1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2020, Intel Corporation. */
3
4#include <linux/vmalloc.h>
5
6#include "ice.h"
7#include "ice_lib.h"
8#include "devlink.h"
9#include "ice_eswitch.h"
10#include "ice_fw_update.h"
11#include "ice_dcb_lib.h"
12
13/* context for devlink info version reporting */
14struct ice_info_ctx {
15	char buf[128];
16	struct ice_orom_info pending_orom;
17	struct ice_nvm_info pending_nvm;
18	struct ice_netlist_info pending_netlist;
19	struct ice_hw_dev_caps dev_caps;
20};
21
22/* The following functions are used to format specific strings for various
23 * devlink info versions. The ctx parameter is used to provide the storage
24 * buffer, as well as any ancillary information calculated when the info
25 * request was made.
26 *
27 * If a version does not exist, for example when attempting to get the
28 * inactive version of flash when there is no pending update, the function
29 * should leave the buffer in the ctx structure empty.
30 */
31
32static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
33{
34	u8 dsn[8];
35
36	/* Copy the DSN into an array in Big Endian format */
37	put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
38
39	snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
40}
41
42static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
43{
44	struct ice_hw *hw = &pf->hw;
45	int status;
46
47	status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
48	if (status)
49		/* We failed to locate the PBA, so just skip this entry */
50		dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
51			status);
52}
53
54static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
55{
56	struct ice_hw *hw = &pf->hw;
57
58	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
59		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
60}
61
62static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
63{
64	struct ice_hw *hw = &pf->hw;
65
66	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
67		 hw->api_min_ver, hw->api_patch);
68}
69
70static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
71{
72	struct ice_hw *hw = &pf->hw;
73
74	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
75}
76
77static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
78{
79	struct ice_orom_info *orom = &pf->hw.flash.orom;
80
81	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
82		 orom->major, orom->build, orom->patch);
83}
84
85static void
86ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
87			  struct ice_info_ctx *ctx)
88{
89	struct ice_orom_info *orom = &ctx->pending_orom;
90
91	if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
92		snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
93			 orom->major, orom->build, orom->patch);
94}
95
96static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
97{
98	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
99
100	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
101}
102
103static void
104ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
105			 struct ice_info_ctx *ctx)
106{
107	struct ice_nvm_info *nvm = &ctx->pending_nvm;
108
109	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
110		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
111			 nvm->major, nvm->minor);
112}
113
114static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
115{
116	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
117
118	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
119}
120
121static void
122ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
123{
124	struct ice_nvm_info *nvm = &ctx->pending_nvm;
125
126	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
127		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
128}
129
130static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
131{
132	struct ice_hw *hw = &pf->hw;
133
134	snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
135}
136
137static void
138ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
139{
140	struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
141
142	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
143		 pkg->major, pkg->minor, pkg->update, pkg->draft);
144}
145
146static void
147ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
148{
149	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
150}
151
152static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
153{
154	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
155
156	/* The netlist version fields are BCD formatted */
157	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
158		 netlist->major, netlist->minor,
159		 netlist->type >> 16, netlist->type & 0xFFFF,
160		 netlist->rev, netlist->cust_ver);
161}
162
163static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
164{
165	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
166
167	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
168}
169
170static void
171ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
172			     struct ice_info_ctx *ctx)
173{
174	struct ice_netlist_info *netlist = &ctx->pending_netlist;
175
176	/* The netlist version fields are BCD formatted */
177	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
178		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
179			 netlist->major, netlist->minor,
180			 netlist->type >> 16, netlist->type & 0xFFFF,
181			 netlist->rev, netlist->cust_ver);
182}
183
184static void
185ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
186			       struct ice_info_ctx *ctx)
187{
188	struct ice_netlist_info *netlist = &ctx->pending_netlist;
189
190	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
191		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
192}
193
194static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
195{
196	u32 id, cfg_ver, fw_ver;
197
198	if (!ice_is_feature_supported(pf, ICE_F_CGU))
199		return;
200	if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver))
201		return;
202	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver);
203}
204
205static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
206{
207	if (!ice_is_feature_supported(pf, ICE_F_CGU))
208		return;
209	snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number);
210}
211
212#define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
213#define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
214#define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
215
216/* The combined() macro inserts both the running entry as well as a stored
217 * entry. The running entry will always report the version from the active
218 * handler. The stored entry will first try the pending handler, and fallback
219 * to the active handler if the pending function does not report a version.
220 * The pending handler should check the status of a pending update for the
221 * relevant flash component. It should only fill in the buffer in the case
222 * where a valid pending version is available. This ensures that the related
223 * stored and running versions remain in sync, and that stored versions are
224 * correctly reported as expected.
225 */
226#define combined(key, active, pending) \
227	running(key, active), \
228	stored(key, pending, active)
229
230enum ice_version_type {
231	ICE_VERSION_FIXED,
232	ICE_VERSION_RUNNING,
233	ICE_VERSION_STORED,
234};
235
236static const struct ice_devlink_version {
237	enum ice_version_type type;
238	const char *key;
239	void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
240	void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
241} ice_devlink_versions[] = {
242	fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
243	running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
244	running("fw.mgmt.api", ice_info_fw_api),
245	running("fw.mgmt.build", ice_info_fw_build),
246	combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
247	combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
248	combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
249	running("fw.app.name", ice_info_ddp_pkg_name),
250	running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
251	running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
252	combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
253	combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
254	fixed("cgu.id", ice_info_cgu_id),
255	running("fw.cgu", ice_info_cgu_fw_build),
256};
257
258/**
259 * ice_devlink_info_get - .info_get devlink handler
260 * @devlink: devlink instance structure
261 * @req: the devlink info request
262 * @extack: extended netdev ack structure
263 *
264 * Callback for the devlink .info_get operation. Reports information about the
265 * device.
266 *
267 * Return: zero on success or an error code on failure.
