, 0x00000000,
543	0x00000000, 0x00000003, 0x00000000, 0x00000000,
544	0x00000000, 0x00000000, 0x00000000, 0x00000000,
545	0x00000000, 0x00000000, 0x00000000, 0x00000000,
546	0x00000000, 0x00000000, 0x00000000, 0x00000000,
547	0x00000000, 0x00000000, 0x00000000, 0x00000000,
548	0x00000000, 0x00000000, 0x00000000, 0x00000000,
549	0x00000000, 0x00000000, 0x00000000, 0x00000000,
550};
551
552/* Packet types for AH */
553static const u32 ice_ptypes_ah[] = {
554	0x00000000, 0x00000000, 0x00000000, 0x00000000,
555	0x00000000, 0x0000000C, 0x00000000, 0x00000000,
556	0x00000000, 0x00000000, 0x00000000, 0x00000000,
557	0x00000000, 0x00000000, 0x00000000, 0x00000000,
558	0x00000000, 0x00000000, 0x00000000, 0x00000000,
559	0x00000000, 0x00000000, 0x00000000, 0x00000000,
560	0x00000000, 0x00000000, 0x00000000, 0x00000000,
561	0x00000000, 0x00000000, 0x00000000, 0x00000000,
562};
563
564/* Packet types for packets with NAT_T ESP header */
565static const u32 ice_ptypes_nat_t_esp[] = {
566	0x00000000, 0x00000000, 0x00000000, 0x00000000,
567	0x00000000, 0x00000030, 0x00000000, 0x00000000,
568	0x00000000, 0x00000000, 0x00000000, 0x00000000,
569	0x00000000, 0x00000000, 0x00000000, 0x00000000,
570	0x00000000, 0x00000000, 0x00000000, 0x00000000,
571	0x00000000, 0x00000000, 0x00000000, 0x00000000,
572	0x00000000, 0x00000000, 0x00000000, 0x00000000,
573	0x00000000, 0x00000000, 0x00000000, 0x00000000,
574};
575
576static const u32 ice_ptypes_mac_non_ip_ofos[] = {
577	0x00000846, 0x00000000, 0x00000000, 0x00000000,
578	0x00000000, 0x00000000, 0x00000000, 0x00000000,
579	0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
580	0x00000000, 0x00000000, 0x00000000, 0x00000000,
581	0x00000000, 0x00000000, 0x00000000, 0x00000000,
582	0x00000000, 0x00000000, 0x00000000, 0x00000000,
583	0x00000000, 0x00000000, 0x00000000, 0x00000000,
584	0x00000000, 0x00000000, 0x00000000, 0x00000000,
585};
586
587/* Manage parameters and info. used during the creation of a flow profile */
588struct ice_flow_prof_params {
589	enum ice_block blk;
590	u16 entry_length; /* # of bytes formatted entry will require */
591	u8 es_cnt;
592	struct ice_flow_prof *prof;
593
594	/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
595	 * This will give us the direction flags.
596	 */
597	struct ice_fv_word es[ICE_MAX_FV_WORDS];
598	/* attributes can be used to add attributes to a particular PTYPE */
599	const struct ice_ptype_attributes *attr;
600	u16 attr_cnt;
601
602	u16 mask[ICE_MAX_FV_WORDS];
603	DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
604};
605
606#define ICE_FLOW_RSS_HDRS_INNER_MASK \
607	(ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
608	ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
609	ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
610	ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
611	ICE_FLOW_SEG_HDR_NAT_T_ESP)
612
613#define ICE_FLOW_SEG_HDRS_L3_MASK	\
614	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
615#define ICE_FLOW_SEG_HDRS_L4_MASK	\
616	(ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
617	 ICE_FLOW_SEG_HDR_SCTP)
618/* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */
619#define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER	\
620	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
621
622/**
623 * ice_flow_val_hdrs - validates packet segments for valid protocol headers
624 * @segs: array of one or more packet segments that describe the flow
625 * @segs_cnt: number of packet segments provided
626 */
627static int ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
628{
629	u8 i;
630
631	for (i = 0; i < segs_cnt; i++) {
632		/* Multiple L3 headers */
633		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
634		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
635			return -EINVAL;
636
637		/* Multiple L4 headers */
638		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
639		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
640			return -EINVAL;
641	}
642
643	return 0;
644}
645
646/* Sizes of fixed known protocol headers without header options */
647#define ICE_FLOW_PROT_HDR_SZ_MAC	14
648#define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN	(ICE_FLOW_PROT_HDR_SZ_MAC + 2)
649#define ICE_FLOW_PROT_HDR_SZ_IPV4	20
650#define ICE_FLOW_PROT_HDR_SZ_IPV6	40
651#define ICE_FLOW_PROT_HDR_SZ_ARP	28
652#define ICE_FLOW_PROT_HDR_SZ_ICMP	8
653#define ICE_FLOW_PROT_HDR_SZ_TCP	20
654#define ICE_FLOW_PROT_HDR_SZ_UDP	8
655#define ICE_FLOW_PROT_HDR_SZ_SCTP	12
656
657/**
658 * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
659 * @params: information about the flow to be processed
660 * @seg: index of packet segment whose header size is to be determined
661 */
662static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
663{
664	u16 sz;
665
666	/* L2 headers */
667	sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
668		ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
669
670	/* L3 headers */
671	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
672		sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
673	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
674		sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
675	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
676		sz += ICE_FLOW_PROT_HDR_SZ_ARP;
677	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
678		/* An L3 header is required if L4 is specified */
679		return 0;
680
681	/* L4 headers */
682	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
683		sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
684	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
685		sz += ICE_FLOW_PROT_HDR_SZ_TCP;
686	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
687		sz += ICE_FLOW_PROT_HDR_SZ_UDP;
688	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
689		sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
690
691	return sz;
692}
693
694/**
695 * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
696 * @params: information about the flow to be processed
697 *
698 * This function identifies the packet types associated with the protocol
699 * headers being present in packet segments of the specified flow profile.
700 */
701static int ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
702{
703	struct ice_flow_prof *prof;
704	u8 i;
705
706	memset(params->ptypes, 0xff, sizeof(params->ptypes));
707
708	prof = params->prof;
709
710	for (i = 0; i < params->prof->segs_cnt; i++) {
711		const unsigned long *src;
712		u32 hdrs;
713
714		hdrs = prof->segs[i].hdrs;
715
716		if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
717			src = !i ? (const unsigned long *)ice_ptypes_mac_ofos :
718				(const unsigned long *)ice_ptypes_mac_il;
719			bitmap_and(params->ptypes, params->ptypes, src,
720				   ICE_FLOW_PTYPE_MAX);
721		}
722
723		if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
724			src = (const unsigned long *)ice_ptypes_macvlan_il;
725			bitmap_and(params->ptypes, params->ptypes, src,
726				   ICE_FLOW_PTYPE_MAX);
727		}
728
729		if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
730			bitmap_and(params->ptypes, params->ptypes,
731				   (const unsigned long *)ice_ptypes_arp_of,
732				   ICE_FLOW_PTYPE_MAX);
733		}
734
735		if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
736		    (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
737			src = i ? (const unsigned long *)ice_ptypes_ipv4_il :
738				(const unsigned long *)ice_ptypes_ipv4_ofos_all;
739			bitmap_and(params->ptypes, params->ptypes, src,
740				   ICE_FLOW_PTYPE_MAX);
741		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
742			   (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
743			src = i ? (const unsigned long *)ice_ptypes_ipv6_il :
744				(const unsigned long *)ice_ptypes_ipv6_ofos_all;
745			bitmap_and(params->ptypes, params->ptypes, src,
746				   ICE_FLOW_PTYPE_MAX);
747		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
748			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
749			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 :
750				(const unsigned long *)ice_ptypes_ipv4_il_no_l4;
751			bitmap_and(params->ptypes, params->ptypes, src,
752				   ICE_FLOW_PTYPE_MAX);
753		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
754			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
755				(const unsigned long *)ice_ptypes_ipv4_il;
756			bitmap_and(params->ptypes, params->ptypes, src,
757				   ICE_FLOW_PTYPE_MAX);
758		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
759			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
760			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 :
761				(const unsigned long *)ice_ptypes_ipv6_il_no_l4;
762			bitmap_and(params->ptypes, params->ptypes, src,
763				   ICE_FLOW_PTYPE_MAX);
764		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
765			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
766				(const unsigned long *)ice_ptypes_ipv6_il;
767			bitmap_and(params->ptypes, params->ptypes, src,
768				   ICE_FLOW_PTYPE_MAX);
769		}
770
771		if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
772			src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos;
773			bitmap_and(params->ptypes, params->ptypes, src,
774				   ICE_FLOW_PTYPE_MAX);
775		} else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
776			src = (const unsigned long *)ice_ptypes_pppoe;
777			bitmap_and(params->ptypes, params->ptypes, src,
778				   ICE_FLOW_PTYPE_MAX);
779		} else {
780			src = (const unsigned long *)ice_ptypes_pppoe;
781			bitmap_andnot(params->ptypes, params->ptypes, src,
782				      ICE_FLOW_PTYPE_MAX);
783		}
784
785		if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
786			src = (const unsigned long *)ice_ptypes_udp_il;
787			bitmap_and(params->ptypes, params->ptypes, src,
788				   ICE_FLOW_PTYPE_MAX);
789		} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
790			bitmap_and(params->ptypes, params->ptypes,
