1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/bitfield.h>
5#include <linux/prefetch.h>
6
7#include "iavf.h"
8#include "iavf_trace.h"
9#include "iavf_prototype.h"
10
11static __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
12			 u32 td_tag)
13{
14	return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
15			   ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
16			   ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
17			   ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
18			   ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
19}
20
21#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
22
23/**
24 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
25 * @ring:      the ring that owns the buffer
26 * @tx_buffer: the buffer to free
27 **/
28static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
29					    struct iavf_tx_buffer *tx_buffer)
30{
31	if (tx_buffer->skb) {
32		if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
33			kfree(tx_buffer->raw_buf);
34		else
35			dev_kfree_skb_any(tx_buffer->skb);
36		if (dma_unmap_len(tx_buffer, len))
37			dma_unmap_single(ring->dev,
38					 dma_unmap_addr(tx_buffer, dma),
39					 dma_unmap_len(tx_buffer, len),
40					 DMA_TO_DEVICE);
41	} else if (dma_unmap_len(tx_buffer, len)) {
42		dma_unmap_page(ring->dev,
43			       dma_unmap_addr(tx_buffer, dma),
44			       dma_unmap_len(tx_buffer, len),
45			       DMA_TO_DEVICE);
46	}
47
48	tx_buffer->next_to_watch = NULL;
49	tx_buffer->skb = NULL;
50	dma_unmap_len_set(tx_buffer, len, 0);
51	/* tx_buffer must be completely set up in the transmit path */
52}
53
54/**
55 * iavf_clean_tx_ring - Free any empty Tx buffers
56 * @tx_ring: ring to be cleaned
57 **/
58static void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
59{
60	unsigned long bi_size;
61	u16 i;
62
63	/* ring already cleared, nothing to do */
64	if (!tx_ring->tx_bi)
65		return;
66
67	/* Free all the Tx ring sk_buffs */
68	for (i = 0; i < tx_ring->count; i++)
69		iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
70
71	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
72	memset(tx_ring->tx_bi, 0, bi_size);
73
74	/* Zero out the descriptor ring */
75	memset(tx_ring->desc, 0, tx_ring->size);
76
77	tx_ring->next_to_use = 0;
78	tx_ring->next_to_clean = 0;
79
80	if (!tx_ring->netdev)
81		return;
82
83	/* cleanup Tx queue statistics */
84	netdev_tx_reset_queue(txring_txq(tx_ring));
85}
86
87/**
88 * iavf_free_tx_resources - Free Tx resources per queue
89 * @tx_ring: Tx descriptor ring for a specific queue
90 *
91 * Free all transmit software resources
92 **/
93void iavf_free_tx_resources(struct iavf_ring *tx_ring)
94{
95	iavf_clean_tx_ring(tx_ring);
96	kfree(tx_ring->tx_bi);
97	tx_ring->tx_bi = NULL;
98
99	if (tx_ring->desc) {
100		dma_free_coherent(tx_ring->dev, tx_ring->size,
101				  tx_ring->desc, tx_ring->dma);
102		tx_ring->desc = NULL;
103	}
104}
105
106/**
107 * iavf_get_tx_pending - how many Tx descriptors not processed
108 * @ring: the ring of descriptors
109 * @in_sw: is tx_pending being checked in SW or HW
110 *
111 * Since there is no access to the ring head register
112 * in XL710, we need to use our local copies
113 **/
114static u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
115{
116	u32 head, tail;
117
118	/* underlying hardware might not allow access and/or always return
119	 * 0 for the head/tail registers so just use the cached values
120	 */
121	head = ring->next_to_clean;
122	tail = ring->next_to_use;
123
124	if (head != tail)
125		return (head < tail) ?
126			tail - head : (tail + ring->count - head);
127
128	return 0;
129}
130
131/**
132 * iavf_force_wb - Issue SW Interrupt so HW does a wb
133 * @vsi: the VSI we care about
134 * @q_vector: the vector on which to force writeback
135 **/
136static void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
137{
138	u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
139		  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
140		  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
141		  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
142		  /* allow 00 to be written to the index */;
143
144	wr32(&vsi->back->hw,
145	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
146	     val);
147}
148
149/**
150 * iavf_detect_recover_hung - Function to detect and recover hung_queues
151 * @vsi:  pointer to vsi struct with tx queues
152 *
153 * VSI has netdev and netdev has TX queues. This function is to check each of
154 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
155 **/
156void iavf_detect_recover_hung(struct iavf_vsi *vsi)
157{
158	struct iavf_ring *tx_ring = NULL;
159	struct net_device *netdev;
160	unsigned int i;
161	int packets;
162
163	if (!vsi)
164		return;
165
166	if (test_bit(__IAVF_VSI_DOWN, vsi->state))
167		return;
168
169	netdev = vsi->netdev;
170	if (!netdev)
171		return;
172
173	if (!netif_carrier_ok(netdev))
174		return;
175
176	for (i = 0; i < vsi->back->num_active_queues; i++) {
177		tx_ring = &vsi->back->tx_rings[i];
178		if (tx_ring && tx_ring->desc) {
179			/* If packet counter has not changed the queue is
180			 * likely stalled, so force an interrupt for this
181			 * queue.
182			 *
183			 * prev_pkt_ctr would be negative if there was no
184			 * pending work.
185			 */
186			packets = tx_ring->stats.packets & INT_MAX;
187			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
188				iavf_force_wb(vsi, tx_ring->q_vector);
189				continue;
190			}
191
192			/* Memory barrier between read of packet count and call
193			 * to iavf_get_tx_pending()
194			 */
195			smp_rmb();
196			tx_ring->tx_stats.prev_pkt_ctr =
197			  iavf_get_tx_pending(tx_ring, true) ? packets : -1;
198		}
199	}
200}
201
202#define WB_STRIDE 4
203
204/**
205 * iavf_clean_tx_irq - Reclaim resources after transmit completes
206 * @vsi: the VSI we care about
207 * @tx_ring: Tx ring to clean
208 * @napi_budget: Used to determine if we are in netpoll
209 *
210 * Returns true if there's any budget left (e.g. the clean is finished)
211 **/
212static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
213			      struct iavf_ring *tx_ring, int napi_budget)
214{
215	int i = tx_ring->next_to_clean;
216	struct iavf_tx_buffer *tx_buf;
217	struct iavf_tx_desc *tx_desc;
218	unsigned int total_bytes = 0, total_packets = 0;
219	unsigned int budget = IAVF_DEFAULT_IRQ_WORK;
220
221	tx_buf = &tx_ring->tx_bi[i];
222	tx_desc = IAVF_TX_DESC(tx_ring, i);
223	i -= tx_ring->count;
224
225	do {
226		struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
227
228		/* if next_to_watch is not set then there is no work pending */
229		if (!eop_desc)
230			break;
231
232		/* prevent any other reads prior to eop_desc */
233		smp_rmb();
234
235		iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
236		/* if the descriptor isn't done, no work yet to do */
237		if (!(eop_desc->cmd_type_offset_bsz &
238		      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
239			break;
240
241		/* clear next_to_watch to prevent false hangs */
242		tx_buf->next_to_watch = NULL;
243
244		/* update the statistics for this packet */
245		total_bytes += tx_buf->bytecount;
246		total_packets += tx_buf->gso_segs;
247
248		/* free the skb */
249		napi_consume_skb(tx_buf->skb, napi_budget);
250
251		/* unmap skb header data */
252		dma_unmap_single(tx_ring->dev,
253				 dma_unmap_addr(tx_buf, dma),
254				 dma_unmap_len(tx_buf, len),
255				 DMA_TO_DEVICE);
256
257		/* clear tx_buffer data */
258		tx_buf->skb = NULL;
259		dma_unmap_len_set(tx_buf, len, 0);
260
261		/* unmap remaining buffers */
262		while (tx_desc != eop_desc) {
263			iavf_trace(clean_tx_irq_unmap,
264				   tx_ring, tx_desc, tx_buf);
265
266			tx_buf++;
267			tx_desc++;
268			i++;
269			if (unlikely(!i)) {
270				i -= tx_ring->count;
271				tx_buf = tx_ring->tx_bi;
272				tx_desc = IAVF_TX_DESC(tx_ring, 0);
273			}
274
275			/* unmap any remaining paged data */
276			if (dma_unmap_len(tx_buf, len)) {
277				dma_unmap_page(tx_ring->dev,
278					       dma_unmap_addr(tx_buf, dma),
279					       dma_unmap_len(tx_buf, len),
280					       DMA_TO_DEVICE);
281				dma_unmap_len_set(tx_buf, len, 0);
282			}
283		}
284
285		/* move us one more past the eop_desc for start of next pkt */
286		tx_buf++;
287		tx_desc++;
288		i++;
289		if (unlikely(!i)) {
290			i -= tx_ring->count;
291			tx_buf = tx_ring->tx_bi;
292			tx_desc = IAVF_TX_DESC(tx_ring, 0);
293		}
294
295		prefetch(tx_desc);
296
297		/* update budget accounting */
298		budget--;
299	} while (likely(budget));
300
301	i += tx_ring->count;
302	tx_ring->next_to_clean = i;
303	u64_stats_update_begin(&tx_ring->syncp);
304	tx_ring->stats.bytes += total_bytes;
305	tx_ring->stats.packets += total_packets;
306	u64_stats_update_end(&tx_ring->syncp);
307	tx_ring->q_vector->tx.total_bytes += total_bytes;
308	tx_ring->q_vector->tx.total_packets += total_packets;
309
310	if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
311		/* check to see if there are < 4 descriptors
312		 * waiting to be written back, then kick the hardware to force
313		 * them to be written back in case we stay in NAPI.
314		 * In this mode on X722 we do not enable Interrupt.