268 */
269static int ice_devlink_info_get(struct devlink *devlink,
270				struct devlink_info_req *req,
271				struct netlink_ext_ack *extack)
272{
273	struct ice_pf *pf = devlink_priv(devlink);
274	struct device *dev = ice_pf_to_dev(pf);
275	struct ice_hw *hw = &pf->hw;
276	struct ice_info_ctx *ctx;
277	size_t i;
278	int err;
279
280	err = ice_wait_for_reset(pf, 10 * HZ);
281	if (err) {
282		NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
283		return err;
284	}
285
286	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
287	if (!ctx)
288		return -ENOMEM;
289
290	/* discover capabilities first */
291	err = ice_discover_dev_caps(hw, &ctx->dev_caps);
292	if (err) {
293		dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
294			err, ice_aq_str(hw->adminq.sq_last_status));
295		NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
296		goto out_free_ctx;
297	}
298
299	if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
300		err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
301		if (err) {
302			dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
303				err, ice_aq_str(hw->adminq.sq_last_status));
304
305			/* disable display of pending Option ROM */
306			ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
307		}
308	}
309
310	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
311		err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
312		if (err) {
313			dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
314				err, ice_aq_str(hw->adminq.sq_last_status));
315
316			/* disable display of pending Option ROM */
317			ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
318		}
319	}
320
321	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
322		err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
323		if (err) {
324			dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
325				err, ice_aq_str(hw->adminq.sq_last_status));
326
327			/* disable display of pending Option ROM */
328			ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
329		}
330	}
331
332	ice_info_get_dsn(pf, ctx);
333
334	err = devlink_info_serial_number_put(req, ctx->buf);
335	if (err) {
336		NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
337		goto out_free_ctx;
338	}
339
340	for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
341		enum ice_version_type type = ice_devlink_versions[i].type;
342		const char *key = ice_devlink_versions[i].key;
343
344		memset(ctx->buf, 0, sizeof(ctx->buf));
345
346		ice_devlink_versions[i].getter(pf, ctx);
347
348		/* If the default getter doesn't report a version, use the
349		 * fallback function. This is primarily useful in the case of
350		 * "stored" versions that want to report the same value as the
351		 * running version in the normal case of no pending update.
352		 */
353		if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
354			ice_devlink_versions[i].fallback(pf, ctx);
355
356		/* Do not report missing versions */
357		if (ctx->buf[0] == '\0')
358			continue;
359
360		switch (type) {
361		case ICE_VERSION_FIXED:
362			err = devlink_info_version_fixed_put(req, key, ctx->buf);
363			if (err) {
364				NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
365				goto out_free_ctx;
366			}
367			break;
368		case ICE_VERSION_RUNNING:
369			err = devlink_info_version_running_put(req, key, ctx->buf);
370			if (err) {
371				NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
372				goto out_free_ctx;
373			}
374			break;
375		case ICE_VERSION_STORED:
376			err = devlink_info_version_stored_put(req, key, ctx->buf);
377			if (err) {
378				NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
379				goto out_free_ctx;
380			}
381			break;
382		}
383	}
384
385out_free_ctx:
386	kfree(ctx);
387	return err;
388}
389
390/**
391 * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
392 * @pf: pointer to the pf instance
393 * @extack: netlink extended ACK structure
394 *
395 * Allow user to activate new Embedded Management Processor firmware by
396 * issuing device specific EMP reset. Called in response to
397 * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
398 *
399 * Note that teardown and rebuild of the driver state happens automatically as
400 * part of an interrupt and watchdog task. This is because all physical
401 * functions on the device must be able to reset when an EMP reset occurs from
402 * any source.
403 */
404static int
405ice_devlink_reload_empr_start(struct ice_pf *pf,
406			      struct netlink_ext_ack *extack)
407{
408	struct device *dev = ice_pf_to_dev(pf);
409	struct ice_hw *hw = &pf->hw;
410	u8 pending;
411	int err;
412
413	err = ice_get_pending_updates(pf, &pending, extack);
414	if (err)
415		return err;
416
417	/* pending is a bitmask of which flash banks have a pending update,
418	 * including the main NVM bank, the Option ROM bank, and the netlist
419	 * bank. If any of these bits are set, then there is a pending update
420	 * waiting to be activated.
421	 */
422	if (!pending) {
423		NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
424		return -ECANCELED;
425	}
426
427	if (pf->fw_emp_reset_disabled) {
428		NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
429		return -ECANCELED;
430	}
431
432	dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
433
434	err = ice_aq_nvm_update_empr(hw);
435	if (err) {
436		dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
437			err, ice_aq_str(hw->adminq.sq_last_status));
438		NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
439		return err;
440	}
441
442	return 0;
443}
444
445/**
446 * ice_devlink_reinit_down - unload given PF
447 * @pf: pointer to the PF struct
448 */
449static void ice_devlink_reinit_down(struct ice_pf *pf)
450{
451	/* No need to take devl_lock, it's already taken by devlink API */
452	ice_unload(pf);
453	rtnl_lock();
454	ice_vsi_decfg(ice_get_main_vsi(pf));
455	rtnl_unlock();
456	ice_deinit_dev(pf);
457}
458
459/**
460 * ice_devlink_reload_down - prepare for reload
461 * @devlink: pointer to the devlink instance to reload
462 * @netns_change: if true, the network namespace is changing
463 * @action: the action to perform
464 * @limit: limits on what reload should do, such as not resetting
465 * @extack: netlink extended ACK structure
466 */
467static int
468ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
469			enum devlink_reload_action action,
470			enum devlink_reload_limit limit,
471			struct netlink_ext_ack *extack)
472{
473	struct ice_pf *pf = devlink_priv(devlink);
474
475	switch (action) {
476	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
477		if (ice_is_eswitch_mode_switchdev(pf)) {
478			NL_SET_ERR_MSG_MOD(extack,
479					   "Go to legacy mode before doing reinit");
480			return -EOPNOTSUPP;
481		}
482		if (ice_is_adq_active(pf)) {
483			NL_SET_ERR_MSG_MOD(extack,
484					   "Turn off ADQ before doing reinit");
485			return -EOPNOTSUPP;
486		}
487		if (ice_has_vfs(pf)) {
488			NL_SET_ERR_MSG_MOD(extack,
489					   "Remove all VFs before doing reinit");
490			return -EOPNOTSUPP;
491		}
492		ice_devlink_reinit_down(pf);
493		return 0;
494	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
495		return ice_devlink_reload_empr_start(pf, extack);
496	default:
497		WARN_ON(1);
498		return -EOPNOTSUPP;
499	}
500}
501
502/**
503 * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
504 * @pf: pointer to the pf instance
505 * @extack: netlink extended ACK structure
506 *
507 * Wait for driver to finish rebuilding after EMP reset is completed. This
508 * includes time to wait for both the actual device reset as well as the time
509 * for the driver's rebuild to complete.
