1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/avf/virtchnl.h>
5#include <linux/bitfield.h>
6#include "iavf_type.h"
7#include "iavf_adminq.h"
8#include "iavf_prototype.h"
9
10/**
11 * iavf_aq_str - convert AQ err code to a string
12 * @hw: pointer to the HW structure
13 * @aq_err: the AQ error code to convert
14 **/
15const char *iavf_aq_str(struct iavf_hw *hw, enum iavf_admin_queue_err aq_err)
16{
17	switch (aq_err) {
18	case IAVF_AQ_RC_OK:
19		return "OK";
20	case IAVF_AQ_RC_EPERM:
21		return "IAVF_AQ_RC_EPERM";
22	case IAVF_AQ_RC_ENOENT:
23		return "IAVF_AQ_RC_ENOENT";
24	case IAVF_AQ_RC_ESRCH:
25		return "IAVF_AQ_RC_ESRCH";
26	case IAVF_AQ_RC_EINTR:
27		return "IAVF_AQ_RC_EINTR";
28	case IAVF_AQ_RC_EIO:
29		return "IAVF_AQ_RC_EIO";
30	case IAVF_AQ_RC_ENXIO:
31		return "IAVF_AQ_RC_ENXIO";
32	case IAVF_AQ_RC_E2BIG:
33		return "IAVF_AQ_RC_E2BIG";
34	case IAVF_AQ_RC_EAGAIN:
35		return "IAVF_AQ_RC_EAGAIN";
36	case IAVF_AQ_RC_ENOMEM:
37		return "IAVF_AQ_RC_ENOMEM";
38	case IAVF_AQ_RC_EACCES:
39		return "IAVF_AQ_RC_EACCES";
40	case IAVF_AQ_RC_EFAULT:
41		return "IAVF_AQ_RC_EFAULT";
42	case IAVF_AQ_RC_EBUSY:
43		return "IAVF_AQ_RC_EBUSY";
44	case IAVF_AQ_RC_EEXIST:
45		return "IAVF_AQ_RC_EEXIST";
46	case IAVF_AQ_RC_EINVAL:
47		return "IAVF_AQ_RC_EINVAL";
48	case IAVF_AQ_RC_ENOTTY:
49		return "IAVF_AQ_RC_ENOTTY";
50	case IAVF_AQ_RC_ENOSPC:
51		return "IAVF_AQ_RC_ENOSPC";
52	case IAVF_AQ_RC_ENOSYS:
53		return "IAVF_AQ_RC_ENOSYS";
54	case IAVF_AQ_RC_ERANGE:
55		return "IAVF_AQ_RC_ERANGE";
56	case IAVF_AQ_RC_EFLUSHED:
57		return "IAVF_AQ_RC_EFLUSHED";
58	case IAVF_AQ_RC_BAD_ADDR:
59		return "IAVF_AQ_RC_BAD_ADDR";
60	case IAVF_AQ_RC_EMODE:
61		return "IAVF_AQ_RC_EMODE";
62	case IAVF_AQ_RC_EFBIG:
63		return "IAVF_AQ_RC_EFBIG";
64	}
65
66	snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err);
67	return hw->err_str;
68}
69
70/**
71 * iavf_stat_str - convert status err code to a string
72 * @hw: pointer to the HW structure
73 * @stat_err: the status error code to convert
74 **/
75const char *iavf_stat_str(struct iavf_hw *hw, enum iavf_status stat_err)
76{
77	switch (stat_err) {
78	case 0:
79		return "OK";
80	case IAVF_ERR_NVM:
81		return "IAVF_ERR_NVM";
82	case IAVF_ERR_NVM_CHECKSUM:
83		return "IAVF_ERR_NVM_CHECKSUM";
84	case IAVF_ERR_PHY:
85		return "IAVF_ERR_PHY";
86	case IAVF_ERR_CONFIG:
87		return "IAVF_ERR_CONFIG";
88	case IAVF_ERR_PARAM:
89		return "IAVF_ERR_PARAM";
90	case IAVF_ERR_MAC_TYPE:
91		return "IAVF_ERR_MAC_TYPE";
92	case IAVF_ERR_UNKNOWN_PHY:
93		return "IAVF_ERR_UNKNOWN_PHY";
94	case IAVF_ERR_LINK_SETUP:
95		return "IAVF_ERR_LINK_SETUP";
96	case IAVF_ERR_ADAPTER_STOPPED:
97		return "IAVF_ERR_ADAPTER_STOPPED";
98	case IAVF_ERR_INVALID_MAC_ADDR:
99		return "IAVF_ERR_INVALID_MAC_ADDR";
100	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
101		return "IAVF_ERR_DEVICE_NOT_SUPPORTED";
102	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
103		return "IAVF_ERR_PRIMARY_REQUESTS_PENDING";
104	case IAVF_ERR_INVALID_LINK_SETTINGS:
105		return "IAVF_ERR_INVALID_LINK_SETTINGS";
106	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
107		return "IAVF_ERR_AUTONEG_NOT_COMPLETE";
108	case IAVF_ERR_RESET_FAILED:
109		return "IAVF_ERR_RESET_FAILED";
110	case IAVF_ERR_SWFW_SYNC:
111		return "IAVF_ERR_SWFW_SYNC";
112	case IAVF_ERR_NO_AVAILABLE_VSI:
113		return "IAVF_ERR_NO_AVAILABLE_VSI";
114	case IAVF_ERR_NO_MEMORY:
115		return "IAVF_ERR_NO_MEMORY";
116	case IAVF_ERR_BAD_PTR:
117		return "IAVF_ERR_BAD_PTR";
118	case IAVF_ERR_RING_FULL:
119		return "IAVF_ERR_RING_FULL";
120	case IAVF_ERR_INVALID_PD_ID:
121		return "IAVF_ERR_INVALID_PD_ID";
122	case IAVF_ERR_INVALID_QP_ID:
123		return "IAVF_ERR_INVALID_QP_ID";
124	case IAVF_ERR_INVALID_CQ_ID:
125		return "IAVF_ERR_INVALID_CQ_ID";
126	case IAVF_ERR_INVALID_CEQ_ID:
127		return "IAVF_ERR_INVALID_CEQ_ID";
128	case IAVF_ERR_INVALID_AEQ_ID:
129		return "IAVF_ERR_INVALID_AEQ_ID";
130	case IAVF_ERR_INVALID_SIZE:
131		return "IAVF_ERR_INVALID_SIZE";
132	case IAVF_ERR_INVALID_ARP_INDEX:
133		return "IAVF_ERR_INVALID_ARP_INDEX";
134	case IAVF_ERR_INVALID_FPM_FUNC_ID:
135		return "IAVF_ERR_INVALID_FPM_FUNC_ID";
136	case IAVF_ERR_QP_INVALID_MSG_SIZE:
137		return "IAVF_ERR_QP_INVALID_MSG_SIZE";
138	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
139		return "IAVF_ERR_QP_TOOMANY_WRS_POSTED";
140	case IAVF_ERR_INVALID_FRAG_COUNT:
141		return "IAVF_ERR_INVALID_FRAG_COUNT";
142	case IAVF_ERR_QUEUE_EMPTY:
143		return "IAVF_ERR_QUEUE_EMPTY";
144	case IAVF_ERR_INVALID_ALIGNMENT:
145		return "IAVF_ERR_INVALID_ALIGNMENT";
146	case IAVF_ERR_FLUSHED_QUEUE:
147		return "IAVF_ERR_FLUSHED_QUEUE";
148	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
149		return "IAVF_ERR_INVALID_PUSH_PAGE_INDEX";
150	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
151		return "IAVF_ERR_INVALID_IMM_DATA_SIZE";
152	case IAVF_ERR_TIMEOUT:
153		return "IAVF_ERR_TIMEOUT";
154	case IAVF_ERR_OPCODE_MISMATCH:
155		return "IAVF_ERR_OPCODE_MISMATCH";
156	case IAVF_ERR_CQP_COMPL_ERROR:
157		return "IAVF_ERR_CQP_COMPL_ERROR";
158	case IAVF_ERR_INVALID_VF_ID:
159		return "IAVF_ERR_INVALID_VF_ID";
160	case IAVF_ERR_INVALID_HMCFN_ID:
161		return "IAVF_ERR_INVALID_HMCFN_ID";
162	case IAVF_ERR_BACKING_PAGE_ERROR:
163		return "IAVF_ERR_BACKING_PAGE_ERROR";
164	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
165		return "IAVF_ERR_NO_PBLCHUNKS_AVAILABLE";
166	case IAVF_ERR_INVALID_PBLE_INDEX:
167		return "IAVF_ERR_INVALID_PBLE_INDEX";
168	case IAVF_ERR_INVALID_SD_INDEX:
169		return "IAVF_ERR_INVALID_SD_INDEX";
170	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
171		return "IAVF_ERR_INVALID_PAGE_DESC_INDEX";
172	case IAVF_ERR_INVALID_SD_TYPE:
173		return "IAVF_ERR_INVALID_SD_TYPE";
174	case IAVF_ERR_MEMCPY_FAILED:
175		return "IAVF_ERR_MEMCPY_FAILED";
176	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
177		return "IAVF_ERR_INVALID_HMC_OBJ_INDEX";
178	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
179		return "IAVF_ERR_INVALID_HMC_OBJ_COUNT";
180	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
181		return "IAVF_ERR_INVALID_SRQ_ARM_LIMIT";
182	case IAVF_ERR_SRQ_ENABLED:
183		return "IAVF_ERR_SRQ_ENABLED";
184	case IAVF_ERR_ADMIN_QUEUE_ERROR:
185		return "IAVF_ERR_ADMIN_QUEUE_ERROR";
186	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
187		return "IAVF_ERR_ADMIN_QUEUE_TIMEOUT";
188	case IAVF_ERR_BUF_TOO_SHORT:
189		return "IAVF_ERR_BUF_TOO_SHORT";
190	case IAVF_ERR_ADMIN_QUEUE_FULL:
191		return "IAVF_ERR_ADMIN_QUEUE_FULL";
192	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
193		return "IAVF_ERR_ADMIN_QUEUE_NO_WORK";
194	case IAVF_ERR_BAD_RDMA_CQE:
195		return "IAVF_ERR_BAD_RDMA_CQE";
196	case IAVF_ERR_NVM_BLANK_MODE:
197		return "IAVF_ERR_NVM_BLANK_MODE";
198	case IAVF_ERR_NOT_IMPLEMENTED:
199		return "IAVF_ERR_NOT_IMPLEMENTED";
200	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
201		return "IAVF_ERR_PE_DOORBELL_NOT_ENABLED";
202	case IAVF_ERR_DIAG_TEST_FAILED:
203		return "IAVF_ERR_DIAG_TEST_FAILED";
204	case IAVF_ERR_NOT_READY:
205		return "IAVF_ERR_NOT_READY";
206	case IAVF_NOT_SUPPORTED:
207		return "IAVF_NOT_SUPPORTED";
208	case IAVF_ERR_FIRMWARE_API_VERSION:
209		return "IAVF_ERR_FIRMWARE_API_VERSION";
210	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
211		return "IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR";
212	}
213
214	snprintf(hw->err_str, sizeof(hw->err_str), "%d", stat_err);
215	return hw->err_str;
216}
217
218/**
219 * iavf_debug_aq
220 * @hw: debug mask related to admin queue
221 * @mask: debug mask
222 * @desc: pointer to admin queue descriptor
223 * @buffer: pointer to command buffer
224 * @buf_len: max length of buffer
225 *
226 * Dumps debug log about adminq command with descriptor contents.
