1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019, Intel Corporation. */
3
4#include "ice_common.h"
5#include "ice_flex_pipe.h"
6#include "ice_flow.h"
7#include "ice.h"
8
9static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
10	/* SWITCH */
11	{
12		ICE_SID_XLT0_SW,
13		ICE_SID_XLT_KEY_BUILDER_SW,
14		ICE_SID_XLT1_SW,
15		ICE_SID_XLT2_SW,
16		ICE_SID_PROFID_TCAM_SW,
17		ICE_SID_PROFID_REDIR_SW,
18		ICE_SID_FLD_VEC_SW,
19		ICE_SID_CDID_KEY_BUILDER_SW,
20		ICE_SID_CDID_REDIR_SW
21	},
22
23	/* ACL */
24	{
25		ICE_SID_XLT0_ACL,
26		ICE_SID_XLT_KEY_BUILDER_ACL,
27		ICE_SID_XLT1_ACL,
28		ICE_SID_XLT2_ACL,
29		ICE_SID_PROFID_TCAM_ACL,
30		ICE_SID_PROFID_REDIR_ACL,
31		ICE_SID_FLD_VEC_ACL,
32		ICE_SID_CDID_KEY_BUILDER_ACL,
33		ICE_SID_CDID_REDIR_ACL
34	},
35
36	/* FD */
37	{
38		ICE_SID_XLT0_FD,
39		ICE_SID_XLT_KEY_BUILDER_FD,
40		ICE_SID_XLT1_FD,
41		ICE_SID_XLT2_FD,
42		ICE_SID_PROFID_TCAM_FD,
43		ICE_SID_PROFID_REDIR_FD,
44		ICE_SID_FLD_VEC_FD,
45		ICE_SID_CDID_KEY_BUILDER_FD,
46		ICE_SID_CDID_REDIR_FD
47	},
48
49	/* RSS */
50	{
51		ICE_SID_XLT0_RSS,
52		ICE_SID_XLT_KEY_BUILDER_RSS,
53		ICE_SID_XLT1_RSS,
54		ICE_SID_XLT2_RSS,
55		ICE_SID_PROFID_TCAM_RSS,
56		ICE_SID_PROFID_REDIR_RSS,
57		ICE_SID_FLD_VEC_RSS,
58		ICE_SID_CDID_KEY_BUILDER_RSS,
59		ICE_SID_CDID_REDIR_RSS
60	},
61
62	/* PE */
63	{
64		ICE_SID_XLT0_PE,
65		ICE_SID_XLT_KEY_BUILDER_PE,
66		ICE_SID_XLT1_PE,
67		ICE_SID_XLT2_PE,
68		ICE_SID_PROFID_TCAM_PE,
69		ICE_SID_PROFID_REDIR_PE,
70		ICE_SID_FLD_VEC_PE,
71		ICE_SID_CDID_KEY_BUILDER_PE,
72		ICE_SID_CDID_REDIR_PE
73	}
74};
75
76/**
77 * ice_sect_id - returns section ID
78 * @blk: block type
79 * @sect: section type
80 *
81 * This helper function returns the proper section ID given a block type and a
82 * section type.
83 */
84static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
85{
86	return ice_sect_lkup[blk][sect];
87}
88
89/**
90 * ice_hw_ptype_ena - check if the PTYPE is enabled or not
91 * @hw: pointer to the HW structure
92 * @ptype: the hardware PTYPE
93 */
94bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
95{
96	return ptype < ICE_FLOW_PTYPE_MAX &&
97	       test_bit(ptype, hw->hw_ptype);
98}
99
100/* Key creation */
101
102#define ICE_DC_KEY	0x1	/* don't care */
103#define ICE_DC_KEYINV	0x1
104#define ICE_NM_KEY	0x0	/* never match */
105#define ICE_NM_KEYINV	0x0
106#define ICE_0_KEY	0x1	/* match 0 */
107#define ICE_0_KEYINV	0x0
108#define ICE_1_KEY	0x0	/* match 1 */
109#define ICE_1_KEYINV	0x1
110
111/**
112 * ice_gen_key_word - generate 16-bits of a key/mask word
113 * @val: the value
114 * @valid: valid bits mask (change only the valid bits)
115 * @dont_care: don't care mask
116 * @nvr_mtch: never match mask
117 * @key: pointer to an array of where the resulting key portion
118 * @key_inv: pointer to an array of where the resulting key invert portion
119 *
120 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
121 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
122 * of key and 8 bits of key invert.
123 *
124 *     '0' =    b01, always match a 0 bit
125 *     '1' =    b10, always match a 1 bit
126 *     '?' =    b11, don't care bit (always matches)
127 *     '~' =    b00, never match bit
128 *
129 * Input:
130 *          val:         b0  1  0  1  0  1
131 *          dont_care:   b0  0  1  1  0  0
132 *          never_mtch:  b0  0  0  0  1  1
133 *          ------------------------------
134 * Result:  key:        b01 10 11 11 00 00
135 */
136static int
137ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
138		 u8 *key_inv)
139{
140	u8 in_key = *key, in_key_inv = *key_inv;
141	u8 i;
142
143	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
144	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
145		return -EIO;
146
147	*key = 0;
148	*key_inv = 0;
149
150	/* encode the 8 bits into 8-bit key and 8-bit key invert */
151	for (i = 0; i < 8; i++) {
152		*key >>= 1;
153		*key_inv >>= 1;
154
155		if (!(valid & 0x1)) { /* change only valid bits */
156			*key |= (in_key & 0x1) << 7;
157			*key_inv |= (in_key_inv & 0x1) << 7;
158		} else if (dont_care & 0x1) { /* don't care bit */
159			*key |= ICE_DC_KEY << 7;
160			*key_inv |= ICE_DC_KEYINV << 7;
161		} else if (nvr_mtch & 0x1) { /* never match bit */
162			*key |= ICE_NM_KEY << 7;
163			*key_inv |= ICE_NM_KEYINV << 7;
164		} else if (val & 0x01) { /* exact 1 match */
165			*key |= ICE_1_KEY << 7;
166			*key_inv |= ICE_1_KEYINV << 7;
167		} else { /* exact 0 match */
168			*key |= ICE_0_KEY << 7;
169			*key_inv |= ICE_0_KEYINV << 7;
170		}
171
172		dont_care >>= 1;
173		nvr_mtch >>= 1;
174		valid >>= 1;
175		val >>= 1;
176		in_key >>= 1;
177		in_key_inv >>= 1;
178	}
179
180	return 0;
181}
182
183/**
184 * ice_bits_max_set - determine if the number of bits set is within a maximum
185 * @mask: pointer to the byte array which is the mask
186 * @size: the number of bytes in the mask
187 * @max: the max number of set bits
188 *
189 * This function determines if there are at most 'max' number of bits set in an
190 * array. Returns true if the number for bits set is <= max or will return false
191 * otherwise.
192 */
193static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
194{
195	u16 count = 0;
196	u16 i;
197
198	/* check each byte */
199	for (i = 0; i < size; i++) {
200		/* if 0, go to next byte */
201		if (!mask[i])
202			continue;
203
204		/* We know there is at least one set bit in this byte because of
205		 * the above check; if we already have found 'max' number of
206		 * bits set, then we can return failure now.
207		 */
208		if (count == max)
209			return false;
210
211		/* count the bits in this byte, checking threshold */
212		count += hweight8(mask[i]);
213		if (count > max)
214			return false;
215	}
216
217	return true;
218}
219
220/**
221 * ice_set_key - generate a variable sized key with multiples of 16-bits
222 * @key: pointer to where the key will be stored
223 * @size: the size of the complete key in bytes (must be even)
224 * @val: array of 8-bit values that makes up the value portion of the key
225 * @upd: array of 8-bit masks that determine what key portion to update
226 * @dc: array of 8-bit masks that make up the don't care mask
227 * @nm: array of 8-bit masks that make up the never match mask
228 * @off: the offset of the first byte in the key to update
229 * @len: the number of bytes in the key update
230 *
231 * This function generates a key from a value, a don't care mask and a never
232 * match mask.
233 * upd, dc, and nm are optional parameters, and can be NULL:
234 *	upd == NULL --> upd mask is all 1's (update all bits)
235 *	dc == NULL --> dc mask is all 0's (no don't care bits)
236 *	nm == NULL --> nm mask is all 0's (no never match bits)
237 */
238static int
239ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
240	    u16 len)
241{
242	u16 half_size;
243	u16 i;
244
245	/* size must be a multiple of 2 bytes. */
246	if (size % 2)
247		return -EIO;
248
249	half_size = size / 2;
250	if (off + len > half_size)
251		return -EIO;
252
253	/* Make sure at most one bit is set in the never match mask. Having more
254	 * than one never match mask bit set will cause HW to consume excessive
255	 * power otherwise; this is a power management efficiency check.
256	 */
257#define ICE_NVR_MTCH_BITS_MAX	1
258	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
259		return -EIO;
260
261	for (i = 0; i < len; i++)
262		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
263				     dc ? dc[i] : 0, nm ? nm[i] : 0,
264				     key + off + i, key + half_size + off + i))
265			return -EIO;
266
267	return 0;
268}
269
270/**
271 * ice_acquire_change_lock
272 * @hw: pointer to the HW structure
273 * @access: access type (read or write)
274 *
275 * This function will request ownership of the change lock.
276 */
277int
278ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
279{
280	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
281			       ICE_CHANGE_LOCK_TIMEOUT);
282}
283
284/**
285 * ice_release_change_lock
286 * @hw: pointer to the HW structure
287 *
288 * This function will release the change lock using the proper Admin Command.
289 */
290void ice_release_change_lock(struct ice_hw *hw)
291{
292	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
293}
294
295/**
296 * ice_get_open_tunnel_port - retrieve an open tunnel port
297 * @hw: pointer to the HW structure
298 * @port: returns open port
299 * @type: type of tunnel, can be TNL_LAST if it doesn't matter
300 */
301bool
302ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
303			 enum ice_tunnel_type type)
304{
305	bool res = false;
306	u16 i;
307
308	mutex_lock(&hw->tnl_lock);
309
310	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
311		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
312		    (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
313			*port = hw->tnl.tbl[i].port;
314			res = true;
315			break;
316		}
317
318	mutex_unlock(&hw->tnl_lock);
319
320	return res;
321}
322
323/**
324 * ice_upd_dvm_boost_entry
325 * @hw: pointer to the HW structure
326 * @entry: pointer to double vlan boost entry info
327 */
328static int
329ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
330{
331	struct ice_boost_tcam_section *sect_rx, *sect_tx;
332	int status = -ENOSPC;
333	struct ice_buf_build *bld;
334	u8 val, dc, nm;
335
336	bld = ice_pkg_buf_alloc(hw);
337	if (!bld)
338		return -ENOMEM;
339
340	/* allocate 2 sections, one for Rx parser, one for Tx parser */
341	if (ice_pkg_buf_reserve_section(bld, 2))
342		goto ice_upd_dvm_boost_entry_err;
343
344	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
345					    struct_size(sect_rx, tcam, 1));
346	if (!sect_rx)
347		goto ice_upd_dvm_boost_entry_err;
348	sect_rx->count = cpu_to_le16(1);
349
350	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
351					    struct_size(sect_tx, tcam, 1));
352	if (!sect_tx)
353		goto ice_upd_dvm_boost_entry_err;
354	sect_tx->count = cpu_to_le16(1);
355
356	/* copy original boost entry to update package buffer */
357	memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
358
359	/* re-write the don't care and never match bits accordingly */
360	if (entry->enable) {
361		/* all bits are don't care */
362		val = 0x00;
363		dc = 0xFF;
364		nm = 0x00;
365	} else {
366		/* disable, one never match bit, the rest are don't care */
367		val = 0x00;
368		dc = 0xF7;
369		nm = 0x08;
370	}
371
372	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
373		    &val, NULL, &dc, &nm, 0, sizeof(u8));
374
375	/* exact copy of entry to Tx section entry */
376	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
377
378	status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
379
380ice_upd_dvm_boost_entry_err:
381	ice_pkg_buf_free(hw, bld);
382
383	return status;
384}
385
386/**
387 * ice_set_dvm_boost_entries
388 * @hw: pointer to the HW structure
389 *
390 * Enable double vlan by updating the appropriate boost tcam entries.
391 */
392int ice_set_dvm_boost_entries(struct ice_hw *hw)
393{
394	u16 i;
395
396	for (i = 0; i < hw->dvm_upd.count; i++) {
397		int status;
398
399		status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
400		if (status)
401			return status;
402	}
403
404	return 0;
405}
406
407/**
408 * ice_tunnel_idx_to_entry - convert linear index to the sparse one
409 * @hw: pointer to the HW structure
410 * @type: type of tunnel
411 * @idx: linear index
412 *
413 * Stack assumes we have 2 linear tables with indexes [0, count_valid),
414 * but really the port table may be sprase, and types are mixed, so convert
415 * the stack index into the device index.
416 */
417static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
418				   u16 idx)
419{
420	u16 i;
421
422	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
423		if (hw->tnl.tbl[i].valid &&
424		    hw->tnl.tbl[i].type == type &&
425		    idx-- == 0)
426			return i;
427
428	WARN_ON_ONCE(1);
429	return 0;
430}
431
432/**
433 * ice_create_tunnel
434 * @hw: pointer to the HW structure
435 * @index: device table entry
436 * @type: type of tunnel
437 * @port: port of tunnel to create
438 *
439 * Create a tunnel by updating the parse graph in the parser. We do that by
440 * creating a package buffer with the tunnel info and issuing an update package
441 * command.
442 */
443static int
444ice_create_tunnel(struct ice_hw *hw, u16 index,
445		  enum ice_tunnel_type type, u16 port)
446{
447	struct ice_boost_tcam_section *sect_rx, *sect_tx;
448	struct ice_buf_build *bld;
449	int status = -ENOSPC;
450
451	mutex_lock(&hw->tnl_lock);
452
453	bld = ice_pkg_buf_alloc(hw);
454	if (!bld) {
455		status = -ENOMEM;
456		goto ice_create_tunnel_end;
457	}
458
459	/* allocate 2 sections, one for Rx parser, one for Tx parser */
460	if (ice_pkg_buf_reserve_section(bld, 2))
461		goto ice_create_tunnel_err;
462
463	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
464					    struct_size(sect_rx, tcam, 1));
465	if (!sect_rx)
466		goto ice_create_tunnel_err;
467	sect_rx->count = cpu_to_le16(1);
468
469	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
470					    struct_size(sect_tx, tcam, 1));
471	if (!sect_tx)
472		goto ice_create_tunnel_err;
473	sect_tx->count = cpu_to_le16(1);
474
475	/* copy original boost entry to update package buffer */
476	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
477	       sizeof(*sect_rx->tcam));
478
479	/* over-write the never-match dest port key bits with the encoded port
480	 * bits
481	 */
482	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
483		    (u8 *)&port, NULL, NULL, NULL,
484		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
485		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
486
487	/* exact copy of entry to Tx section entry */
488	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
489
490	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
491	if (!status)
492		hw->tnl.tbl[index].port = port;
493
494ice_create_tunnel_err:
495	ice_pkg_buf_free(hw, bld);
496
497ice_create_tunnel_end:
498	mutex_unlock(&hw->tnl_lock);
499
500	return status;
501}
502
503/**
504 * ice_destroy_tunnel
505 * @hw: pointer to the HW structure
506 * @index: device table entry
507 * @type: type of tunnel
508 * @port: port of tunnel to destroy (ignored if the all parameter is true)
509 *
510 * Destroys a tunnel or all tunnels by creating an update package buffer
511 * targeting the specific updates requested and then performing an update
512 * package.