510 */
511static int
512ice_devlink_reload_empr_finish(struct ice_pf *pf,
513			       struct netlink_ext_ack *extack)
514{
515	int err;
516
517	err = ice_wait_for_reset(pf, 60 * HZ);
518	if (err) {
519		NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
520		return err;
521	}
522
523	return 0;
524}
525
526/**
527 * ice_get_tx_topo_user_sel - Read user's choice from flash
528 * @pf: pointer to pf structure
529 * @layers: value read from flash will be saved here
530 *
531 * Reads user's preference for Tx Scheduler Topology Tree from PFA TLV.
532 *
533 * Return: zero when read was successful, negative values otherwise.
534 */
535static int ice_get_tx_topo_user_sel(struct ice_pf *pf, uint8_t *layers)
536{
537	struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
538	struct ice_hw *hw = &pf->hw;
539	int err;
540
541	err = ice_acquire_nvm(hw, ICE_RES_READ);
542	if (err)
543		return err;
544
545	err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
546			      sizeof(usr_sel), &usr_sel, true, true, NULL);
547	if (err)
548		goto exit_release_res;
549
550	if (usr_sel.data & ICE_AQC_NVM_TX_TOPO_USER_SEL)
551		*layers = ICE_SCHED_5_LAYERS;
552	else
553		*layers = ICE_SCHED_9_LAYERS;
554
555exit_release_res:
556	ice_release_nvm(hw);
557
558	return err;
559}
560
561/**
562 * ice_update_tx_topo_user_sel - Save user's preference in flash
563 * @pf: pointer to pf structure
564 * @layers: value to be saved in flash
565 *
566 * Variable "layers" defines user's preference about number of layers in Tx
567 * Scheduler Topology Tree. This choice should be stored in PFA TLV field
568 * and be picked up by driver, next time during init.
569 *
570 * Return: zero when save was successful, negative values otherwise.
571 */
572static int ice_update_tx_topo_user_sel(struct ice_pf *pf, int layers)
573{
574	struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
575	struct ice_hw *hw = &pf->hw;
576	int err;
577
578	err = ice_acquire_nvm(hw, ICE_RES_WRITE);
579	if (err)
580		return err;
581
582	err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
583			      sizeof(usr_sel), &usr_sel, true, true, NULL);
584	if (err)
585		goto exit_release_res;
586
587	if (layers == ICE_SCHED_5_LAYERS)
588		usr_sel.data |= ICE_AQC_NVM_TX_TOPO_USER_SEL;
589	else
590		usr_sel.data &= ~ICE_AQC_NVM_TX_TOPO_USER_SEL;
591
592	err = ice_write_one_nvm_block(pf, ICE_AQC_NVM_TX_TOPO_MOD_ID, 2,
593				      sizeof(usr_sel.data), &usr_sel.data,
594				      true, NULL, NULL);
595exit_release_res:
596	ice_release_nvm(hw);
597
598	return err;
599}
600
601/**
602 * ice_devlink_tx_sched_layers_get - Get tx_scheduling_layers parameter
603 * @devlink: pointer to the devlink instance
604 * @id: the parameter ID to set
605 * @ctx: context to store the parameter value
606 *
607 * Return: zero on success and negative value on failure.
608 */
609static int ice_devlink_tx_sched_layers_get(struct devlink *devlink, u32 id,
610					   struct devlink_param_gset_ctx *ctx)
611{
612	struct ice_pf *pf = devlink_priv(devlink);
613	int err;
614
615	err = ice_get_tx_topo_user_sel(pf, &ctx->val.vu8);
616	if (err)
617		return err;
618
619	return 0;
620}
621
622/**
623 * ice_devlink_tx_sched_layers_set - Set tx_scheduling_layers parameter
624 * @devlink: pointer to the devlink instance
625 * @id: the parameter ID to set
626 * @ctx: context to get the parameter value
627 * @extack: netlink extended ACK structure
628 *
629 * Return: zero on success and negative value on failure.
630 */
631static int ice_devlink_tx_sched_layers_set(struct devlink *devlink, u32 id,
632					   struct devlink_param_gset_ctx *ctx,
633					   struct netlink_ext_ack *extack)
634{
635	struct ice_pf *pf = devlink_priv(devlink);
636	int err;
637
638	err = ice_update_tx_topo_user_sel(pf, ctx->val.vu8);
639	if (err)
640		return err;
641
642	NL_SET_ERR_MSG_MOD(extack,
643			   "Tx scheduling layers have been changed on this device. You must do the PCI slot powercycle for the change to take effect.");
644
645	return 0;
646}
647
648/**
649 * ice_devlink_tx_sched_layers_validate - Validate passed tx_scheduling_layers
650 *                                        parameter value
651 * @devlink: unused pointer to devlink instance
652 * @id: the parameter ID to validate
653 * @val: value to validate
654 * @extack: netlink extended ACK structure
655 *
656 * Supported values are:
657 * - 5 - five layers Tx Scheduler Topology Tree
658 * - 9 - nine layers Tx Scheduler Topology Tree
659 *
660 * Return: zero when passed parameter value is supported. Negative value on
661 * error.
662 */
663static int ice_devlink_tx_sched_layers_validate(struct devlink *devlink, u32 id,
664						union devlink_param_value val,
665						struct netlink_ext_ack *extack)
666{
667	if (val.vu8 != ICE_SCHED_5_LAYERS && val.vu8 != ICE_SCHED_9_LAYERS) {
668		NL_SET_ERR_MSG_MOD(extack,
669				   "Wrong number of tx scheduler layers provided.");
670		return -EINVAL;
671	}
672
673	return 0;
674}
675
676/**
677 * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
678 * @pf: pf struct
679 *
680 * This function tears down tree exported during VF's creation.