791				   (const unsigned long *)ice_ptypes_tcp_il,
792				   ICE_FLOW_PTYPE_MAX);
793		} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
794			src = (const unsigned long *)ice_ptypes_sctp_il;
795			bitmap_and(params->ptypes, params->ptypes, src,
796				   ICE_FLOW_PTYPE_MAX);
797		}
798
799		if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
800			src = !i ? (const unsigned long *)ice_ptypes_icmp_of :
801				(const unsigned long *)ice_ptypes_icmp_il;
802			bitmap_and(params->ptypes, params->ptypes, src,
803				   ICE_FLOW_PTYPE_MAX);
804		} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
805			if (!i) {
806				src = (const unsigned long *)ice_ptypes_gre_of;
807				bitmap_and(params->ptypes, params->ptypes,
808					   src, ICE_FLOW_PTYPE_MAX);
809			}
810		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
811			src = (const unsigned long *)ice_ptypes_gtpc;
812			bitmap_and(params->ptypes, params->ptypes, src,
813				   ICE_FLOW_PTYPE_MAX);
814		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
815			src = (const unsigned long *)ice_ptypes_gtpc_tid;
816			bitmap_and(params->ptypes, params->ptypes, src,
817				   ICE_FLOW_PTYPE_MAX);
818		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
819			src = (const unsigned long *)ice_ptypes_gtpu;
820			bitmap_and(params->ptypes, params->ptypes, src,
821				   ICE_FLOW_PTYPE_MAX);
822
823			/* Attributes for GTP packet with downlink */
824			params->attr = ice_attr_gtpu_down;
825			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
826		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
827			src = (const unsigned long *)ice_ptypes_gtpu;
828			bitmap_and(params->ptypes, params->ptypes, src,
829				   ICE_FLOW_PTYPE_MAX);
830
831			/* Attributes for GTP packet with uplink */
832			params->attr = ice_attr_gtpu_up;
833			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
834		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
835			src = (const unsigned long *)ice_ptypes_gtpu;
836			bitmap_and(params->ptypes, params->ptypes, src,
837				   ICE_FLOW_PTYPE_MAX);
838
839			/* Attributes for GTP packet with Extension Header */
840			params->attr = ice_attr_gtpu_eh;
841			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
842		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
843			src = (const unsigned long *)ice_ptypes_gtpu;
844			bitmap_and(params->ptypes, params->ptypes, src,
845				   ICE_FLOW_PTYPE_MAX);
846		} else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
847			src = (const unsigned long *)ice_ptypes_l2tpv3;
848			bitmap_and(params->ptypes, params->ptypes, src,
849				   ICE_FLOW_PTYPE_MAX);
850		} else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
851			src = (const unsigned long *)ice_ptypes_esp;
852			bitmap_and(params->ptypes, params->ptypes, src,
853				   ICE_FLOW_PTYPE_MAX);
854		} else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
855			src = (const unsigned long *)ice_ptypes_ah;
856			bitmap_and(params->ptypes, params->ptypes, src,
857				   ICE_FLOW_PTYPE_MAX);
858		} else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
859			src = (const unsigned long *)ice_ptypes_nat_t_esp;
860			bitmap_and(params->ptypes, params->ptypes, src,
861				   ICE_FLOW_PTYPE_MAX);
862		}
863
864		if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
865			if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
866				src = (const unsigned long *)ice_ptypes_pfcp_node;
867			else
868				src = (const unsigned long *)ice_ptypes_pfcp_session;
869
870			bitmap_and(params->ptypes, params->ptypes, src,
871				   ICE_FLOW_PTYPE_MAX);
872		} else {
873			src = (const unsigned long *)ice_ptypes_pfcp_node;
874			bitmap_andnot(params->ptypes, params->ptypes, src,
875				      ICE_FLOW_PTYPE_MAX);
876
877			src = (const unsigned long *)ice_ptypes_pfcp_session;
878			bitmap_andnot(params->ptypes, params->ptypes, src,
879				      ICE_FLOW_PTYPE_MAX);
880		}
881	}
882
883	return 0;
884}
885
886/**
887 * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
888 * @hw: pointer to the HW struct
889 * @params: information about the flow to be processed
890 * @seg: packet segment index of the field to be extracted
891 * @fld: ID of field to be extracted
892 * @match: bit field of all fields
893 *
894 * This function determines the protocol ID, offset, and size of the given
895 * field. It then allocates one or more extraction sequence entries for the
896 * given field, and fill the entries with protocol ID and offset information.
897 */
898static int
899ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
900		    u8 seg, enum ice_flow_field fld, u64 match)
901{
902	enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
903	enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
904	u8 fv_words = hw->blk[params->blk].es.fvw;
905	struct ice_flow_fld_info *flds;
906	u16 cnt, ese_bits, i;
907	u16 sib_mask = 0;
908	u16 mask;
909	u16 off;
910
911	flds = params->prof->segs[seg].fields;
912
913	switch (fld) {
914	case ICE_FLOW_FIELD_IDX_ETH_DA:
915	case ICE_FLOW_FIELD_IDX_ETH_SA:
916	case ICE_FLOW_FIELD_IDX_S_VLAN:
917	case ICE_FLOW_FIELD_IDX_C_VLAN:
918		prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
919		break;
920	case ICE_FLOW_FIELD_IDX_ETH_TYPE:
921		prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
922		break;
923	case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
924		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
925		break;
926	case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
927		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
928		break;
929	case ICE_FLOW_FIELD_IDX_IPV4_TTL:
930	case ICE_FLOW_FIELD_IDX_IPV4_PROT:
931		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
932
933		/* TTL and PROT share the same extraction seq. entry.
934		 * Each is considered a sibling to the other in terms of sharing
935		 * the same extraction sequence entry.
936		 */
937		if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
938			sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
939		else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT)
940			sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
941
942		/* If the sibling field is also included, that field's
943		 * mask needs to be included.
944		 */
945		if (match & BIT(sib))
946			sib_mask = ice_flds_info[sib].mask;
947		break;
948	case ICE_FLOW_FIELD_IDX_IPV6_TTL:
949	case ICE_FLOW_FIELD_IDX_IPV6_PROT:
950		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
951
952		/* TTL and PROT share the same extraction seq. entry.
953		 * Each is considered a sibling to the other in terms of sharing
954		 * the same extraction sequence entry.
955		 */
956		if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
957			sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
958		else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT)
959			sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
960
961		/* If the sibling field is also included, that field's
962		 * mask needs to be included.
963		 */
964		if (match & BIT(sib))
965			sib_mask = ice_flds_info[sib].mask;
966		break;
967	case ICE_FLOW_FIELD_IDX_IPV4_SA:
968	case ICE_FLOW_FIELD_IDX_IPV4_DA:
969		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
970		break;
971	case ICE_FLOW_FIELD_IDX_IPV6_SA:
972	case ICE_FLOW_FIELD_IDX_IPV6_DA:
973		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
974		break;
975	case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
976	case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
977	case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
978		prot_id = ICE_PROT_TCP_IL;
979		break;
980	case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
981	case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
982		prot_id = ICE_PROT_UDP_IL_OR_S;
983		break;
984	case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
985	case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
986		prot_id = ICE_PROT_SCTP_IL;
987		break;
988	case ICE_FLOW_FIELD_IDX_GTPC_TEID:
989	case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
990	case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
991	case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
992	case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
993	case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
994		/* GTP is accessed through UDP OF protocol */
995		prot_id = ICE_PROT_UDP_OF;
996		break;
997	case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
998		prot_id = ICE_PROT_PPPOE;
999		break;
1000	case ICE_FLOW_FIELD_IDX_PFCP_SEID:
1001		prot_id = ICE_PROT_UDP_IL_OR_S;
1002		break;
1003	case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
1004		prot_id = ICE_PROT_L2TPV3;
1005		break;
1006	case ICE_FLOW_FIELD_IDX_ESP_SPI:
1007		prot_id = ICE_PROT_ESP_F;
1008		break;
1009	case ICE_FLOW_FIELD_IDX_AH_SPI:
1010		prot_id = ICE_PROT_ESP_2;
1011		break;
1012	case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
1013		prot_id = ICE_PROT_UDP_IL_OR_S;
1014		break;
1015	case ICE_FLOW_FIELD_IDX_ARP_SIP:
1016	case ICE_FLOW_FIELD_IDX_ARP_DIP:
1017	case ICE_FLOW_FIELD_IDX_ARP_SHA:
1018	case ICE_FLOW_FIELD_IDX_ARP_DHA:
1019	case ICE_FLOW_FIELD_IDX_ARP_OP:
1020		prot_id = ICE_PROT_ARP_OF;
1021		break;
1022	case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
1023	case ICE_FLOW_FIELD_IDX_ICMP_CODE:
1024		/* ICMP type and code share the same extraction seq. entry */
1025		prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ?
1026				ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
1027		sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
1028			ICE_FLOW_FIELD_IDX_ICMP_CODE :
1029			ICE_FLOW_FIELD_IDX_ICMP_TYPE;
1030		break;
1031	case ICE_FLOW_FIELD_IDX_GRE_KEYID:
1032		prot_id = ICE_PROT_GRE_OF;
1033		break;
1034	default:
1035		return -EOPNOTSUPP;
1036	}
1037
1038	/* Each extraction sequence entry is a word in size, and extracts a
1039	 * word-aligned offset from a protocol header.