227 **/
228void iavf_debug_aq(struct iavf_hw *hw, enum iavf_debug_mask mask, void *desc,
229		   void *buffer, u16 buf_len)
230{
231	struct iavf_aq_desc *aq_desc = (struct iavf_aq_desc *)desc;
232	u8 *buf = (u8 *)buffer;
233
234	if ((!(mask & hw->debug_mask)) || !desc)
235		return;
236
237	iavf_debug(hw, mask,
238		   "AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
239		   le16_to_cpu(aq_desc->opcode),
240		   le16_to_cpu(aq_desc->flags),
241		   le16_to_cpu(aq_desc->datalen),
242		   le16_to_cpu(aq_desc->retval));
243	iavf_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
244		   le32_to_cpu(aq_desc->cookie_high),
245		   le32_to_cpu(aq_desc->cookie_low));
246	iavf_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
247		   le32_to_cpu(aq_desc->params.internal.param0),
248		   le32_to_cpu(aq_desc->params.internal.param1));
249	iavf_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
250		   le32_to_cpu(aq_desc->params.external.addr_high),
251		   le32_to_cpu(aq_desc->params.external.addr_low));
252
253	if (buffer && aq_desc->datalen) {
254		u16 len = le16_to_cpu(aq_desc->datalen);
255
256		iavf_debug(hw, mask, "AQ CMD Buffer:\n");
257		if (buf_len < len)
258			len = buf_len;
259		/* write the full 16-byte chunks */
260		if (hw->debug_mask & mask) {
261			char prefix[27];
262
263			snprintf(prefix, sizeof(prefix),
264				 "iavf %02x:%02x.%x: \t0x",
265				 hw->bus.bus_id,
266				 hw->bus.device,
267				 hw->bus.func);
268
269			print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET,
270				       16, 1, buf, len, false);
271		}
272	}
273}
274
275/**
276 * iavf_check_asq_alive
277 * @hw: pointer to the hw struct
278 *
279 * Returns true if Queue is enabled else false.
280 **/
281bool iavf_check_asq_alive(struct iavf_hw *hw)
282{
283	/* Check if the queue is initialized */
284	if (!hw->aq.asq.count)
285		return false;
286
287	return !!(rd32(hw, IAVF_VF_ATQLEN1) & IAVF_VF_ATQLEN1_ATQENABLE_MASK);
288}
289
290/**
291 * iavf_aq_queue_shutdown
292 * @hw: pointer to the hw struct
293 * @unloading: is the driver unloading itself
294 *
295 * Tell the Firmware that we're shutting down the AdminQ and whether
296 * or not the driver is unloading as well.
297 **/
298enum iavf_status iavf_aq_queue_shutdown(struct iavf_hw *hw, bool unloading)
299{
300	struct iavf_aq_desc desc;
301	struct iavf_aqc_queue_shutdown *cmd =
302		(struct iavf_aqc_queue_shutdown *)&desc.params.raw;
303	enum iavf_status status;
304
305	iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_queue_shutdown);
306
307	if (unloading)
308		cmd->driver_unloading = cpu_to_le32(IAVF_AQ_DRIVER_UNLOADING);
309	status = iavf_asq_send_command(hw, &desc, NULL, 0, NULL);
310
311	return status;
312}
313
314/**
315 * iavf_aq_get_set_rss_lut
316 * @hw: pointer to the hardware structure
317 * @vsi_id: vsi fw index
318 * @pf_lut: for PF table set true, for VSI table set false
319 * @lut: pointer to the lut buffer provided by the caller
320 * @lut_size: size of the lut buffer
321 * @set: set true to set the table, false to get the table
322 *
323 * Internal function to get or set RSS look up table
324 **/
325static enum iavf_status iavf_aq_get_set_rss_lut(struct iavf_hw *hw,
326						u16 vsi_id, bool pf_lut,
327						u8 *lut, u16 lut_size,
328						bool set)
329{
330	enum iavf_status status;
331	struct iavf_aq_desc desc;
332	struct iavf_aqc_get_set_rss_lut *cmd_resp =