681 */
682void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
683{
684	struct devlink *devlink;
685	struct ice_vf *vf;
686	unsigned int bkt;
687
688	devlink = priv_to_devlink(pf);
689
690	devl_lock(devlink);
691	mutex_lock(&pf->vfs.table_lock);
692	ice_for_each_vf(pf, bkt, vf) {
693		if (vf->devlink_port.devlink_rate)
694			devl_rate_leaf_destroy(&vf->devlink_port);
695	}
696	mutex_unlock(&pf->vfs.table_lock);
697
698	devl_rate_nodes_destroy(devlink);
699	devl_unlock(devlink);
700}
701
702/**
703 * ice_enable_custom_tx - try to enable custom Tx feature
704 * @pf: pf struct
705 *
706 * This function tries to enable custom Tx feature,
707 * it's not possible to enable it, if DCB or ADQ is active.
708 */
709static bool ice_enable_custom_tx(struct ice_pf *pf)
710{
711	struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
712	struct device *dev = ice_pf_to_dev(pf);
713
714	if (pi->is_custom_tx_enabled)
715		/* already enabled, return true */
716		return true;
717
718	if (ice_is_adq_active(pf)) {
719		dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
720		return false;
721	}
722
723	if (ice_is_dcb_active(pf)) {
724		dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
725		return false;
726	}
727
728	pi->is_custom_tx_enabled = true;
729
730	return true;
731}
732
733/**
734 * ice_traverse_tx_tree - traverse Tx scheduler tree
735 * @devlink: devlink struct
736 * @node: current node, used for recursion
737 * @tc_node: tc_node struct, that is treated as a root
738 * @pf: pf struct
739 *
740 * This function traverses Tx scheduler tree and exports
741 * entire structure to the devlink-rate.
742 */
743static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
744				 struct ice_sched_node *tc_node, struct ice_pf *pf)
745{
746	struct devlink_rate *rate_node = NULL;
747	struct ice_vf *vf;
748	int i;
749
750	if (node->rate_node)
751		/* already added, skip to the next */
752		goto traverse_children;
753
754	if (node->parent == tc_node) {
755		/* create root node */
756		rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
757	} else if (node->vsi_handle &&
758		   pf->vsi[node->vsi_handle]->vf) {
759		vf = pf->vsi[node->vsi_handle]->vf;
760		if (!vf->devlink_port.devlink_rate)
761			/* leaf nodes doesn't have children
762			 * so we don't set rate_node
763			 */
764			devl_rate_leaf_create(&vf->devlink_port, node,
765					      node->parent->rate_node);
766	} else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
767		   node->parent->rate_node) {
768		rate_node = devl_rate_node_create(devlink, node, node->name,
769						  node->parent->rate_node);
770	}
771
772	if (rate_node && !IS_ERR(rate_node))
773		node->rate_node = rate_node;
774
775traverse_children:
776	for (i = 0; i < node->num_children; i++)
777		ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
778}
779
780/**
781 * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
782 * @devlink: devlink struct
783 * @vsi: main vsi struct
784 *
785 * This function finds a root node, then calls ice_traverse_tx tree, which
786 * traverses the tree and exports it's contents to devlink rate.
787 */
788int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
789{
790	struct ice_port_info *pi = vsi->port_info;
791	struct ice_sched_node *tc_node;
792	struct ice_pf *pf = vsi->back;
793	int i;
794
795	tc_node = pi->root->children[0];
796	mutex_lock(&pi->sched_lock);
797	devl_lock(devlink);
798	for (i = 0; i < tc_node->num_children; i++)
799		ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
800	devl_unlock(devlink);
801	mutex_unlock(&pi->sched_lock);
802
803	return 0;
804}
805
806static void ice_clear_rate_nodes(struct ice_sched_node *node)
807{
808	node->rate_node = NULL;
809
810	for (int i = 0; i < node->num_children; i++)
811		ice_clear_rate_nodes(node->children[i]);
812}
813
814/**
815 * ice_devlink_rate_clear_tx_topology - clear node->rate_node
816 * @vsi: main vsi struct
817 *
818 * Clear rate_node to cleanup creation of Tx topology.
819 *
820 */
821void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi)
822{
823	struct ice_port_info *pi = vsi->port_info;
824
825	mutex_lock(&pi->sched_lock);
826	ice_clear_rate_nodes(pi->root->children[0]);
827	mutex_unlock(&pi->sched_lock);
828}
829
830/**
831 * ice_set_object_tx_share - sets node scheduling parameter
832 * @pi: devlink struct instance
833 * @node: node struct instance
834 * @bw: bandwidth in bytes per second
835 * @extack: extended netdev ack structure
836 *
837 * This function sets ICE_MIN_BW scheduling BW limit.
838 */
839static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
840				   u64 bw, struct netlink_ext_ack *extack)
841{
842	int status;
843
844	mutex_lock(&pi->sched_lock);
845	/* converts bytes per second to kilo bits per second */
846	node->tx_share = div_u64(bw, 125);
847	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
848	mutex_unlock(&pi->sched_lock);
849
850	if (status)
851		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
852
853	return status;
854}
855
856/**
857 * ice_set_object_tx_max - sets node scheduling parameter
858 * @pi: devlink struct instance
859 * @node: node struct instance
860 * @bw: bandwidth in bytes per second
861 * @extack: extended netdev ack structure
862 *
863 * This function sets ICE_MAX_BW scheduling BW limit.
864 */
865static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
866				 u64 bw, struct netlink_ext_ack *extack)
867{
868	int status;
869
870	mutex_lock(&pi->sched_lock);
871	/* converts bytes per second value to kilo bits per second */
872	node->tx_max = div_u64(bw, 125);
873	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
874	mutex_unlock(&pi->sched_lock);
875
876	if (status)
877		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
878
879	return status;
880}
881
882/**
883 * ice_set_object_tx_priority - sets node scheduling parameter
884 * @pi: devlink struct instance
885 * @node: node struct instance
886 * @priority: value representing priority for strict priority arbitration
887 * @extack: extended netdev ack structure
888 *
889 * This function sets priority of node among siblings.
890 */
891static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
892				      u32 priority, struct netlink_ext_ack *extack)
893{
894	int status;
895
896	if (priority >= 8) {
897		NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
898		return -EINVAL;
899	}
900
901	mutex_lock(&pi->sched_lock);
902	node->tx_priority = priority;
903	status = ice_sched_set_node_priority(pi, node, node->tx_priority);
904	mutex_unlock(&pi->sched_lock);
905
906	if (status)
907		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
908
909	return status;
910}
911
912/**
913 * ice_set_object_tx_weight - sets node scheduling parameter
914 * @pi: devlink struct instance
915 * @node: node struct instance
916 * @weight: value represeting relative weight for WFQ arbitration
917 * @extack: extended netdev ack structure
918 *
919 * This function sets node weight for WFQ algorithm.