1040	 */
1041	ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
1042
1043	flds[fld].xtrct.prot_id = prot_id;
1044	flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
1045		ICE_FLOW_FV_EXTRACT_SZ;
1046	flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
1047	flds[fld].xtrct.idx = params->es_cnt;
1048	flds[fld].xtrct.mask = ice_flds_info[fld].mask;
1049
1050	/* Adjust the next field-entry index after accommodating the number of
1051	 * entries this field consumes
1052	 */
1053	cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
1054			   ese_bits);
1055
1056	/* Fill in the extraction sequence entries needed for this field */
1057	off = flds[fld].xtrct.off;
1058	mask = flds[fld].xtrct.mask;
1059	for (i = 0; i < cnt; i++) {
1060		/* Only consume an extraction sequence entry if there is no
1061		 * sibling field associated with this field or the sibling entry
1062		 * already extracts the word shared with this field.
1063		 */
1064		if (sib == ICE_FLOW_FIELD_IDX_MAX ||
1065		    flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
1066		    flds[sib].xtrct.off != off) {
1067			u8 idx;
1068
1069			/* Make sure the number of extraction sequence required
1070			 * does not exceed the block's capability
1071			 */
1072			if (params->es_cnt >= fv_words)
1073				return -ENOSPC;
1074
1075			/* some blocks require a reversed field vector layout */
1076			if (hw->blk[params->blk].es.reverse)
1077				idx = fv_words - params->es_cnt - 1;
1078			else
1079				idx = params->es_cnt;
1080
1081			params->es[idx].prot_id = prot_id;
1082			params->es[idx].off = off;
1083			params->mask[idx] = mask | sib_mask;
1084			params->es_cnt++;
1085		}
1086
1087		off += ICE_FLOW_FV_EXTRACT_SZ;
1088	}
1089
1090	return 0;
1091}
1092
1093/**
1094 * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
1095 * @hw: pointer to the HW struct
1096 * @params: information about the flow to be processed
1097 * @seg: index of packet segment whose raw fields are to be extracted
1098 */
1099static int
1100ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
1101		     u8 seg)
1102{
1103	u16 fv_words;
1104	u16 hdrs_sz;
1105	u8 i;
1106
1107	if (!params->prof->segs[seg].raws_cnt)
1108		return 0;
1109
1110	if (params->prof->segs[seg].raws_cnt >
1111	    ARRAY_SIZE(params->prof->segs[seg].raws))
1112		return -ENOSPC;
1113
1114	/* Offsets within the segment headers are not supported */
1115	hdrs_sz = ice_flow_calc_seg_sz(params, seg);
1116	if (!hdrs_sz)
1117		return -EINVAL;
1118
1119	fv_words = hw->blk[params->blk].es.fvw;
1120
1121	for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
1122		struct ice_flow_seg_fld_raw *raw;
1123		u16 off, cnt, j;
1124
1125		raw = &params->prof->segs[seg].raws[i];
1126
1127		/* Storing extraction information */
1128		raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
1129		raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
1130			ICE_FLOW_FV_EXTRACT_SZ;
1131		raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
1132			BITS_PER_BYTE;
1133		raw->info.xtrct.idx = params->es_cnt;
1134
1135		/* Determine the number of field vector entries this raw field
1136		 * consumes.
1137		 */
1138		cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
1139				   (raw->info.src.last * BITS_PER_BYTE),
1140				   (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
1141		off = raw->info.xtrct.off;
1142		for (j = 0; j < cnt; j++) {
1143			u16 idx;
1144
1145			/* Make sure the number of extraction sequence required
1146			 * does not exceed the block's capability
1147			 */
1148			if (params->es_cnt >= hw->blk[params->blk].es.count ||
1149			    params->es_cnt >= ICE_MAX_FV_WORDS)
1150				return -ENOSPC;
1151
1152			/* some blocks require a reversed field vector layout */
1153			if (hw->blk[params->blk].es.reverse)
1154				idx = fv_words - params->es_cnt - 1;
1155			else
1156				idx = params->es_cnt;
1157
1158			params->es[idx].prot_id = raw->info.xtrct.prot_id;
1159			params->es[idx].off = off;
1160			params->es_cnt++;
1161			off += ICE_FLOW_FV_EXTRACT_SZ;
1162		}
1163	}
1164
1165	return 0;
1166}
1167
1168/**
1169 * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
1170 * @hw: pointer to the HW struct
1171 * @params: information about the flow to be processed
1172 *
1173 * This function iterates through all matched fields in the given segments, and
1174 * creates an extraction sequence for the fields.
1175 */
1176static int
1177ice_flow_create_xtrct_seq(struct ice_hw *hw,
1178			  struct ice_flow_prof_params *params)
1179{
1180	struct ice_flow_prof *prof = params->prof;
1181	int status = 0;
1182	u8 i;
1183
1184	for (i = 0; i < prof->segs_cnt; i++) {
1185		u64 match = params->prof->segs[i].match;
1186		enum ice_flow_field j;
1187
1188		for_each_set_bit(j, (unsigned long *)&match,
1189				 ICE_FLOW_FIELD_IDX_MAX) {
1190			status = ice_flow_xtract_fld(hw, params, i, j, match);
1191			if (status)
1192				return status;
1193			clear_bit(j, (unsigned long *)&match);
1194		}
1195
1196		/* Process raw matching bytes */
1197		status = ice_flow_xtract_raws(hw, params, i);
1198		if (status)
1199			return status;
1200	}
1201
1202	return status;
1203}
1204
1205/**
1206 * ice_flow_proc_segs - process all packet segments associated with a profile
1207 * @hw: pointer to the HW struct
1208 * @params: information about the flow to be processed
1209 */
1210static int
1211ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
1212{
1213	int status;
1214
1215	status = ice_flow_proc_seg_hdrs(params);
1216	if (status)
1217		return status;
1218
1219	status = ice_flow_create_xtrct_seq(hw, params);
1220	if (status)
1221		return status;
1222
1223	switch (params->blk) {
1224	case ICE_BLK_FD:
1225	case ICE_BLK_RSS:
1226		status = 0;
1227		break;
1228	default:
1229		return -EOPNOTSUPP;
1230	}
1231
1232	return status;
1233}
1234
1235#define ICE_FLOW_FIND_PROF_CHK_FLDS	0x00000001
1236#define ICE_FLOW_FIND_PROF_CHK_VSI	0x00000002
1237#define ICE_FLOW_FIND_PROF_NOT_CHK_DIR	0x00000004
1238#define ICE_FLOW_FIND_PROF_CHK_SYMM	0x00000008
1239
1240/**
1241 * ice_flow_find_prof_conds - Find a profile matching headers and conditions
1242 * @hw: pointer to the HW struct
1243 * @blk: classification stage
1244 * @dir: flow direction
1245 * @segs: array of one or more packet segments that describe the flow
1246 * @segs_cnt: number of packet segments provided
1247 * @symm: symmetric setting for RSS profiles
1248 * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
1249 * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
1250 */
1251static struct ice_flow_prof *
1252ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
1253			 enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
1254			 u8 segs_cnt, bool symm, u16 vsi_handle, u32 conds)
1255{
1256	struct ice_flow_prof *p, *prof = NULL;
1257
1258	mutex_lock(&hw->fl_profs_locks[blk]);
1259	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1260		if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
1261		    segs_cnt && segs_cnt == p->segs_cnt) {
1262			u8 i;
1263
1264			/* Check for profile-VSI association if specified */
1265			if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
1266			    ice_is_vsi_valid(hw, vsi_handle) &&
1267			    !test_bit(vsi_handle, p->vsis))
1268				continue;
1269
1270			/* Check for symmetric settings */
1271			if ((conds & ICE_FLOW_FIND_PROF_CHK_SYMM) &&
1272			    p->symm != symm)
1273				continue;
1274
1275			/* Protocol headers must be checked. Matched fields are
1276			 * checked if specified.