513 */
514static int
515ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
516		   u16 port)
517{
518	struct ice_boost_tcam_section *sect_rx, *sect_tx;
519	struct ice_buf_build *bld;
520	int status = -ENOSPC;
521
522	mutex_lock(&hw->tnl_lock);
523
524	if (WARN_ON(!hw->tnl.tbl[index].valid ||
525		    hw->tnl.tbl[index].type != type ||
526		    hw->tnl.tbl[index].port != port)) {
527		status = -EIO;
528		goto ice_destroy_tunnel_end;
529	}
530
531	bld = ice_pkg_buf_alloc(hw);
532	if (!bld) {
533		status = -ENOMEM;
534		goto ice_destroy_tunnel_end;
535	}
536
537	/* allocate 2 sections, one for Rx parser, one for Tx parser */
538	if (ice_pkg_buf_reserve_section(bld, 2))
539		goto ice_destroy_tunnel_err;
540
541	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
542					    struct_size(sect_rx, tcam, 1));
543	if (!sect_rx)
544		goto ice_destroy_tunnel_err;
545	sect_rx->count = cpu_to_le16(1);
546
547	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
548					    struct_size(sect_tx, tcam, 1));
549	if (!sect_tx)
550		goto ice_destroy_tunnel_err;
551	sect_tx->count = cpu_to_le16(1);
552
553	/* copy original boost entry to update package buffer, one copy to Rx
554	 * section, another copy to the Tx section
555	 */
556	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
557	       sizeof(*sect_rx->tcam));
558	memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
559	       sizeof(*sect_tx->tcam));
560
561	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
562	if (!status)
563		hw->tnl.tbl[index].port = 0;
564
565ice_destroy_tunnel_err:
566	ice_pkg_buf_free(hw, bld);
567
568ice_destroy_tunnel_end:
569	mutex_unlock(&hw->tnl_lock);
570
571	return status;
572}
573
574int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
575			    unsigned int idx, struct udp_tunnel_info *ti)
576{
577	struct ice_netdev_priv *np = netdev_priv(netdev);
578	struct ice_vsi *vsi = np->vsi;
579	struct ice_pf *pf = vsi->back;
580	enum ice_tunnel_type tnl_type;
581	int status;
582	u16 index;
583
584	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
585	index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
586
587	status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
588	if (status) {
589		netdev_err(netdev, "Error adding UDP tunnel - %d\n",
590			   status);
591		return -EIO;
592	}
593
594	udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
595	return 0;
596}
597
598int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
599			      unsigned int idx, struct udp_tunnel_info *ti)
600{
601	struct ice_netdev_priv *np = netdev_priv(netdev);
602	struct ice_vsi *vsi = np->vsi;
603	struct ice_pf *pf = vsi->back;
604	enum ice_tunnel_type tnl_type;
605	int status;
606
607	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
608
609	status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
610				    ntohs(ti->port));
611	if (status) {
612		netdev_err(netdev, "Error removing UDP tunnel - %d\n",
613			   status);
614		return -EIO;
615	}
616
617	return 0;
618}
619
620/**
621 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
622 * @hw: pointer to the hardware structure
623 * @blk: hardware block
624 * @prof: profile ID
625 * @fv_idx: field vector word index
626 * @prot: variable to receive the protocol ID
627 * @off: variable to receive the protocol offset
628 */
629int
630ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
631		  u8 *prot, u16 *off)
632{
633	struct ice_fv_word *fv_ext;
634
635	if (prof >= hw->blk[blk].es.count)
636		return -EINVAL;
637
638	if (fv_idx >= hw->blk[blk].es.fvw)
639		return -EINVAL;
640
641	fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
642
643	*prot = fv_ext[fv_idx].prot_id;
644	*off = fv_ext[fv_idx].off;
645
646	return 0;
647}
648
649/* PTG Management */
650
651/**
652 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
653 * @hw: pointer to the hardware structure
654 * @blk: HW block
655 * @ptype: the ptype to search for
656 * @ptg: pointer to variable that receives the PTG
657 *
658 * This function will search the PTGs for a particular ptype, returning the
659 * PTG ID that contains it through the PTG parameter, with the value of
660 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
661 */
662static int
663ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
664{
665	if (ptype >= ICE_XLT1_CNT || !ptg)
666		return -EINVAL;
667
668	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
669	return 0;
670}
671
672/**
673 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
674 * @hw: pointer to the hardware structure
675 * @blk: HW block
676 * @ptg: the PTG to allocate
677 *
678 * This function allocates a given packet type group ID specified by the PTG
679 * parameter.
680 */
681static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
682{
683	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
684}
685
686/**
687 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
688 * @hw: pointer to the hardware structure
689 * @blk: HW block
690 * @ptype: the ptype to remove
691 * @ptg: the PTG to remove the ptype from
692 *
693 * This function will remove the ptype from the specific PTG, and move it to
694 * the default PTG (ICE_DEFAULT_PTG).
695 */
696static int
697ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
698{
699	struct ice_ptg_ptype **ch;
700	struct ice_ptg_ptype *p;
701
702	if (ptype > ICE_XLT1_CNT - 1)
703		return -EINVAL;
704
705	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
706		return -ENOENT;
707
708	/* Should not happen if .in_use is set, bad config */
709	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
710		return -EIO;
711
712	/* find the ptype within this PTG, and bypass the link over it */
713	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
714	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
715	while (p) {
716		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
717			*ch = p->next_ptype;
718			break;
719		}
720
721		ch = &p->next_ptype;
722		p = p->next_ptype;
723	}
724
725	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
726	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
727
728	return 0;
729}
730
731/**
732 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
733 * @hw: pointer to the hardware structure
734 * @blk: HW block
735 * @ptype: the ptype to add or move
736 * @ptg: the PTG to add or move the ptype to
737 *
738 * This function will either add or move a ptype to a particular PTG depending
739 * on if the ptype is already part of another group. Note that using a
740 * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
741 * default PTG.
742 */
743static int
744ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
745{
746	u8 original_ptg;
747	int status;
748
749	if (ptype > ICE_XLT1_CNT - 1)
750		return -EINVAL;
751
752	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
753		return -ENOENT;
754
755	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
756	if (status)
757		return status;
758
759	/* Is ptype already in the correct PTG? */
760	if (original_ptg == ptg)
761		return 0;
762
763	/* Remove from original PTG and move back to the default PTG */
764	if (original_ptg != ICE_DEFAULT_PTG)
765		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
766
767	/* Moving to default PTG? Then we're done with this request */
768	if (ptg == ICE_DEFAULT_PTG)
769		return 0;
770
771	/* Add ptype to PTG at beginning of list */
772	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
773		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
774	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
775		&hw->blk[blk].xlt1.ptypes[ptype];
776
777	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
778	hw->blk[blk].xlt1.t[ptype] = ptg;
779
780	return 0;
781}
782
783/* Block / table size info */
784struct ice_blk_size_details {
785	u16 xlt1;			/* # XLT1 entries */
786	u16 xlt2;			/* # XLT2 entries */
787	u16 prof_tcam;			/* # profile ID TCAM entries */
788	u16 prof_id;			/* # profile IDs */
789	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
790	u16 prof_redir;			/* # profile redirection entries */
791	u16 es;				/* # extraction sequence entries */
792	u16 fvw;			/* # field vector words */
793	u8 overwrite;			/* overwrite existing entries allowed */
794	u8 reverse;			/* reverse FV order */
795};
796
797static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
798	/**
799	 * Table Definitions
800	 * XLT1 - Number of entries in XLT1 table
801	 * XLT2 - Number of entries in XLT2 table
802	 * TCAM - Number of entries Profile ID TCAM table
803	 * CDID - Control Domain ID of the hardware block
804	 * PRED - Number of entries in the Profile Redirection Table
805	 * FV   - Number of entries in the Field Vector
806	 * FVW  - Width (in WORDs) of the Field Vector
807	 * OVR  - Overwrite existing table entries
808	 * REV  - Reverse FV
809	 */
810	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
811	/*          Overwrite   , Reverse FV */
812	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
813		    false, false },
814	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
815		    false, false },
816	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
817		    false, true  },
818	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
819		    true,  true  },
820	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
821		    false, false },
822};
823
824enum ice_sid_all {
825	ICE_SID_XLT1_OFF = 0,
826	ICE_SID_XLT2_OFF,
827	ICE_SID_PR_OFF,
828	ICE_SID_PR_REDIR_OFF,
829	ICE_SID_ES_OFF,
830	ICE_SID_OFF_COUNT,
831};
832
833/* Characteristic handling */
834
835/**
836 * ice_match_prop_lst - determine if properties of two lists match
837 * @list1: first properties list
838 * @list2: second properties list
839 *
840 * Count, cookies and the order must match in order to be considered equivalent.
841 */
842static bool
843ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
844{
845	struct ice_vsig_prof *tmp1;
846	struct ice_vsig_prof *tmp2;
847	u16 chk_count = 0;
848	u16 count = 0;
849
850	/* compare counts */
851	list_for_each_entry(tmp1, list1, list)
852		count++;
853	list_for_each_entry(tmp2, list2, list)
854		chk_count++;
855	if (!count || count != chk_count)
856		return false;
857
858	tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
859	tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
860
861	/* profile cookies must compare, and in the exact same order to take
862	 * into account priority
863	 */
864	while (count--) {
865		if (tmp2->profile_cookie != tmp1->profile_cookie)
866			return false;
867
868		tmp1 = list_next_entry(tmp1, list);
869		tmp2 = list_next_entry(tmp2, list);
870	}
871
872	return true;
873}
874
875/* VSIG Management */
876
877/**
878 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
879 * @hw: pointer to the hardware structure
880 * @blk: HW block
881 * @vsi: VSI of interest
882 * @vsig: pointer to receive the VSI group
883 *
884 * This function will lookup the VSI entry in the XLT2 list and return
885 * the VSI group its associated with.
886 */
887static int
888ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
889{
890	if (!vsig || vsi >= ICE_MAX_VSI)
891		return -EINVAL;
892
893	/* As long as there's a default or valid VSIG associated with the input
894	 * VSI, the functions returns a success. Any handling of VSIG will be
895	 * done by the following add, update or remove functions.
896	 */
897	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
898
899	return 0;
900}
901
902/**
903 * ice_vsig_alloc_val - allocate a new VSIG by value
904 * @hw: pointer to the hardware structure
905 * @blk: HW block
906 * @vsig: the VSIG to allocate
907 *
908 * This function will allocate a given VSIG specified by the VSIG parameter.
909 */
910static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
911{
912	u16 idx = vsig & ICE_VSIG_IDX_M;
913
914	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
915		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
916		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
917	}
918
919	return ICE_VSIG_VALUE(idx, hw->pf_id);
920}
921
922/**
923 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
924 * @hw: pointer to the hardware structure
925 * @blk: HW block
926 *
927 * This function will iterate through the VSIG list and mark the first
928 * unused entry for the new VSIG entry as used and return that value.
929 */
930static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
931{
932	u16 i;
933
934	for (i = 1; i < ICE_MAX_VSIGS; i++)
935		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
936			return ice_vsig_alloc_val(hw, blk, i);
937
938	return ICE_DEFAULT_VSIG;
939}
940
941/**
942 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
943 * @hw: pointer to the hardware structure
944 * @blk: HW block
945 * @chs: characteristic list
946 * @vsig: returns the VSIG with the matching profiles, if found
947 *
948 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
949 * a group have the same characteristic set. To check if there exists a VSIG
950 * which has the same characteristics as the input characteristics; this
951 * function will iterate through the XLT2 list and return the VSIG that has a
952 * matching configuration. In order to make sure that priorities are accounted
953 * for, the list must match exactly, including the order in which the
954 * characteristics are listed.
955 */
956static int
957ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
958			struct list_head *chs, u16 *vsig)
959{
960	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
961	u16 i;
962
963	for (i = 0; i < xlt2->count; i++)
964		if (xlt2->vsig_tbl[i].in_use &&
965		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
966			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
967			return 0;
968		}
969
970	return -ENOENT;
971}
972
973/**
974 * ice_vsig_free - free VSI group
975 * @hw: pointer to the hardware structure
976 * @blk: HW block
977 * @vsig: VSIG to remove
978 *
979 * The function will remove all VSIs associated with the input VSIG and move
980 * them to the DEFAULT_VSIG and mark the VSIG available.
981 */
982static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
983{
984	struct ice_vsig_prof *dtmp, *del;
985	struct ice_vsig_vsi *vsi_cur;
986	u16 idx;
987
988	idx = vsig & ICE_VSIG_IDX_M;
989	if (idx >= ICE_MAX_VSIGS)
990		return -EINVAL;
991
992	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
993		return -ENOENT;
994
995	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
996
997	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
998	/* If the VSIG has at least 1 VSI then iterate through the
999	 * list and remove the VSIs before deleting the group.
1000	 */
1001	if (vsi_cur) {
1002		/* remove all vsis associated with this VSIG XLT2 entry */
1003		do {
1004			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
1005
1006			vsi_cur->vsig = ICE_DEFAULT_VSIG;
1007			vsi_cur->changed = 1;
1008			vsi_cur->next_vsi = NULL;
1009			vsi_cur = tmp;
1010		} while (vsi_cur);
1011
1012		/* NULL terminate head of VSI list */
1013		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
1014	}
1015
1016	/* free characteristic list */
1017	list_for_each_entry_safe(del, dtmp,
1018				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
1019				 list) {
1020		list_del(&del->list);
1021		devm_kfree(ice_hw_to_dev(hw), del);
1022	}
1023
1024	/* if VSIG characteristic list was cleared for reset
1025	 * re-initialize the list head
1026	 */
1027	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
1028
1029	return 0;
1030}
1031
1032/**
1033 * ice_vsig_remove_vsi - remove VSI from VSIG
1034 * @hw: pointer to the hardware structure
1035 * @blk: HW block
1036 * @vsi: VSI to remove
1037 * @vsig: VSI group to remove from
1038 *
1039 * The function will remove the input VSI from its VSI group and move it
1040 * to the DEFAULT_VSIG.
1041 */
1042static int
1043ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1044{
1045	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
1046	u16 idx;
1047
1048	idx = vsig & ICE_VSIG_IDX_M;
1049
1050	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1051		return -EINVAL;
1052
1053	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
1054		return -ENOENT;
1055
1056	/* entry already in default VSIG, don't have to remove */
1057	if (idx == ICE_DEFAULT_VSIG)
1058		return 0;
1059
1060	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1061	if (!(*vsi_head))
1062		return -EIO;
1063
1064	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
1065	vsi_cur = (*vsi_head);
1066
1067	/* iterate the VSI list, skip over the entry to be removed */
1068	while (vsi_cur) {
1069		if (vsi_tgt == vsi_cur) {
1070			(*vsi_head) = vsi_cur->next_vsi;
1071			break;
1072		}
1073		vsi_head = &vsi_cur->next_vsi;
1074		vsi_cur = vsi_cur->next_vsi;
1075	}
1076
1077	/* verify if VSI was removed from group list */
1078	if (!vsi_cur)
1079		return -ENOENT;
1080
1081	vsi_cur->vsig = ICE_DEFAULT_VSIG;
1082	vsi_cur->changed = 1;
1083	vsi_cur->next_vsi = NULL;
1084
1085	return 0;
1086}
1087
1088/**
1089 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
1090 * @hw: pointer to the hardware structure
1091 * @blk: HW block
1092 * @vsi: VSI to move
1093 * @vsig: destination VSI group
1094 *
1095 * This function will move or add the input VSI to the target VSIG.
1096 * The function will find the original VSIG the VSI belongs to and
1097 * move the entry to the DEFAULT_VSIG, update the original VSIG and
1098 * then move entry to the new VSIG.