315		 */
316		unsigned int j = iavf_get_tx_pending(tx_ring, false);
317
318		if (budget &&
319		    ((j / WB_STRIDE) == 0) && (j > 0) &&
320		    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
321		    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
322			tx_ring->arm_wb = true;
323	}
324
325	/* notify netdev of completed buffers */
326	netdev_tx_completed_queue(txring_txq(tx_ring),
327				  total_packets, total_bytes);
328
329#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
330	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
331		     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
332		/* Make sure that anybody stopping the queue after this
333		 * sees the new next_to_clean.
334		 */
335		smp_mb();
336		if (__netif_subqueue_stopped(tx_ring->netdev,
337					     tx_ring->queue_index) &&
338		   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
339			netif_wake_subqueue(tx_ring->netdev,
340					    tx_ring->queue_index);
341			++tx_ring->tx_stats.restart_queue;
342		}
343	}
344
345	return !!budget;
346}
347
348/**
349 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
350 * @vsi: the VSI we care about
351 * @q_vector: the vector on which to enable writeback
352 *
353 **/
354static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
355				  struct iavf_q_vector *q_vector)
356{
357	u16 flags = q_vector->tx.ring[0].flags;
358	u32 val;
359
360	if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
361		return;
362
363	if (q_vector->arm_wb_state)
364		return;
365
366	val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
367	      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
368
369	wr32(&vsi->back->hw,
370	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
371	q_vector->arm_wb_state = true;
372}
373
374static bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
375				 struct iavf_ring_container *rc)
376{
377	return &q_vector->rx == rc;
378}
379
380#define IAVF_AIM_MULTIPLIER_100G	2560
381#define IAVF_AIM_MULTIPLIER_50G		1280
382#define IAVF_AIM_MULTIPLIER_40G		1024
383#define IAVF_AIM_MULTIPLIER_20G		512
384#define IAVF_AIM_MULTIPLIER_10G		256
385#define IAVF_AIM_MULTIPLIER_1G		32
386
387static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps)
388{
389	switch (speed_mbps) {
390	case SPEED_100000:
391		return IAVF_AIM_MULTIPLIER_100G;
392	case SPEED_50000:
393		return IAVF_AIM_MULTIPLIER_50G;
394	case SPEED_40000:
395		return IAVF_AIM_MULTIPLIER_40G;
396	case SPEED_25000:
397	case SPEED_20000:
398		return IAVF_AIM_MULTIPLIER_20G;
399	case SPEED_10000:
400	default:
401		return IAVF_AIM_MULTIPLIER_10G;
402	case SPEED_1000:
403	case SPEED_100:
404		return IAVF_AIM_MULTIPLIER_1G;
405	}
406}
407
408static unsigned int
409iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)
410{
411	switch (speed_virtchnl) {
412	case VIRTCHNL_LINK_SPEED_40GB:
413		return IAVF_AIM_MULTIPLIER_40G;
414	case VIRTCHNL_LINK_SPEED_25GB:
415	case VIRTCHNL_LINK_SPEED_20GB:
416		return IAVF_AIM_MULTIPLIER_20G;
417	case VIRTCHNL_LINK_SPEED_10GB:
418	default:
419		return IAVF_AIM_MULTIPLIER_10G;
420	case VIRTCHNL_LINK_SPEED_1GB:
421	case VIRTCHNL_LINK_SPEED_100MB:
422		return IAVF_AIM_MULTIPLIER_1G;
423	}
424}
425
426static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter)
427{
428	if (ADV_LINK_SUPPORT(adapter))
429		return IAVF_ITR_ADAPTIVE_MIN_INC *
430			iavf_mbps_itr_multiplier(adapter->link_speed_mbps);
431	else
432		return IAVF_ITR_ADAPTIVE_MIN_INC *
433			iavf_virtchnl_itr_multiplier(adapter->link_speed);
434}
435
436/**
437 * iavf_update_itr - update the dynamic ITR value based on statistics
438 * @q_vector: structure containing interrupt and ring information
439 * @rc: structure containing ring performance data
440 *
441 * Stores a new ITR value based on packets and byte
442 * counts during the last interrupt.  The advantage of per interrupt
443 * computation is faster updates and more accurate ITR for the current
444 * traffic pattern.  Constants in this function were computed
445 * based on theoretical maximum wire speed and thresholds were set based
446 * on testing data as well as attempting to minimize response time
447 * while increasing bulk throughput.
448 **/
449static void iavf_update_itr(struct iavf_q_vector *q_vector,
450			    struct iavf_ring_container *rc)
451{
452	unsigned int avg_wire_size, packets, bytes, itr;
453	unsigned long next_update = jiffies;
454
455	/* If we don't have any rings just leave ourselves set for maximum
456	 * possible latency so we take ourselves out of the equation.
457	 */
458	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
459		return;
460
461	/* For Rx we want to push the delay up and default to low latency.
462	 * for Tx we want to pull the delay down and default to high latency.
463	 */
464	itr = iavf_container_is_rx(q_vector, rc) ?
465	      IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
466	      IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
467
468	/* If we didn't update within up to 1 - 2 jiffies we can assume
469	 * that either packets are coming in so slow there hasn't been
470	 * any work, or that there is so much work that NAPI is dealing
471	 * with interrupt moderation and we don't need to do anything.
472	 */
473	if (time_after(next_update, rc->next_update))
474		goto clear_counts;
475
476	/* If itr_countdown is set it means we programmed an ITR within
477	 * the last 4 interrupt cycles. This has a side effect of us
478	 * potentially firing an early interrupt. In order to work around
479	 * this we need to throw out any data received for a few
480	 * interrupts following the update.
481	 */
482	if (q_vector->itr_countdown) {
483		itr = rc->target_itr;
484		goto clear_counts;
485	}
486
487	packets = rc->total_packets;
488	bytes = rc->total_bytes;
489
490	if (iavf_container_is_rx(q_vector, rc)) {
491		/* If Rx there are 1 to 4 packets and bytes are less than
492		 * 9000 assume insufficient data to use bulk rate limiting
493		 * approach unless Tx is already in bulk rate limiting. We
494		 * are likely latency driven.
495		 */
496		if (packets && packets < 4 && bytes < 9000 &&
497		    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
498			itr = IAVF_ITR_ADAPTIVE_LATENCY;
499			goto adjust_by_size;
500		}
501	} else if (packets < 4) {
502		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
503		 * bulk mode and we are receiving 4 or fewer packets just
504		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
505		 * that the Rx can relax.
506		 */
507		if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
508		    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
509		     IAVF_ITR_ADAPTIVE_MAX_USECS)
510			goto clear_counts;
511	} else if (packets > 32) {
512		/* If we have processed over 32 packets in a single interrupt
513		 * for Tx assume we need to switch over to "bulk" mode.
514		 */
515		rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
516	}
517
518	/* We have no packets to actually measure against. This means
519	 * either one of the other queues on this vector is active or
520	 * we are a Tx queue doing TSO with too high of an interrupt rate.
521	 *
522	 * Between 4 and 56 we can assume that our current interrupt delay
523	 * is only slightly too low. As such we should increase it by a small
524	 * fixed amount.
525	 */
526	if (packets < 56) {
527		itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
528		if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
529			itr &= IAVF_ITR_ADAPTIVE_LATENCY;
530			itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
531		}
532		goto clear_counts;
533	}
534
535	if (packets <= 256) {
536		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
537		itr &= IAVF_ITR_MASK;
538
539		/* Between 56 and 112 is our "goldilocks" zone where we are
540		 * working out "just right". Just report that our current
541		 * ITR is good for us.
542		 */
543		if (packets <= 112)
544			goto clear_counts;
545
546		/* If packet count is 128 or greater we are likely looking
547		 * at a slight overrun of the delay we want. Try halving
548		 * our delay to see if that will cut the number of packets
549		 * in half per interrupt.
550		 */
551		itr /= 2;
552		itr &= IAVF_ITR_MASK;
553		if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
554			itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
555
556		goto clear_counts;
557	}
558
559	/* The paths below assume we are dealing with a bulk ITR since
560	 * number of packets is greater than 256. We are just going to have
561	 * to compute a value and try to bring the count under control,
562	 * though for smaller packet sizes there isn't much we can do as
563	 * NAPI polling will likely be kicking in sooner rather than later.
564	 */
565	itr = IAVF_ITR_ADAPTIVE_BULK;
566
567adjust_by_size:
568	/* If packet counts are 256 or greater we can assume we have a gross
569	 * overestimation of what the rate should be. Instead of trying to fine
570	 * tune it just use the formula below to try and dial in an exact value
571	 * give the current packet size of the frame.
572	 */
573	avg_wire_size = bytes / packets;
574
575	/* The following is a crude approximation of:
576	 *  wmem_default / (size + overhead) = desired_pkts_per_int
577	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
578	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
579	 *
580	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
581	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
582	 * formula down to
583	 *
584	 *  (170 * (size + 24)) / (size + 640) = ITR
585	 *
586	 * We first do some math on the packet size and then finally bitshift
587	 * by 8 after rounding up. We also have to account for PCIe link speed
588	 * difference as ITR scales based on this.
589	 */
590	if (avg_wire_size <= 60) {
591		/* Start at 250k ints/sec */
592		avg_wire_size = 4096;
593	} else if (avg_wire_size <= 380) {
594		/* 250K ints/sec to 60K ints/sec */
595		avg_wire_size *= 40;
596		avg_wire_size += 1696;
597	} else if (avg_wire_size <= 1084) {
598		/* 60K ints/sec to 36K ints/sec */
599		avg_wire_size *= 15;
600		avg_wire_size += 11452;
601	} else if (avg_wire_size <= 1980) {
602		/* 36K ints/sec to 30K ints/sec */
603		avg_wire_size *= 5;
604		avg_wire_size += 22420;
605	} else {
606		/* plateau at a limit of 30K ints/sec */
607		avg_wire_size = 32256;
608	}
609
610	/* If we are in low latency mode halve our delay which doubles the
611	 * rate to somewhere between 100K to 16K ints/sec
612	 */
613	if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
614		avg_wire_size /= 2;
615
616	/* Resultant value is 256 times larger than it needs to be. This
617	 * gives us room to adjust the value as needed to either increase
618	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
619	 *
620	 * Use addition as we have already recorded the new latency flag
621	 * for the ITR value.