1277			 */
1278			for (i = 0; i < segs_cnt; i++)
1279				if (segs[i].hdrs != p->segs[i].hdrs ||
1280				    ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
1281				     segs[i].match != p->segs[i].match))
1282					break;
1283
1284			/* A match is found if all segments are matched */
1285			if (i == segs_cnt) {
1286				prof = p;
1287				break;
1288			}
1289		}
1290	mutex_unlock(&hw->fl_profs_locks[blk]);
1291
1292	return prof;
1293}
1294
1295/**
1296 * ice_flow_find_prof_id - Look up a profile with given profile ID
1297 * @hw: pointer to the HW struct
1298 * @blk: classification stage
1299 * @prof_id: unique ID to identify this flow profile
1300 */
1301static struct ice_flow_prof *
1302ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1303{
1304	struct ice_flow_prof *p;
1305
1306	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1307		if (p->id == prof_id)
1308			return p;
1309
1310	return NULL;
1311}
1312
1313/**
1314 * ice_flow_rem_entry_sync - Remove a flow entry
1315 * @hw: pointer to the HW struct
1316 * @blk: classification stage
1317 * @entry: flow entry to be removed
1318 */
1319static int
1320ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
1321			struct ice_flow_entry *entry)
1322{
1323	if (!entry)
1324		return -EINVAL;
1325
1326	list_del(&entry->l_entry);
1327
1328	devm_kfree(ice_hw_to_dev(hw), entry);
1329
1330	return 0;
1331}
1332
1333/**
1334 * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
1335 * @hw: pointer to the HW struct
1336 * @blk: classification stage
1337 * @dir: flow direction
1338 * @segs: array of one or more packet segments that describe the flow
1339 * @segs_cnt: number of packet segments provided
1340 * @symm: symmetric setting for RSS profiles
1341 * @prof: stores the returned flow profile added
1342 *
1343 * Assumption: the caller has acquired the lock to the profile list
1344 */
1345static int
1346ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
1347		       enum ice_flow_dir dir,
1348		       struct ice_flow_seg_info *segs, u8 segs_cnt,
1349		       bool symm, struct ice_flow_prof **prof)
1350{
1351	struct ice_flow_prof_params *params;
1352	struct ice_prof_id *ids;
1353	int status;
1354	u64 prof_id;
1355	u8 i;
1356
1357	if (!prof)
1358		return -EINVAL;
1359
1360	ids = &hw->blk[blk].prof_id;
1361	prof_id = find_first_zero_bit(ids->id, ids->count);
1362	if (prof_id >= ids->count)
1363		return -ENOSPC;
1364
1365	params = kzalloc(sizeof(*params), GFP_KERNEL);
1366	if (!params)
1367		return -ENOMEM;
1368
1369	params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof),
1370				    GFP_KERNEL);
1371	if (!params->prof) {
1372		status = -ENOMEM;
1373		goto free_params;
1374	}
1375
1376	/* initialize extraction sequence to all invalid (0xff) */
1377	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1378		params->es[i].prot_id = ICE_PROT_INVALID;
1379		params->es[i].off = ICE_FV_OFFSET_INVAL;
1380	}
1381
1382	params->blk = blk;
1383	params->prof->id = prof_id;
1384	params->prof->dir = dir;
1385	params->prof->segs_cnt = segs_cnt;
1386	params->prof->symm = symm;
1387
1388	/* Make a copy of the segments that need to be persistent in the flow
1389	 * profile instance
1390	 */
1391	for (i = 0; i < segs_cnt; i++)
1392		memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs));
1393
1394	status = ice_flow_proc_segs(hw, params);
1395	if (status) {
1396		ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
1397		goto out;
1398	}
1399
1400	/* Add a HW profile for this flow profile */
1401	status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
1402			      params->attr, params->attr_cnt, params->es,
1403			      params->mask, symm);
1404	if (status) {
1405		ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
1406		goto out;
1407	}
1408
1409	INIT_LIST_HEAD(&params->prof->entries);
1410	mutex_init(&params->prof->entries_lock);
1411	set_bit(prof_id, ids->id);
1412	*prof = params->prof;
1413
1414out:
1415	if (status)
1416		devm_kfree(ice_hw_to_dev(hw), params->prof);
1417free_params:
1418	kfree(params);
1419
1420	return status;
1421}
1422
1423/**
1424 * ice_flow_rem_prof_sync - remove a flow profile
1425 * @hw: pointer to the hardware structure
1426 * @blk: classification stage
1427 * @prof: pointer to flow profile to remove
1428 *
1429 * Assumption: the caller has acquired the lock to the profile list
1430 */
1431static int
1432ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
1433		       struct ice_flow_prof *prof)
1434{
1435	int status;
1436
1437	/* Remove all remaining flow entries before removing the flow profile */
1438	if (!list_empty(&prof->entries)) {
1439		struct ice_flow_entry *e, *t;
1440
1441		mutex_lock(&prof->entries_lock);
1442
1443		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1444			status = ice_flow_rem_entry_sync(hw, blk, e);
1445			if (status)
1446				break;
1447		}
1448
1449		mutex_unlock(&prof->entries_lock);
1450	}
1451
1452	/* Remove all hardware profiles associated with this flow profile */
1453	status = ice_rem_prof(hw, blk, prof->id);
1454	if (!status) {
1455		clear_bit(prof->id, hw->blk[blk].prof_id.id);
1456		list_del(&prof->l_entry);
1457		mutex_destroy(&prof->entries_lock);
1458		devm_kfree(ice_hw_to_dev(hw), prof);
1459	}
1460
1461	return status;
1462}
1463
1464/**
1465 * ice_flow_assoc_prof - associate a VSI with a flow profile
1466 * @hw: pointer to the hardware structure
1467 * @blk: classification stage
1468 * @prof: pointer to flow profile
1469 * @vsi_handle: software VSI handle
1470 *
1471 * Assumption: the caller has acquired the lock to the profile list
1472 * and the software VSI handle has been validated
1473 */
1474static int
1475ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
1476		    struct ice_flow_prof *prof, u16 vsi_handle)
1477{
1478	int status = 0;
1479
1480	if (!test_bit(vsi_handle, prof->vsis)) {
1481		status = ice_add_prof_id_flow(hw, blk,
1482					      ice_get_hw_vsi_num(hw,
1483								 vsi_handle),
1484					      prof->id);
1485		if (!status)
1486			set_bit(vsi_handle, prof->vsis);
1487		else
1488			ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
1489				  status);
1490	}
1491
1492	return status;
1493}
1494
1495/**
1496 * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
1497 * @hw: pointer to the hardware structure
1498 * @blk: classification stage
1499 * @prof: pointer to flow profile
1500 * @vsi_handle: software VSI handle
1501 *
1502 * Assumption: the caller has acquired the lock to the profile list
1503 * and the software VSI handle has been validated
1504 */
1505static int
1506ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
1507		       struct ice_flow_prof *prof, u16 vsi_handle)
1508{
1509	int status = 0;
1510
1511	if (test_bit(vsi_handle, prof->vsis)) {
1512		status = ice_rem_prof_id_flow(hw, blk,
1513					      ice_get_hw_vsi_num(hw,
1514								 vsi_handle),
1515					      prof->id);
1516		if (!status)
1517			clear_bit(vsi_handle, prof->vsis);
1518		else
1519			ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
1520				  status);
1521	}
1522
1523	return status;
1524}
1525
1526/**
1527 * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
1528 * @hw: pointer to the HW struct
1529 * @blk: classification stage
1530 * @dir: flow direction
1531 * @segs: array of one or more packet segments that describe the flow
1532 * @segs_cnt: number of packet segments provided
1533 * @symm: symmetric setting for RSS profiles
1534 * @prof: stores the returned flow profile added
1535 */
1536int
1537ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
1538		  struct ice_flow_seg_info *segs, u8 segs_cnt,
1539		  bool symm, struct ice_flow_prof **prof)
1540{
1541	int status;
1542
1543	if (segs_cnt > ICE_FLOW_SEG_MAX)
1544		return -ENOSPC;
1545
1546	if (!segs_cnt)
1547		return -EINVAL;
1548
1549	if (!segs)
1550		return -EINVAL;
1551
1552	status = ice_flow_val_hdrs(segs, segs_cnt);
1553	if (status)
1554		return status;
1555
1556	mutex_lock(&hw->fl_profs_locks[blk]);
1557
1558	status = ice_flow_add_prof_sync(hw, blk, dir, segs, segs_cnt,
1559					symm, prof);
1560	if (!status)
1561		list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
1562
1563	mutex_unlock(&hw->fl_profs_locks[blk]);
1564
1565	return status;
1566}
1567
1568/**
1569 * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
1570 * @hw: pointer to the HW struct
1571 * @blk: the block for which the flow profile is to be removed
1572 * @prof_id: unique ID of the flow profile to be removed
1573 */
1574int ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1575{
1576	struct ice_flow_prof *prof;
1577	int status;
1578
1579	mutex_lock(&hw->fl_profs_locks[blk]);
1580
1581	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1582	if (!prof) {
1583		status = -ENOENT;
1584		goto out;
1585	}
1586
1587	/* prof becomes invalid after the call */
1588	status = ice_flow_rem_prof_sync(hw, blk, prof);
1589
1590out:
1591	mutex_unlock(&hw->fl_profs_locks[blk]);
1592
1593	return status;
1594}
1595
1596/**
1597 * ice_flow_add_entry - Add a flow entry
1598 * @hw: pointer to the HW struct
1599 * @blk: classification stage
1600 * @prof_id: ID of the profile to add a new flow entry to
1601 * @entry_id: unique ID to identify this flow entry
1602 * @vsi_handle: software VSI handle for the flow entry
1603 * @prio: priority of the flow entry
1604 * @data: pointer to a data buffer containing flow entry's match values/masks
1605 * @entry_h: pointer to buffer that receives the new flow entry's handle
1606 */
1607int
1608ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1609		   u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
1610		   void *data, u64 *entry_h)
1611{
1612	struct ice_flow_entry *e = NULL;
1613	struct ice_flow_prof *prof;
1614	int status;
1615
1616	/* No flow entry data is expected for RSS */
1617	if (!entry_h || (!data && blk != ICE_BLK_RSS))
1618		return -EINVAL;
1619
1620	if (!ice_is_vsi_valid(hw, vsi_handle))
1621		return -EINVAL;
1622
1623	mutex_lock(&hw->fl_profs_locks[blk]);
1624
1625	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1626	if (!prof) {
1627		status = -ENOENT;
1628	} else {
1629		/* Allocate memory for the entry being added and associate
1630		 * the VSI to the found flow profile
1631		 */
1632		e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
1633		if (!e)
1634			status = -ENOMEM;
1635		else
1636			status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1637	}
1638
1639	mutex_unlock(&hw->fl_profs_locks[blk]);
1640	if (status)
1641		goto out;
1642
1643	e->id = entry_id;
1644	e->vsi_handle = vsi_handle;
1645	e->prof = prof;
1646	e->priority = prio;
1647
1648	switch (blk) {
1649	case ICE_BLK_FD:
1650	case ICE_BLK_RSS:
1651		break;
1652	default:
1653		status = -EOPNOTSUPP;
1654		goto out;
1655	}
1656
1657	mutex_lock(&prof->entries_lock);
1658	list_add(&e->l_entry, &prof->entries);
1659	mutex_unlock(&prof->entries_lock);
1660
1661	*entry_h = ICE_FLOW_ENTRY_HNDL(e);
1662
1663out:
1664	if (status)
1665		devm_kfree(ice_hw_to_dev(hw), e);
1666
1667	return status;
1668}
1669
1670/**
1671 * ice_flow_rem_entry - Remove a flow entry
1672 * @hw: pointer to the HW struct
1673 * @blk: classification stage
1674 * @entry_h: handle to the flow entry to be removed
1675 */
1676int ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_h)
1677{
1678	struct ice_flow_entry *entry;
1679	struct ice_flow_prof *prof;
1680	int status = 0;
1681
1682	if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
1683		return -EINVAL;
1684
1685	entry = ICE_FLOW_ENTRY_PTR(entry_h);
1686
1687	/* Retain the pointer to the flow profile as the entry will be freed */
1688	prof = entry->prof;
1689
1690	if (prof) {
1691		mutex_lock(&prof->entries_lock);
1692		status = ice_flow_rem_entry_sync(hw, blk, entry);
1693		mutex_unlock(&prof->entries_lock);
1694	}
1695
1696	return status;
1697}
1698
1699/**
1700 * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
1701 * @seg: packet segment the field being set belongs to
1702 * @fld: field to be set
1703 * @field_type: type of the field
1704 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1705 *           entry's input buffer
1706 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1707 *            input buffer
1708 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1709 *            entry's input buffer
1710 *
1711 * This helper function stores information of a field being matched, including
1712 * the type of the field and the locations of the value to match, the mask, and
1713 * the upper-bound value in the start of the input buffer for a flow entry.