333		   (struct iavf_aqc_get_set_rss_lut *)&desc.params.raw;
334	u16 flags;
335
336	if (set)
337		iavf_fill_default_direct_cmd_desc(&desc,
338						  iavf_aqc_opc_set_rss_lut);
339	else
340		iavf_fill_default_direct_cmd_desc(&desc,
341						  iavf_aqc_opc_get_rss_lut);
342
343	/* Indirect command */
344	desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF);
345	desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD);
346
347	vsi_id = FIELD_PREP(IAVF_AQC_SET_RSS_LUT_VSI_ID_MASK, vsi_id) |
348		 FIELD_PREP(IAVF_AQC_SET_RSS_LUT_VSI_VALID, 1);
349	cmd_resp->vsi_id = cpu_to_le16(vsi_id);
350
351	if (pf_lut)
352		flags = FIELD_PREP(IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK,
353				   IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_PF);
354	else
355		flags = FIELD_PREP(IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK,
356				   IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_VSI);
357
358	cmd_resp->flags = cpu_to_le16(flags);
359
360	status = iavf_asq_send_command(hw, &desc, lut, lut_size, NULL);
361
362	return status;
363}
364
365/**
366 * iavf_aq_set_rss_lut
367 * @hw: pointer to the hardware structure
368 * @vsi_id: vsi fw index
369 * @pf_lut: for PF table set true, for VSI table set false
370 * @lut: pointer to the lut buffer provided by the caller
371 * @lut_size: size of the lut buffer
372 *
373 * set the RSS lookup table, PF or VSI type
374 **/
375enum iavf_status iavf_aq_set_rss_lut(struct iavf_hw *hw, u16 vsi_id,
376				     bool pf_lut, u8 *lut, u16 lut_size)
377{
378	return iavf_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true);
379}
380
381/**
382 * iavf_aq_get_set_rss_key
383 * @hw: pointer to the hw struct
384 * @vsi_id: vsi fw index
385 * @key: pointer to key info struct
386 * @set: set true to set the key, false to get the key
387 *
388 * get the RSS key per VSI
389 **/
390static enum
391iavf_status iavf_aq_get_set_rss_key(struct iavf_hw *hw, u16 vsi_id,
392				    struct iavf_aqc_get_set_rss_key_data *key,
393				    bool set)
394{
395	enum iavf_status status;
396	struct iavf_aq_desc desc;
397	struct iavf_aqc_get_set_rss_key *cmd_resp =
398			(struct iavf_aqc_get_set_rss_key *)&desc.params.raw;
399	u16 key_size = sizeof(struct iavf_aqc_get_set_rss_key_data);
400
401	if (set)
402		iavf_fill_default_direct_cmd_desc(&desc,
403						  iavf_aqc_opc_set_rss_key);
404	else
405		iavf_fill_default_direct_cmd_desc(&desc,
406						  iavf_aqc_opc_get_rss_key);
407
408	/* Indirect command */
409	desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF);
410	desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD);
411
412	vsi_id = FIELD_PREP(IAVF_AQC_SET_RSS_KEY_VSI_ID_MASK, vsi_id) |
413		 FIELD_PREP(IAVF_AQC_SET_RSS_KEY_VSI_VALID, 1);
414	cmd_resp->vsi_id = cpu_to_le16(vsi_id);
415
416	status = iavf_asq_send_command(hw, &desc, key, key_size, NULL);
417
418	return status;
419}
420
421/**
422 * iavf_aq_set_rss_key
423 * @hw: pointer to the hw struct
424 * @vsi_id: vsi fw index
425 * @key: pointer to key info struct
426 *
427 * set the RSS key per VSI
428 **/
429enum iavf_status iavf_aq_set_rss_key(struct iavf_hw *hw, u16 vsi_id,
430				     struct iavf_aqc_get_set_rss_key_data *key)
431{
432	return iavf_aq_get_set_rss_key(hw, vsi_id, key, true);
433}
434
435/* The iavf_ptype_lookup table is used to convert from the 8-bit ptype in the
436 * hardware to a bit-field that can be used by SW to more easily determine the
437 * packet type.