622	 */
623	itr += DIV_ROUND_UP(avg_wire_size,
624			    iavf_itr_divisor(q_vector->adapter)) *
625		IAVF_ITR_ADAPTIVE_MIN_INC;
626
627	if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
628		itr &= IAVF_ITR_ADAPTIVE_LATENCY;
629		itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
630	}
631
632clear_counts:
633	/* write back value */
634	rc->target_itr = itr;
635
636	/* next update should occur within next jiffy */
637	rc->next_update = next_update + 1;
638
639	rc->total_bytes = 0;
640	rc->total_packets = 0;
641}
642
643/**
644 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
645 * @tx_ring: the tx ring to set up
646 *
647 * Return 0 on success, negative on error
648 **/
649int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
650{
651	struct device *dev = tx_ring->dev;
652	int bi_size;
653
654	if (!dev)
655		return -ENOMEM;
656
657	/* warn if we are about to overwrite the pointer */
658	WARN_ON(tx_ring->tx_bi);
659	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
660	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
661	if (!tx_ring->tx_bi)
662		goto err;
663
664	/* round up to nearest 4K */
665	tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
666	tx_ring->size = ALIGN(tx_ring->size, 4096);
667	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
668					   &tx_ring->dma, GFP_KERNEL);
669	if (!tx_ring->desc) {
670		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
671			 tx_ring->size);
672		goto err;
673	}
674
675	tx_ring->next_to_use = 0;
676	tx_ring->next_to_clean = 0;
677	tx_ring->tx_stats.prev_pkt_ctr = -1;
678	return 0;
679
680err:
681	kfree(tx_ring->tx_bi);
682	tx_ring->tx_bi = NULL;
683	return -ENOMEM;
684}
685
686/**
687 * iavf_clean_rx_ring - Free Rx buffers
688 * @rx_ring: ring to be cleaned
689 **/
690static void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
691{
692	unsigned long bi_size;
693	u16 i;
694
695	/* ring already cleared, nothing to do */
696	if (!rx_ring->rx_bi)
697		return;
698
699	if (rx_ring->skb) {
700		dev_kfree_skb(rx_ring->skb);
701		rx_ring->skb = NULL;
702	}
703
704	/* Free all the Rx ring sk_buffs */
705	for (i = 0; i < rx_ring->count; i++) {
706		struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
707
708		if (!rx_bi->page)
709			continue;
710
711		/* Invalidate cache lines that may have been written to by
712		 * device so that we avoid corrupting memory.
713		 */
714		dma_sync_single_range_for_cpu(rx_ring->dev,
715					      rx_bi->dma,
716					      rx_bi->page_offset,
717					      rx_ring->rx_buf_len,
718					      DMA_FROM_DEVICE);
719
720		/* free resources associated with mapping */
721		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
722				     iavf_rx_pg_size(rx_ring),
723				     DMA_FROM_DEVICE,
724				     IAVF_RX_DMA_ATTR);
725
726		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
727
728		rx_bi->page = NULL;
729		rx_bi->page_offset = 0;
730	}
731
732	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
733	memset(rx_ring->rx_bi, 0, bi_size);
734
735	/* Zero out the descriptor ring */
736	memset(rx_ring->desc, 0, rx_ring->size);
737
738	rx_ring->next_to_alloc = 0;
739	rx_ring->next_to_clean = 0;
740	rx_ring->next_to_use = 0;
741}
742
743/**
744 * iavf_free_rx_resources - Free Rx resources
745 * @rx_ring: ring to clean the resources from
746 *
747 * Free all receive software resources
748 **/
749void iavf_free_rx_resources(struct iavf_ring *rx_ring)
750{
751	iavf_clean_rx_ring(rx_ring);
752	kfree(rx_ring->rx_bi);
753	rx_ring->rx_bi = NULL;
754
755	if (rx_ring->desc) {
756		dma_free_coherent(rx_ring->dev, rx_ring->size,
757				  rx_ring->desc, rx_ring->dma);
758		rx_ring->desc = NULL;
759	}
760}
761
762/**
763 * iavf_setup_rx_descriptors - Allocate Rx descriptors
764 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
765 *
766 * Returns 0 on success, negative on failure
767 **/
768int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
769{
770	struct device *dev = rx_ring->dev;
771	int bi_size;
772
773	/* warn if we are about to overwrite the pointer */
774	WARN_ON(rx_ring->rx_bi);
775	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
776	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
777	if (!rx_ring->rx_bi)
778		goto err;
779
780	u64_stats_init(&rx_ring->syncp);
781
782	/* Round up to nearest 4K */
783	rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
784	rx_ring->size = ALIGN(rx_ring->size, 4096);
785	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
786					   &rx_ring->dma, GFP_KERNEL);
787
788	if (!rx_ring->desc) {
789		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
790			 rx_ring->size);
791		goto err;
792	}
793
794	rx_ring->next_to_alloc = 0;
795	rx_ring->next_to_clean = 0;
796	rx_ring->next_to_use = 0;
797
798	return 0;
799err:
800	kfree(rx_ring->rx_bi);
801	rx_ring->rx_bi = NULL;
802	return -ENOMEM;
803}
804
805/**
806 * iavf_release_rx_desc - Store the new tail and head values
807 * @rx_ring: ring to bump
808 * @val: new head index
809 **/
810static void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
811{
812	rx_ring->next_to_use = val;
813
814	/* update next to alloc since we have filled the ring */
815	rx_ring->next_to_alloc = val;
816
817	/* Force memory writes to complete before letting h/w
818	 * know there are new descriptors to fetch.  (Only
819	 * applicable for weak-ordered memory model archs,
820	 * such as IA-64).
821	 */
822	wmb();
823	writel(val, rx_ring->tail);
824}
825
826/**
827 * iavf_rx_offset - Return expected offset into page to access data
828 * @rx_ring: Ring we are requesting offset of
829 *
830 * Returns the offset value for ring into the data buffer.
831 */
832static unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
833{
834	return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
835}
836
837/**
838 * iavf_alloc_mapped_page - recycle or make a new page
839 * @rx_ring: ring to use
840 * @bi: rx_buffer struct to modify
841 *
842 * Returns true if the page was successfully allocated or
843 * reused.
844 **/
845static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
846				   struct iavf_rx_buffer *bi)
847{
848	struct page *page = bi->page;
849	dma_addr_t dma;
850
851	/* since we are recycling buffers we should seldom need to alloc */
852	if (likely(page)) {
853		rx_ring->rx_stats.page_reuse_count++;
854		return true;
855	}
856
857	/* alloc new page for storage */
858	page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
859	if (unlikely(!page)) {
860		rx_ring->rx_stats.alloc_page_failed++;
861		return false;
862	}
863
864	/* map page for use */
865	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
866				 iavf_rx_pg_size(rx_ring),
867				 DMA_FROM_DEVICE,
868				 IAVF_RX_DMA_ATTR);
869
870	/* if mapping failed free memory back to system since
871	 * there isn't much point in holding memory we can't use
872	 */
873	if (dma_mapping_error(rx_ring->dev, dma)) {
874		__free_pages(page, iavf_rx_pg_order(rx_ring));
875		rx_ring->rx_stats.alloc_page_failed++;
876		return false;
877	}
878
879	bi->dma = dma;
880	bi->page = page;
881	bi->page_offset = iavf_rx_offset(rx_ring);
882
883	/* initialize pagecnt_bias to 1 representing we fully own page */
884	bi->pagecnt_bias = 1;
885
886	return true;
887}
888
889/**
890 * iavf_receive_skb - Send a completed packet up the stack
891 * @rx_ring:  rx ring in play
892 * @skb: packet to send up
893 * @vlan_tag: vlan tag for packet
894 **/
895static void iavf_receive_skb(struct iavf_ring *rx_ring,
896			     struct sk_buff *skb, u16 vlan_tag)
897{
898	struct iavf_q_vector *q_vector = rx_ring->q_vector;
899
900	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
901	    (vlan_tag & VLAN_VID_MASK))
902		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
903	else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) &&
904		 vlan_tag & VLAN_VID_MASK)
905		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
906
907	napi_gro_receive(&q_vector->napi, skb);
908}
909
910/**
911 * iavf_alloc_rx_buffers - Replace used receive buffers
912 * @rx_ring: ring to place buffers on
913 * @cleaned_count: number of buffers to replace
914 *
915 * Returns false if all allocations were successful, true if any fail
916 **/
917bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
918{
919	u16 ntu = rx_ring->next_to_use;
920	union iavf_rx_desc *rx_desc;
921	struct iavf_rx_buffer *bi;
922
923	/* do nothing if no valid netdev defined */
924	if (!rx_ring->netdev || !cleaned_count)
925		return false;
926
927	rx_desc = IAVF_RX_DESC(rx_ring, ntu);
928	bi = &rx_ring->rx_bi[ntu];
929
930	do {
931		if (!iavf_alloc_mapped_page(rx_ring, bi))
932			goto no_buffers;
933
934		/* sync the buffer for use by the device */
935		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
936						 bi->page_offset,
937						 rx_ring->rx_buf_len,
938						 DMA_FROM_DEVICE);
939
940		/* Refresh the desc even if buffer_addrs didn't change
941		 * because each write-back erases this info.