1714 * This function should only be used for fixed-size data structures.
1715 *
1716 * This function also opportunistically determines the protocol headers to be
1717 * present based on the fields being set. Some fields cannot be used alone to
1718 * determine the protocol headers present. Sometimes, fields for particular
1719 * protocol headers are not matched. In those cases, the protocol headers
1720 * must be explicitly set.
1721 */
1722static void
1723ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1724		     enum ice_flow_fld_match_type field_type, u16 val_loc,
1725		     u16 mask_loc, u16 last_loc)
1726{
1727	u64 bit = BIT_ULL(fld);
1728
1729	seg->match |= bit;
1730	if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1731		seg->range |= bit;
1732
1733	seg->fields[fld].type = field_type;
1734	seg->fields[fld].src.val = val_loc;
1735	seg->fields[fld].src.mask = mask_loc;
1736	seg->fields[fld].src.last = last_loc;
1737
1738	ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1739}
1740
1741/**
1742 * ice_flow_set_fld - specifies locations of field from entry's input buffer
1743 * @seg: packet segment the field being set belongs to
1744 * @fld: field to be set
1745 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1746 *           entry's input buffer
1747 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1748 *            input buffer
1749 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1750 *            entry's input buffer
1751 * @range: indicate if field being matched is to be in a range
1752 *
1753 * This function specifies the locations, in the form of byte offsets from the
1754 * start of the input buffer for a flow entry, from where the value to match,
1755 * the mask value, and upper value can be extracted. These locations are then
1756 * stored in the flow profile. When adding a flow entry associated with the
1757 * flow profile, these locations will be used to quickly extract the values and
1758 * create the content of a match entry. This function should only be used for
1759 * fixed-size data structures.
1760 */
1761void
1762ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1763		 u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1764{
1765	enum ice_flow_fld_match_type t = range ?
1766		ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1767
1768	ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1769}
1770
1771/**
1772 * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1773 * @seg: packet segment the field being set belongs to
1774 * @off: offset of the raw field from the beginning of the segment in bytes
1775 * @len: length of the raw pattern to be matched
1776 * @val_loc: location of the value to match from entry's input buffer
1777 * @mask_loc: location of mask value from entry's input buffer
1778 *
1779 * This function specifies the offset of the raw field to be match from the
1780 * beginning of the specified packet segment, and the locations, in the form of
1781 * byte offsets from the start of the input buffer for a flow entry, from where
1782 * the value to match and the mask value to be extracted. These locations are
1783 * then stored in the flow profile. When adding flow entries to the associated
1784 * flow profile, these locations can be used to quickly extract the values to
1785 * create the content of a match entry. This function should only be used for
1786 * fixed-size data structures.
1787 */
1788void
1789ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1790		     u16 val_loc, u16 mask_loc)
1791{
1792	if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1793		seg->raws[seg->raws_cnt].off = off;
1794		seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1795		seg->raws[seg->raws_cnt].info.src.val = val_loc;
1796		seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1797		/* The "last" field is used to store the length of the field */
1798		seg->raws[seg->raws_cnt].info.src.last = len;
1799	}
1800
1801	/* Overflows of "raws" will be handled as an error condition later in
1802	 * the flow when this information is processed.
1803	 */
1804	seg->raws_cnt++;
1805}
1806
1807/**
1808 * ice_flow_rem_vsi_prof - remove VSI from flow profile
1809 * @hw: pointer to the hardware structure
1810 * @vsi_handle: software VSI handle
1811 * @prof_id: unique ID to identify this flow profile
1812 *
1813 * This function removes the flow entries associated to the input
1814 * VSI handle and disassociate the VSI from the flow profile.
1815 */
1816int ice_flow_rem_vsi_prof(struct ice_hw *hw, u16 vsi_handle, u64 prof_id)
1817{
1818	struct ice_flow_prof *prof;
1819	int status = 0;
1820
1821	if (!ice_is_vsi_valid(hw, vsi_handle))
1822		return -EINVAL;
1823
1824	/* find flow profile pointer with input package block and profile ID */
1825	prof = ice_flow_find_prof_id(hw, ICE_BLK_FD, prof_id);
1826	if (!prof) {
1827		ice_debug(hw, ICE_DBG_PKG, "Cannot find flow profile id=%llu\n",
1828			  prof_id);
1829		return -ENOENT;
1830	}
1831
1832	/* Remove all remaining flow entries before removing the flow profile */
1833	if (!list_empty(&prof->entries)) {
1834		struct ice_flow_entry *e, *t;
1835
1836		mutex_lock(&prof->entries_lock);
1837		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1838			if (e->vsi_handle != vsi_handle)
1839				continue;
1840
1841			status = ice_flow_rem_entry_sync(hw, ICE_BLK_FD, e);
1842			if (status)
1843				break;
1844		}
1845		mutex_unlock(&prof->entries_lock);
1846	}
1847	if (status)
1848		return status;
1849
1850	/* disassociate the flow profile from sw VSI handle */
1851	status = ice_flow_disassoc_prof(hw, ICE_BLK_FD, prof, vsi_handle);
1852	if (status)
1853		ice_debug(hw, ICE_DBG_PKG, "ice_flow_disassoc_prof() failed with status=%d\n",
1854			  status);
1855	return status;
1856}
1857
1858#define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
1859	(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
1860
1861#define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1862	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1863
1864#define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1865	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1866
1867#define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1868	(ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
1869	 ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
1870	 ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1871
1872/**
1873 * ice_flow_set_rss_seg_info - setup packet segments for RSS
1874 * @segs: pointer to the flow field segment(s)
1875 * @seg_cnt: segment count
1876 * @cfg: configure parameters
1877 *
1878 * Helper function to extract fields from hash bitmap and use flow
1879 * header value to set flow field segment for further use in flow
1880 * profile entry or removal.
1881 */
1882static int
1883ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u8 seg_cnt,
1884			  const struct ice_rss_hash_cfg *cfg)
1885{
1886	struct ice_flow_seg_info *seg;
1887	u64 val;
1888	u16 i;
1889
1890	/* set inner most segment */
1891	seg = &segs[seg_cnt - 1];
1892
1893	for_each_set_bit(i, (const unsigned long *)&cfg->hash_flds,
1894			 (u16)ICE_FLOW_FIELD_IDX_MAX)
1895		ice_flow_set_fld(seg, (enum ice_flow_field)i,
1896				 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
1897				 ICE_FLOW_FLD_OFF_INVAL, false);
1898
1899	ICE_FLOW_SET_HDRS(seg, cfg->addl_hdrs);
1900
1901	/* set outer most header */
1902	if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV4)
1903		segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV4 |
1904						    ICE_FLOW_SEG_HDR_IPV_OTHER;
1905	else if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV6)
1906		segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV6 |
1907						    ICE_FLOW_SEG_HDR_IPV_OTHER;
1908
1909	if (seg->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
1910	    ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
1911		return -EINVAL;
1912
1913	val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1914	if (val && !is_power_of_2(val))
1915		return -EIO;
1916
1917	val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1918	if (val && !is_power_of_2(val))
1919		return -EIO;
1920
1921	return 0;
1922}
1923
1924/**
1925 * ice_rem_vsi_rss_list - remove VSI from RSS list
1926 * @hw: pointer to the hardware structure
1927 * @vsi_handle: software VSI handle
1928 *
1929 * Remove the VSI from all RSS configurations in the list.