920 */
921static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
922				    u32 weight, struct netlink_ext_ack *extack)
923{
924	int status;
925
926	if (weight > 200 || weight < 1) {
927		NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
928		return -EINVAL;
929	}
930
931	mutex_lock(&pi->sched_lock);
932	node->tx_weight = weight;
933	status = ice_sched_set_node_weight(pi, node, node->tx_weight);
934	mutex_unlock(&pi->sched_lock);
935
936	if (status)
937		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
938
939	return status;
940}
941
942/**
943 * ice_get_pi_from_dev_rate - get port info from devlink_rate
944 * @rate_node: devlink struct instance
945 *
946 * This function returns corresponding port_info struct of devlink_rate
947 */
948static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
949{
950	struct ice_pf *pf = devlink_priv(rate_node->devlink);
951
952	return ice_get_main_vsi(pf)->port_info;
953}
954
955static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
956				     struct netlink_ext_ack *extack)
957{
958	struct ice_sched_node *node;
959	struct ice_port_info *pi;
960
961	pi = ice_get_pi_from_dev_rate(rate_node);
962
963	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
964		return -EBUSY;
965
966	/* preallocate memory for ice_sched_node */
967	node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
968	*priv = node;
969
970	return 0;
971}
972
973static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
974				     struct netlink_ext_ack *extack)
975{
976	struct ice_sched_node *node, *tc_node;
977	struct ice_port_info *pi;
978
979	pi = ice_get_pi_from_dev_rate(rate_node);
980	tc_node = pi->root->children[0];
981	node = priv;
982
983	if (!rate_node->parent || !node || tc_node == node || !extack)
984		return 0;
985
986	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
987		return -EBUSY;
988
989	/* can't allow to delete a node with children */
990	if (node->num_children)
991		return -EINVAL;
992
993	mutex_lock(&pi->sched_lock);
994	ice_free_sched_node(pi, node);
995	mutex_unlock(&pi->sched_lock);
996
997	return 0;
998}
999
1000static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1001					    u64 tx_max, struct netlink_ext_ack *extack)
1002{
1003	struct ice_sched_node *node = priv;
1004
1005	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1006		return -EBUSY;
1007
1008	if (!node)
1009		return 0;
1010
1011	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1012				     node, tx_max, extack);
1013}
1014
1015static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1016					      u64 tx_share, struct netlink_ext_ack *extack)
1017{
1018	struct ice_sched_node *node = priv;
1019
1020	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1021		return -EBUSY;
1022
1023	if (!node)
1024		return 0;
1025
1026	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1027				       tx_share, extack);
1028}
1029
1030static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1031						 u32 tx_priority, struct netlink_ext_ack *extack)
1032{
1033	struct ice_sched_node *node = priv;
1034
1035	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1036		return -EBUSY;
1037
1038	if (!node)
1039		return 0;
1040
1041	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1042					  tx_priority, extack);
1043}
1044
1045static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1046					       u32 tx_weight, struct netlink_ext_ack *extack)
1047{
1048	struct ice_sched_node *node = priv;
1049
1050	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1051		return -EBUSY;
1052
1053	if (!node)
1054		return 0;
1055
1056	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1057					tx_weight, extack);
1058}
1059
1060static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1061					    u64 tx_max, struct netlink_ext_ack *extack)
1062{
1063	struct ice_sched_node *node = priv;
1064
1065	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1066		return -EBUSY;
1067
1068	if (!node)
1069		return 0;
1070
1071	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1072				     node, tx_max, extack);
1073}
1074
1075static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1076					      u64 tx_share, struct netlink_ext_ack *extack)
1077{
1078	struct ice_sched_node *node = priv;
1079
1080	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1081		return -EBUSY;
1082
1083	if (!node)
1084		return 0;
1085
1086	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1087				       node, tx_share, extack);
1088}
1089
1090static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1091						 u32 tx_priority, struct netlink_ext_ack *extack)
1092{
1093	struct ice_sched_node *node = priv;
1094
1095	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1096		return -EBUSY;
1097
1098	if (!node)
1099		return 0;
1100
1101	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1102					  node, tx_priority, extack);
1103}
1104
1105static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1106					       u32 tx_weight, struct netlink_ext_ack *extack)
1107{
1108	struct ice_sched_node *node = priv;
1109
1110	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1111		return -EBUSY;
1112
1113	if (!node)
1114		return 0;
1115
1116	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1117					node, tx_weight, extack);
1118}
1119
1120static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1121				  struct devlink_rate *parent,
1122				  void *priv, void *parent_priv,
1123				  struct netlink_ext_ack *extack)
1124{
1125	struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1126	struct ice_sched_node *tc_node, *node, *parent_node;
1127	u16 num_nodes_added;
1128	u32 first_node_teid;
1129	u32 node_teid;
1130	int status;
1131
1132	tc_node = pi->root->children[0];
1133	node = priv;
1134
1135	if (!extack)
1136		return 0;
1137
1138	if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1139		return -EBUSY;
1140
1141	if (!parent) {
1142		if (!node || tc_node == node || node->num_children)
1143			return -EINVAL;
1144
1145		mutex_lock(&pi->sched_lock);
1146		ice_free_sched_node(pi, node);
1147		mutex_unlock(&pi->sched_lock);
1148
1149		return 0;
1150	}
1151
1152	parent_node = parent_priv;
1153
1154	/* if the node doesn't exist, create it */
1155	if (!node->parent) {
1156		mutex_lock(&pi->sched_lock);
1157		status = ice_sched_add_elems(pi, tc_node, parent_node,
1158					     parent_node->tx_sched_layer + 1,
1159					     1, &num_nodes_added, &first_node_teid,
1160					     &node);
1161		mutex_unlock(&pi->sched_lock);
1162
1163		if (status) {
1164			NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1165			return status;
1166		}
1167
1168		if (devlink_rate->tx_share)
1169			ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1170		if (devlink_rate->tx_max)
1171			ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1172		if (devlink_rate->tx_priority)
1173			ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1174		if (devlink_rate->tx_weight)
1175			ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1176	} else {
1177		node_teid = le32_to_cpu(node->info.node_teid);
1178		mutex_lock(&pi->sched_lock);
1179		status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1180		mutex_unlock(&pi->sched_lock);
1181
1182		if (status)
1183			NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1184	}