942		 */
943		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
944
945		rx_desc++;
946		bi++;
947		ntu++;
948		if (unlikely(ntu == rx_ring->count)) {
949			rx_desc = IAVF_RX_DESC(rx_ring, 0);
950			bi = rx_ring->rx_bi;
951			ntu = 0;
952		}
953
954		/* clear the status bits for the next_to_use descriptor */
955		rx_desc->wb.qword1.status_error_len = 0;
956
957		cleaned_count--;
958	} while (cleaned_count);
959
960	if (rx_ring->next_to_use != ntu)
961		iavf_release_rx_desc(rx_ring, ntu);
962
963	return false;
964
965no_buffers:
966	if (rx_ring->next_to_use != ntu)
967		iavf_release_rx_desc(rx_ring, ntu);
968
969	/* make sure to come back via polling to try again after
970	 * allocation failure
971	 */
972	return true;
973}
974
975/**
976 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
977 * @vsi: the VSI we care about
978 * @skb: skb currently being received and modified
979 * @rx_desc: the receive descriptor
980 **/
981static void iavf_rx_checksum(struct iavf_vsi *vsi,
982			     struct sk_buff *skb,
983			     union iavf_rx_desc *rx_desc)
984{
985	struct iavf_rx_ptype_decoded decoded;
986	u32 rx_error, rx_status;
987	bool ipv4, ipv6;
988	u8 ptype;
989	u64 qword;
990
991	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
992	ptype = FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK, qword);
993	rx_error = FIELD_GET(IAVF_RXD_QW1_ERROR_MASK, qword);
994	rx_status = FIELD_GET(IAVF_RXD_QW1_STATUS_MASK, qword);
995	decoded = decode_rx_desc_ptype(ptype);
996
997	skb->ip_summed = CHECKSUM_NONE;
998
999	skb_checksum_none_assert(skb);
1000
1001	/* Rx csum enabled and ip headers found? */
1002	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1003		return;
1004
1005	/* did the hardware decode the packet and checksum? */
1006	if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
1007		return;
1008
1009	/* both known and outer_ip must be set for the below code to work */
1010	if (!(decoded.known && decoded.outer_ip))
1011		return;
1012
1013	ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1014	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
1015	ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1016	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
1017
1018	if (ipv4 &&
1019	    (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
1020			 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
1021		goto checksum_fail;
1022
1023	/* likely incorrect csum if alternate IP extension headers found */
1024	if (ipv6 &&
1025	    rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1026		/* don't increment checksum err here, non-fatal err */
1027		return;
1028
1029	/* there was some L4 error, count error and punt packet to the stack */
1030	if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
1031		goto checksum_fail;
1032
1033	/* handle packets that were not able to be checksummed due
1034	 * to arrival speed, in this case the stack can compute
1035	 * the csum.
1036	 */
1037	if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1038		return;
1039
1040	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1041	switch (decoded.inner_prot) {
1042	case IAVF_RX_PTYPE_INNER_PROT_TCP:
1043	case IAVF_RX_PTYPE_INNER_PROT_UDP:
1044	case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1045		skb->ip_summed = CHECKSUM_UNNECESSARY;
1046		fallthrough;
1047	default:
1048		break;
1049	}
1050
1051	return;
1052
1053checksum_fail:
1054	vsi->back->hw_csum_rx_error++;
1055}
1056
1057/**
1058 * iavf_ptype_to_htype - get a hash type
1059 * @ptype: the ptype value from the descriptor
1060 *
1061 * Returns a hash type to be used by skb_set_hash
1062 **/
1063static int iavf_ptype_to_htype(u8 ptype)
1064{
1065	struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1066
1067	if (!decoded.known)
1068		return PKT_HASH_TYPE_NONE;
1069
1070	if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1071	    decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1072		return PKT_HASH_TYPE_L4;
1073	else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1074		 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1075		return PKT_HASH_TYPE_L3;
1076	else
1077		return PKT_HASH_TYPE_L2;
1078}
1079
1080/**
1081 * iavf_rx_hash - set the hash value in the skb
1082 * @ring: descriptor ring
1083 * @rx_desc: specific descriptor
1084 * @skb: skb currently being received and modified
1085 * @rx_ptype: Rx packet type
1086 **/
1087static void iavf_rx_hash(struct iavf_ring *ring,
1088			 union iavf_rx_desc *rx_desc,
1089			 struct sk_buff *skb,
1090			 u8 rx_ptype)
1091{
1092	u32 hash;
1093	const __le64 rss_mask =
1094		cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1095			    IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1096
1097	if (!(ring->netdev->features & NETIF_F_RXHASH))
1098		return;
1099
1100	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1101		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1102		skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1103	}
1104}
1105
1106/**
1107 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1108 * @rx_ring: rx descriptor ring packet is being transacted on
1109 * @rx_desc: pointer to the EOP Rx descriptor
1110 * @skb: pointer to current skb being populated
1111 * @rx_ptype: the packet type decoded by hardware
1112 *
1113 * This function checks the ring, descriptor, and packet information in
1114 * order to populate the hash, checksum, VLAN, protocol, and
1115 * other fields within the skb.
1116 **/
1117static void
1118iavf_process_skb_fields(struct iavf_ring *rx_ring,
1119			union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1120			u8 rx_ptype)
1121{
1122	iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1123
1124	iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1125
1126	skb_record_rx_queue(skb, rx_ring->queue_index);
1127
1128	/* modifies the skb - consumes the enet header */
1129	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1130}
1131
1132/**
1133 * iavf_cleanup_headers - Correct empty headers
1134 * @rx_ring: rx descriptor ring packet is being transacted on
1135 * @skb: pointer to current skb being fixed
1136 *
1137 * Also address the case where we are pulling data in on pages only
1138 * and as such no data is present in the skb header.
1139 *
1140 * In addition if skb is not at least 60 bytes we need to pad it so that
1141 * it is large enough to qualify as a valid Ethernet frame.
1142 *
1143 * Returns true if an error was encountered and skb was freed.
1144 **/
1145static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1146{
1147	/* if eth_skb_pad returns an error the skb was freed */
1148	if (eth_skb_pad(skb))
1149		return true;
1150
1151	return false;
1152}
1153
1154/**
1155 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1156 * @rx_ring: rx descriptor ring to store buffers on
1157 * @old_buff: donor buffer to have page reused
1158 *
1159 * Synchronizes page for reuse by the adapter
1160 **/
1161static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1162			       struct iavf_rx_buffer *old_buff)
1163{
1164	struct iavf_rx_buffer *new_buff;
1165	u16 nta = rx_ring->next_to_alloc;
1166
1167	new_buff = &rx_ring->rx_bi[nta];
1168
1169	/* update, and store next to alloc */
1170	nta++;
1171	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1172
1173	/* transfer page from old buffer to new buffer */
1174	new_buff->dma		= old_buff->dma;
1175	new_buff->page		= old_buff->page;
1176	new_buff->page_offset	= old_buff->page_offset;
1177	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1178}
1179
1180/**
1181 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1182 * the adapter for another receive
1183 *
1184 * @rx_buffer: buffer containing the page
1185 *
1186 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1187 * an unused region in the page.
1188 *
1189 * For small pages, @truesize will be a constant value, half the size
1190 * of the memory at page.  We'll attempt to alternate between high and
1191 * low halves of the page, with one half ready for use by the hardware
1192 * and the other half being consumed by the stack.  We use the page
1193 * ref count to determine whether the stack has finished consuming the
1194 * portion of this page that was passed up with a previous packet.  If
1195 * the page ref count is >1, we'll assume the "other" half page is
1196 * still busy, and this page cannot be reused.
1197 *
1198 * For larger pages, @truesize will be the actual space used by the
1199 * received packet (adjusted upward to an even multiple of the cache
1200 * line size).  This will advance through the page by the amount
1201 * actually consumed by the received packets while there is still
1202 * space for a buffer.  Each region of larger pages will be used at
1203 * most once, after which the page will not be reused.
1204 *
1205 * In either case, if the page is reusable its refcount is increased.
1206 **/
1207static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1208{
1209	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1210	struct page *page = rx_buffer->page;
1211
1212	/* Is any reuse possible? */
1213	if (!dev_page_is_reusable(page))
1214		return false;
1215
1216#if (PAGE_SIZE < 8192)
1217	/* if we are only owner of page we can reuse it */
1218	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1219		return false;
1220#else
1221#define IAVF_LAST_OFFSET \
1222	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1223	if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1224		return false;
1225#endif
1226
1227	/* If we have drained the page fragment pool we need to update
1228	 * the pagecnt_bias and page count so that we fully restock the
1229	 * number of references the driver holds.
1230	 */
1231	if (unlikely(!pagecnt_bias)) {
1232		page_ref_add(page, USHRT_MAX);
1233		rx_buffer->pagecnt_bias = USHRT_MAX;
1234	}
1235
1236	return true;
1237}
1238
1239/**
1240 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1241 * @rx_ring: rx descriptor ring to transact packets on
1242 * @rx_buffer: buffer containing page to add
1243 * @skb: sk_buff to place the data into
1244 * @size: packet length from rx_desc
1245 *
1246 * This function will add the data contained in rx_buffer->page to the skb.
1247 * It will just attach the page as a frag to the skb.
1248 *
1249 * The function will then update the page offset.
1250 **/
1251static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1252			     struct iavf_rx_buffer *rx_buffer,
1253			     struct sk_buff *skb,
1254			     unsigned int size)
1255{
1256#if (PAGE_SIZE < 8192)
1257	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1258#else
1259	unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1260#endif
1261
1262	if (!size)
1263		return;
1264
1265	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1266			rx_buffer->page_offset, size, truesize);
1267
1268	/* page is being used so we must update the page offset */
1269#if (PAGE_SIZE < 8192)
1270	rx_buffer->page_offset ^= truesize;
1271#else
1272	rx_buffer->page_offset += truesize;
1273#endif
1274}
1275
1276/**
1277 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1278 * @rx_ring: rx descriptor ring to transact packets on
1279 * @size: size of buffer to add to skb
1280 *
1281 * This function will pull an Rx buffer from the ring and synchronize it
1282 * for use by the CPU.