1099 */
1100static int
1101ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1102{
1103	struct ice_vsig_vsi *tmp;
1104	u16 orig_vsig, idx;
1105	int status;
1106
1107	idx = vsig & ICE_VSIG_IDX_M;
1108
1109	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1110		return -EINVAL;
1111
1112	/* if VSIG not in use and VSIG is not default type this VSIG
1113	 * doesn't exist.
1114	 */
1115	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
1116	    vsig != ICE_DEFAULT_VSIG)
1117		return -ENOENT;
1118
1119	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
1120	if (status)
1121		return status;
1122
1123	/* no update required if vsigs match */
1124	if (orig_vsig == vsig)
1125		return 0;
1126
1127	if (orig_vsig != ICE_DEFAULT_VSIG) {
1128		/* remove entry from orig_vsig and add to default VSIG */
1129		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
1130		if (status)
1131			return status;
1132	}
1133
1134	if (idx == ICE_DEFAULT_VSIG)
1135		return 0;
1136
1137	/* Create VSI entry and add VSIG and prop_mask values */
1138	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
1139	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
1140
1141	/* Add new entry to the head of the VSIG list */
1142	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1143	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
1144		&hw->blk[blk].xlt2.vsis[vsi];
1145	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
1146	hw->blk[blk].xlt2.t[vsi] = vsig;
1147
1148	return 0;
1149}
1150
1151/**
1152 * ice_prof_has_mask_idx - determine if profile index masking is identical
1153 * @hw: pointer to the hardware structure
1154 * @blk: HW block
1155 * @prof: profile to check
1156 * @idx: profile index to check
1157 * @mask: mask to match
1158 */
1159static bool
1160ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
1161		      u16 mask)
1162{
1163	bool expect_no_mask = false;
1164	bool found = false;
1165	bool match = false;
1166	u16 i;
1167
1168	/* If mask is 0x0000 or 0xffff, then there is no masking */
1169	if (mask == 0 || mask == 0xffff)
1170		expect_no_mask = true;
1171
1172	/* Scan the enabled masks on this profile, for the specified idx */
1173	for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
1174	     hw->blk[blk].masks.count; i++)
1175		if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
1176			if (hw->blk[blk].masks.masks[i].in_use &&
1177			    hw->blk[blk].masks.masks[i].idx == idx) {
1178				found = true;
1179				if (hw->blk[blk].masks.masks[i].mask == mask)
1180					match = true;
1181				break;
1182			}
1183
1184	if (expect_no_mask) {
1185		if (found)
1186			return false;
1187	} else {
1188		if (!match)
1189			return false;
1190	}
1191
1192	return true;
1193}
1194
1195/**
1196 * ice_prof_has_mask - determine if profile masking is identical
1197 * @hw: pointer to the hardware structure
1198 * @blk: HW block
1199 * @prof: profile to check
1200 * @masks: masks to match
1201 */
1202static bool
1203ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
1204{
1205	u16 i;
1206
1207	/* es->mask_ena[prof] will have the mask */
1208	for (i = 0; i < hw->blk[blk].es.fvw; i++)
1209		if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
1210			return false;
1211
1212	return true;
1213}
1214
1215/**
1216 * ice_find_prof_id_with_mask - find profile ID for a given field vector
1217 * @hw: pointer to the hardware structure
1218 * @blk: HW block
1219 * @fv: field vector to search for
1220 * @masks: masks for FV
1221 * @symm: symmetric setting for RSS flows
1222 * @prof_id: receives the profile ID
1223 */
1224static int
1225ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
1226			   struct ice_fv_word *fv, u16 *masks, bool symm,
1227			   u8 *prof_id)
1228{
1229	struct ice_es *es = &hw->blk[blk].es;
1230	u8 i;
1231
1232	/* For FD, we don't want to re-use a existed profile with the same
1233	 * field vector and mask. This will cause rule interference.
1234	 */
1235	if (blk == ICE_BLK_FD)
1236		return -ENOENT;
1237
1238	for (i = 0; i < (u8)es->count; i++) {
1239		u16 off = i * es->fvw;
1240
1241		if (blk == ICE_BLK_RSS && es->symm[i] != symm)
1242			continue;
1243
1244		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
1245			continue;
1246
1247		/* check if masks settings are the same for this profile */
1248		if (masks && !ice_prof_has_mask(hw, blk, i, masks))
1249			continue;
1250
1251		*prof_id = i;
1252		return 0;
1253	}
1254
1255	return -ENOENT;
1256}
1257
1258/**
1259 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
1260 * @blk: the block type
1261 * @rsrc_type: pointer to variable to receive the resource type
1262 */
1263static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1264{
1265	switch (blk) {
1266	case ICE_BLK_FD:
1267		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
1268		break;
1269	case ICE_BLK_RSS:
1270		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
1271		break;
1272	default:
1273		return false;
1274	}
1275	return true;
1276}
1277
1278/**
1279 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
1280 * @blk: the block type
1281 * @rsrc_type: pointer to variable to receive the resource type
1282 */
1283static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1284{
1285	switch (blk) {
1286	case ICE_BLK_FD:
1287		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
1288		break;
1289	case ICE_BLK_RSS:
1290		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
1291		break;
1292	default:
1293		return false;
1294	}
1295	return true;
1296}
1297
1298/**
1299 * ice_alloc_tcam_ent - allocate hardware TCAM entry
1300 * @hw: pointer to the HW struct
1301 * @blk: the block to allocate the TCAM for
1302 * @btm: true to allocate from bottom of table, false to allocate from top
1303 * @tcam_idx: pointer to variable to receive the TCAM entry
1304 *
1305 * This function allocates a new entry in a Profile ID TCAM for a specific
1306 * block.
1307 */
1308static int
1309ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
1310		   u16 *tcam_idx)
1311{
1312	u16 res_type;
1313
1314	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1315		return -EINVAL;
1316
1317	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
1318}
1319
1320/**
1321 * ice_free_tcam_ent - free hardware TCAM entry
1322 * @hw: pointer to the HW struct
1323 * @blk: the block from which to free the TCAM entry
1324 * @tcam_idx: the TCAM entry to free
1325 *
1326 * This function frees an entry in a Profile ID TCAM for a specific block.
1327 */
1328static int
1329ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
1330{
1331	u16 res_type;
1332
1333	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1334		return -EINVAL;
1335
1336	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
1337}
1338
1339/**
1340 * ice_alloc_prof_id - allocate profile ID
1341 * @hw: pointer to the HW struct
1342 * @blk: the block to allocate the profile ID for
1343 * @prof_id: pointer to variable to receive the profile ID
1344 *
1345 * This function allocates a new profile ID, which also corresponds to a Field
1346 * Vector (Extraction Sequence) entry.
1347 */
1348static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
1349{
1350	u16 res_type;
1351	u16 get_prof;
1352	int status;
1353
1354	if (!ice_prof_id_rsrc_type(blk, &res_type))
1355		return -EINVAL;
1356
1357	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
1358	if (!status)
1359		*prof_id = (u8)get_prof;
1360
1361	return status;
1362}
1363
1364/**
1365 * ice_free_prof_id - free profile ID
1366 * @hw: pointer to the HW struct
1367 * @blk: the block from which to free the profile ID
1368 * @prof_id: the profile ID to free
1369 *
1370 * This function frees a profile ID, which also corresponds to a Field Vector.
1371 */
1372static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1373{
1374	u16 tmp_prof_id = (u16)prof_id;
1375	u16 res_type;
1376
1377	if (!ice_prof_id_rsrc_type(blk, &res_type))
1378		return -EINVAL;
1379
1380	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
1381}
1382
1383/**
1384 * ice_prof_inc_ref - increment reference count for profile
1385 * @hw: pointer to the HW struct
1386 * @blk: the block from which to free the profile ID
1387 * @prof_id: the profile ID for which to increment the reference count
1388 */
1389static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1390{
1391	if (prof_id > hw->blk[blk].es.count)
1392		return -EINVAL;
1393
1394	hw->blk[blk].es.ref_count[prof_id]++;
1395
1396	return 0;
1397}
1398
1399/**
1400 * ice_write_prof_mask_reg - write profile mask register
1401 * @hw: pointer to the HW struct
1402 * @blk: hardware block
1403 * @mask_idx: mask index
1404 * @idx: index of the FV which will use the mask
1405 * @mask: the 16-bit mask
1406 */
1407static void
1408ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
1409			u16 idx, u16 mask)
1410{
1411	u32 offset;
1412	u32 val;
1413
1414	switch (blk) {
1415	case ICE_BLK_RSS:
1416		offset = GLQF_HMASK(mask_idx);
1417		val = FIELD_PREP(GLQF_HMASK_MSK_INDEX_M, idx);
1418		val |= FIELD_PREP(GLQF_HMASK_MASK_M, mask);
1419		break;
1420	case ICE_BLK_FD:
1421		offset = GLQF_FDMASK(mask_idx);
1422		val = FIELD_PREP(GLQF_FDMASK_MSK_INDEX_M, idx);
1423		val |= FIELD_PREP(GLQF_FDMASK_MASK_M, mask);
1424		break;
1425	default:
1426		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1427			  blk);
1428		return;
1429	}
1430
1431	wr32(hw, offset, val);
1432	ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
1433		  blk, idx, offset, val);
1434}
1435
1436/**
1437 * ice_write_prof_mask_enable_res - write profile mask enable register
1438 * @hw: pointer to the HW struct
1439 * @blk: hardware block
1440 * @prof_id: profile ID
1441 * @enable_mask: enable mask
1442 */
1443static void
1444ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
1445			       u16 prof_id, u32 enable_mask)
1446{
1447	u32 offset;
1448
1449	switch (blk) {
1450	case ICE_BLK_RSS:
1451		offset = GLQF_HMASK_SEL(prof_id);
1452		break;
1453	case ICE_BLK_FD:
1454		offset = GLQF_FDMASK_SEL(prof_id);
1455		break;
1456	default:
1457		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1458			  blk);
1459		return;
1460	}
1461
1462	wr32(hw, offset, enable_mask);
1463	ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
1464		  blk, prof_id, offset, enable_mask);
1465}
1466
1467/**
1468 * ice_init_prof_masks - initial prof masks
1469 * @hw: pointer to the HW struct
1470 * @blk: hardware block
1471 */
1472static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
1473{
1474	u16 per_pf;
1475	u16 i;
1476
1477	mutex_init(&hw->blk[blk].masks.lock);
1478
1479	per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
1480
1481	hw->blk[blk].masks.count = per_pf;
1482	hw->blk[blk].masks.first = hw->pf_id * per_pf;
1483
1484	memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
1485
1486	for (i = hw->blk[blk].masks.first;
1487	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1488		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1489}
1490
1491/**
1492 * ice_init_all_prof_masks - initialize all prof masks
1493 * @hw: pointer to the HW struct
1494 */
1495static void ice_init_all_prof_masks(struct ice_hw *hw)
1496{
1497	ice_init_prof_masks(hw, ICE_BLK_RSS);
1498	ice_init_prof_masks(hw, ICE_BLK_FD);
1499}
1500
1501/**
1502 * ice_alloc_prof_mask - allocate profile mask
1503 * @hw: pointer to the HW struct
1504 * @blk: hardware block
1505 * @idx: index of FV which will use the mask
1506 * @mask: the 16-bit mask
1507 * @mask_idx: variable to receive the mask index
1508 */
1509static int
1510ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
1511		    u16 *mask_idx)
1512{
1513	bool found_unused = false, found_copy = false;
1514	u16 unused_idx = 0, copy_idx = 0;
1515	int status = -ENOSPC;
1516	u16 i;
1517
1518	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1519		return -EINVAL;
1520
1521	mutex_lock(&hw->blk[blk].masks.lock);
1522
1523	for (i = hw->blk[blk].masks.first;
1524	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1525		if (hw->blk[blk].masks.masks[i].in_use) {
1526			/* if mask is in use and it exactly duplicates the
1527			 * desired mask and index, then in can be reused
1528			 */
1529			if (hw->blk[blk].masks.masks[i].mask == mask &&
1530			    hw->blk[blk].masks.masks[i].idx == idx) {
1531				found_copy = true;
1532				copy_idx = i;
1533				break;
1534			}
1535		} else {
1536			/* save off unused index, but keep searching in case
1537			 * there is an exact match later on
1538			 */
1539			if (!found_unused) {
1540				found_unused = true;
1541				unused_idx = i;
1542			}
1543		}
1544
1545	if (found_copy)
1546		i = copy_idx;
1547	else if (found_unused)
1548		i = unused_idx;
1549	else
1550		goto err_ice_alloc_prof_mask;
1551
1552	/* update mask for a new entry */
1553	if (found_unused) {
1554		hw->blk[blk].masks.masks[i].in_use = true;
1555		hw->blk[blk].masks.masks[i].mask = mask;
1556		hw->blk[blk].masks.masks[i].idx = idx;
1557		hw->blk[blk].masks.masks[i].ref = 0;
1558		ice_write_prof_mask_reg(hw, blk, i, idx, mask);
1559	}
1560
1561	hw->blk[blk].masks.masks[i].ref++;
1562	*mask_idx = i;
1563	status = 0;
1564
1565err_ice_alloc_prof_mask:
1566	mutex_unlock(&hw->blk[blk].masks.lock);
1567
1568	return status;
1569}
1570
1571/**
1572 * ice_free_prof_mask - free profile mask
1573 * @hw: pointer to the HW struct
1574 * @blk: hardware block
1575 * @mask_idx: index of mask
1576 */
1577static int
1578ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
1579{
1580	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1581		return -EINVAL;
1582
1583	if (!(mask_idx >= hw->blk[blk].masks.first &&
1584	      mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
1585		return -ENOENT;
1586
1587	mutex_lock(&hw->blk[blk].masks.lock);
1588
1589	if (!hw->blk[blk].masks.masks[mask_idx].in_use)
1590		goto exit_ice_free_prof_mask;
1591
1592	if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
1593		hw->blk[blk].masks.masks[mask_idx].ref--;
1594		goto exit_ice_free_prof_mask;
1595	}
1596
1597	/* remove mask */
1598	hw->blk[blk].masks.masks[mask_idx].in_use = false;
1599	hw->blk[blk].masks.masks[mask_idx].mask = 0;
1600	hw->blk[blk].masks.masks[mask_idx].idx = 0;
1601
1602	/* update mask as unused entry */
1603	ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
1604		  mask_idx);
1605	ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
1606
1607exit_ice_free_prof_mask:
1608	mutex_unlock(&hw->blk[blk].masks.lock);
1609
1610	return 0;
1611}
1612
1613/**
1614 * ice_free_prof_masks - free all profile masks for a profile
1615 * @hw: pointer to the HW struct
1616 * @blk: hardware block
1617 * @prof_id: profile ID
1618 */
1619static int
1620ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
1621{
1622	u32 mask_bm;
1623	u16 i;
1624
1625	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1626		return -EINVAL;
1627
1628	mask_bm = hw->blk[blk].es.mask_ena[prof_id];
1629	for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
1630		if (mask_bm & BIT(i))
1631			ice_free_prof_mask(hw, blk, i);
1632
1633	return 0;
1634}
1635
1636/**
1637 * ice_shutdown_prof_masks - releases lock for masking
1638 * @hw: pointer to the HW struct
1639 * @blk: hardware block
1640 *
1641 * This should be called before unloading the driver
1642 */
1643static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
1644{
1645	u16 i;
1646
1647	mutex_lock(&hw->blk[blk].masks.lock);
1648
1649	for (i = hw->blk[blk].masks.first;
1650	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
1651		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1652
1653		hw->blk[blk].masks.masks[i].in_use = false;
1654		hw->blk[blk].masks.masks[i].idx = 0;
1655		hw->blk[blk].masks.masks[i].mask = 0;
1656	}
1657
1658	mutex_unlock(&hw->blk[blk].masks.lock);
1659	mutex_destroy(&hw->blk[blk].masks.lock);
1660}
1661
1662/**
1663 * ice_shutdown_all_prof_masks - releases all locks for masking
1664 * @hw: pointer to the HW struct
1665 *
1666 * This should be called before unloading the driver
1667 */
1668static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
1669{
1670	ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
1671	ice_shutdown_prof_masks(hw, ICE_BLK_FD);
1672}
1673
1674/**
1675 * ice_update_prof_masking - set registers according to masking
1676 * @hw: pointer to the HW struct
1677 * @blk: hardware block
1678 * @prof_id: profile ID
1679 * @masks: masks
1680 */
1681static int
1682ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
1683			u16 *masks)
1684{
1685	bool err = false;
1686	u32 ena_mask = 0;
1687	u16 idx;
1688	u16 i;
1689
1690	/* Only support FD and RSS masking, otherwise nothing to be done */
1691	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1692		return 0;
1693
1694	for (i = 0; i < hw->blk[blk].es.fvw; i++)
1695		if (masks[i] && masks[i] != 0xFFFF) {
1696			if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
1697				ena_mask |= BIT(idx);
1698			} else {
1699				/* not enough bitmaps */
1700				err = true;
1701				break;
1702			}
1703		}
1704
1705	if (err) {
1706		/* free any bitmaps we have allocated */
1707		for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
1708			if (ena_mask & BIT(i))
1709				ice_free_prof_mask(hw, blk, i);
1710
1711		return -EIO;
1712	}
1713
1714	/* enable the masks for this profile */
1715	ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
1716
1717	/* store enabled masks with profile so that they can be freed later */
1718	hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
1719
1720	return 0;
1721}
1722
1723/**
1724 * ice_write_es - write an extraction sequence and symmetric setting to hardware
1725 * @hw: pointer to the HW struct
1726 * @blk: the block in which to write the extraction sequence
1727 * @prof_id: the profile ID to write
1728 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
1729 * @symm: symmetric setting for RSS profiles
1730 */
1731static void
1732ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
1733	     struct ice_fv_word *fv, bool symm)
1734{
1735	u16 off;
1736
1737	off = prof_id * hw->blk[blk].es.fvw;
1738	if (!fv) {
1739		memset(&hw->blk[blk].es.t[off], 0,
1740		       hw->blk[blk].es.fvw * sizeof(*fv));
1741		hw->blk[blk].es.written[prof_id] = false;
1742	} else {
1743		memcpy(&hw->blk[blk].es.t[off], fv,
1744		       hw->blk[blk].es.fvw * sizeof(*fv));
1745	}
1746
1747	if (blk == ICE_BLK_RSS)
1748		hw->blk[blk].es.symm[prof_id] = symm;
1749}
1750
1751/**
1752 * ice_prof_dec_ref - decrement reference count for profile
1753 * @hw: pointer to the HW struct
1754 * @blk: the block from which to free the profile ID
1755 * @prof_id: the profile ID for which to decrement the reference count
1756 */
1757static int
1758ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1759{
1760	if (prof_id > hw->blk[blk].es.count)
1761		return -EINVAL;
1762
1763	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
1764		if (!--hw->blk[blk].es.ref_count[prof_id]) {
1765			ice_write_es(hw, blk, prof_id, NULL, false);
1766			ice_free_prof_masks(hw, blk, prof_id);
1767			return ice_free_prof_id(hw, blk, prof_id);
1768		}
1769	}
1770
1771	return 0;
1772}
1773
1774/* Block / table section IDs */
1775static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
1776	/* SWITCH */
1777	{	ICE_SID_XLT1_SW,
1778		ICE_SID_XLT2_SW,
1779		ICE_SID_PROFID_TCAM_SW,
1780		ICE_SID_PROFID_REDIR_SW,
1781		ICE_SID_FLD_VEC_SW
1782	},
1783
1784	/* ACL */
1785	{	ICE_SID_XLT1_ACL,
1786		ICE_SID_XLT2_ACL,
1787		ICE_SID_PROFID_TCAM_ACL,
1788		ICE_SID_PROFID_REDIR_ACL,
1789		ICE_SID_FLD_VEC_ACL
1790	},
1791
1792	/* FD */
1793	{	ICE_SID_XLT1_FD,
1794		ICE_SID_XLT2_FD,
1795		ICE_SID_PROFID_TCAM_FD,
1796		ICE_SID_PROFID_REDIR_FD,
1797		ICE_SID_FLD_VEC_FD
1798	},
1799
1800	/* RSS */
1801	{	ICE_SID_XLT1_RSS,
1802		ICE_SID_XLT2_RSS,
1803		ICE_SID_PROFID_TCAM_RSS,
1804		ICE_SID_PROFID_REDIR_RSS,
1805		ICE_SID_FLD_VEC_RSS
1806	},
1807
1808	/* PE */
1809	{	ICE_SID_XLT1_PE,
1810		ICE_SID_XLT2_PE,
1811		ICE_SID_PROFID_TCAM_PE,
1812		ICE_SID_PROFID_REDIR_PE,
1813		ICE_SID_FLD_VEC_PE
1814	}
1815};
1816
1817/**
1818 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
1819 * @hw: pointer to the hardware structure
1820 * @blk: the HW block to initialize
1821 */
1822static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
1823{
1824	u16 pt;
1825
1826	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
1827		u8 ptg;
1828
1829		ptg = hw->blk[blk].xlt1.t[pt];
1830		if (ptg != ICE_DEFAULT_PTG) {
1831			ice_ptg_alloc_val(hw, blk, ptg);
1832			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
1833		}
1834	}
1835}
1836
1837/**
1838 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
1839 * @hw: pointer to the hardware structure
1840 * @blk: the HW block to initialize
1841 */
1842static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
1843{
1844	u16 vsi;
1845
1846	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
1847		u16 vsig;
1848
1849		vsig = hw->blk[blk].xlt2.t[vsi];
1850		if (vsig) {
1851			ice_vsig_alloc_val(hw, blk, vsig);
1852			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
1853			/* no changes at this time, since this has been
1854			 * initialized from the original package
1855			 */
1856			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
1857		}
1858	}
1859}
1860
1861/**
1862 * ice_init_sw_db - init software database from HW tables
1863 * @hw: pointer to the hardware structure
1864 */
1865static void ice_init_sw_db(struct ice_hw *hw)
1866{
1867	u16 i;
1868
1869	for (i = 0; i < ICE_BLK_COUNT; i++) {
1870		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
1871		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
1872	}
1873}
1874
1875/**
1876 * ice_fill_tbl - Reads content of a single table type into database
1877 * @hw: pointer to the hardware structure
1878 * @block_id: Block ID of the table to copy
1879 * @sid: Section ID of the table to copy
1880 *
1881 * Will attempt to read the entire content of a given table of a single block
1882 * into the driver database. We assume that the buffer will always
1883 * be as large or larger than the data contained in the package. If
1884 * this condition is not met, there is most likely an error in the package
1885 * contents.
1886 */
1887static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
1888{
1889	u32 dst_len, sect_len, offset = 0;
1890	struct ice_prof_redir_section *pr;
1891	struct ice_prof_id_section *pid;
1892	struct ice_xlt1_section *xlt1;
1893	struct ice_xlt2_section *xlt2;
1894	struct ice_sw_fv_section *es;
1895	struct ice_pkg_enum state;
1896	u8 *src, *dst;
1897	void *sect;
1898
1899	/* if the HW segment pointer is null then the first iteration of
1900	 * ice_pkg_enum_section() will fail. In this case the HW tables will
1901	 * not be filled and return success.
1902	 */
1903	if (!hw->seg) {
1904		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
1905		return;
1906	}
1907
1908	memset(&state, 0, sizeof(state));
1909
1910	sect = ice_pkg_enum_section(hw->seg, &state, sid);
1911
1912	while (sect) {
1913		switch (sid) {
1914		case ICE_SID_XLT1_SW:
1915		case ICE_SID_XLT1_FD:
1916		case ICE_SID_XLT1_RSS:
1917		case ICE_SID_XLT1_ACL:
1918		case ICE_SID_XLT1_PE:
1919			xlt1 = sect;
1920			src = xlt1->value;
1921			sect_len = le16_to_cpu(xlt1->count) *
1922				sizeof(*hw->blk[block_id].xlt1.t);
1923			dst = hw->blk[block_id].xlt1.t;
1924			dst_len = hw->blk[block_id].xlt1.count *
1925				sizeof(*hw->blk[block_id].xlt1.t);
1926			break;
1927		case ICE_SID_XLT2_SW:
1928		case ICE_SID_XLT2_FD:
1929		case ICE_SID_XLT2_RSS:
1930		case ICE_SID_XLT2_ACL:
1931		case ICE_SID_XLT2_PE:
1932			xlt2 = sect;
1933			src = (__force u8 *)xlt2->value;
1934			sect_len = le16_to_cpu(xlt2->count) *
1935				sizeof(*hw->blk[block_id].xlt2.t);
1936			dst = (u8 *)hw->blk[block_id].xlt2.t;
1937			dst_len = hw->blk[block_id].xlt2.count *
1938				sizeof(*hw->blk[block_id].xlt2.t);
1939			break;
1940		case ICE_SID_PROFID_TCAM_SW:
1941		case ICE_SID_PROFID_TCAM_FD:
1942		case ICE_SID_PROFID_TCAM_RSS:
1943		case ICE_SID_PROFID_TCAM_ACL:
1944		case ICE_SID_PROFID_TCAM_PE:
1945			pid = sect;
1946			src = (u8 *)pid->entry;
1947			sect_len = le16_to_cpu(pid->count) *
1948				sizeof(*hw->blk[block_id].prof.t);
1949			dst = (u8 *)hw->blk[block_id].prof.t;
1950			dst_len = hw->blk[block_id].prof.count *
1951				sizeof(*hw->blk[block_id].prof.t);
1952			break;
1953		case ICE_SID_PROFID_REDIR_SW:
1954		case ICE_SID_PROFID_REDIR_FD:
1955		case ICE_SID_PROFID_REDIR_RSS:
1956		case ICE_SID_PROFID_REDIR_ACL:
1957		case ICE_SID_PROFID_REDIR_PE:
1958			pr = sect;
1959			src = pr->redir_value;
1960			sect_len = le16_to_cpu(pr->count) *
1961				sizeof(*hw->blk[block_id].prof_redir.t);
1962			dst = hw->blk[block_id].prof_redir.t;
1963			dst_len = hw->blk[block_id].prof_redir.count *
1964				sizeof(*hw->blk[block_id].prof_redir.t);
1965			break;
1966		case ICE_SID_FLD_VEC_SW:
1967		case ICE_SID_FLD_VEC_FD:
1968		case ICE_SID_FLD_VEC_RSS:
1969		case ICE_SID_FLD_VEC_ACL:
1970		case ICE_SID_FLD_VEC_PE:
1971			es = sect;
1972			src = (u8 *)es->fv;
1973			sect_len = (u32)(le16_to_cpu(es->count) *
1974					 hw->blk[block_id].es.fvw) *
1975				sizeof(*hw->blk[block_id].es.t);
1976			dst = (u8 *)hw->blk[block_id].es.t;
1977			dst_len = (u32)(hw->blk[block_id].es.count *
1978					hw->blk[block_id].es.fvw) *
1979				sizeof(*hw->blk[block_id].es.t);
1980			break;
1981		default:
1982			return;
1983		}
1984
1985		/* if the section offset exceeds destination length, terminate
1986		 * table fill.
1987		 */
1988		if (offset > dst_len)
1989			return;
1990
1991		/* if the sum of section size and offset exceed destination size
1992		 * then we are out of bounds of the HW table size for that PF.
1993		 * Changing section length to fill the remaining table space
1994		 * of that PF.
1995		 */
1996		if ((offset + sect_len) > dst_len)
1997			sect_len = dst_len - offset;
1998
1999		memcpy(dst + offset, src, sect_len);
2000		offset += sect_len;
2001		sect = ice_pkg_enum_section(NULL, &state, sid);
2002	}
2003}
2004
2005/**
2006 * ice_fill_blk_tbls - Read package context for tables
2007 * @hw: pointer to the hardware structure
2008 *
2009 * Reads the current package contents and populates the driver
2010 * database with the data iteratively for all advanced feature
2011 * blocks. Assume that the HW tables have been allocated.