1930 */
1931void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1932{
1933	struct ice_rss_cfg *r, *tmp;
1934
1935	if (list_empty(&hw->rss_list_head))
1936		return;
1937
1938	mutex_lock(&hw->rss_locks);
1939	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1940		if (test_and_clear_bit(vsi_handle, r->vsis))
1941			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1942				list_del(&r->l_entry);
1943				devm_kfree(ice_hw_to_dev(hw), r);
1944			}
1945	mutex_unlock(&hw->rss_locks);
1946}
1947
1948/**
1949 * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1950 * @hw: pointer to the hardware structure
1951 * @vsi_handle: software VSI handle
1952 *
1953 * This function will iterate through all flow profiles and disassociate
1954 * the VSI from that profile. If the flow profile has no VSIs it will
1955 * be removed.
1956 */
1957int ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1958{
1959	const enum ice_block blk = ICE_BLK_RSS;
1960	struct ice_flow_prof *p, *t;
1961	int status = 0;
1962
1963	if (!ice_is_vsi_valid(hw, vsi_handle))
1964		return -EINVAL;
1965
1966	if (list_empty(&hw->fl_profs[blk]))
1967		return 0;
1968
1969	mutex_lock(&hw->rss_locks);
1970	list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
1971		if (test_bit(vsi_handle, p->vsis)) {
1972			status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1973			if (status)
1974				break;
1975
1976			if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
1977				status = ice_flow_rem_prof(hw, blk, p->id);
1978				if (status)
1979					break;
1980			}
1981		}
1982	mutex_unlock(&hw->rss_locks);
1983
1984	return status;
1985}
1986
1987/**
1988 * ice_get_rss_hdr_type - get a RSS profile's header type
1989 * @prof: RSS flow profile
1990 */
1991static enum ice_rss_cfg_hdr_type
1992ice_get_rss_hdr_type(struct ice_flow_prof *prof)
1993{
1994	if (prof->segs_cnt == ICE_FLOW_SEG_SINGLE) {
1995		return ICE_RSS_OUTER_HEADERS;
1996	} else if (prof->segs_cnt == ICE_FLOW_SEG_MAX) {
1997		const struct ice_flow_seg_info *s;
1998
1999		s = &prof->segs[ICE_RSS_OUTER_HEADERS];
2000		if (s->hdrs == ICE_FLOW_SEG_HDR_NONE)
2001			return ICE_RSS_INNER_HEADERS;
2002		if (s->hdrs & ICE_FLOW_SEG_HDR_IPV4)
2003			return ICE_RSS_INNER_HEADERS_W_OUTER_IPV4;
2004		if (s->hdrs & ICE_FLOW_SEG_HDR_IPV6)
2005			return ICE_RSS_INNER_HEADERS_W_OUTER_IPV6;
2006	}
2007
2008	return ICE_RSS_ANY_HEADERS;
2009}
2010
2011static bool
2012ice_rss_match_prof(struct ice_rss_cfg *r, struct ice_flow_prof *prof,
2013		   enum ice_rss_cfg_hdr_type hdr_type)
2014{
2015	return (r->hash.hdr_type == hdr_type &&
2016		r->hash.hash_flds == prof->segs[prof->segs_cnt - 1].match &&
2017		r->hash.addl_hdrs == prof->segs[prof->segs_cnt - 1].hdrs);
2018}
2019
2020/**
2021 * ice_rem_rss_list - remove RSS configuration from list
2022 * @hw: pointer to the hardware structure
2023 * @vsi_handle: software VSI handle
2024 * @prof: pointer to flow profile
2025 *
2026 * Assumption: lock has already been acquired for RSS list
2027 */
2028static void
2029ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
2030{
2031	enum ice_rss_cfg_hdr_type hdr_type;
2032	struct ice_rss_cfg *r, *tmp;
2033
2034	/* Search for RSS hash fields associated to the VSI that match the
2035	 * hash configurations associated to the flow profile. If found
2036	 * remove from the RSS entry list of the VSI context and delete entry.
2037	 */
2038	hdr_type = ice_get_rss_hdr_type(prof);
2039	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
2040		if (ice_rss_match_prof(r, prof, hdr_type)) {
2041			clear_bit(vsi_handle, r->vsis);
2042			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
2043				list_del(&r->l_entry);
2044				devm_kfree(ice_hw_to_dev(hw), r);
2045			}
2046			return;
2047		}
2048}
2049
2050/**
2051 * ice_add_rss_list - add RSS configuration to list
2052 * @hw: pointer to the hardware structure
2053 * @vsi_handle: software VSI handle
2054 * @prof: pointer to flow profile
2055 *
2056 * Assumption: lock has already been acquired for RSS list
2057 */
2058static int
2059ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
2060{
2061	enum ice_rss_cfg_hdr_type hdr_type;
2062	struct ice_rss_cfg *r, *rss_cfg;
2063
2064	hdr_type = ice_get_rss_hdr_type(prof);
2065	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2066		if (ice_rss_match_prof(r, prof, hdr_type)) {
2067			set_bit(vsi_handle, r->vsis);
2068			return 0;
2069		}
2070
2071	rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
2072			       GFP_KERNEL);
2073	if (!rss_cfg)
2074		return -ENOMEM;
2075
2076	rss_cfg->hash.hash_flds = prof->segs[prof->segs_cnt - 1].match;
2077	rss_cfg->hash.addl_hdrs = prof->segs[prof->segs_cnt - 1].hdrs;
2078	rss_cfg->hash.hdr_type = hdr_type;
2079	rss_cfg->hash.symm = prof->symm;
2080	set_bit(vsi_handle, rss_cfg->vsis);
2081
2082	list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
2083
2084	return 0;
2085}
2086
2087/**
2088 * ice_rss_config_xor_word - set the HSYMM registers for one input set word
2089 * @hw: pointer to the hardware structure
2090 * @prof_id: RSS hardware profile id
2091 * @src: the FV index used by the protocol's source field
2092 * @dst: the FV index used by the protocol's destination field
2093 *
2094 * Write to the HSYMM register with the index of @src FV the value of the @dst
2095 * FV index. This will tell the hardware to XOR HSYMM[src] with INSET[dst]
2096 * while calculating the RSS input set.
2097 */
2098static void
2099ice_rss_config_xor_word(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst)
2100{
2101	u32 val, reg, bits_shift;
2102	u8 reg_idx;
2103
2104	reg_idx = src / GLQF_HSYMM_REG_SIZE;
2105	bits_shift = ((src % GLQF_HSYMM_REG_SIZE) << 3);
2106	val = dst | GLQF_HSYMM_ENABLE_BIT;
2107
2108	reg = rd32(hw, GLQF_HSYMM(prof_id, reg_idx));
2109	reg = (reg & ~(0xff << bits_shift)) | (val << bits_shift);
2110	wr32(hw, GLQF_HSYMM(prof_id, reg_idx), reg);
2111}
2112
2113/**
2114 * ice_rss_config_xor - set the symmetric registers for a profile's protocol
2115 * @hw: pointer to the hardware structure
2116 * @prof_id: RSS hardware profile id
2117 * @src: the FV index used by the protocol's source field
2118 * @dst: the FV index used by the protocol's destination field
2119 * @len: length of the source/destination fields in words
2120 */
2121static void
2122ice_rss_config_xor(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst, u8 len)
2123{
2124	int fv_last_word =
2125		ICE_FLOW_SW_FIELD_VECTOR_MAX / ICE_FLOW_FV_EXTRACT_SZ - 1;
2126	int i;
2127
2128	for (i = 0; i < len; i++) {
2129		ice_rss_config_xor_word(hw, prof_id,
2130					/* Yes, field vector in GLQF_HSYMM and
2131					 * GLQF_HINSET is inversed!
2132					 */
2133					fv_last_word - (src + i),
2134					fv_last_word - (dst + i));
2135		ice_rss_config_xor_word(hw, prof_id,
2136					fv_last_word - (dst + i),
2137					fv_last_word - (src + i));
2138	}
2139}
2140
2141/**
2142 * ice_rss_set_symm - set the symmetric settings for an RSS profile
2143 * @hw: pointer to the hardware structure
2144 * @prof: pointer to flow profile
2145 *
2146 * The symmetric hash will result from XORing the protocol's fields with
2147 * indexes in GLQF_HSYMM and GLQF_HINSET. This function configures the profile's
2148 * GLQF_HSYMM registers.