1283 */
1284static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1285						 const unsigned int size)
1286{
1287	struct iavf_rx_buffer *rx_buffer;
1288
1289	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1290	prefetchw(rx_buffer->page);
1291	if (!size)
1292		return rx_buffer;
1293
1294	/* we are reusing so sync this buffer for CPU use */
1295	dma_sync_single_range_for_cpu(rx_ring->dev,
1296				      rx_buffer->dma,
1297				      rx_buffer->page_offset,
1298				      size,
1299				      DMA_FROM_DEVICE);
1300
1301	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1302	rx_buffer->pagecnt_bias--;
1303
1304	return rx_buffer;
1305}
1306
1307/**
1308 * iavf_construct_skb - Allocate skb and populate it
1309 * @rx_ring: rx descriptor ring to transact packets on
1310 * @rx_buffer: rx buffer to pull data from
1311 * @size: size of buffer to add to skb
1312 *
1313 * This function allocates an skb.  It then populates it with the page
1314 * data from the current receive descriptor, taking care to set up the
1315 * skb correctly.
1316 */
1317static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1318					  struct iavf_rx_buffer *rx_buffer,
1319					  unsigned int size)
1320{
1321	void *va;
1322#if (PAGE_SIZE < 8192)
1323	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1324#else
1325	unsigned int truesize = SKB_DATA_ALIGN(size);
1326#endif
1327	unsigned int headlen;
1328	struct sk_buff *skb;
1329
1330	if (!rx_buffer)
1331		return NULL;
1332	/* prefetch first cache line of first page */
1333	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1334	net_prefetch(va);
1335
1336	/* allocate a skb to store the frags */
1337	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1338			       IAVF_RX_HDR_SIZE,
1339			       GFP_ATOMIC | __GFP_NOWARN);
1340	if (unlikely(!skb))
1341		return NULL;
1342
1343	/* Determine available headroom for copy */
1344	headlen = size;
1345	if (headlen > IAVF_RX_HDR_SIZE)
1346		headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1347
1348	/* align pull length to size of long to optimize memcpy performance */
1349	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1350
1351	/* update all of the pointers */
1352	size -= headlen;
1353	if (size) {
1354		skb_add_rx_frag(skb, 0, rx_buffer->page,
1355				rx_buffer->page_offset + headlen,
1356				size, truesize);
1357
1358		/* buffer is used by skb, update page_offset */
1359#if (PAGE_SIZE < 8192)
1360		rx_buffer->page_offset ^= truesize;
1361#else
1362		rx_buffer->page_offset += truesize;
1363#endif
1364	} else {
1365		/* buffer is unused, reset bias back to rx_buffer */
1366		rx_buffer->pagecnt_bias++;
1367	}
1368
1369	return skb;
1370}
1371
1372/**
1373 * iavf_build_skb - Build skb around an existing buffer
1374 * @rx_ring: Rx descriptor ring to transact packets on
1375 * @rx_buffer: Rx buffer to pull data from
1376 * @size: size of buffer to add to skb
1377 *
1378 * This function builds an skb around an existing Rx buffer, taking care
1379 * to set up the skb correctly and avoid any memcpy overhead.
1380 */
1381static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1382				      struct iavf_rx_buffer *rx_buffer,
1383				      unsigned int size)
1384{
1385	void *va;
1386#if (PAGE_SIZE < 8192)
1387	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1388#else
1389	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1390				SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1391#endif
1392	struct sk_buff *skb;
1393
1394	if (!rx_buffer || !size)
1395		return NULL;
1396	/* prefetch first cache line of first page */
1397	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1398	net_prefetch(va);
1399
1400	/* build an skb around the page buffer */
1401	skb = napi_build_skb(va - IAVF_SKB_PAD, truesize);
1402	if (unlikely(!skb))
1403		return NULL;
1404
1405	/* update pointers within the skb to store the data */
1406	skb_reserve(skb, IAVF_SKB_PAD);
1407	__skb_put(skb, size);
1408
1409	/* buffer is used by skb, update page_offset */
1410#if (PAGE_SIZE < 8192)
1411	rx_buffer->page_offset ^= truesize;
1412#else
1413	rx_buffer->page_offset += truesize;
1414#endif
1415
1416	return skb;
1417}
1418
1419/**
1420 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1421 * @rx_ring: rx descriptor ring to transact packets on
1422 * @rx_buffer: rx buffer to pull data from
1423 *
1424 * This function will clean up the contents of the rx_buffer.  It will
1425 * either recycle the buffer or unmap it and free the associated resources.
1426 */
1427static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1428			       struct iavf_rx_buffer *rx_buffer)
1429{
1430	if (!rx_buffer)
1431		return;
1432
1433	if (iavf_can_reuse_rx_page(rx_buffer)) {
1434		/* hand second half of page back to the ring */
1435		iavf_reuse_rx_page(rx_ring, rx_buffer);
1436		rx_ring->rx_stats.page_reuse_count++;
1437	} else {
1438		/* we are not reusing the buffer so unmap it */
1439		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1440				     iavf_rx_pg_size(rx_ring),
1441				     DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1442		__page_frag_cache_drain(rx_buffer->page,
1443					rx_buffer->pagecnt_bias);
1444	}
1445
1446	/* clear contents of buffer_info */
1447	rx_buffer->page = NULL;
1448}
1449
1450/**
1451 * iavf_is_non_eop - process handling of non-EOP buffers
1452 * @rx_ring: Rx ring being processed
1453 * @rx_desc: Rx descriptor for current buffer
1454 * @skb: Current socket buffer containing buffer in progress
1455 *
1456 * This function updates next to clean.  If the buffer is an EOP buffer
1457 * this function exits returning false, otherwise it will place the
1458 * sk_buff in the next buffer to be chained and return true indicating
1459 * that this is in fact a non-EOP buffer.
1460 **/
1461static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1462			    union iavf_rx_desc *rx_desc,
1463			    struct sk_buff *skb)
1464{
1465	u32 ntc = rx_ring->next_to_clean + 1;
1466
1467	/* fetch, update, and store next to clean */
1468	ntc = (ntc < rx_ring->count) ? ntc : 0;
1469	rx_ring->next_to_clean = ntc;
1470
1471	prefetch(IAVF_RX_DESC(rx_ring, ntc));
1472
1473	/* if we are the last buffer then there is nothing else to do */
1474#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1475	if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1476		return false;
1477
1478	rx_ring->rx_stats.non_eop_descs++;
1479
1480	return true;
1481}
1482
1483/**
1484 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1485 * @rx_ring: rx descriptor ring to transact packets on
1486 * @budget: Total limit on number of packets to process
1487 *
1488 * This function provides a "bounce buffer" approach to Rx interrupt
1489 * processing.  The advantage to this is that on systems that have
1490 * expensive overhead for IOMMU access this provides a means of avoiding
1491 * it by maintaining the mapping of the page to the system.
1492 *
1493 * Returns amount of work completed
1494 **/
1495static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1496{
1497	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1498	struct sk_buff *skb = rx_ring->skb;
1499	u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1500	bool failure = false;
1501
1502	while (likely(total_rx_packets < (unsigned int)budget)) {
1503		struct iavf_rx_buffer *rx_buffer;
1504		union iavf_rx_desc *rx_desc;
1505		unsigned int size;
1506		u16 vlan_tag = 0;
1507		u8 rx_ptype;
1508		u64 qword;
1509
1510		/* return some buffers to hardware, one at a time is too slow */
1511		if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1512			failure = failure ||
1513				  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1514			cleaned_count = 0;
1515		}
1516
1517		rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1518
1519		/* status_error_len will always be zero for unused descriptors
1520		 * because it's cleared in cleanup, and overlaps with hdr_addr
1521		 * which is always zero because packet split isn't used, if the
1522		 * hardware wrote DD then the length will be non-zero
1523		 */
1524		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1525
1526		/* This memory barrier is needed to keep us from reading
1527		 * any other fields out of the rx_desc until we have
1528		 * verified the descriptor has been written back.
1529		 */
1530		dma_rmb();
1531#define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1532		if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1533			break;
1534
1535		size = FIELD_GET(IAVF_RXD_QW1_LENGTH_PBUF_MASK, qword);
1536
1537		iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1538		rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1539
1540		/* retrieve a buffer from the ring */
1541		if (skb)
1542			iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1543		else if (ring_uses_build_skb(rx_ring))
1544			skb = iavf_build_skb(rx_ring, rx_buffer, size);
1545		else
1546			skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1547
1548		/* exit if we failed to retrieve a buffer */
1549		if (!skb) {
1550			rx_ring->rx_stats.alloc_buff_failed++;
1551			if (rx_buffer && size)
1552				rx_buffer->pagecnt_bias++;
1553			break;
1554		}
1555
1556		iavf_put_rx_buffer(rx_ring, rx_buffer);
1557		cleaned_count++;
1558
1559		if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1560			continue;
1561
1562		/* ERR_MASK will only have valid bits if EOP set, and
1563		 * what we are doing here is actually checking
1564		 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1565		 * the error field
1566		 */
1567		if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1568			dev_kfree_skb_any(skb);
1569			skb = NULL;
1570			continue;
1571		}
1572
1573		if (iavf_cleanup_headers(rx_ring, skb)) {
1574			skb = NULL;
1575			continue;
1576		}
1577
1578		/* probably a little skewed due to removing CRC */
1579		total_rx_bytes += skb->len;
1580
1581		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1582		rx_ptype = FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK, qword);
1583
1584		/* populate checksum, VLAN, and protocol */
1585		iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1586
1587		if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) &&
1588		    rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1)
1589			vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1);
1590		if (rx_desc->wb.qword2.ext_status &
1591		    cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) &&
1592		    rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2)
1593			vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2);
1594
1595		iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1596		iavf_receive_skb(rx_ring, skb, vlan_tag);
1597		skb = NULL;
1598
1599		/* update budget accounting */
1600		total_rx_packets++;
1601	}
1602
1603	rx_ring->skb = skb;
1604
1605	u64_stats_update_begin(&rx_ring->syncp);
1606	rx_ring->stats.packets += total_rx_packets;
1607	rx_ring->stats.bytes += total_rx_bytes;
1608	u64_stats_update_end(&rx_ring->syncp);
1609	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1610	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1611
1612	/* guarantee a trip back through this routine if there was a failure */
1613	return failure ? budget : (int)total_rx_packets;
1614}
1615
1616static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1617{
1618	u32 val;
1619
1620	/* We don't bother with setting the CLEARPBA bit as the data sheet
1621	 * points out doing so is "meaningless since it was already
1622	 * auto-cleared". The auto-clearing happens when the interrupt is
1623	 * asserted.