2012 */
2013void ice_fill_blk_tbls(struct ice_hw *hw)
2014{
2015	u8 i;
2016
2017	for (i = 0; i < ICE_BLK_COUNT; i++) {
2018		enum ice_block blk_id = (enum ice_block)i;
2019
2020		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
2021		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
2022		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
2023		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
2024		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
2025	}
2026
2027	ice_init_sw_db(hw);
2028}
2029
2030/**
2031 * ice_free_prof_map - free profile map
2032 * @hw: pointer to the hardware structure
2033 * @blk_idx: HW block index
2034 */
2035static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
2036{
2037	struct ice_es *es = &hw->blk[blk_idx].es;
2038	struct ice_prof_map *del, *tmp;
2039
2040	mutex_lock(&es->prof_map_lock);
2041	list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
2042		list_del(&del->list);
2043		devm_kfree(ice_hw_to_dev(hw), del);
2044	}
2045	INIT_LIST_HEAD(&es->prof_map);
2046	mutex_unlock(&es->prof_map_lock);
2047}
2048
2049/**
2050 * ice_free_flow_profs - free flow profile entries
2051 * @hw: pointer to the hardware structure
2052 * @blk_idx: HW block index
2053 */
2054static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
2055{
2056	struct ice_flow_prof *p, *tmp;
2057
2058	mutex_lock(&hw->fl_profs_locks[blk_idx]);
2059	list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
2060		struct ice_flow_entry *e, *t;
2061
2062		list_for_each_entry_safe(e, t, &p->entries, l_entry)
2063			ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
2064					   ICE_FLOW_ENTRY_HNDL(e));
2065
2066		list_del(&p->l_entry);
2067
2068		mutex_destroy(&p->entries_lock);
2069		devm_kfree(ice_hw_to_dev(hw), p);
2070	}
2071	mutex_unlock(&hw->fl_profs_locks[blk_idx]);
2072
2073	/* if driver is in reset and tables are being cleared
2074	 * re-initialize the flow profile list heads
2075	 */
2076	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2077}
2078
2079/**
2080 * ice_free_vsig_tbl - free complete VSIG table entries
2081 * @hw: pointer to the hardware structure
2082 * @blk: the HW block on which to free the VSIG table entries
2083 */
2084static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2085{
2086	u16 i;
2087
2088	if (!hw->blk[blk].xlt2.vsig_tbl)
2089		return;
2090
2091	for (i = 1; i < ICE_MAX_VSIGS; i++)
2092		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2093			ice_vsig_free(hw, blk, i);
2094}
2095
2096/**
2097 * ice_free_hw_tbls - free hardware table memory
2098 * @hw: pointer to the hardware structure
2099 */
2100void ice_free_hw_tbls(struct ice_hw *hw)
2101{
2102	struct ice_rss_cfg *r, *rt;
2103	u8 i;
2104
2105	for (i = 0; i < ICE_BLK_COUNT; i++) {
2106		if (hw->blk[i].is_list_init) {
2107			struct ice_es *es = &hw->blk[i].es;
2108
2109			ice_free_prof_map(hw, i);
2110			mutex_destroy(&es->prof_map_lock);
2111
2112			ice_free_flow_profs(hw, i);
2113			mutex_destroy(&hw->fl_profs_locks[i]);
2114
2115			hw->blk[i].is_list_init = false;
2116		}
2117		ice_free_vsig_tbl(hw, (enum ice_block)i);
2118		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
2119		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
2120		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
2121		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
2122		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
2123		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
2124		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
2125		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
2126		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
2127		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
2128		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.symm);
2129		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
2130		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
2131		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_id.id);
2132	}
2133
2134	list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
2135		list_del(&r->l_entry);
2136		devm_kfree(ice_hw_to_dev(hw), r);
2137	}
2138	mutex_destroy(&hw->rss_locks);
2139	ice_shutdown_all_prof_masks(hw);
2140	memset(hw->blk, 0, sizeof(hw->blk));
2141}
2142
2143/**
2144 * ice_init_flow_profs - init flow profile locks and list heads
2145 * @hw: pointer to the hardware structure
2146 * @blk_idx: HW block index
2147 */
2148static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
2149{
2150	mutex_init(&hw->fl_profs_locks[blk_idx]);
2151	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2152}
2153
2154/**
2155 * ice_clear_hw_tbls - clear HW tables and flow profiles
2156 * @hw: pointer to the hardware structure
2157 */
2158void ice_clear_hw_tbls(struct ice_hw *hw)
2159{
2160	u8 i;
2161
2162	for (i = 0; i < ICE_BLK_COUNT; i++) {
2163		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2164		struct ice_prof_id *prof_id = &hw->blk[i].prof_id;
2165		struct ice_prof_tcam *prof = &hw->blk[i].prof;
2166		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2167		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2168		struct ice_es *es = &hw->blk[i].es;
2169
2170		if (hw->blk[i].is_list_init) {
2171			ice_free_prof_map(hw, i);
2172			ice_free_flow_profs(hw, i);
2173		}
2174
2175		ice_free_vsig_tbl(hw, (enum ice_block)i);
2176
2177		memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
2178		memset(xlt1->ptg_tbl, 0,
2179		       ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
2180		memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
2181
2182		memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
2183		memset(xlt2->vsig_tbl, 0,
2184		       xlt2->count * sizeof(*xlt2->vsig_tbl));
2185		memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
2186
2187		memset(prof->t, 0, prof->count * sizeof(*prof->t));
2188		memset(prof_redir->t, 0,
2189		       prof_redir->count * sizeof(*prof_redir->t));
2190
2191		memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
2192		memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
2193		memset(es->symm, 0, es->count * sizeof(*es->symm));
2194		memset(es->written, 0, es->count * sizeof(*es->written));
2195		memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
2196
2197		memset(prof_id->id, 0, prof_id->count * sizeof(*prof_id->id));
2198	}
2199}
2200
2201/**
2202 * ice_init_hw_tbls - init hardware table memory
2203 * @hw: pointer to the hardware structure
2204 */
2205int ice_init_hw_tbls(struct ice_hw *hw)
2206{
2207	u8 i;
2208
2209	mutex_init(&hw->rss_locks);
2210	INIT_LIST_HEAD(&hw->rss_list_head);
2211	ice_init_all_prof_masks(hw);
2212	for (i = 0; i < ICE_BLK_COUNT; i++) {
2213		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2214		struct ice_prof_id *prof_id = &hw->blk[i].prof_id;
2215		struct ice_prof_tcam *prof = &hw->blk[i].prof;
2216		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2217		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2218		struct ice_es *es = &hw->blk[i].es;
2219		u16 j;
2220
2221		if (hw->blk[i].is_list_init)
2222			continue;
2223
2224		ice_init_flow_profs(hw, i);
2225		mutex_init(&es->prof_map_lock);
2226		INIT_LIST_HEAD(&es->prof_map);
2227		hw->blk[i].is_list_init = true;
2228
2229		hw->blk[i].overwrite = blk_sizes[i].overwrite;
2230		es->reverse = blk_sizes[i].reverse;
2231
2232		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
2233		xlt1->count = blk_sizes[i].xlt1;
2234
2235		xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2236					    sizeof(*xlt1->ptypes), GFP_KERNEL);
2237
2238		if (!xlt1->ptypes)
2239			goto err;
2240
2241		xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
2242					     sizeof(*xlt1->ptg_tbl),
2243					     GFP_KERNEL);
2244
2245		if (!xlt1->ptg_tbl)
2246			goto err;
2247
2248		xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2249				       sizeof(*xlt1->t), GFP_KERNEL);
2250		if (!xlt1->t)
2251			goto err;
2252
2253		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
2254		xlt2->count = blk_sizes[i].xlt2;
2255
2256		xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2257					  sizeof(*xlt2->vsis), GFP_KERNEL);
2258
2259		if (!xlt2->vsis)
2260			goto err;
2261
2262		xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2263					      sizeof(*xlt2->vsig_tbl),
2264					      GFP_KERNEL);
2265		if (!xlt2->vsig_tbl)
2266			goto err;
2267
2268		for (j = 0; j < xlt2->count; j++)
2269			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
2270
2271		xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2272				       sizeof(*xlt2->t), GFP_KERNEL);
2273		if (!xlt2->t)
2274			goto err;
2275
2276		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
2277		prof->count = blk_sizes[i].prof_tcam;
2278		prof->max_prof_id = blk_sizes[i].prof_id;
2279		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
2280		prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
2281				       sizeof(*prof->t), GFP_KERNEL);
2282
2283		if (!prof->t)
2284			goto err;
2285
2286		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
2287		prof_redir->count = blk_sizes[i].prof_redir;
2288		prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
2289					     prof_redir->count,
2290					     sizeof(*prof_redir->t),
2291					     GFP_KERNEL);
2292
2293		if (!prof_redir->t)
2294			goto err;
2295
2296		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
2297		es->count = blk_sizes[i].es;
2298		es->fvw = blk_sizes[i].fvw;
2299		es->t = devm_kcalloc(ice_hw_to_dev(hw),
2300				     (u32)(es->count * es->fvw),
2301				     sizeof(*es->t), GFP_KERNEL);
2302		if (!es->t)
2303			goto err;
2304
2305		es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2306					     sizeof(*es->ref_count),
2307					     GFP_KERNEL);
2308		if (!es->ref_count)
2309			goto err;
2310
2311		es->symm = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2312					sizeof(*es->symm), GFP_KERNEL);
2313		if (!es->symm)
2314			goto err;
2315
2316		es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2317					   sizeof(*es->written), GFP_KERNEL);
2318		if (!es->written)
2319			goto err;
2320
2321		es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2322					    sizeof(*es->mask_ena), GFP_KERNEL);
2323		if (!es->mask_ena)
2324			goto err;
2325
2326		prof_id->count = blk_sizes[i].prof_id;
2327		prof_id->id = devm_kcalloc(ice_hw_to_dev(hw), prof_id->count,
2328					   sizeof(*prof_id->id), GFP_KERNEL);
2329		if (!prof_id->id)
2330			goto err;
2331	}
2332	return 0;
2333
2334err:
2335	ice_free_hw_tbls(hw);
2336	return -ENOMEM;
2337}
2338
2339/**
2340 * ice_prof_gen_key - generate profile ID key
2341 * @hw: pointer to the HW struct
2342 * @blk: the block in which to write profile ID to
2343 * @ptg: packet type group (PTG) portion of key
2344 * @vsig: VSIG portion of key
2345 * @cdid: CDID portion of key
2346 * @flags: flag portion of key
2347 * @vl_msk: valid mask
2348 * @dc_msk: don't care mask
2349 * @nm_msk: never match mask
2350 * @key: output of profile ID key
2351 */
2352static int
2353ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
2354		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2355		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
2356		 u8 key[ICE_TCAM_KEY_SZ])
2357{
2358	struct ice_prof_id_key inkey;
2359
2360	inkey.xlt1 = ptg;
2361	inkey.xlt2_cdid = cpu_to_le16(vsig);
2362	inkey.flags = cpu_to_le16(flags);
2363
2364	switch (hw->blk[blk].prof.cdid_bits) {
2365	case 0:
2366		break;
2367	case 2:
2368#define ICE_CD_2_M 0xC000U
2369#define ICE_CD_2_S 14
2370		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
2371		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
2372		break;
2373	case 4:
2374#define ICE_CD_4_M 0xF000U
2375#define ICE_CD_4_S 12
2376		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
2377		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
2378		break;
2379	case 8:
2380#define ICE_CD_8_M 0xFF00U
2381#define ICE_CD_8_S 16
2382		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
2383		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
2384		break;
2385	default:
2386		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
2387		break;
2388	}
2389
2390	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
2391			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
2392}
2393
2394/**
2395 * ice_tcam_write_entry - write TCAM entry
2396 * @hw: pointer to the HW struct
2397 * @blk: the block in which to write profile ID to
2398 * @idx: the entry index to write to
2399 * @prof_id: profile ID
2400 * @ptg: packet type group (PTG) portion of key
2401 * @vsig: VSIG portion of key
2402 * @cdid: CDID portion of key
2403 * @flags: flag portion of key
2404 * @vl_msk: valid mask
2405 * @dc_msk: don't care mask
2406 * @nm_msk: never match mask
2407 */
2408static int
2409ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
2410		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
2411		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2412		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
2413		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
2414{
2415	struct ice_prof_tcam_entry;
2416	int status;
2417
2418	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
2419				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
2420	if (!status) {
2421		hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
2422		hw->blk[blk].prof.t[idx].prof_id = prof_id;
2423	}
2424
2425	return status;
2426}
2427
2428/**
2429 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
2430 * @hw: pointer to the hardware structure
2431 * @blk: HW block
2432 * @vsig: VSIG to query
2433 * @refs: pointer to variable to receive the reference count
2434 */
2435static int
2436ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
2437{
2438	u16 idx = vsig & ICE_VSIG_IDX_M;
2439	struct ice_vsig_vsi *ptr;
2440
2441	*refs = 0;
2442
2443	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2444		return -ENOENT;
2445
2446	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2447	while (ptr) {
2448		(*refs)++;
2449		ptr = ptr->next_vsi;
2450	}
2451
2452	return 0;
2453}
2454
2455/**
2456 * ice_has_prof_vsig - check to see if VSIG has a specific profile
2457 * @hw: pointer to the hardware structure
2458 * @blk: HW block
2459 * @vsig: VSIG to check against
2460 * @hdl: profile handle
2461 */
2462static bool
2463ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
2464{
2465	u16 idx = vsig & ICE_VSIG_IDX_M;
2466	struct ice_vsig_prof *ent;
2467
2468	list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2469			    list)
2470		if (ent->profile_cookie == hdl)
2471			return true;
2472
2473	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
2474		  vsig);
2475	return false;
2476}
2477
2478/**
2479 * ice_prof_bld_es - build profile ID extraction sequence changes
2480 * @hw: pointer to the HW struct
2481 * @blk: hardware block
2482 * @bld: the update package buffer build to add to
2483 * @chgs: the list of changes to make in hardware
2484 */
2485static int
2486ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
2487		struct ice_buf_build *bld, struct list_head *chgs)
2488{
2489	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
2490	struct ice_chs_chg *tmp;
2491
2492	list_for_each_entry(tmp, chgs, list_entry)
2493		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
2494			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
2495			struct ice_pkg_es *p;
2496			u32 id;
2497
2498			id = ice_sect_id(blk, ICE_VEC_TBL);
2499			p = ice_pkg_buf_alloc_section(bld, id,
2500						      struct_size(p, es, 1) +
2501						      vec_size -
2502						      sizeof(p->es[0]));
2503
2504			if (!p)
2505				return -ENOSPC;
2506
2507			p->count = cpu_to_le16(1);
2508			p->offset = cpu_to_le16(tmp->prof_id);
2509
2510			memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
2511		}
2512
2513	return 0;
2514}
2515
2516/**
2517 * ice_prof_bld_tcam - build profile ID TCAM changes
2518 * @hw: pointer to the HW struct
2519 * @blk: hardware block
2520 * @bld: the update package buffer build to add to
2521 * @chgs: the list of changes to make in hardware
2522 */
2523static int
2524ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
2525		  struct ice_buf_build *bld, struct list_head *chgs)
2526{
2527	struct ice_chs_chg *tmp;
2528
2529	list_for_each_entry(tmp, chgs, list_entry)
2530		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
2531			struct ice_prof_id_section *p;
2532			u32 id;
2533
2534			id = ice_sect_id(blk, ICE_PROF_TCAM);
2535			p = ice_pkg_buf_alloc_section(bld, id,
2536						      struct_size(p, entry, 1));
2537
2538			if (!p)
2539				return -ENOSPC;
2540
2541			p->count = cpu_to_le16(1);
2542			p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
2543			p->entry[0].prof_id = tmp->prof_id;
2544
2545			memcpy(p->entry[0].key,
2546			       &hw->blk[blk].prof.t[tmp->tcam_idx].key,
2547			       sizeof(hw->blk[blk].prof.t->key));
2548		}
2549
2550	return 0;
2551}
2552
2553/**
2554 * ice_prof_bld_xlt1 - build XLT1 changes
2555 * @blk: hardware block
2556 * @bld: the update package buffer build to add to
2557 * @chgs: the list of changes to make in hardware
2558 */
2559static int
2560ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
2561		  struct list_head *chgs)
2562{
2563	struct ice_chs_chg *tmp;
2564
2565	list_for_each_entry(tmp, chgs, list_entry)
2566		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
2567			struct ice_xlt1_section *p;
2568			u32 id;
2569
2570			id = ice_sect_id(blk, ICE_XLT1);
2571			p = ice_pkg_buf_alloc_section(bld, id,
2572						      struct_size(p, value, 1));
2573
2574			if (!p)
2575				return -ENOSPC;
2576
2577			p->count = cpu_to_le16(1);
2578			p->offset = cpu_to_le16(tmp->ptype);
2579			p->value[0] = tmp->ptg;
2580		}
2581
2582	return 0;
2583}
2584
2585/**
2586 * ice_prof_bld_xlt2 - build XLT2 changes
2587 * @blk: hardware block
2588 * @bld: the update package buffer build to add to
2589 * @chgs: the list of changes to make in hardware
2590 */
2591static int
2592ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
2593		  struct list_head *chgs)
2594{
2595	struct ice_chs_chg *tmp;
2596
2597	list_for_each_entry(tmp, chgs, list_entry) {
2598		struct ice_xlt2_section *p;
2599		u32 id;
2600
2601		switch (tmp->type) {
2602		case ICE_VSIG_ADD:
2603		case ICE_VSI_MOVE:
2604		case ICE_VSIG_REM:
2605			id = ice_sect_id(blk, ICE_XLT2);
2606			p = ice_pkg_buf_alloc_section(bld, id,
2607						      struct_size(p, value, 1));
2608
2609			if (!p)
2610				return -ENOSPC;
2611
2612			p->count = cpu_to_le16(1);
2613			p->offset = cpu_to_le16(tmp->vsi);
2614			p->value[0] = cpu_to_le16(tmp->vsig);
2615			break;
2616		default:
2617			break;
2618		}
2619	}
2620
2621	return 0;
2622}
2623
2624/**
2625 * ice_upd_prof_hw - update hardware using the change list
2626 * @hw: pointer to the HW struct
2627 * @blk: hardware block
2628 * @chgs: the list of changes to make in hardware
2629 */
2630static int
2631ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
2632		struct list_head *chgs)
2633{
2634	struct ice_buf_build *b;
2635	struct ice_chs_chg *tmp;
2636	u16 pkg_sects;
2637	u16 xlt1 = 0;
2638	u16 xlt2 = 0;
2639	u16 tcam = 0;
2640	u16 es = 0;
2641	int status;
2642	u16 sects;
2643
2644	/* count number of sections we need */
2645	list_for_each_entry(tmp, chgs, list_entry) {
2646		switch (tmp->type) {
2647		case ICE_PTG_ES_ADD:
2648			if (tmp->add_ptg)
2649				xlt1++;
2650			if (tmp->add_prof)
2651				es++;
2652			break;
2653		case ICE_TCAM_ADD:
2654			tcam++;
2655			break;
2656		case ICE_VSIG_ADD:
2657		case ICE_VSI_MOVE:
2658		case ICE_VSIG_REM:
2659			xlt2++;
2660			break;
2661		default:
2662			break;
2663		}
2664	}
2665	sects = xlt1 + xlt2 + tcam + es;
2666
2667	if (!sects)
2668		return 0;
2669
2670	/* Build update package buffer */
2671	b = ice_pkg_buf_alloc(hw);
2672	if (!b)
2673		return -ENOMEM;
2674
2675	status = ice_pkg_buf_reserve_section(b, sects);
2676	if (status)
2677		goto error_tmp;
2678
2679	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
2680	if (es) {
2681		status = ice_prof_bld_es(hw, blk, b, chgs);
2682		if (status)
2683			goto error_tmp;
2684	}
2685
2686	if (tcam) {
2687		status = ice_prof_bld_tcam(hw, blk, b, chgs);
2688		if (status)
2689			goto error_tmp;
2690	}
2691
2692	if (xlt1) {
2693		status = ice_prof_bld_xlt1(blk, b, chgs);
2694		if (status)
2695			goto error_tmp;
2696	}
2697
2698	if (xlt2) {
2699		status = ice_prof_bld_xlt2(blk, b, chgs);
2700		if (status)
2701			goto error_tmp;
2702	}
2703
2704	/* After package buffer build check if the section count in buffer is
2705	 * non-zero and matches the number of sections detected for package
2706	 * update.