2149 */
2150static void ice_rss_set_symm(struct ice_hw *hw, struct ice_flow_prof *prof)
2151{
2152	struct ice_prof_map *map;
2153	u8 prof_id, m;
2154
2155	mutex_lock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock);
2156	map = ice_search_prof_id(hw, ICE_BLK_RSS, prof->id);
2157	if (map)
2158		prof_id = map->prof_id;
2159	mutex_unlock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock);
2160
2161	if (!map)
2162		return;
2163
2164	/* clear to default */
2165	for (m = 0; m < GLQF_HSYMM_REG_PER_PROF; m++)
2166		wr32(hw, GLQF_HSYMM(prof_id, m), 0);
2167
2168	if (prof->symm) {
2169		struct ice_flow_seg_xtrct *ipv4_src, *ipv4_dst;
2170		struct ice_flow_seg_xtrct *ipv6_src, *ipv6_dst;
2171		struct ice_flow_seg_xtrct *sctp_src, *sctp_dst;
2172		struct ice_flow_seg_xtrct *tcp_src, *tcp_dst;
2173		struct ice_flow_seg_xtrct *udp_src, *udp_dst;
2174		struct ice_flow_seg_info *seg;
2175
2176		seg = &prof->segs[prof->segs_cnt - 1];
2177
2178		ipv4_src = &seg->fields[ICE_FLOW_FIELD_IDX_IPV4_SA].xtrct;
2179		ipv4_dst = &seg->fields[ICE_FLOW_FIELD_IDX_IPV4_DA].xtrct;
2180
2181		ipv6_src = &seg->fields[ICE_FLOW_FIELD_IDX_IPV6_SA].xtrct;
2182		ipv6_dst = &seg->fields[ICE_FLOW_FIELD_IDX_IPV6_DA].xtrct;
2183
2184		tcp_src = &seg->fields[ICE_FLOW_FIELD_IDX_TCP_SRC_PORT].xtrct;
2185		tcp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_TCP_DST_PORT].xtrct;
2186
2187		udp_src = &seg->fields[ICE_FLOW_FIELD_IDX_UDP_SRC_PORT].xtrct;
2188		udp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_UDP_DST_PORT].xtrct;
2189
2190		sctp_src = &seg->fields[ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT].xtrct;
2191		sctp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_SCTP_DST_PORT].xtrct;
2192
2193		/* xor IPv4 */
2194		if (ipv4_src->prot_id != 0 && ipv4_dst->prot_id != 0)
2195			ice_rss_config_xor(hw, prof_id,
2196					   ipv4_src->idx, ipv4_dst->idx, 2);
2197
2198		/* xor IPv6 */
2199		if (ipv6_src->prot_id != 0 && ipv6_dst->prot_id != 0)
2200			ice_rss_config_xor(hw, prof_id,
2201					   ipv6_src->idx, ipv6_dst->idx, 8);
2202
2203		/* xor TCP */
2204		if (tcp_src->prot_id != 0 && tcp_dst->prot_id != 0)
2205			ice_rss_config_xor(hw, prof_id,
2206					   tcp_src->idx, tcp_dst->idx, 1);
2207
2208		/* xor UDP */
2209		if (udp_src->prot_id != 0 && udp_dst->prot_id != 0)
2210			ice_rss_config_xor(hw, prof_id,
2211					   udp_src->idx, udp_dst->idx, 1);
2212
2213		/* xor SCTP */
2214		if (sctp_src->prot_id != 0 && sctp_dst->prot_id != 0)
2215			ice_rss_config_xor(hw, prof_id,
2216					   sctp_src->idx, sctp_dst->idx, 1);
2217	}
2218}
2219
2220/**
2221 * ice_add_rss_cfg_sync - add an RSS configuration
2222 * @hw: pointer to the hardware structure
2223 * @vsi_handle: software VSI handle
2224 * @cfg: configure parameters
2225 *
2226 * Assumption: lock has already been acquired for RSS list
2227 */
2228static int
2229ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle,
2230		     const struct ice_rss_hash_cfg *cfg)
2231{
2232	const enum ice_block blk = ICE_BLK_RSS;
2233	struct ice_flow_prof *prof = NULL;
2234	struct ice_flow_seg_info *segs;
2235	u8 segs_cnt;
2236	int status;
2237
2238	segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ?
2239			ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX;
2240
2241	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2242	if (!segs)
2243		return -ENOMEM;
2244
2245	/* Construct the packet segment info from the hashed fields */
2246	status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg);
2247	if (status)
2248		goto exit;
2249
2250	/* Search for a flow profile that has matching headers, hash fields,
2251	 * symm and has the input VSI associated to it. If found, no further
2252	 * operations required and exit.
2253	 */
2254	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2255					cfg->symm, vsi_handle,
2256					ICE_FLOW_FIND_PROF_CHK_FLDS |
2257					ICE_FLOW_FIND_PROF_CHK_SYMM |
2258					ICE_FLOW_FIND_PROF_CHK_VSI);
2259	if (prof)
2260		goto exit;
2261
2262	/* Check if a flow profile exists with the same protocol headers and
2263	 * associated with the input VSI. If so disassociate the VSI from
2264	 * this profile. The VSI will be added to a new profile created with
2265	 * the protocol header and new hash field configuration.
2266	 */
2267	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2268					cfg->symm, vsi_handle,
2269					ICE_FLOW_FIND_PROF_CHK_VSI);
2270	if (prof) {
2271		status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2272		if (!status)
2273			ice_rem_rss_list(hw, vsi_handle, prof);
2274		else
2275			goto exit;
2276
2277		/* Remove profile if it has no VSIs associated */
2278		if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
2279			status = ice_flow_rem_prof(hw, blk, prof->id);
2280			if (status)
2281				goto exit;
2282		}
2283	}
2284
2285	/* Search for a profile that has the same match fields and symmetric
2286	 * setting. If this exists then associate the VSI to this profile.
2287	 */
2288	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2289					cfg->symm, vsi_handle,
2290					ICE_FLOW_FIND_PROF_CHK_SYMM |
2291					ICE_FLOW_FIND_PROF_CHK_FLDS);
2292	if (prof) {
2293		status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2294		if (!status)
2295			status = ice_add_rss_list(hw, vsi_handle, prof);
2296		goto exit;
2297	}
2298
2299	/* Create a new flow profile with packet segment information. */
2300	status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
2301				   segs, segs_cnt, cfg->symm, &prof);
2302	if (status)
2303		goto exit;
2304
2305	prof->symm = cfg->symm;
2306	ice_rss_set_symm(hw, prof);
2307	status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2308	/* If association to a new flow profile failed then this profile can
2309	 * be removed.
2310	 */
2311	if (status) {
2312		ice_flow_rem_prof(hw, blk, prof->id);
2313		goto exit;
2314	}
2315
2316	status = ice_add_rss_list(hw, vsi_handle, prof);
2317
2318exit:
2319	kfree(segs);
2320	return status;
2321}
2322
2323/**
2324 * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
2325 * @hw: pointer to the hardware structure
2326 * @vsi: VSI to add the RSS configuration to
2327 * @cfg: configure parameters
2328 *
2329 * This function will generate a flow profile based on fields associated with
2330 * the input fields to hash on, the flow type and use the VSI number to add
2331 * a flow entry to the profile.
2332 */
2333int
2334ice_add_rss_cfg(struct ice_hw *hw, struct ice_vsi *vsi,
2335		const struct ice_rss_hash_cfg *cfg)
2336{
2337	struct ice_rss_hash_cfg local_cfg;
2338	u16 vsi_handle;
2339	int status;
2340
2341	if (!vsi)
2342		return -EINVAL;
2343
2344	vsi_handle = vsi->idx;
2345	if (!ice_is_vsi_valid(hw, vsi_handle) ||
2346	    !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS ||
2347	    cfg->hash_flds == ICE_HASH_INVALID)
2348		return -EINVAL;
2349
2350	mutex_lock(&hw->rss_locks);
2351	local_cfg = *cfg;
2352	if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) {
2353		status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2354	} else {
2355		local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
2356		status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2357		if (!status) {
2358			local_cfg.hdr_type = ICE_RSS_INNER_HEADERS;
2359			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2360						      &local_cfg);
2361		}
2362	}
2363	mutex_unlock(&hw->rss_locks);
2364
2365	return status;
2366}
2367
2368/**
2369 * ice_rem_rss_cfg_sync - remove an existing RSS configuration
2370 * @hw: pointer to the hardware structure
2371 * @vsi_handle: software VSI handle
2372 * @cfg: configure parameters
2373 *
2374 * Assumption: lock has already been acquired for RSS list
2375 */
2376static int
2377ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle,
2378		     const struct ice_rss_hash_cfg *cfg)
2379{
2380	const enum ice_block blk = ICE_BLK_RSS;
2381	struct ice_flow_seg_info *segs;
2382	struct ice_flow_prof *prof;
2383	u8 segs_cnt;
2384	int status;
2385
2386	segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ?
2387			ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX;
2388	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2389	if (!segs)
2390		return -ENOMEM;
2391
2392	/* Construct the packet segment info from the hashed fields */
2393	status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg);
2394	if (status)
2395		goto out;
2396
2397	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2398					cfg->symm, vsi_handle,
2399					ICE_FLOW_FIND_PROF_CHK_FLDS);
2400	if (!prof) {
2401		status = -ENOENT;
2402		goto out;
2403	}
2404
2405	status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2406	if (status)
2407		goto out;
2408
2409	/* Remove RSS configuration from VSI context before deleting
2410	 * the flow profile.
2411	 */
2412	ice_rem_rss_list(hw, vsi_handle, prof);
2413
2414	if (bitmap_empty(prof->vsis, ICE_MAX_VSI))
2415		status = ice_flow_rem_prof(hw, blk, prof->id);
2416
2417out:
2418	kfree(segs);
2419	return status;
2420}
2421
2422/**
2423 * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
2424 * @hw: pointer to the hardware structure
2425 * @vsi_handle: software VSI handle
2426 * @cfg: configure parameters
2427 *
2428 * This function will lookup the flow profile based on the input
2429 * hash field bitmap, iterate through the profile entry list of
2430 * that profile and find entry associated with input VSI to be
2431 * removed. Calls are made to underlying flow apis which will in
2432 * turn build or update buffers for RSS XLT1 section.