1624	 *
1625	 * Hardware errata 28 for also indicates that writing to a
1626	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1627	 * an event in the PBA anyway so we need to rely on the automask
1628	 * to hold pending events for us until the interrupt is re-enabled
1629	 *
1630	 * The itr value is reported in microseconds, and the register
1631	 * value is recorded in 2 microsecond units. For this reason we
1632	 * only need to shift by the interval shift - 1 instead of the
1633	 * full value.
1634	 */
1635	itr &= IAVF_ITR_MASK;
1636
1637	val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1638	      (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1639	      (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1640
1641	return val;
1642}
1643
1644/* a small macro to shorten up some long lines */
1645#define INTREG IAVF_VFINT_DYN_CTLN1
1646
1647/* The act of updating the ITR will cause it to immediately trigger. In order
1648 * to prevent this from throwing off adaptive update statistics we defer the
1649 * update so that it can only happen so often. So after either Tx or Rx are
1650 * updated we make the adaptive scheme wait until either the ITR completely
1651 * expires via the next_update expiration or we have been through at least
1652 * 3 interrupts.
1653 */
1654#define ITR_COUNTDOWN_START 3
1655
1656/**
1657 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1658 * @vsi: the VSI we care about
1659 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1660 *
1661 **/
1662static void iavf_update_enable_itr(struct iavf_vsi *vsi,
1663				   struct iavf_q_vector *q_vector)
1664{
1665	struct iavf_hw *hw = &vsi->back->hw;
1666	u32 intval;
1667
1668	/* These will do nothing if dynamic updates are not enabled */
1669	iavf_update_itr(q_vector, &q_vector->tx);
1670	iavf_update_itr(q_vector, &q_vector->rx);
1671
1672	/* This block of logic allows us to get away with only updating
1673	 * one ITR value with each interrupt. The idea is to perform a
1674	 * pseudo-lazy update with the following criteria.
1675	 *
1676	 * 1. Rx is given higher priority than Tx if both are in same state
1677	 * 2. If we must reduce an ITR that is given highest priority.
1678	 * 3. We then give priority to increasing ITR based on amount.
1679	 */
1680	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1681		/* Rx ITR needs to be reduced, this is highest priority */
1682		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1683					   q_vector->rx.target_itr);
1684		q_vector->rx.current_itr = q_vector->rx.target_itr;
1685		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1686	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1687		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1688		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1689		/* Tx ITR needs to be reduced, this is second priority
1690		 * Tx ITR needs to be increased more than Rx, fourth priority
1691		 */
1692		intval = iavf_buildreg_itr(IAVF_TX_ITR,
1693					   q_vector->tx.target_itr);
1694		q_vector->tx.current_itr = q_vector->tx.target_itr;
1695		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1696	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1697		/* Rx ITR needs to be increased, third priority */
1698		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1699					   q_vector->rx.target_itr);
1700		q_vector->rx.current_itr = q_vector->rx.target_itr;
1701		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1702	} else {
1703		/* No ITR update, lowest priority */
1704		intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1705		if (q_vector->itr_countdown)
1706			q_vector->itr_countdown--;
1707	}
1708
1709	if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1710		wr32(hw, INTREG(q_vector->reg_idx), intval);
1711}
1712
1713/**
1714 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1715 * @napi: napi struct with our devices info in it
1716 * @budget: amount of work driver is allowed to do this pass, in packets
1717 *
1718 * This function will clean all queues associated with a q_vector.
1719 *
1720 * Returns the amount of work done
1721 **/
1722int iavf_napi_poll(struct napi_struct *napi, int budget)
1723{
1724	struct iavf_q_vector *q_vector =
1725			       container_of(napi, struct iavf_q_vector, napi);
1726	struct iavf_vsi *vsi = q_vector->vsi;
1727	struct iavf_ring *ring;
1728	bool clean_complete = true;
1729	bool arm_wb = false;
1730	int budget_per_ring;
1731	int work_done = 0;
1732
1733	if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1734		napi_complete(napi);
1735		return 0;
1736	}
1737
1738	/* Since the actual Tx work is minimal, we can give the Tx a larger
1739	 * budget and be more aggressive about cleaning up the Tx descriptors.
1740	 */
1741	iavf_for_each_ring(ring, q_vector->tx) {
1742		if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1743			clean_complete = false;
1744			continue;
1745		}
1746		arm_wb |= ring->arm_wb;
1747		ring->arm_wb = false;
1748	}
1749
1750	/* Handle case where we are called by netpoll with a budget of 0 */
1751	if (budget <= 0)
1752		goto tx_only;
1753
1754	/* We attempt to distribute budget to each Rx queue fairly, but don't
1755	 * allow the budget to go below 1 because that would exit polling early.
1756	 */
1757	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1758
1759	iavf_for_each_ring(ring, q_vector->rx) {
1760		int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1761
1762		work_done += cleaned;
1763		/* if we clean as many as budgeted, we must not be done */
1764		if (cleaned >= budget_per_ring)
1765			clean_complete = false;
1766	}
1767
1768	/* If work not completed, return budget and polling will return */
1769	if (!clean_complete) {
1770		int cpu_id = smp_processor_id();
1771
1772		/* It is possible that the interrupt affinity has changed but,
1773		 * if the cpu is pegged at 100%, polling will never exit while
1774		 * traffic continues and the interrupt will be stuck on this
1775		 * cpu.  We check to make sure affinity is correct before we
1776		 * continue to poll, otherwise we must stop polling so the
1777		 * interrupt can move to the correct cpu.
1778		 */
1779		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1780			/* Tell napi that we are done polling */
1781			napi_complete_done(napi, work_done);
1782
1783			/* Force an interrupt */
1784			iavf_force_wb(vsi, q_vector);
1785
1786			/* Return budget-1 so that polling stops */
1787			return budget - 1;
1788		}
1789tx_only:
1790		if (arm_wb) {
1791			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1792			iavf_enable_wb_on_itr(vsi, q_vector);
1793		}
1794		return budget;
1795	}
1796
1797	if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1798		q_vector->arm_wb_state = false;
1799
1800	/* Exit the polling mode, but don't re-enable interrupts if stack might
1801	 * poll us due to busy-polling
1802	 */
1803	if (likely(napi_complete_done(napi, work_done)))
1804		iavf_update_enable_itr(vsi, q_vector);
1805
1806	return min_t(int, work_done, budget - 1);
1807}
1808
1809/**
1810 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1811 * @skb:     send buffer
1812 * @tx_ring: ring to send buffer on
1813 * @flags:   the tx flags to be set
1814 *
1815 * Checks the skb and set up correspondingly several generic transmit flags
1816 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1817 *
1818 * Returns error code indicate the frame should be dropped upon error and the
1819 * otherwise  returns 0 to indicate the flags has been set properly.