2707	 */
2708	pkg_sects = ice_pkg_buf_get_active_sections(b);
2709	if (!pkg_sects || pkg_sects != sects) {
2710		status = -EINVAL;
2711		goto error_tmp;
2712	}
2713
2714	/* update package */
2715	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
2716	if (status == -EIO)
2717		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
2718
2719error_tmp:
2720	ice_pkg_buf_free(hw, b);
2721	return status;
2722}
2723
2724/**
2725 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
2726 * @hw: pointer to the HW struct
2727 * @prof_id: profile ID
2728 * @mask_sel: mask select
2729 *
2730 * This function enable any of the masks selected by the mask select parameter
2731 * for the profile specified.
2732 */
2733static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
2734{
2735	wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
2736
2737	ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
2738		  GLQF_FDMASK_SEL(prof_id), mask_sel);
2739}
2740
2741struct ice_fd_src_dst_pair {
2742	u8 prot_id;
2743	u8 count;
2744	u16 off;
2745};
2746
2747static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
2748	/* These are defined in pairs */
2749	{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
2750	{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
2751
2752	{ ICE_PROT_IPV4_IL, 2, 12 },
2753	{ ICE_PROT_IPV4_IL, 2, 16 },
2754
2755	{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
2756	{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
2757
2758	{ ICE_PROT_IPV6_IL, 8, 8 },
2759	{ ICE_PROT_IPV6_IL, 8, 24 },
2760
2761	{ ICE_PROT_TCP_IL, 1, 0 },
2762	{ ICE_PROT_TCP_IL, 1, 2 },
2763
2764	{ ICE_PROT_UDP_OF, 1, 0 },
2765	{ ICE_PROT_UDP_OF, 1, 2 },
2766
2767	{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
2768	{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
2769
2770	{ ICE_PROT_SCTP_IL, 1, 0 },
2771	{ ICE_PROT_SCTP_IL, 1, 2 }
2772};
2773
2774#define ICE_FD_SRC_DST_PAIR_COUNT	ARRAY_SIZE(ice_fd_pairs)
2775
2776/**
2777 * ice_update_fd_swap - set register appropriately for a FD FV extraction
2778 * @hw: pointer to the HW struct
2779 * @prof_id: profile ID
2780 * @es: extraction sequence (length of array is determined by the block)
2781 */
2782static int
2783ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
2784{
2785	DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2786	u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
2787#define ICE_FD_FV_NOT_FOUND (-2)
2788	s8 first_free = ICE_FD_FV_NOT_FOUND;
2789	u8 used[ICE_MAX_FV_WORDS] = { 0 };
2790	s8 orig_free, si;
2791	u32 mask_sel = 0;
2792	u8 i, j, k;
2793
2794	bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2795
2796	/* This code assumes that the Flow Director field vectors are assigned
2797	 * from the end of the FV indexes working towards the zero index, that
2798	 * only complete fields will be included and will be consecutive, and
2799	 * that there are no gaps between valid indexes.
2800	 */
2801
2802	/* Determine swap fields present */
2803	for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
2804		/* Find the first free entry, assuming right to left population.
2805		 * This is where we can start adding additional pairs if needed.
2806		 */
2807		if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
2808		    ICE_PROT_INVALID)
2809			first_free = i - 1;
2810
2811		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2812			if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
2813			    es[i].off == ice_fd_pairs[j].off) {
2814				__set_bit(j, pair_list);
2815				pair_start[j] = i;
2816			}
2817	}
2818
2819	orig_free = first_free;
2820
2821	/* determine missing swap fields that need to be added */
2822	for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
2823		u8 bit1 = test_bit(i + 1, pair_list);
2824		u8 bit0 = test_bit(i, pair_list);
2825
2826		if (bit0 ^ bit1) {
2827			u8 index;
2828
2829			/* add the appropriate 'paired' entry */
2830			if (!bit0)
2831				index = i;
2832			else
2833				index = i + 1;
2834
2835			/* check for room */
2836			if (first_free + 1 < (s8)ice_fd_pairs[index].count)
2837				return -ENOSPC;
2838
2839			/* place in extraction sequence */
2840			for (k = 0; k < ice_fd_pairs[index].count; k++) {
2841				es[first_free - k].prot_id =
2842					ice_fd_pairs[index].prot_id;
2843				es[first_free - k].off =
2844					ice_fd_pairs[index].off + (k * 2);
2845
2846				if (k > first_free)
2847					return -EIO;
2848
2849				/* keep track of non-relevant fields */
2850				mask_sel |= BIT(first_free - k);
2851			}
2852
2853			pair_start[index] = first_free;
2854			first_free -= ice_fd_pairs[index].count;
2855		}
2856	}
2857
2858	/* fill in the swap array */
2859	si = hw->blk[ICE_BLK_FD].es.fvw - 1;
2860	while (si >= 0) {
2861		u8 indexes_used = 1;
2862
2863		/* assume flat at this index */
2864#define ICE_SWAP_VALID	0x80
2865		used[si] = si | ICE_SWAP_VALID;
2866
2867		if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
2868			si -= indexes_used;
2869			continue;
2870		}
2871
2872		/* check for a swap location */
2873		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2874			if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
2875			    es[si].off == ice_fd_pairs[j].off) {
2876				u8 idx;
2877
2878				/* determine the appropriate matching field */
2879				idx = j + ((j % 2) ? -1 : 1);
2880
2881				indexes_used = ice_fd_pairs[idx].count;
2882				for (k = 0; k < indexes_used; k++) {
2883					used[si - k] = (pair_start[idx] - k) |
2884						ICE_SWAP_VALID;
2885				}
2886
2887				break;
2888			}
2889
2890		si -= indexes_used;
2891	}
2892
2893	/* for each set of 4 swap and 4 inset indexes, write the appropriate
2894	 * register
2895	 */
2896	for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
2897		u32 raw_swap = 0;
2898		u32 raw_in = 0;
2899
2900		for (k = 0; k < 4; k++) {
2901			u8 idx;
2902
2903			idx = (j * 4) + k;
2904			if (used[idx] && !(mask_sel & BIT(idx))) {
2905				raw_swap |= used[idx] << (k * BITS_PER_BYTE);
2906#define ICE_INSET_DFLT 0x9f
2907				raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
2908			}
2909		}
2910
2911		/* write the appropriate swap register set */
2912		wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
2913
2914		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
2915			  prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
2916
2917		/* write the appropriate inset register set */
2918		wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
2919
2920		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
2921			  prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
2922	}
2923
2924	/* initially clear the mask select for this profile */
2925	ice_update_fd_mask(hw, prof_id, 0);
2926
2927	return 0;
2928}
2929
2930/* The entries here needs to match the order of enum ice_ptype_attrib */
2931static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
2932	{ ICE_GTP_PDU_EH,	ICE_GTP_PDU_FLAG_MASK },
2933	{ ICE_GTP_SESSION,	ICE_GTP_FLAGS_MASK },
2934	{ ICE_GTP_DOWNLINK,	ICE_GTP_FLAGS_MASK },
2935	{ ICE_GTP_UPLINK,	ICE_GTP_FLAGS_MASK },
2936};
2937
2938/**
2939 * ice_get_ptype_attrib_info - get PTYPE attribute information
2940 * @type: attribute type
2941 * @info: pointer to variable to the attribute information
2942 */
2943static void
2944ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
2945			  struct ice_ptype_attrib_info *info)
2946{
2947	*info = ice_ptype_attributes[type];
2948}
2949
2950/**
2951 * ice_add_prof_attrib - add any PTG with attributes to profile
2952 * @prof: pointer to the profile to which PTG entries will be added
2953 * @ptg: PTG to be added
2954 * @ptype: PTYPE that needs to be looked up
2955 * @attr: array of attributes that will be considered
2956 * @attr_cnt: number of elements in the attribute array
2957 */
2958static int
2959ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
2960		    const struct ice_ptype_attributes *attr, u16 attr_cnt)
2961{
2962	bool found = false;
2963	u16 i;
2964
2965	for (i = 0; i < attr_cnt; i++)
2966		if (attr[i].ptype == ptype) {
2967			found = true;
2968
2969			prof->ptg[prof->ptg_cnt] = ptg;
2970			ice_get_ptype_attrib_info(attr[i].attrib,
2971						  &prof->attr[prof->ptg_cnt]);
2972
2973			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
2974				return -ENOSPC;
2975		}
2976
2977	if (!found)
2978		return -ENOENT;
2979
2980	return 0;
2981}
2982
2983/**
2984 * ice_add_prof - add profile
2985 * @hw: pointer to the HW struct
2986 * @blk: hardware block
2987 * @id: profile tracking ID
2988 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
2989 * @attr: array of attributes
2990 * @attr_cnt: number of elements in attr array
2991 * @es: extraction sequence (length of array is determined by the block)
2992 * @masks: mask for extraction sequence
2993 * @symm: symmetric setting for RSS profiles
2994 *
2995 * This function registers a profile, which matches a set of PTYPES with a
2996 * particular extraction sequence. While the hardware profile is allocated
2997 * it will not be written until the first call to ice_add_flow that specifies
2998 * the ID value used here.
2999 */
3000int
3001ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
3002	     const struct ice_ptype_attributes *attr, u16 attr_cnt,
3003	     struct ice_fv_word *es, u16 *masks, bool symm)
3004{
3005	u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
3006	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3007	struct ice_prof_map *prof;
3008	u8 byte = 0;
3009	u8 prof_id;
3010	int status;
3011
3012	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3013
3014	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3015
3016	/* search for existing profile */
3017	status = ice_find_prof_id_with_mask(hw, blk, es, masks, symm, &prof_id);
3018	if (status) {
3019		/* allocate profile ID */
3020		status = ice_alloc_prof_id(hw, blk, &prof_id);
3021		if (status)
3022			goto err_ice_add_prof;
3023		if (blk == ICE_BLK_FD) {
3024			/* For Flow Director block, the extraction sequence may
3025			 * need to be altered in the case where there are paired
3026			 * fields that have no match. This is necessary because
3027			 * for Flow Director, src and dest fields need to paired
3028			 * for filter programming and these values are swapped
3029			 * during Tx.
3030			 */
3031			status = ice_update_fd_swap(hw, prof_id, es);
3032			if (status)
3033				goto err_ice_add_prof;
3034		}
3035		status = ice_update_prof_masking(hw, blk, prof_id, masks);
3036		if (status)
3037			goto err_ice_add_prof;
3038
3039		/* and write new es */
3040		ice_write_es(hw, blk, prof_id, es, symm);
3041	}
3042
3043	ice_prof_inc_ref(hw, blk, prof_id);
3044
3045	/* add profile info */
3046	prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
3047	if (!prof) {
3048		status = -ENOMEM;
3049		goto err_ice_add_prof;
3050	}
3051
3052	prof->profile_cookie = id;
3053	prof->prof_id = prof_id;
3054	prof->ptg_cnt = 0;
3055	prof->context = 0;
3056
3057	/* build list of ptgs */
3058	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
3059		u8 bit;
3060
3061		if (!ptypes[byte]) {
3062			bytes--;
3063			byte++;
3064			continue;
3065		}
3066
3067		/* Examine 8 bits per byte */
3068		for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
3069				 BITS_PER_BYTE) {
3070			u16 ptype;
3071			u8 ptg;
3072
3073			ptype = byte * BITS_PER_BYTE + bit;
3074
3075			/* The package should place all ptypes in a non-zero
3076			 * PTG, so the following call should never fail.
3077			 */
3078			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
3079				continue;
3080
3081			/* If PTG is already added, skip and continue */
3082			if (test_bit(ptg, ptgs_used))
3083				continue;
3084
3085			__set_bit(ptg, ptgs_used);
3086			/* Check to see there are any attributes for
3087			 * this PTYPE, and add them if found.
3088			 */
3089			status = ice_add_prof_attrib(prof, ptg, ptype,
3090						     attr, attr_cnt);
3091			if (status == -ENOSPC)
3092				break;
3093			if (status) {
3094				/* This is simple a PTYPE/PTG with no
3095				 * attribute
3096				 */
3097				prof->ptg[prof->ptg_cnt] = ptg;
3098				prof->attr[prof->ptg_cnt].flags = 0;
3099				prof->attr[prof->ptg_cnt].mask = 0;
3100
3101				if (++prof->ptg_cnt >=
3102				    ICE_MAX_PTG_PER_PROFILE)
3103					break;
3104			}
3105		}
3106
3107		bytes--;
3108		byte++;
3109	}
3110
3111	list_add(&prof->list, &hw->blk[blk].es.prof_map);
3112	status = 0;
3113
3114err_ice_add_prof:
3115	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3116	return status;
3117}
3118
3119/**
3120 * ice_search_prof_id - Search for a profile tracking ID
3121 * @hw: pointer to the HW struct
3122 * @blk: hardware block
3123 * @id: profile tracking ID
3124 *
3125 * This will search for a profile tracking ID which was previously added.
3126 * The profile map lock should be held before calling this function.