438 *
439 * Macros are used to shorten the table lines and make this table human
440 * readable.
441 *
442 * We store the PTYPE in the top byte of the bit field - this is just so that
443 * we can check that the table doesn't have a row missing, as the index into
444 * the table should be the PTYPE.
445 *
446 * Typical work flow:
447 *
448 * IF NOT iavf_ptype_lookup[ptype].known
449 * THEN
450 *      Packet is unknown
451 * ELSE IF iavf_ptype_lookup[ptype].outer_ip == IAVF_RX_PTYPE_OUTER_IP
452 *      Use the rest of the fields to look at the tunnels, inner protocols, etc
453 * ELSE
454 *      Use the enum iavf_rx_l2_ptype to decode the packet type
455 * ENDIF
456 */
457
458/* macro to make the table lines short, use explicit indexing with [PTYPE] */
459#define IAVF_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
460	[PTYPE] = { \
461		1, \
462		IAVF_RX_PTYPE_OUTER_##OUTER_IP, \
463		IAVF_RX_PTYPE_OUTER_##OUTER_IP_VER, \
464		IAVF_RX_PTYPE_##OUTER_FRAG, \
465		IAVF_RX_PTYPE_TUNNEL_##T, \
466		IAVF_RX_PTYPE_TUNNEL_END_##TE, \
467		IAVF_RX_PTYPE_##TEF, \
468		IAVF_RX_PTYPE_INNER_PROT_##I, \
469		IAVF_RX_PTYPE_PAYLOAD_LAYER_##PL }
470
471#define IAVF_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
472
473/* shorter macros makes the table fit but are terse */
474#define IAVF_RX_PTYPE_NOF		IAVF_RX_PTYPE_NOT_FRAG
475#define IAVF_RX_PTYPE_FRG		IAVF_RX_PTYPE_FRAG
476#define IAVF_RX_PTYPE_INNER_PROT_TS	IAVF_RX_PTYPE_INNER_PROT_TIMESYNC
477
478/* Lookup table mapping the 8-bit HW PTYPE to the bit field for decoding */
479struct iavf_rx_ptype_decoded iavf_ptype_lookup[BIT(8)] = {
480	/* L2 Packet types */
481	IAVF_PTT_UNUSED_ENTRY(0),
482	IAVF_PTT(1,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
483	IAVF_PTT(2,  L2, NONE, NOF, NONE, NONE, NOF, TS,   PAY2),
484	IAVF_PTT(3,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
485	IAVF_PTT_UNUSED_ENTRY(4),
486	IAVF_PTT_UNUSED_ENTRY(5),
487	IAVF_PTT(6,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
488	IAVF_PTT(7,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
489	IAVF_PTT_UNUSED_ENTRY(8),
490	IAVF_PTT_UNUSED_ENTRY(9),
491	IAVF_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
492	IAVF_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE),
493	IAVF_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
494	IAVF_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
495	IAVF_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
496	IAVF_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
497	IAVF_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
498	IAVF_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
499	IAVF_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
500	IAVF_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
501	IAVF_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
502	IAVF_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
503
504	/* Non Tunneled IPv4 */
505	IAVF_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3),
506	IAVF_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3),
507	IAVF_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP,  PAY4),
508	IAVF_PTT_UNUSED_ENTRY(25),
509	IAVF_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP,  PAY4),
510	IAVF_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4),
511	IAVF_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4),
512
513	/* IPv4 --> IPv4 */
514	IAVF_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
515	IAVF_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
516	IAVF_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
517	IAVF_PTT_UNUSED_ENTRY(32),
518	IAVF_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
519	IAVF_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
520	IAVF_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
521
522	/* IPv4 --> IPv6 */
523	IAVF_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
524	IAVF_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
525	IAVF_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
526	IAVF_PTT_UNUSED_ENTRY(39),
527	IAVF_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
528	IAVF_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
529	IAVF_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
530
531	/* IPv4 --> GRE/NAT */
532	IAVF_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
533
534	/* IPv4 --> GRE/NAT --> IPv4 */
535	IAVF_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
536	IAVF_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
537	IAVF_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
538	IAVF_PTT_UNUSED_ENTRY(47),
539	IAVF_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
540	IAVF_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
541	IAVF_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
542
543	/* IPv4 --> GRE/NAT --> IPv6 */