1185
1186	return status;
1187}
1188
1189/**
1190 * ice_devlink_reinit_up - do reinit of the given PF
1191 * @pf: pointer to the PF struct
1192 */
1193static int ice_devlink_reinit_up(struct ice_pf *pf)
1194{
1195	struct ice_vsi *vsi = ice_get_main_vsi(pf);
1196	int err;
1197
1198	err = ice_init_dev(pf);
1199	if (err)
1200		return err;
1201
1202	vsi->flags = ICE_VSI_FLAG_INIT;
1203
1204	rtnl_lock();
1205	err = ice_vsi_cfg(vsi);
1206	rtnl_unlock();
1207	if (err)
1208		goto err_vsi_cfg;
1209
1210	/* No need to take devl_lock, it's already taken by devlink API */
1211	err = ice_load(pf);
1212	if (err)
1213		goto err_load;
1214
1215	return 0;
1216
1217err_load:
1218	rtnl_lock();
1219	ice_vsi_decfg(vsi);
1220	rtnl_unlock();
1221err_vsi_cfg:
1222	ice_deinit_dev(pf);
1223	return err;
1224}
1225
1226/**
1227 * ice_devlink_reload_up - do reload up after reinit
1228 * @devlink: pointer to the devlink instance reloading
1229 * @action: the action requested
1230 * @limit: limits imposed by userspace, such as not resetting
1231 * @actions_performed: on return, indicate what actions actually performed
1232 * @extack: netlink extended ACK structure
1233 */
1234static int
1235ice_devlink_reload_up(struct devlink *devlink,
1236		      enum devlink_reload_action action,
1237		      enum devlink_reload_limit limit,
1238		      u32 *actions_performed,
1239		      struct netlink_ext_ack *extack)
1240{
1241	struct ice_pf *pf = devlink_priv(devlink);
1242
1243	switch (action) {
1244	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1245		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1246		return ice_devlink_reinit_up(pf);
1247	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1248		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1249		return ice_devlink_reload_empr_finish(pf, extack);
1250	default:
1251		WARN_ON(1);
1252		return -EOPNOTSUPP;
1253	}
1254}
1255
1256static const struct devlink_ops ice_devlink_ops = {
1257	.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1258	.reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1259			  BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1260	.reload_down = ice_devlink_reload_down,
1261	.reload_up = ice_devlink_reload_up,
1262	.eswitch_mode_get = ice_eswitch_mode_get,
1263	.eswitch_mode_set = ice_eswitch_mode_set,
1264	.info_get = ice_devlink_info_get,
1265	.flash_update = ice_devlink_flash_update,
1266
1267	.rate_node_new = ice_devlink_rate_node_new,
1268	.rate_node_del = ice_devlink_rate_node_del,
1269
1270	.rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1271	.rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1272	.rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1273	.rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1274
1275	.rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1276	.rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1277	.rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1278	.rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1279
1280	.rate_leaf_parent_set = ice_devlink_set_parent,
1281	.rate_node_parent_set = ice_devlink_set_parent,
1282};
1283
1284static int
1285ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1286			    struct devlink_param_gset_ctx *ctx)
1287{
1288	struct ice_pf *pf = devlink_priv(devlink);
1289
1290	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
1291
1292	return 0;
1293}
1294
1295static int ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1296				       struct devlink_param_gset_ctx *ctx,
1297				       struct netlink_ext_ack *extack)
1298{
1299	struct ice_pf *pf = devlink_priv(devlink);
1300	bool roce_ena = ctx->val.vbool;
1301	int ret;
1302
1303	if (!roce_ena) {
1304		ice_unplug_aux_dev(pf);
1305		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1306		return 0;
1307	}
1308
1309	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
1310	ret = ice_plug_aux_dev(pf);
1311	if (ret)
1312		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1313
1314	return ret;
1315}
1316
1317static int
1318ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1319				 union devlink_param_value val,
1320				 struct netlink_ext_ack *extack)
1321{
1322	struct ice_pf *pf = devlink_priv(devlink);
1323
1324	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1325		return -EOPNOTSUPP;
1326
1327	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
1328		NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1329		return -EOPNOTSUPP;
1330	}
1331
1332	return 0;
1333}
1334
1335static int
1336ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1337			  struct devlink_param_gset_ctx *ctx)
1338{
1339	struct ice_pf *pf = devlink_priv(devlink);
1340
1341	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
1342
1343	return 0;
1344}
1345
1346static int ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1347				     struct devlink_param_gset_ctx *ctx,
1348				     struct netlink_ext_ack *extack)
1349{
1350	struct ice_pf *pf = devlink_priv(devlink);
1351	bool iw_ena = ctx->val.vbool;
1352	int ret;
1353
1354	if (!iw_ena) {
1355		ice_unplug_aux_dev(pf);
1356		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1357		return 0;
1358	}
1359
1360	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
1361	ret = ice_plug_aux_dev(pf);
1362	if (ret)
1363		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1364
1365	return ret;
1366}
1367
1368static int
1369ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1370			       union devlink_param_value val,
1371			       struct netlink_ext_ack *extack)
1372{
1373	struct ice_pf *pf = devlink_priv(devlink);
1374
1375	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1376		return -EOPNOTSUPP;
1377
1378	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
1379		NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1380		return -EOPNOTSUPP;
1381	}
1382
1383	return 0;
1384}
1385
1386enum ice_param_id {
1387	ICE_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
1388	ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1389};
1390
1391static const struct devlink_param ice_dvl_rdma_params[] = {
1392	DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1393			      ice_devlink_enable_roce_get,
1394			      ice_devlink_enable_roce_set,
1395			      ice_devlink_enable_roce_validate),
1396	DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1397			      ice_devlink_enable_iw_get,
1398			      ice_devlink_enable_iw_set,
1399			      ice_devlink_enable_iw_validate),
1400};
1401
1402static const struct devlink_param ice_dvl_sched_params[] = {
1403	DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1404			     "tx_scheduling_layers",
1405			     DEVLINK_PARAM_TYPE_U8,
1406			     BIT(DEVLINK_PARAM_CMODE_PERMANENT),
1407			     ice_devlink_tx_sched_layers_get,
1408			     ice_devlink_tx_sched_layers_set,
1409			     ice_devlink_tx_sched_layers_validate),
1410};
1411
1412static void ice_devlink_free(void *devlink_ptr)
1413{
1414	devlink_free((struct devlink *)devlink_ptr);
1415}
1416
1417/**
1418 * ice_allocate_pf - Allocate devlink and return PF structure pointer
1419 * @dev: the device to allocate for
1420 *
1421 * Allocate a devlink instance for this device and return the private area as
1422 * the PF structure. The devlink memory is kept track of through devres by
1423 * adding an action to remove it when unwinding.