3127 */
3128struct ice_prof_map *
3129ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
3130{
3131	struct ice_prof_map *entry = NULL;
3132	struct ice_prof_map *map;
3133
3134	list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
3135		if (map->profile_cookie == id) {
3136			entry = map;
3137			break;
3138		}
3139
3140	return entry;
3141}
3142
3143/**
3144 * ice_vsig_prof_id_count - count profiles in a VSIG
3145 * @hw: pointer to the HW struct
3146 * @blk: hardware block
3147 * @vsig: VSIG to remove the profile from
3148 */
3149static u16
3150ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3151{
3152	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
3153	struct ice_vsig_prof *p;
3154
3155	list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3156			    list)
3157		count++;
3158
3159	return count;
3160}
3161
3162/**
3163 * ice_rel_tcam_idx - release a TCAM index
3164 * @hw: pointer to the HW struct
3165 * @blk: hardware block
3166 * @idx: the index to release
3167 */
3168static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
3169{
3170	/* Masks to invoke a never match entry */
3171	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3172	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
3173	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
3174	int status;
3175
3176	/* write the TCAM entry */
3177	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
3178				      dc_msk, nm_msk);
3179	if (status)
3180		return status;
3181
3182	/* release the TCAM entry */
3183	status = ice_free_tcam_ent(hw, blk, idx);
3184
3185	return status;
3186}
3187
3188/**
3189 * ice_rem_prof_id - remove one profile from a VSIG
3190 * @hw: pointer to the HW struct
3191 * @blk: hardware block
3192 * @prof: pointer to profile structure to remove
3193 */
3194static int
3195ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
3196		struct ice_vsig_prof *prof)
3197{
3198	int status;
3199	u16 i;
3200
3201	for (i = 0; i < prof->tcam_count; i++)
3202		if (prof->tcam[i].in_use) {
3203			prof->tcam[i].in_use = false;
3204			status = ice_rel_tcam_idx(hw, blk,
3205						  prof->tcam[i].tcam_idx);
3206			if (status)
3207				return -EIO;
3208		}
3209
3210	return 0;
3211}
3212
3213/**
3214 * ice_rem_vsig - remove VSIG
3215 * @hw: pointer to the HW struct
3216 * @blk: hardware block
3217 * @vsig: the VSIG to remove
3218 * @chg: the change list
3219 */
3220static int
3221ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3222	     struct list_head *chg)
3223{
3224	u16 idx = vsig & ICE_VSIG_IDX_M;
3225	struct ice_vsig_vsi *vsi_cur;
3226	struct ice_vsig_prof *d, *t;
3227
3228	/* remove TCAM entries */
3229	list_for_each_entry_safe(d, t,
3230				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3231				 list) {
3232		int status;
3233
3234		status = ice_rem_prof_id(hw, blk, d);
3235		if (status)
3236			return status;
3237
3238		list_del(&d->list);
3239		devm_kfree(ice_hw_to_dev(hw), d);
3240	}
3241
3242	/* Move all VSIS associated with this VSIG to the default VSIG */
3243	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3244	/* If the VSIG has at least 1 VSI then iterate through the list
3245	 * and remove the VSIs before deleting the group.
3246	 */
3247	if (vsi_cur)
3248		do {
3249			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
3250			struct ice_chs_chg *p;
3251
3252			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3253					 GFP_KERNEL);
3254			if (!p)
3255				return -ENOMEM;
3256
3257			p->type = ICE_VSIG_REM;
3258			p->orig_vsig = vsig;
3259			p->vsig = ICE_DEFAULT_VSIG;
3260			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
3261
3262			list_add(&p->list_entry, chg);
3263
3264			vsi_cur = tmp;
3265		} while (vsi_cur);
3266
3267	return ice_vsig_free(hw, blk, vsig);
3268}
3269
3270/**
3271 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
3272 * @hw: pointer to the HW struct
3273 * @blk: hardware block
3274 * @vsig: VSIG to remove the profile from
3275 * @hdl: profile handle indicating which profile to remove
3276 * @chg: list to receive a record of changes
3277 */
3278static int
3279ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3280		     struct list_head *chg)
3281{
3282	u16 idx = vsig & ICE_VSIG_IDX_M;
3283	struct ice_vsig_prof *p, *t;
3284
3285	list_for_each_entry_safe(p, t,
3286				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3287				 list)
3288		if (p->profile_cookie == hdl) {
3289			int status;
3290
3291			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
3292				/* this is the last profile, remove the VSIG */
3293				return ice_rem_vsig(hw, blk, vsig, chg);
3294
3295			status = ice_rem_prof_id(hw, blk, p);
3296			if (!status) {
3297				list_del(&p->list);
3298				devm_kfree(ice_hw_to_dev(hw), p);
3299			}
3300			return status;
3301		}
3302
3303	return -ENOENT;
3304}
3305
3306/**
3307 * ice_rem_flow_all - remove all flows with a particular profile
3308 * @hw: pointer to the HW struct
3309 * @blk: hardware block
3310 * @id: profile tracking ID
3311 */
3312static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
3313{
3314	struct ice_chs_chg *del, *tmp;
3315	struct list_head chg;
3316	int status;
3317	u16 i;
3318
3319	INIT_LIST_HEAD(&chg);
3320
3321	for (i = 1; i < ICE_MAX_VSIGS; i++)
3322		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
3323			if (ice_has_prof_vsig(hw, blk, i, id)) {
3324				status = ice_rem_prof_id_vsig(hw, blk, i, id,
3325							      &chg);
3326				if (status)
3327					goto err_ice_rem_flow_all;
3328			}
3329		}
3330
3331	status = ice_upd_prof_hw(hw, blk, &chg);
3332
3333err_ice_rem_flow_all:
3334	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
3335		list_del(&del->list_entry);
3336		devm_kfree(ice_hw_to_dev(hw), del);
3337	}
3338
3339	return status;
3340}
3341
3342/**
3343 * ice_rem_prof - remove profile
3344 * @hw: pointer to the HW struct
3345 * @blk: hardware block
3346 * @id: profile tracking ID
3347 *
3348 * This will remove the profile specified by the ID parameter, which was
3349 * previously created through ice_add_prof. If any existing entries
3350 * are associated with this profile, they will be removed as well.
3351 */
3352int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
3353{
3354	struct ice_prof_map *pmap;
3355	int status;
3356
3357	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3358
3359	pmap = ice_search_prof_id(hw, blk, id);
3360	if (!pmap) {
3361		status = -ENOENT;
3362		goto err_ice_rem_prof;
3363	}
3364
3365	/* remove all flows with this profile */
3366	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
3367	if (status)
3368		goto err_ice_rem_prof;
3369
3370	/* dereference profile, and possibly remove */
3371	ice_prof_dec_ref(hw, blk, pmap->prof_id);
3372
3373	list_del(&pmap->list);
3374	devm_kfree(ice_hw_to_dev(hw), pmap);
3375
3376err_ice_rem_prof:
3377	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3378	return status;
3379}
3380
3381/**
3382 * ice_get_prof - get profile
3383 * @hw: pointer to the HW struct
3384 * @blk: hardware block
3385 * @hdl: profile handle
3386 * @chg: change list
3387 */
3388static int
3389ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
3390	     struct list_head *chg)
3391{
3392	struct ice_prof_map *map;
3393	struct ice_chs_chg *p;
3394	int status = 0;
3395	u16 i;
3396
3397	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3398	/* Get the details on the profile specified by the handle ID */
3399	map = ice_search_prof_id(hw, blk, hdl);
3400	if (!map) {
3401		status = -ENOENT;
3402		goto err_ice_get_prof;
3403	}
3404
3405	for (i = 0; i < map->ptg_cnt; i++)
3406		if (!hw->blk[blk].es.written[map->prof_id]) {
3407			/* add ES to change list */
3408			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3409					 GFP_KERNEL);
3410			if (!p) {
3411				status = -ENOMEM;
3412				goto err_ice_get_prof;
3413			}
3414
3415			p->type = ICE_PTG_ES_ADD;
3416			p->ptype = 0;
3417			p->ptg = map->ptg[i];
3418			p->add_ptg = 0;
3419
3420			p->add_prof = 1;
3421			p->prof_id = map->prof_id;
3422
3423			hw->blk[blk].es.written[map->prof_id] = true;
3424
3425			list_add(&p->list_entry, chg);
3426		}
3427
3428err_ice_get_prof:
3429	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3430	/* let caller clean up the change list */
3431	return status;
3432}
3433
3434/**
3435 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
3436 * @hw: pointer to the HW struct
3437 * @blk: hardware block
3438 * @vsig: VSIG from which to copy the list
3439 * @lst: output list
3440 *
3441 * This routine makes a copy of the list of profiles in the specified VSIG.
3442 */
3443static int
3444ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3445		   struct list_head *lst)
3446{
3447	struct ice_vsig_prof *ent1, *ent2;
3448	u16 idx = vsig & ICE_VSIG_IDX_M;
3449
3450	list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3451			    list) {
3452		struct ice_vsig_prof *p;
3453
3454		/* copy to the input list */
3455		p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
3456				 GFP_KERNEL);
3457		if (!p)
3458			goto err_ice_get_profs_vsig;
3459
3460		list_add_tail(&p->list, lst);
3461	}
3462
3463	return 0;
3464
3465err_ice_get_profs_vsig:
3466	list_for_each_entry_safe(ent1, ent2, lst, list) {
3467		list_del(&ent1->list);
3468		devm_kfree(ice_hw_to_dev(hw), ent1);
3469	}
3470
3471	return -ENOMEM;
3472}
3473
3474/**
3475 * ice_add_prof_to_lst - add profile entry to a list
3476 * @hw: pointer to the HW struct
3477 * @blk: hardware block
3478 * @lst: the list to be added to
3479 * @hdl: profile handle of entry to add
3480 */
3481static int
3482ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
3483		    struct list_head *lst, u64 hdl)
3484{
3485	struct ice_prof_map *map;
3486	struct ice_vsig_prof *p;
3487	int status = 0;
3488	u16 i;
3489
3490	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3491	map = ice_search_prof_id(hw, blk, hdl);
3492	if (!map) {
3493		status = -ENOENT;
3494		goto err_ice_add_prof_to_lst;
3495	}
3496
3497	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3498	if (!p) {
3499		status = -ENOMEM;
3500		goto err_ice_add_prof_to_lst;
3501	}
3502
3503	p->profile_cookie = map->profile_cookie;
3504	p->prof_id = map->prof_id;
3505	p->tcam_count = map->ptg_cnt;
3506
3507	for (i = 0; i < map->ptg_cnt; i++) {
3508		p->tcam[i].prof_id = map->prof_id;
3509		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
3510		p->tcam[i].ptg = map->ptg[i];
3511	}
3512
3513	list_add(&p->list, lst);
3514
3515err_ice_add_prof_to_lst:
3516	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3517	return status;
3518}
3519
3520/**
3521 * ice_move_vsi - move VSI to another VSIG
3522 * @hw: pointer to the HW struct
3523 * @blk: hardware block
3524 * @vsi: the VSI to move
3525 * @vsig: the VSIG to move the VSI to
3526 * @chg: the change list
3527 */
3528static int
3529ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
3530	     struct list_head *chg)
3531{
3532	struct ice_chs_chg *p;
3533	u16 orig_vsig;
3534	int status;
3535
3536	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3537	if (!p)
3538		return -ENOMEM;
3539
3540	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3541	if (!status)
3542		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3543
3544	if (status) {
3545		devm_kfree(ice_hw_to_dev(hw), p);
3546		return status;
3547	}
3548
3549	p->type = ICE_VSI_MOVE;
3550	p->vsi = vsi;
3551	p->orig_vsig = orig_vsig;
3552	p->vsig = vsig;
3553
3554	list_add(&p->list_entry, chg);
3555
3556	return 0;
3557}
3558
3559/**
3560 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
3561 * @hw: pointer to the HW struct
3562 * @idx: the index of the TCAM entry to remove
3563 * @chg: the list of change structures to search
3564 */
3565static void
3566ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
3567{
3568	struct ice_chs_chg *pos, *tmp;
3569
3570	list_for_each_entry_safe(tmp, pos, chg, list_entry)
3571		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
3572			list_del(&tmp->list_entry);
3573			devm_kfree(ice_hw_to_dev(hw), tmp);
3574		}
3575}
3576
3577/**
3578 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
3579 * @hw: pointer to the HW struct
3580 * @blk: hardware block
3581 * @enable: true to enable, false to disable
3582 * @vsig: the VSIG of the TCAM entry
3583 * @tcam: pointer the TCAM info structure of the TCAM to disable
3584 * @chg: the change list
3585 *
3586 * This function appends an enable or disable TCAM entry in the change log
3587 */
3588static int
3589ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
3590		      u16 vsig, struct ice_tcam_inf *tcam,
3591		      struct list_head *chg)
3592{
3593	struct ice_chs_chg *p;
3594	int status;
3595
3596	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3597	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3598	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3599
3600	/* if disabling, free the TCAM */
3601	if (!enable) {
3602		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
3603
3604		/* if we have already created a change for this TCAM entry, then
3605		 * we need to remove that entry, in order to prevent writing to
3606		 * a TCAM entry we no longer will have ownership of.
3607		 */
3608		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
3609		tcam->tcam_idx = 0;
3610		tcam->in_use = 0;
3611		return status;
3612	}
3613
3614	/* for re-enabling, reallocate a TCAM */
3615	/* for entries with empty attribute masks, allocate entry from
3616	 * the bottom of the TCAM table; otherwise, allocate from the
3617	 * top of the table in order to give it higher priority
3618	 */
3619	status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
3620				    &tcam->tcam_idx);
3621	if (status)
3622		return status;
3623
3624	/* add TCAM to change list */
3625	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3626	if (!p)
3627		return -ENOMEM;
3628
3629	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
3630				      tcam->ptg, vsig, 0, tcam->attr.flags,
3631				      vl_msk, dc_msk, nm_msk);
3632	if (status)
3633		goto err_ice_prof_tcam_ena_dis;
3634
3635	tcam->in_use = 1;
3636
3637	p->type = ICE_TCAM_ADD;
3638	p->add_tcam_idx = true;
3639	p->prof_id = tcam->prof_id;
3640	p->ptg = tcam->ptg;
3641	p->vsig = 0;
3642	p->tcam_idx = tcam->tcam_idx;
3643
3644	/* log change */
3645	list_add(&p->list_entry, chg);
3646
3647	return 0;
3648
3649err_ice_prof_tcam_ena_dis:
3650	devm_kfree(ice_hw_to_dev(hw), p);
3651	return status;
3652}
3653
3654/**
3655 * ice_adj_prof_priorities - adjust profile based on priorities
3656 * @hw: pointer to the HW struct
3657 * @blk: hardware block
3658 * @vsig: the VSIG for which to adjust profile priorities
3659 * @chg: the change list
3660 */
3661static int
3662ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3663			struct list_head *chg)
3664{
3665	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3666	struct ice_vsig_prof *t;
3667	int status;
3668	u16 idx;
3669
3670	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3671	idx = vsig & ICE_VSIG_IDX_M;
3672
3673	/* Priority is based on the order in which the profiles are added. The
3674	 * newest added profile has highest priority and the oldest added
3675	 * profile has the lowest priority. Since the profile property list for
3676	 * a VSIG is sorted from newest to oldest, this code traverses the list
3677	 * in order and enables the first of each PTG that it finds (that is not
3678	 * already enabled); it also disables any duplicate PTGs that it finds
3679	 * in the older profiles (that are currently enabled).
3680	 */
3681
3682	list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3683			    list) {
3684		u16 i;
3685
3686		for (i = 0; i < t->tcam_count; i++) {
3687			/* Scan the priorities from newest to oldest.
3688			 * Make sure that the newest profiles take priority.