1820 **/
1821static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1822				       struct iavf_ring *tx_ring, u32 *flags)
1823{
1824	u32  tx_flags = 0;
1825
1826
1827	/* stack will only request hardware VLAN insertion offload for protocols
1828	 * that the driver supports and has enabled
1829	 */
1830	if (!skb_vlan_tag_present(skb))
1831		return;
1832
1833	tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1834	if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) {
1835		tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1836	} else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1837		tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1838	} else {
1839		dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n");
1840		return;
1841	}
1842
1843	*flags = tx_flags;
1844}
1845
1846/**
1847 * iavf_tso - set up the tso context descriptor
1848 * @first:    pointer to first Tx buffer for xmit
1849 * @hdr_len:  ptr to the size of the packet header
1850 * @cd_type_cmd_tso_mss: Quad Word 1
1851 *
1852 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1853 **/
1854static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1855		    u64 *cd_type_cmd_tso_mss)
1856{
1857	struct sk_buff *skb = first->skb;
1858	u64 cd_cmd, cd_tso_len, cd_mss;
1859	union {
1860		struct iphdr *v4;
1861		struct ipv6hdr *v6;
1862		unsigned char *hdr;
1863	} ip;
1864	union {
1865		struct tcphdr *tcp;
1866		struct udphdr *udp;
1867		unsigned char *hdr;
1868	} l4;
1869	u32 paylen, l4_offset;
1870	u16 gso_segs, gso_size;
1871	int err;
1872
1873	if (skb->ip_summed != CHECKSUM_PARTIAL)
1874		return 0;
1875
1876	if (!skb_is_gso(skb))
1877		return 0;
1878
1879	err = skb_cow_head(skb, 0);
1880	if (err < 0)
1881		return err;
1882
1883	ip.hdr = skb_network_header(skb);
1884	l4.hdr = skb_transport_header(skb);
1885
1886	/* initialize outer IP header fields */
1887	if (ip.v4->version == 4) {
1888		ip.v4->tot_len = 0;
1889		ip.v4->check = 0;
1890	} else {
1891		ip.v6->payload_len = 0;
1892	}
1893
1894	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1895					 SKB_GSO_GRE_CSUM |
1896					 SKB_GSO_IPXIP4 |
1897					 SKB_GSO_IPXIP6 |
1898					 SKB_GSO_UDP_TUNNEL |
1899					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1900		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1901		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1902			l4.udp->len = 0;
1903
1904			/* determine offset of outer transport header */
1905			l4_offset = l4.hdr - skb->data;
1906
1907			/* remove payload length from outer checksum */
1908			paylen = skb->len - l4_offset;
1909			csum_replace_by_diff(&l4.udp->check,
1910					     (__force __wsum)htonl(paylen));
1911		}
1912
1913		/* reset pointers to inner headers */
1914		ip.hdr = skb_inner_network_header(skb);
1915		l4.hdr = skb_inner_transport_header(skb);
1916
1917		/* initialize inner IP header fields */
1918		if (ip.v4->version == 4) {
1919			ip.v4->tot_len = 0;
1920			ip.v4->check = 0;
1921		} else {
1922			ip.v6->payload_len = 0;
1923		}
1924	}
1925
1926	/* determine offset of inner transport header */
1927	l4_offset = l4.hdr - skb->data;
1928	/* remove payload length from inner checksum */
1929	paylen = skb->len - l4_offset;
1930
1931	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1932		csum_replace_by_diff(&l4.udp->check,
1933				     (__force __wsum)htonl(paylen));
1934		/* compute length of UDP segmentation header */
1935		*hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1936	} else {
1937		csum_replace_by_diff(&l4.tcp->check,
1938				     (__force __wsum)htonl(paylen));
1939		/* compute length of TCP segmentation header */
1940		*hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1941	}
1942
1943	/* pull values out of skb_shinfo */
1944	gso_size = skb_shinfo(skb)->gso_size;
1945	gso_segs = skb_shinfo(skb)->gso_segs;
1946
1947	/* update GSO size and bytecount with header size */
1948	first->gso_segs = gso_segs;
1949	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1950
1951	/* find the field values */
1952	cd_cmd = IAVF_TX_CTX_DESC_TSO;
1953	cd_tso_len = skb->len - *hdr_len;
1954	cd_mss = gso_size;
1955	*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1956				(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1957				(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1958	return 1;
1959}
1960
1961/**
1962 * iavf_tx_enable_csum - Enable Tx checksum offloads
1963 * @skb: send buffer
1964 * @tx_flags: pointer to Tx flags currently set
1965 * @td_cmd: Tx descriptor command bits to set
1966 * @td_offset: Tx descriptor header offsets to set
1967 * @tx_ring: Tx descriptor ring
1968 * @cd_tunneling: ptr to context desc bits
1969 **/
1970static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1971			       u32 *td_cmd, u32 *td_offset,
1972			       struct iavf_ring *tx_ring,
1973			       u32 *cd_tunneling)
1974{
1975	union {
1976		struct iphdr *v4;
1977		struct ipv6hdr *v6;
1978		unsigned char *hdr;
1979	} ip;
1980	union {
1981		struct tcphdr *tcp;
1982		struct udphdr *udp;
1983		unsigned char *hdr;
1984	} l4;
1985	unsigned char *exthdr;
1986	u32 offset, cmd = 0;
1987	__be16 frag_off;
1988	u8 l4_proto = 0;
1989
1990	if (skb->ip_summed != CHECKSUM_PARTIAL)
1991		return 0;
1992
1993	ip.hdr = skb_network_header(skb);
1994	l4.hdr = skb_transport_header(skb);
1995
1996	/* compute outer L2 header size */
1997	offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1998
1999	if (skb->encapsulation) {
2000		u32 tunnel = 0;
2001		/* define outer network header type */
2002		if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2003			tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2004				  IAVF_TX_CTX_EXT_IP_IPV4 :
2005				  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2006
2007			l4_proto = ip.v4->protocol;
2008		} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2009			tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
2010
2011			exthdr = ip.hdr + sizeof(*ip.v6);
2012			l4_proto = ip.v6->nexthdr;
2013			if (l4.hdr != exthdr)
2014				ipv6_skip_exthdr(skb, exthdr - skb->data,
2015						 &l4_proto, &frag_off);
2016		}
2017
2018		/* define outer transport */
2019		switch (l4_proto) {
2020		case IPPROTO_UDP:
2021			tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2022			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2023			break;
2024		case IPPROTO_GRE:
2025			tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2026			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2027			break;
2028		case IPPROTO_IPIP:
2029		case IPPROTO_IPV6:
2030			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2031			l4.hdr = skb_inner_network_header(skb);
2032			break;
2033		default:
2034			if (*tx_flags & IAVF_TX_FLAGS_TSO)
2035				return -1;
2036
2037			skb_checksum_help(skb);
2038			return 0;
2039		}
2040
2041		/* compute outer L3 header size */
2042		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2043			  IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2044
2045		/* switch IP header pointer from outer to inner header */
2046		ip.hdr = skb_inner_network_header(skb);
2047
2048		/* compute tunnel header size */
2049		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2050			  IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2051
2052		/* indicate if we need to offload outer UDP header */
2053		if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2054		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2055		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2056			tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2057
2058		/* record tunnel offload values */
2059		*cd_tunneling |= tunnel;
2060
2061		/* switch L4 header pointer from outer to inner */
2062		l4.hdr = skb_inner_transport_header(skb);
2063		l4_proto = 0;
2064
2065		/* reset type as we transition from outer to inner headers */
2066		*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2067		if (ip.v4->version == 4)
2068			*tx_flags |= IAVF_TX_FLAGS_IPV4;
2069		if (ip.v6->version == 6)
2070			*tx_flags |= IAVF_TX_FLAGS_IPV6;
2071	}
2072
2073	/* Enable IP checksum offloads */
2074	if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2075		l4_proto = ip.v4->protocol;
2076		/* the stack computes the IP header already, the only time we
2077		 * need the hardware to recompute it is in the case of TSO.
2078		 */
2079		cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2080		       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2081		       IAVF_TX_DESC_CMD_IIPT_IPV4;
2082	} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2083		cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2084
2085		exthdr = ip.hdr + sizeof(*ip.v6);
2086		l4_proto = ip.v6->nexthdr;
2087		if (l4.hdr != exthdr)
2088			ipv6_skip_exthdr(skb, exthdr - skb->data,
2089					 &l4_proto, &frag_off);
2090	}
2091
2092	/* compute inner L3 header size */
2093	offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2094
2095	/* Enable L4 checksum offloads */
2096	switch (l4_proto) {
2097	case IPPROTO_TCP:
2098		/* enable checksum offloads */
2099		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2100		offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2101		break;
2102	case IPPROTO_SCTP:
2103		/* enable SCTP checksum offload */
2104		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2105		offset |= (sizeof(struct sctphdr) >> 2) <<
2106			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2107		break;
2108	case IPPROTO_UDP:
2109		/* enable UDP checksum offload */
2110		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2111		offset |= (sizeof(struct udphdr) >> 2) <<
2112			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2113		break;
2114	default:
2115		if (*tx_flags & IAVF_TX_FLAGS_TSO)
2116			return -1;
2117		skb_checksum_help(skb);
2118		return 0;
2119	}
2120
2121	*td_cmd |= cmd;
2122	*td_offset |= offset;
2123
2124	return 1;
2125}
2126
2127/**
2128 * iavf_create_tx_ctx - Build the Tx context descriptor
2129 * @tx_ring:  ring to create the descriptor on
2130 * @cd_type_cmd_tso_mss: Quad Word 1
2131 * @cd_tunneling: Quad Word 0 - bits 0-31
2132 * @cd_l2tag2: Quad Word 0 - bits 32-63
2133 **/
2134static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2135			       const u64 cd_type_cmd_tso_mss,
2136			       const u32 cd_tunneling, const u32 cd_l2tag2)
2137{
2138	struct iavf_tx_context_desc *context_desc;
2139	int i = tx_ring->next_to_use;
2140
2141	if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2142	    !cd_tunneling && !cd_l2tag2)
2143		return;
2144
2145	/* grab the next descriptor */
2146	context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2147
2148	i++;
2149	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2150
2151	/* cpu_to_le32 and assign to struct fields */
2152	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2153	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2154	context_desc->rsvd = cpu_to_le16(0);
2155	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2156}
2157
2158/**
2159 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2160 * @skb:      send buffer
2161 *
2162 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2163 * and so we need to figure out the cases where we need to linearize the skb.
2164 *
2165 * For TSO we need to count the TSO header and segment payload separately.
2166 * As such we need to check cases where we have 7 fragments or more as we
2167 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2168 * the segment payload in the first descriptor, and another 7 for the
2169 * fragments.
2170 **/
2171bool __iavf_chk_linearize(struct sk_buff *skb)
2172{
2173	const skb_frag_t *frag, *stale;
2174	int nr_frags, sum;
2175
2176	/* no need to check if number of frags is less than 7 */
2177	nr_frags = skb_shinfo(skb)->nr_frags;
2178	if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2179		return false;
2180
2181	/* We need to walk through the list and validate that each group
2182	 * of 6 fragments totals at least gso_size.
2183	 */
2184	nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2185	frag = &skb_shinfo(skb)->frags[0];
2186
2187	/* Initialize size to the negative value of gso_size minus 1.  We
2188	 * use this as the worst case scenerio in which the frag ahead
2189	 * of us only provides one byte which is why we are limited to 6
2190	 * descriptors for a single transmit as the header and previous
2191	 * fragment are already consuming 2 descriptors.