1424 */
1425struct ice_pf *ice_allocate_pf(struct device *dev)
1426{
1427	struct devlink *devlink;
1428
1429	devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1430	if (!devlink)
1431		return NULL;
1432
1433	/* Add an action to teardown the devlink when unwinding the driver */
1434	if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1435		return NULL;
1436
1437	return devlink_priv(devlink);
1438}
1439
1440/**
1441 * ice_devlink_register - Register devlink interface for this PF
1442 * @pf: the PF to register the devlink for.
1443 *
1444 * Register the devlink instance associated with this physical function.
1445 *
1446 * Return: zero on success or an error code on failure.
1447 */
1448void ice_devlink_register(struct ice_pf *pf)
1449{
1450	struct devlink *devlink = priv_to_devlink(pf);
1451
1452	devl_register(devlink);
1453}
1454
1455/**
1456 * ice_devlink_unregister - Unregister devlink resources for this PF.
1457 * @pf: the PF structure to cleanup
1458 *
1459 * Releases resources used by devlink and cleans up associated memory.
1460 */
1461void ice_devlink_unregister(struct ice_pf *pf)
1462{
1463	devl_unregister(priv_to_devlink(pf));
1464}
1465
1466int ice_devlink_register_params(struct ice_pf *pf)
1467{
1468	struct devlink *devlink = priv_to_devlink(pf);
1469	struct ice_hw *hw = &pf->hw;
1470	int status;
1471
1472	status = devl_params_register(devlink, ice_dvl_rdma_params,
1473				      ARRAY_SIZE(ice_dvl_rdma_params));
1474	if (status)
1475		return status;
1476
1477	if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1478		status = devl_params_register(devlink, ice_dvl_sched_params,
1479					      ARRAY_SIZE(ice_dvl_sched_params));
1480
1481	return status;
1482}
1483
1484void ice_devlink_unregister_params(struct ice_pf *pf)
1485{
1486	struct devlink *devlink = priv_to_devlink(pf);
1487	struct ice_hw *hw = &pf->hw;
1488
1489	devl_params_unregister(devlink, ice_dvl_rdma_params,
1490			       ARRAY_SIZE(ice_dvl_rdma_params));
1491
1492	if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1493		devl_params_unregister(devlink, ice_dvl_sched_params,
1494				       ARRAY_SIZE(ice_dvl_sched_params));
1495}
1496
1497#define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1498
1499static const struct devlink_region_ops ice_nvm_region_ops;
1500static const struct devlink_region_ops ice_sram_region_ops;
1501
1502/**
1503 * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1504 * @devlink: the devlink instance
1505 * @ops: the devlink region to snapshot
1506 * @extack: extended ACK response structure
1507 * @data: on exit points to snapshot data buffer
1508 *
1509 * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1510 * the nvm-flash or shadow-ram region.
1511 *
1512 * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1513 * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1514 * interface.
1515 *
1516 * @returns zero on success, and updates the data pointer. Returns a non-zero
1517 * error code on failure.
1518 */
1519static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1520				    const struct devlink_region_ops *ops,
1521				    struct netlink_ext_ack *extack, u8 **data)
1522{
1523	struct ice_pf *pf = devlink_priv(devlink);
1524	struct device *dev = ice_pf_to_dev(pf);
1525	struct ice_hw *hw = &pf->hw;
1526	bool read_shadow_ram;
1527	u8 *nvm_data, *tmp, i;
1528	u32 nvm_size, left;
1529	s8 num_blks;
1530	int status;
1531
1532	if (ops == &ice_nvm_region_ops) {
1533		read_shadow_ram = false;
1534		nvm_size = hw->flash.flash_size;
1535	} else if (ops == &ice_sram_region_ops) {
1536		read_shadow_ram = true;
1537		nvm_size = hw->flash.sr_words * 2u;
1538	} else {
1539		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1540		return -EOPNOTSUPP;
1541	}
1542
1543	nvm_data = vzalloc(nvm_size);
1544	if (!nvm_data)
1545		return -ENOMEM;
1546
1547	num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1548	tmp = nvm_data;
1549	left = nvm_size;
1550
1551	/* Some systems take longer to read the NVM than others which causes the
1552	 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1553	 * this by breaking the reads of the NVM into smaller chunks that will
1554	 * probably not take as long. This has some overhead since we are
1555	 * increasing the number of AQ commands, but it should always work
1556	 */
1557	for (i = 0; i < num_blks; i++) {
1558		u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1559
1560		status = ice_acquire_nvm(hw, ICE_RES_READ);
1561		if (status) {
1562			dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1563				status, hw->adminq.sq_last_status);
1564			NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1565			vfree(nvm_data);
1566			return -EIO;
1567		}
1568
1569		status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1570					   &read_sz, tmp, read_shadow_ram);
1571		if (status) {
1572			dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1573				read_sz, status, hw->adminq.sq_last_status);
1574			NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1575			ice_release_nvm(hw);
1576			vfree(nvm_data);
1577			return -EIO;
1578		}
1579		ice_release_nvm(hw);
1580
1581		tmp += read_sz;
1582		left -= read_sz;
1583	}
1584
1585	*data = nvm_data;
1586
1587	return 0;
1588}
1589
1590/**
1591 * ice_devlink_nvm_read - Read a portion of NVM flash contents
1592 * @devlink: the devlink instance
1593 * @ops: the devlink region to snapshot
1594 * @extack: extended ACK response structure
1595 * @offset: the offset to start at
1596 * @size: the amount to read
1597 * @data: the data buffer to read into
1598 *
1599 * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1600 * read a section of the NVM contents.