544	IAVF_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
545	IAVF_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
546	IAVF_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
547	IAVF_PTT_UNUSED_ENTRY(54),
548	IAVF_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
549	IAVF_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
550	IAVF_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
551
552	/* IPv4 --> GRE/NAT --> MAC */
553	IAVF_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
554
555	/* IPv4 --> GRE/NAT --> MAC --> IPv4 */
556	IAVF_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
557	IAVF_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
558	IAVF_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
559	IAVF_PTT_UNUSED_ENTRY(62),
560	IAVF_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
561	IAVF_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
562	IAVF_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
563
564	/* IPv4 --> GRE/NAT -> MAC --> IPv6 */
565	IAVF_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
566	IAVF_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
567	IAVF_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
568	IAVF_PTT_UNUSED_ENTRY(69),
569	IAVF_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
570	IAVF_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
571	IAVF_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
572
573	/* IPv4 --> GRE/NAT --> MAC/VLAN */
574	IAVF_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
575
576	/* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */
577	IAVF_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
578	IAVF_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
579	IAVF_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
580	IAVF_PTT_UNUSED_ENTRY(77),
581	IAVF_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
582	IAVF_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
583	IAVF_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
584
585	/* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */
586	IAVF_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
587	IAVF_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
588	IAVF_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
589	IAVF_PTT_UNUSED_ENTRY(84),
590	IAVF_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
591	IAVF_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
592	IAVF_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
593
594	/* Non Tunneled IPv6 */
595	IAVF_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3),
596	IAVF_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3),
597	IAVF_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP,  PAY4),
598	IAVF_PTT_UNUSED_ENTRY(91),
599	IAVF_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP,  PAY4),
600	IAVF_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4),
601	IAVF_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4),
602
603	/* IPv6 --> IPv4 */
604	IAVF_PTT(95,  IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
605	IAVF_PTT(96,  IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
606	IAVF_PTT(97,  IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
607	IAVF_PTT_UNUSED_ENTRY(98),
608	IAVF_PTT(99,  IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
609	IAVF_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
610	IAVF_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
611
612	/* IPv6 --> IPv6 */
613	IAVF_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
614	IAVF_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
615	IAVF_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
616	IAVF_PTT_UNUSED_ENTRY(105),
617	IAVF_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
618	IAVF_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
619	IAVF_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
620
621	/* IPv6 --> GRE/NAT */
622	IAVF_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
623
624	/* IPv6 --> GRE/NAT -> IPv4 */
625	IAVF_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
626	IAVF_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
627	IAVF_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
628	IAVF_PTT_UNUSED_ENTRY(113),
629	IAVF_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
630	IAVF_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
631	IAVF_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
632
633	/* IPv6 --> GRE/NAT -> IPv6 */
634	IAVF_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
635	IAVF_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
636	IAVF_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
637	IAVF_PTT_UNUSED_ENTRY(120),
638	IAVF_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
639	IAVF_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