3689			 */
3690			if (test_bit(t->tcam[i].ptg, ptgs_used) &&
3691			    t->tcam[i].in_use) {
3692				/* need to mark this PTG as never match, as it
3693				 * was already in use and therefore duplicate
3694				 * (and lower priority)
3695				 */
3696				status = ice_prof_tcam_ena_dis(hw, blk, false,
3697							       vsig,
3698							       &t->tcam[i],
3699							       chg);
3700				if (status)
3701					return status;
3702			} else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
3703				   !t->tcam[i].in_use) {
3704				/* need to enable this PTG, as it in not in use
3705				 * and not enabled (highest priority)
3706				 */
3707				status = ice_prof_tcam_ena_dis(hw, blk, true,
3708							       vsig,
3709							       &t->tcam[i],
3710							       chg);
3711				if (status)
3712					return status;
3713			}
3714
3715			/* keep track of used ptgs */
3716			__set_bit(t->tcam[i].ptg, ptgs_used);
3717		}
3718	}
3719
3720	return 0;
3721}
3722
3723/**
3724 * ice_add_prof_id_vsig - add profile to VSIG
3725 * @hw: pointer to the HW struct
3726 * @blk: hardware block
3727 * @vsig: the VSIG to which this profile is to be added
3728 * @hdl: the profile handle indicating the profile to add
3729 * @rev: true to add entries to the end of the list
3730 * @chg: the change list
3731 */
3732static int
3733ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3734		     bool rev, struct list_head *chg)
3735{
3736	/* Masks that ignore flags */
3737	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3738	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3739	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3740	struct ice_prof_map *map;
3741	struct ice_vsig_prof *t;
3742	struct ice_chs_chg *p;
3743	u16 vsig_idx, i;
3744	int status = 0;
3745
3746	/* Error, if this VSIG already has this profile */
3747	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
3748		return -EEXIST;
3749
3750	/* new VSIG profile structure */
3751	t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
3752	if (!t)
3753		return -ENOMEM;
3754
3755	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3756	/* Get the details on the profile specified by the handle ID */
3757	map = ice_search_prof_id(hw, blk, hdl);
3758	if (!map) {
3759		status = -ENOENT;
3760		goto err_ice_add_prof_id_vsig;
3761	}
3762
3763	t->profile_cookie = map->profile_cookie;
3764	t->prof_id = map->prof_id;
3765	t->tcam_count = map->ptg_cnt;
3766
3767	/* create TCAM entries */
3768	for (i = 0; i < map->ptg_cnt; i++) {
3769		u16 tcam_idx;
3770
3771		/* add TCAM to change list */
3772		p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3773		if (!p) {
3774			status = -ENOMEM;
3775			goto err_ice_add_prof_id_vsig;
3776		}
3777
3778		/* allocate the TCAM entry index */
3779		/* for entries with empty attribute masks, allocate entry from
3780		 * the bottom of the TCAM table; otherwise, allocate from the
3781		 * top of the table in order to give it higher priority
3782		 */
3783		status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
3784					    &tcam_idx);
3785		if (status) {
3786			devm_kfree(ice_hw_to_dev(hw), p);
3787			goto err_ice_add_prof_id_vsig;
3788		}
3789
3790		t->tcam[i].ptg = map->ptg[i];
3791		t->tcam[i].prof_id = map->prof_id;
3792		t->tcam[i].tcam_idx = tcam_idx;
3793		t->tcam[i].attr = map->attr[i];
3794		t->tcam[i].in_use = true;
3795
3796		p->type = ICE_TCAM_ADD;
3797		p->add_tcam_idx = true;
3798		p->prof_id = t->tcam[i].prof_id;
3799		p->ptg = t->tcam[i].ptg;
3800		p->vsig = vsig;
3801		p->tcam_idx = t->tcam[i].tcam_idx;
3802
3803		/* write the TCAM entry */
3804		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
3805					      t->tcam[i].prof_id,
3806					      t->tcam[i].ptg, vsig, 0, 0,
3807					      vl_msk, dc_msk, nm_msk);
3808		if (status) {
3809			devm_kfree(ice_hw_to_dev(hw), p);
3810			goto err_ice_add_prof_id_vsig;
3811		}
3812
3813		/* log change */
3814		list_add(&p->list_entry, chg);
3815	}
3816
3817	/* add profile to VSIG */
3818	vsig_idx = vsig & ICE_VSIG_IDX_M;
3819	if (rev)
3820		list_add_tail(&t->list,
3821			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3822	else
3823		list_add(&t->list,
3824			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3825
3826	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3827	return status;
3828
3829err_ice_add_prof_id_vsig:
3830	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3831	/* let caller clean up the change list */
3832	devm_kfree(ice_hw_to_dev(hw), t);
3833	return status;
3834}
3835
3836/**
3837 * ice_create_prof_id_vsig - add a new VSIG with a single profile
3838 * @hw: pointer to the HW struct
3839 * @blk: hardware block
3840 * @vsi: the initial VSI that will be in VSIG
3841 * @hdl: the profile handle of the profile that will be added to the VSIG
3842 * @chg: the change list
3843 */
3844static int
3845ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
3846			struct list_head *chg)
3847{
3848	struct ice_chs_chg *p;
3849	u16 new_vsig;
3850	int status;
3851
3852	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3853	if (!p)
3854		return -ENOMEM;
3855
3856	new_vsig = ice_vsig_alloc(hw, blk);
3857	if (!new_vsig) {
3858		status = -EIO;
3859		goto err_ice_create_prof_id_vsig;
3860	}
3861
3862	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
3863	if (status)
3864		goto err_ice_create_prof_id_vsig;
3865
3866	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
3867	if (status)
3868		goto err_ice_create_prof_id_vsig;
3869
3870	p->type = ICE_VSIG_ADD;
3871	p->vsi = vsi;
3872	p->orig_vsig = ICE_DEFAULT_VSIG;
3873	p->vsig = new_vsig;
3874
3875	list_add(&p->list_entry, chg);
3876
3877	return 0;
3878
3879err_ice_create_prof_id_vsig:
3880	/* let caller clean up the change list */
3881	devm_kfree(ice_hw_to_dev(hw), p);
3882	return status;
3883}
3884
3885/**
3886 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
3887 * @hw: pointer to the HW struct
3888 * @blk: hardware block
3889 * @vsi: the initial VSI that will be in VSIG
3890 * @lst: the list of profile that will be added to the VSIG
3891 * @new_vsig: return of new VSIG
3892 * @chg: the change list
3893 */
3894static int
3895ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
3896			 struct list_head *lst, u16 *new_vsig,
3897			 struct list_head *chg)
3898{
3899	struct ice_vsig_prof *t;
3900	int status;
3901	u16 vsig;
3902
3903	vsig = ice_vsig_alloc(hw, blk);
3904	if (!vsig)
3905		return -EIO;
3906
3907	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
3908	if (status)
3909		return status;
3910
3911	list_for_each_entry(t, lst, list) {
3912		/* Reverse the order here since we are copying the list */
3913		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
3914					      true, chg);
3915		if (status)
3916			return status;
3917	}
3918
3919	*new_vsig = vsig;
3920
3921	return 0;
3922}
3923
3924/**
3925 * ice_find_prof_vsig - find a VSIG with a specific profile handle
3926 * @hw: pointer to the HW struct
3927 * @blk: hardware block
3928 * @hdl: the profile handle of the profile to search for
3929 * @vsig: returns the VSIG with the matching profile
3930 */
3931static bool
3932ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
3933{
3934	struct ice_vsig_prof *t;
3935	struct list_head lst;
3936	int status;
3937
3938	INIT_LIST_HEAD(&lst);
3939
3940	t = kzalloc(sizeof(*t), GFP_KERNEL);
3941	if (!t)
3942		return false;
3943
3944	t->profile_cookie = hdl;
3945	list_add(&t->list, &lst);
3946
3947	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
3948
3949	list_del(&t->list);
3950	kfree(t);
3951
3952	return !status;
3953}
3954
3955/**
3956 * ice_add_prof_id_flow - add profile flow
3957 * @hw: pointer to the HW struct
3958 * @blk: hardware block
3959 * @vsi: the VSI to enable with the profile specified by ID
3960 * @hdl: profile handle
3961 *
3962 * Calling this function will update the hardware tables to enable the
3963 * profile indicated by the ID parameter for the VSIs specified in the VSI
3964 * array. Once successfully called, the flow will be enabled.
3965 */
3966int
3967ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
3968{
3969	struct ice_vsig_prof *tmp1, *del1;
3970	struct ice_chs_chg *tmp, *del;
3971	struct list_head union_lst;
3972	struct list_head chg;
3973	int status;
3974	u16 vsig;
3975
3976	INIT_LIST_HEAD(&union_lst);
3977	INIT_LIST_HEAD(&chg);
3978
3979	/* Get profile */
3980	status = ice_get_prof(hw, blk, hdl, &chg);
3981	if (status)
3982		return status;
3983
3984	/* determine if VSI is already part of a VSIG */
3985	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
3986	if (!status && vsig) {
3987		bool only_vsi;
3988		u16 or_vsig;
3989		u16 ref;
3990
3991		/* found in VSIG */
3992		or_vsig = vsig;
3993
3994		/* make sure that there is no overlap/conflict between the new
3995		 * characteristics and the existing ones; we don't support that
3996		 * scenario
3997		 */
3998		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
3999			status = -EEXIST;
4000			goto err_ice_add_prof_id_flow;
4001		}
4002
4003		/* last VSI in the VSIG? */
4004		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4005		if (status)
4006			goto err_ice_add_prof_id_flow;
4007		only_vsi = (ref == 1);
4008
4009		/* create a union of the current profiles and the one being
4010		 * added
4011		 */
4012		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
4013		if (status)
4014			goto err_ice_add_prof_id_flow;
4015
4016		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
4017		if (status)
4018			goto err_ice_add_prof_id_flow;
4019
4020		/* search for an existing VSIG with an exact charc match */
4021		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
4022		if (!status) {
4023			/* move VSI to the VSIG that matches */
4024			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4025			if (status)
4026				goto err_ice_add_prof_id_flow;
4027
4028			/* VSI has been moved out of or_vsig. If the or_vsig had
4029			 * only that VSI it is now empty and can be removed.
4030			 */
4031			if (only_vsi) {
4032				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
4033				if (status)
4034					goto err_ice_add_prof_id_flow;
4035			}
4036		} else if (only_vsi) {
4037			/* If the original VSIG only contains one VSI, then it
4038			 * will be the requesting VSI. In this case the VSI is
4039			 * not sharing entries and we can simply add the new
4040			 * profile to the VSIG.
4041			 */
4042			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
4043						      &chg);
4044			if (status)
4045				goto err_ice_add_prof_id_flow;
4046
4047			/* Adjust priorities */
4048			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4049			if (status)
4050				goto err_ice_add_prof_id_flow;
4051		} else {
4052			/* No match, so we need a new VSIG */
4053			status = ice_create_vsig_from_lst(hw, blk, vsi,
4054							  &union_lst, &vsig,
4055							  &chg);
4056			if (status)
4057				goto err_ice_add_prof_id_flow;
4058
4059			/* Adjust priorities */
4060			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4061			if (status)
4062				goto err_ice_add_prof_id_flow;
4063		}
4064	} else {
4065		/* need to find or add a VSIG */
4066		/* search for an existing VSIG with an exact charc match */
4067		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
4068			/* found an exact match */
4069			/* add or move VSI to the VSIG that matches */
4070			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4071			if (status)
4072				goto err_ice_add_prof_id_flow;
4073		} else {
4074			/* we did not find an exact match */
4075			/* we need to add a VSIG */
4076			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
4077							 &chg);
4078			if (status)
4079				goto err_ice_add_prof_id_flow;
4080		}
4081	}
4082
4083	/* update hardware */
4084	if (!status)
4085		status = ice_upd_prof_hw(hw, blk, &chg);
4086
4087err_ice_add_prof_id_flow:
4088	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4089		list_del(&del->list_entry);
4090		devm_kfree(ice_hw_to_dev(hw), del);
4091	}
4092
4093	list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
4094		list_del(&del1->list);
4095		devm_kfree(ice_hw_to_dev(hw), del1);
4096	}
4097
4098	return status;
4099}
4100
4101/**
4102 * ice_rem_prof_from_list - remove a profile from list
4103 * @hw: pointer to the HW struct
4104 * @lst: list to remove the profile from
4105 * @hdl: the profile handle indicating the profile to remove
4106 */
4107static int
4108ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
4109{
4110	struct ice_vsig_prof *ent, *tmp;
4111
4112	list_for_each_entry_safe(ent, tmp, lst, list)
4113		if (ent->profile_cookie == hdl) {
4114			list_del(&ent->list);
4115			devm_kfree(ice_hw_to_dev(hw), ent);
4116			return 0;
4117		}
4118
4119	return -ENOENT;
4120}
4121
4122/**
4123 * ice_rem_prof_id_flow - remove flow
4124 * @hw: pointer to the HW struct
4125 * @blk: hardware block
4126 * @vsi: the VSI from which to remove the profile specified by ID
4127 * @hdl: profile tracking handle
4128 *
4129 * Calling this function will update the hardware tables to remove the
4130 * profile indicated by the ID parameter for the VSIs specified in the VSI
4131 * array. Once successfully called, the flow will be disabled.
4132 */
4133int
4134ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4135{
4136	struct ice_vsig_prof *tmp1, *del1;
4137	struct ice_chs_chg *tmp, *del;
4138	struct list_head chg, copy;
4139	int status;
4140	u16 vsig;
4141
4142	INIT_LIST_HEAD(&copy);
4143	INIT_LIST_HEAD(&chg);
4144
4145	/* determine if VSI is already part of a VSIG */
4146	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4147	if (!status && vsig) {
4148		bool last_profile;
4149		bool only_vsi;
4150		u16 ref;
4151
4152		/* found in VSIG */
4153		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
4154		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4155		if (status)
4156			goto err_ice_rem_prof_id_flow;
4157		only_vsi = (ref == 1);
4158
4159		if (only_vsi) {
4160			/* If the original VSIG only contains one reference,
4161			 * which will be the requesting VSI, then the VSI is not
4162			 * sharing entries and we can simply remove the specific
4163			 * characteristics from the VSIG.
4164			 */
4165
4166			if (last_profile) {
4167				/* If there are no profiles left for this VSIG,
4168				 * then simply remove the VSIG.
4169				 */
4170				status = ice_rem_vsig(hw, blk, vsig, &chg);
4171				if (status)
4172					goto err_ice_rem_prof_id_flow;
4173			} else {
4174				status = ice_rem_prof_id_vsig(hw, blk, vsig,
4175							      hdl, &chg);
4176				if (status)
4177					goto err_ice_rem_prof_id_flow;
4178
4179				/* Adjust priorities */
4180				status = ice_adj_prof_priorities(hw, blk, vsig,
4181								 &chg);
4182				if (status)
4183					goto err_ice_rem_prof_id_flow;
4184			}
4185
4186		} else {
4187			/* Make a copy of the VSIG's list of Profiles */
4188			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
4189			if (status)
4190				goto err_ice_rem_prof_id_flow;
4191
4192			/* Remove specified profile entry from the list */
4193			status = ice_rem_prof_from_list(hw, &copy, hdl);
4194			if (status)
4195				goto err_ice_rem_prof_id_flow;
4196
4197			if (list_empty(&copy)) {
4198				status = ice_move_vsi(hw, blk, vsi,
4199						      ICE_DEFAULT_VSIG, &chg);
4200				if (status)
4201					goto err_ice_rem_prof_id_flow;
4202
4203			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
4204							    &vsig)) {
4205				/* found an exact match */
4206				/* add or move VSI to the VSIG that matches */
4207				/* Search for a VSIG with a matching profile
4208				 * list
4209				 */
4210
4211				/* Found match, move VSI to the matching VSIG */
4212				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4213				if (status)
4214					goto err_ice_rem_prof_id_flow;
4215			} else {
4216				/* since no existing VSIG supports this
4217				 * characteristic pattern, we need to create a
4218				 * new VSIG and TCAM entries
4219				 */
4220				status = ice_create_vsig_from_lst(hw, blk, vsi,
4221								  &copy, &vsig,
4222								  &chg);
4223				if (status)
4224					goto err_ice_rem_prof_id_flow;
4225
4226				/* Adjust priorities */
4227				status = ice_adj_prof_priorities(hw, blk, vsig,
4228								 &chg);
4229				if (status)
4230					goto err_ice_rem_prof_id_flow;
4231			}
4232		}
4233	} else {
4234		status = -ENOENT;
4235	}
4236
4237	/* update hardware tables */
4238	if (!status)
4239		status = ice_upd_prof_hw(hw, blk, &chg);
4240
4241err_ice_rem_prof_id_flow:
4242	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4243		list_del(&del->list_entry);
4244		devm_kfree(ice_hw_to_dev(hw), del);
4245	}
4246
4247	list_for_each_entry_safe(del1, tmp1, &copy, list) {
4248		list_del(&del1->list);
4249		devm_kfree(ice_hw_to_dev(hw), del1);
4250	}
4251
4252	return status;
4253}
4254