1601 *
1602 * It reads from either the nvm-flash or shadow-ram region contents.
1603 *
1604 * @returns zero on success, and updates the data pointer. Returns a non-zero
1605 * error code on failure.
1606 */
1607static int ice_devlink_nvm_read(struct devlink *devlink,
1608				const struct devlink_region_ops *ops,
1609				struct netlink_ext_ack *extack,
1610				u64 offset, u32 size, u8 *data)
1611{
1612	struct ice_pf *pf = devlink_priv(devlink);
1613	struct device *dev = ice_pf_to_dev(pf);
1614	struct ice_hw *hw = &pf->hw;
1615	bool read_shadow_ram;
1616	u64 nvm_size;
1617	int status;
1618
1619	if (ops == &ice_nvm_region_ops) {
1620		read_shadow_ram = false;
1621		nvm_size = hw->flash.flash_size;
1622	} else if (ops == &ice_sram_region_ops) {
1623		read_shadow_ram = true;
1624		nvm_size = hw->flash.sr_words * 2u;
1625	} else {
1626		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1627		return -EOPNOTSUPP;
1628	}
1629
1630	if (offset + size >= nvm_size) {
1631		NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1632		return -ERANGE;
1633	}
1634
1635	status = ice_acquire_nvm(hw, ICE_RES_READ);
1636	if (status) {
1637		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1638			status, hw->adminq.sq_last_status);
1639		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1640		return -EIO;
1641	}
1642
1643	status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1644				   read_shadow_ram);
1645	if (status) {
1646		dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1647			size, status, hw->adminq.sq_last_status);
1648		NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1649		ice_release_nvm(hw);
1650		return -EIO;
1651	}
1652	ice_release_nvm(hw);
1653
1654	return 0;
1655}
1656
1657/**
1658 * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1659 * @devlink: the devlink instance
1660 * @ops: the devlink region being snapshotted
1661 * @extack: extended ACK response structure
1662 * @data: on exit points to snapshot data buffer
1663 *
1664 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1665 * the device-caps devlink region. It captures a snapshot of the device
1666 * capabilities reported by firmware.
1667 *
1668 * @returns zero on success, and updates the data pointer. Returns a non-zero
1669 * error code on failure.
1670 */
1671static int
1672ice_devlink_devcaps_snapshot(struct devlink *devlink,
1673			     const struct devlink_region_ops *ops,
1674			     struct netlink_ext_ack *extack, u8 **data)
1675{
1676	struct ice_pf *pf = devlink_priv(devlink);
1677	struct device *dev = ice_pf_to_dev(pf);
1678	struct ice_hw *hw = &pf->hw;
1679	void *devcaps;
1680	int status;
1681
1682	devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1683	if (!devcaps)
1684		return -ENOMEM;
1685
1686	status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1687				  ice_aqc_opc_list_dev_caps, NULL);
1688	if (status) {
1689		dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1690			status, hw->adminq.sq_last_status);
1691		NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1692		vfree(devcaps);
1693		return status;
1694	}
1695
1696	*data = (u8 *)devcaps;
1697
1698	return 0;
1699}
1700
1701static const struct devlink_region_ops ice_nvm_region_ops = {
1702	.name = "nvm-flash",
1703	.destructor = vfree,
1704	.snapshot = ice_devlink_nvm_snapshot,
1705	.read = ice_devlink_nvm_read,
1706};
1707
1708static const struct devlink_region_ops ice_sram_region_ops = {
1709	.name = "shadow-ram",
1710	.destructor = vfree,
1711	.snapshot = ice_devlink_nvm_snapshot,
1712	.read = ice_devlink_nvm_read,
1713};
1714
1715static const struct devlink_region_ops ice_devcaps_region_ops = {
1716	.name = "device-caps",
1717	.destructor = vfree,
1718	.snapshot = ice_devlink_devcaps_snapshot,
1719};
1720
1721/**
1722 * ice_devlink_init_regions - Initialize devlink regions
1723 * @pf: the PF device structure
1724 *
1725 * Create devlink regions used to enable access to dump the contents of the
1726 * flash memory on the device.
1727 */
1728void ice_devlink_init_regions(struct ice_pf *pf)
1729{
1730	struct devlink *devlink = priv_to_devlink(pf);
1731	struct device *dev = ice_pf_to_dev(pf);
1732	u64 nvm_size, sram_size;
1733
1734	nvm_size = pf->hw.flash.flash_size;
1735	pf->nvm_region = devl_region_create(devlink, &ice_nvm_region_ops, 1,
1736					    nvm_size);
1737	if (IS_ERR(pf->nvm_region)) {
1738		dev_err(dev, "failed to create NVM devlink region, err %ld\n",
1739			PTR_ERR(pf->nvm_region));
1740		pf->nvm_region = NULL;
1741	}
1742
1743	sram_size = pf->hw.flash.sr_words * 2u;
1744	pf->sram_region = devl_region_create(devlink, &ice_sram_region_ops,
1745					     1, sram_size);
1746	if (IS_ERR(pf->sram_region)) {
1747		dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
1748			PTR_ERR(pf->sram_region));
1749		pf->sram_region = NULL;
1750	}
1751
1752	pf->devcaps_region = devl_region_create(devlink,
1753						&ice_devcaps_region_ops, 10,
1754						ICE_AQ_MAX_BUF_LEN);
1755	if (IS_ERR(pf->devcaps_region)) {
1756		dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
1757			PTR_ERR(pf->devcaps_region));
1758		pf->devcaps_region = NULL;
1759	}
1760}
1761
1762/**
1763 * ice_devlink_destroy_regions - Destroy devlink regions
1764 * @pf: the PF device structure
1765 *
1766 * Remove previously created regions for this PF.
1767 */
1768void ice_devlink_destroy_regions(struct ice_pf *pf)
1769{
1770	if (pf->nvm_region)
1771		devl_region_destroy(pf->nvm_region);
1772
1773	if (pf->sram_region)
1774		devl_region_destroy(pf->sram_region);
1775
1776	if (pf->devcaps_region)
1777		devl_region_destroy(pf->devcaps_region);
1778}
1779