2433 */
2434int
2435ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle,
2436		const struct ice_rss_hash_cfg *cfg)
2437{
2438	struct ice_rss_hash_cfg local_cfg;
2439	int status;
2440
2441	if (!ice_is_vsi_valid(hw, vsi_handle) ||
2442	    !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS ||
2443	    cfg->hash_flds == ICE_HASH_INVALID)
2444		return -EINVAL;
2445
2446	mutex_lock(&hw->rss_locks);
2447	local_cfg = *cfg;
2448	if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) {
2449		status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2450	} else {
2451		local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
2452		status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg);
2453		if (!status) {
2454			local_cfg.hdr_type = ICE_RSS_INNER_HEADERS;
2455			status = ice_rem_rss_cfg_sync(hw, vsi_handle,
2456						      &local_cfg);
2457		}
2458	}
2459	mutex_unlock(&hw->rss_locks);
2460
2461	return status;
2462}
2463
2464/* Mapping of AVF hash bit fields to an L3-L4 hash combination.
2465 * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
2466 * convert its values to their appropriate flow L3, L4 values.
2467 */
2468#define ICE_FLOW_AVF_RSS_IPV4_MASKS \
2469	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
2470	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
2471#define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
2472	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
2473	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
2474#define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
2475	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
2476	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
2477	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
2478#define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
2479	(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
2480	 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
2481
2482#define ICE_FLOW_AVF_RSS_IPV6_MASKS \
2483	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
2484	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
2485#define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
2486	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
2487	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
2488	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
2489#define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
2490	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
2491	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
2492#define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
2493	(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
2494	 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
2495
2496/**
2497 * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
2498 * @hw: pointer to the hardware structure
2499 * @vsi: VF's VSI
2500 * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
2501 *
2502 * This function will take the hash bitmap provided by the AVF driver via a
2503 * message, convert it to ICE-compatible values, and configure RSS flow
2504 * profiles.
2505 */
2506int ice_add_avf_rss_cfg(struct ice_hw *hw, struct ice_vsi *vsi, u64 avf_hash)
2507{
2508	struct ice_rss_hash_cfg hcfg;
2509	u16 vsi_handle;
2510	int status = 0;
2511	u64 hash_flds;
2512
2513	if (!vsi)
2514		return -EINVAL;
2515
2516	vsi_handle = vsi->idx;
2517	if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
2518	    !ice_is_vsi_valid(hw, vsi_handle))
2519		return -EINVAL;
2520
2521	/* Make sure no unsupported bits are specified */
2522	if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
2523			 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
2524		return -EIO;
2525
2526	hash_flds = avf_hash;
2527
2528	/* Always create an L3 RSS configuration for any L4 RSS configuration */
2529	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
2530		hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
2531
2532	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
2533		hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
2534
2535	/* Create the corresponding RSS configuration for each valid hash bit */
2536	while (hash_flds) {
2537		u64 rss_hash = ICE_HASH_INVALID;
2538
2539		if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
2540			if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
2541				rss_hash = ICE_FLOW_HASH_IPV4;
2542				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
2543			} else if (hash_flds &
2544				   ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
2545				rss_hash = ICE_FLOW_HASH_IPV4 |
2546					ICE_FLOW_HASH_TCP_PORT;
2547				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
2548			} else if (hash_flds &
2549				   ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
2550				rss_hash = ICE_FLOW_HASH_IPV4 |
2551					ICE_FLOW_HASH_UDP_PORT;
2552				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
2553			} else if (hash_flds &
2554				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
2555				rss_hash = ICE_FLOW_HASH_IPV4 |
2556					ICE_FLOW_HASH_SCTP_PORT;
2557				hash_flds &=
2558					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
2559			}
2560		} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
2561			if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
2562				rss_hash = ICE_FLOW_HASH_IPV6;
2563				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
2564			} else if (hash_flds &
2565				   ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
2566				rss_hash = ICE_FLOW_HASH_IPV6 |
2567					ICE_FLOW_HASH_TCP_PORT;
2568				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
2569			} else if (hash_flds &
2570				   ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
2571				rss_hash = ICE_FLOW_HASH_IPV6 |
2572					ICE_FLOW_HASH_UDP_PORT;
2573				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
2574			} else if (hash_flds &
2575				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
2576				rss_hash = ICE_FLOW_HASH_IPV6 |
2577					ICE_FLOW_HASH_SCTP_PORT;
2578				hash_flds &=
2579					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
2580			}
2581		}
2582
2583		if (rss_hash == ICE_HASH_INVALID)
2584			return -EIO;
2585
2586		hcfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
2587		hcfg.hash_flds = rss_hash;
2588		hcfg.hdr_type = ICE_RSS_ANY_HEADERS;
2589		hcfg.symm = false;
2590		status = ice_add_rss_cfg(hw, vsi, &hcfg);
2591		if (status)
2592			break;
2593	}
2594
2595	return status;
2596}
2597
2598static bool rss_cfg_symm_valid(u64 hfld)
2599{
2600	return !((!!(hfld & ICE_FLOW_HASH_FLD_IPV4_SA) ^
2601		  !!(hfld & ICE_FLOW_HASH_FLD_IPV4_DA)) ||
2602		 (!!(hfld & ICE_FLOW_HASH_FLD_IPV6_SA) ^
2603		  !!(hfld & ICE_FLOW_HASH_FLD_IPV6_DA)) ||
2604		 (!!(hfld & ICE_FLOW_HASH_FLD_TCP_SRC_PORT) ^
2605		  !!(hfld & ICE_FLOW_HASH_FLD_TCP_DST_PORT)) ||
2606		 (!!(hfld & ICE_FLOW_HASH_FLD_UDP_SRC_PORT) ^
2607		  !!(hfld & ICE_FLOW_HASH_FLD_UDP_DST_PORT)) ||
2608		 (!!(hfld & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT) ^
2609		  !!(hfld & ICE_FLOW_HASH_FLD_SCTP_DST_PORT)));
2610}
2611
2612/**
2613 * ice_set_rss_cfg_symm - set symmtery for all VSI's RSS configurations
2614 * @hw: pointer to the hardware structure
2615 * @vsi: VSI to set/unset Symmetric RSS
2616 * @symm: TRUE to set Symmetric RSS hashing
2617 */
2618int ice_set_rss_cfg_symm(struct ice_hw *hw, struct ice_vsi *vsi, bool symm)
2619{
2620	struct ice_rss_hash_cfg	local;
2621	struct ice_rss_cfg *r, *tmp;
2622	u16 vsi_handle = vsi->idx;
2623	int status = 0;
2624
2625	if (!ice_is_vsi_valid(hw, vsi_handle))
2626		return -EINVAL;
2627
2628	mutex_lock(&hw->rss_locks);
2629	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry) {
2630		if (test_bit(vsi_handle, r->vsis) && r->hash.symm != symm) {
2631			local = r->hash;
2632			local.symm = symm;
2633			if (symm && !rss_cfg_symm_valid(r->hash.hash_flds))
2634				continue;
2635
2636			status = ice_add_rss_cfg_sync(hw, vsi_handle, &local);
2637			if (status)
2638				break;
2639		}
2640	}
2641	mutex_unlock(&hw->rss_locks);
2642
2643	return status;
2644}
2645
2646/**
2647 * ice_replay_rss_cfg - replay RSS configurations associated with VSI
2648 * @hw: pointer to the hardware structure
2649 * @vsi_handle: software VSI handle
2650 */
2651int ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2652{
2653	struct ice_rss_cfg *r;
2654	int status = 0;
2655
2656	if (!ice_is_vsi_valid(hw, vsi_handle))
2657		return -EINVAL;
2658
2659	mutex_lock(&hw->rss_locks);
2660	list_for_each_entry(r, &hw->rss_list_head, l_entry) {
2661		if (test_bit(vsi_handle, r->vsis)) {
2662			status = ice_add_rss_cfg_sync(hw, vsi_handle, &r->hash);
2663			if (status)
2664				break;
2665		}
2666	}
2667	mutex_unlock(&hw->rss_locks);
2668
2669	return status;
2670}
2671
2672/**
2673 * ice_get_rss_cfg - returns hashed fields for the given header types
2674 * @hw: pointer to the hardware structure
2675 * @vsi_handle: software VSI handle
2676 * @hdrs: protocol header type
2677 * @symm: whether the RSS is symmetric (bool, output)
2678 *
2679 * This function will return the match fields of the first instance of flow
2680 * profile having the given header types and containing input VSI
2681 */
2682u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs, bool *symm)
2683{
2684	u64 rss_hash = ICE_HASH_INVALID;
2685	struct ice_rss_cfg *r;
2686
2687	/* verify if the protocol header is non zero and VSI is valid */
2688	if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
2689		return ICE_HASH_INVALID;
2690
2691	mutex_lock(&hw->rss_locks);
2692	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2693		if (test_bit(vsi_handle, r->vsis) &&
2694		    r->hash.addl_hdrs == hdrs) {
2695			rss_hash = r->hash.hash_flds;
2696			*symm = r->hash.symm;
2697			break;
2698		}
2699	mutex_unlock(&hw->rss_locks);
2700
2701	return rss_hash;
2702}
2703