2192	 */
2193	sum = 1 - skb_shinfo(skb)->gso_size;
2194
2195	/* Add size of frags 0 through 4 to create our initial sum */
2196	sum += skb_frag_size(frag++);
2197	sum += skb_frag_size(frag++);
2198	sum += skb_frag_size(frag++);
2199	sum += skb_frag_size(frag++);
2200	sum += skb_frag_size(frag++);
2201
2202	/* Walk through fragments adding latest fragment, testing it, and
2203	 * then removing stale fragments from the sum.
2204	 */
2205	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2206		int stale_size = skb_frag_size(stale);
2207
2208		sum += skb_frag_size(frag++);
2209
2210		/* The stale fragment may present us with a smaller
2211		 * descriptor than the actual fragment size. To account
2212		 * for that we need to remove all the data on the front and
2213		 * figure out what the remainder would be in the last
2214		 * descriptor associated with the fragment.
2215		 */
2216		if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2217			int align_pad = -(skb_frag_off(stale)) &
2218					(IAVF_MAX_READ_REQ_SIZE - 1);
2219
2220			sum -= align_pad;
2221			stale_size -= align_pad;
2222
2223			do {
2224				sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2225				stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2226			} while (stale_size > IAVF_MAX_DATA_PER_TXD);
2227		}
2228
2229		/* if sum is negative we failed to make sufficient progress */
2230		if (sum < 0)
2231			return true;
2232
2233		if (!nr_frags--)
2234			break;
2235
2236		sum -= stale_size;
2237	}
2238
2239	return false;
2240}
2241
2242/**
2243 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2244 * @tx_ring: the ring to be checked
2245 * @size:    the size buffer we want to assure is available
2246 *
2247 * Returns -EBUSY if a stop is needed, else 0
2248 **/
2249int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2250{
2251	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2252	/* Memory barrier before checking head and tail */
2253	smp_mb();
2254
2255	/* Check again in a case another CPU has just made room available. */
2256	if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2257		return -EBUSY;
2258
2259	/* A reprieve! - use start_queue because it doesn't call schedule */
2260	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2261	++tx_ring->tx_stats.restart_queue;
2262	return 0;
2263}
2264
2265/**
2266 * iavf_tx_map - Build the Tx descriptor
2267 * @tx_ring:  ring to send buffer on
2268 * @skb:      send buffer
2269 * @first:    first buffer info buffer to use
2270 * @tx_flags: collected send information
2271 * @hdr_len:  size of the packet header
2272 * @td_cmd:   the command field in the descriptor
2273 * @td_offset: offset for checksum or crc
2274 **/
2275static void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2276			struct iavf_tx_buffer *first, u32 tx_flags,
2277			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2278{
2279	unsigned int data_len = skb->data_len;
2280	unsigned int size = skb_headlen(skb);
2281	skb_frag_t *frag;
2282	struct iavf_tx_buffer *tx_bi;
2283	struct iavf_tx_desc *tx_desc;
2284	u16 i = tx_ring->next_to_use;
2285	u32 td_tag = 0;
2286	dma_addr_t dma;
2287
2288	if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2289		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2290		td_tag = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags);
2291	}
2292
2293	first->tx_flags = tx_flags;
2294
2295	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2296
2297	tx_desc = IAVF_TX_DESC(tx_ring, i);
2298	tx_bi = first;
2299
2300	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2301		unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2302
2303		if (dma_mapping_error(tx_ring->dev, dma))
2304			goto dma_error;
2305
2306		/* record length, and DMA address */
2307		dma_unmap_len_set(tx_bi, len, size);
2308		dma_unmap_addr_set(tx_bi, dma, dma);
2309
2310		/* align size to end of page */
2311		max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2312		tx_desc->buffer_addr = cpu_to_le64(dma);
2313
2314		while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2315			tx_desc->cmd_type_offset_bsz =
2316				build_ctob(td_cmd, td_offset,
2317					   max_data, td_tag);
2318
2319			tx_desc++;
2320			i++;
2321
2322			if (i == tx_ring->count) {
2323				tx_desc = IAVF_TX_DESC(tx_ring, 0);
2324				i = 0;
2325			}
2326
2327			dma += max_data;
2328			size -= max_data;
2329
2330			max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2331			tx_desc->buffer_addr = cpu_to_le64(dma);
2332		}
2333
2334		if (likely(!data_len))
2335			break;
2336
2337		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2338							  size, td_tag);
2339
2340		tx_desc++;
2341		i++;
2342
2343		if (i == tx_ring->count) {
2344			tx_desc = IAVF_TX_DESC(tx_ring, 0);
2345			i = 0;
2346		}
2347
2348		size = skb_frag_size(frag);
2349		data_len -= size;
2350
2351		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2352				       DMA_TO_DEVICE);
2353
2354		tx_bi = &tx_ring->tx_bi[i];
2355	}
2356
2357	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2358
2359	i++;
2360	if (i == tx_ring->count)
2361		i = 0;
2362
2363	tx_ring->next_to_use = i;
2364
2365	iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2366
2367	/* write last descriptor with RS and EOP bits */
2368	td_cmd |= IAVF_TXD_CMD;
2369	tx_desc->cmd_type_offset_bsz =
2370			build_ctob(td_cmd, td_offset, size, td_tag);
2371
2372	skb_tx_timestamp(skb);
2373
2374	/* Force memory writes to complete before letting h/w know there
2375	 * are new descriptors to fetch.
2376	 *
2377	 * We also use this memory barrier to make certain all of the
2378	 * status bits have been updated before next_to_watch is written.
2379	 */
2380	wmb();
2381
2382	/* set next_to_watch value indicating a packet is present */
2383	first->next_to_watch = tx_desc;
2384
2385	/* notify HW of packet */
2386	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2387		writel(i, tx_ring->tail);
2388	}
2389
2390	return;
2391
2392dma_error:
2393	dev_info(tx_ring->dev, "TX DMA map failed\n");
2394
2395	/* clear dma mappings for failed tx_bi map */
2396	for (;;) {
2397		tx_bi = &tx_ring->tx_bi[i];
2398		iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2399		if (tx_bi == first)
2400			break;
2401		if (i == 0)
2402			i = tx_ring->count;
2403		i--;
2404	}
2405
2406	tx_ring->next_to_use = i;
2407}
2408
2409/**
2410 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2411 * @skb:     send buffer
2412 * @tx_ring: ring to send buffer on
2413 *
2414 * Returns NETDEV_TX_OK if sent, else an error code
2415 **/
2416static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2417					struct iavf_ring *tx_ring)
2418{
2419	u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2420	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2421	struct iavf_tx_buffer *first;
2422	u32 td_offset = 0;
2423	u32 tx_flags = 0;
2424	__be16 protocol;
2425	u32 td_cmd = 0;
2426	u8 hdr_len = 0;
2427	int tso, count;
2428
2429	/* prefetch the data, we'll need it later */
2430	prefetch(skb->data);
2431
2432	iavf_trace(xmit_frame_ring, skb, tx_ring);
2433
2434	count = iavf_xmit_descriptor_count(skb);
2435	if (iavf_chk_linearize(skb, count)) {
2436		if (__skb_linearize(skb)) {
2437			dev_kfree_skb_any(skb);
2438			return NETDEV_TX_OK;
2439		}
2440		count = iavf_txd_use_count(skb->len);
2441		tx_ring->tx_stats.tx_linearize++;
2442	}
2443
2444	/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2445	 *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2446	 *       + 4 desc gap to avoid the cache line where head is,
2447	 *       + 1 desc for context descriptor,
2448	 * otherwise try next time
2449	 */
2450	if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2451		tx_ring->tx_stats.tx_busy++;
2452		return NETDEV_TX_BUSY;
2453	}
2454
2455	/* record the location of the first descriptor for this packet */
2456	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2457	first->skb = skb;
2458	first->bytecount = skb->len;
2459	first->gso_segs = 1;
2460
2461	/* prepare the xmit flags */
2462	iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags);
2463	if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2464		cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 <<
2465			IAVF_TXD_CTX_QW1_CMD_SHIFT;
2466		cd_l2tag2 = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags);
2467	}
2468
2469	/* obtain protocol of skb */
2470	protocol = vlan_get_protocol(skb);
2471
2472	/* setup IPv4/IPv6 offloads */
2473	if (protocol == htons(ETH_P_IP))
2474		tx_flags |= IAVF_TX_FLAGS_IPV4;
2475	else if (protocol == htons(ETH_P_IPV6))
2476		tx_flags |= IAVF_TX_FLAGS_IPV6;
2477
2478	tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2479
2480	if (tso < 0)
2481		goto out_drop;
2482	else if (tso)
2483		tx_flags |= IAVF_TX_FLAGS_TSO;
2484
2485	/* Always offload the checksum, since it's in the data descriptor */
2486	tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2487				  tx_ring, &cd_tunneling);
2488	if (tso < 0)
2489		goto out_drop;
2490
2491	/* always enable CRC insertion offload */
2492	td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2493
2494	iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2495			   cd_tunneling, cd_l2tag2);
2496
2497	iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2498		    td_cmd, td_offset);
2499
2500	return NETDEV_TX_OK;
2501
2502out_drop:
2503	iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2504	dev_kfree_skb_any(first->skb);
2505	first->skb = NULL;
2506	return NETDEV_TX_OK;
2507}
2508
2509/**
2510 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2511 * @skb:    send buffer
2512 * @netdev: network interface device structure
2513 *
2514 * Returns NETDEV_TX_OK if sent, else an error code
2515 **/
2516netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2517{
2518	struct iavf_adapter *adapter = netdev_priv(netdev);
2519	struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2520
2521	/* hardware can't handle really short frames, hardware padding works
2522	 * beyond this point
2523	 */
2524	if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2525		if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2526			return NETDEV_TX_OK;
2527		skb->len = IAVF_MIN_TX_LEN;
2528		skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2529	}
2530
2531	return iavf_xmit_frame_ring(skb, tx_ring);
2532}
2533