640	IAVF_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
641
642	/* IPv6 --> GRE/NAT -> MAC */
643	IAVF_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
644
645	/* IPv6 --> GRE/NAT -> MAC -> IPv4 */
646	IAVF_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
647	IAVF_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
648	IAVF_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
649	IAVF_PTT_UNUSED_ENTRY(128),
650	IAVF_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
651	IAVF_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
652	IAVF_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
653
654	/* IPv6 --> GRE/NAT -> MAC -> IPv6 */
655	IAVF_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
656	IAVF_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
657	IAVF_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
658	IAVF_PTT_UNUSED_ENTRY(135),
659	IAVF_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
660	IAVF_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
661	IAVF_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
662
663	/* IPv6 --> GRE/NAT -> MAC/VLAN */
664	IAVF_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
665
666	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */
667	IAVF_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
668	IAVF_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
669	IAVF_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
670	IAVF_PTT_UNUSED_ENTRY(143),
671	IAVF_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
672	IAVF_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
673	IAVF_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
674
675	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */
676	IAVF_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
677	IAVF_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
678	IAVF_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
679	IAVF_PTT_UNUSED_ENTRY(150),
680	IAVF_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
681	IAVF_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
682	IAVF_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
683
684	/* unused entries */
685	[154 ... 255] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
686};
687
688/**
689 * iavf_aq_send_msg_to_pf
690 * @hw: pointer to the hardware structure
691 * @v_opcode: opcodes for VF-PF communication
692 * @v_retval: return error code
693 * @msg: pointer to the msg buffer
694 * @msglen: msg length
695 * @cmd_details: pointer to command details
696 *
697 * Send message to PF driver using admin queue. By default, this message
698 * is sent asynchronously, i.e. iavf_asq_send_command() does not wait for
699 * completion before returning.
700 **/
701enum iavf_status iavf_aq_send_msg_to_pf(struct iavf_hw *hw,
702					enum virtchnl_ops v_opcode,
703					enum iavf_status v_retval,
704					u8 *msg, u16 msglen,
705					struct iavf_asq_cmd_details *cmd_details)
706{
707	struct iavf_asq_cmd_details details;
708	struct iavf_aq_desc desc;
709	enum iavf_status status;
710
711	iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_send_msg_to_pf);
712	desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_SI);
713	desc.cookie_high = cpu_to_le32(v_opcode);
714	desc.cookie_low = cpu_to_le32(v_retval);
715	if (msglen) {
716		desc.flags |= cpu_to_le16((u16)(IAVF_AQ_FLAG_BUF
717						| IAVF_AQ_FLAG_RD));
718		if (msglen > IAVF_AQ_LARGE_BUF)
719			desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_LB);
720		desc.datalen = cpu_to_le16(msglen);
721	}
722	if (!cmd_details) {
723		memset(&details, 0, sizeof(details));
724		details.async = true;
725		cmd_details = &details;
726	}
727	status = iavf_asq_send_command(hw, &desc, msg, msglen, cmd_details);
728	return status;
729}
730
731/**
732 * iavf_vf_parse_hw_config
733 * @hw: pointer to the hardware structure
734 * @msg: pointer to the virtual channel VF resource structure
735 *
736 * Given a VF resource message from the PF, populate the hw struct
737 * with appropriate information.
738 **/
739void iavf_vf_parse_hw_config(struct iavf_hw *hw,
740			     struct virtchnl_vf_resource *msg)
741{
742	struct virtchnl_vsi_resource *vsi_res;
743	int i;
744
745	vsi_res = &msg->vsi_res[0];
746
747	hw->dev_caps.num_vsis = msg->num_vsis;
748	hw->dev_caps.num_rx_qp = msg->num_queue_pairs;
749	hw->dev_caps.num_tx_qp = msg->num_queue_pairs;
750	hw->dev_caps.num_msix_vectors_vf = msg->max_vectors;
751	hw->dev_caps.dcb = msg->vf_cap_flags &
752			   VIRTCHNL_VF_OFFLOAD_L2;
753	hw->dev_caps.fcoe = 0;
754	for (i = 0; i < msg->num_vsis; i++) {
755		if (vsi_res->vsi_type == VIRTCHNL_VSI_SRIOV) {
756			ether_addr_copy(hw->mac.perm_addr,
757					vsi_res->default_mac_addr);
758			ether_addr_copy(hw->mac.addr,
759					vsi_res->default_mac_addr);
760		}
761		vsi_res++;
762	}
763}
764