1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/bitfield.h>
5#include <linux/delay.h>
6#include "i40e_alloc.h"
7#include "i40e_prototype.h"
8
9/**
10 * i40e_init_nvm - Initialize NVM function pointers
11 * @hw: pointer to the HW structure
12 *
13 * Setup the function pointers and the NVM info structure. Should be called
14 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
15 * Please notice that the NVM term is used here (& in all methods covered
16 * in this file) as an equivalent of the FLASH part mapped into the SR.
17 * We are accessing FLASH always thru the Shadow RAM.
18 **/
19int i40e_init_nvm(struct i40e_hw *hw)
20{
21	struct i40e_nvm_info *nvm = &hw->nvm;
22	int ret_code = 0;
23	u32 fla, gens;
24	u8 sr_size;
25
26	/* The SR size is stored regardless of the nvm programming mode
27	 * as the blank mode may be used in the factory line.
28	 */
29	gens = rd32(hw, I40E_GLNVM_GENS);
30	sr_size = FIELD_GET(I40E_GLNVM_GENS_SR_SIZE_MASK, gens);
31	/* Switching to words (sr_size contains power of 2KB) */
32	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
33
34	/* Check if we are in the normal or blank NVM programming mode */
35	fla = rd32(hw, I40E_GLNVM_FLA);
36	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
37		/* Max NVM timeout */
38		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
39		nvm->blank_nvm_mode = false;
40	} else { /* Blank programming mode */
41		nvm->blank_nvm_mode = true;
42		ret_code = -EIO;
43		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
44	}
45
46	return ret_code;
47}
48
49/**
50 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
51 * @hw: pointer to the HW structure
52 * @access: NVM access type (read or write)
53 *
54 * This function will request NVM ownership for reading
55 * via the proper Admin Command.
56 **/
57int i40e_acquire_nvm(struct i40e_hw *hw,
58		     enum i40e_aq_resource_access_type access)
59{
60	u64 gtime, timeout;
61	u64 time_left = 0;
62	int ret_code = 0;
63
64	if (hw->nvm.blank_nvm_mode)
65		goto i40e_i40e_acquire_nvm_exit;
66
67	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
68					    0, &time_left, NULL);
69	/* Reading the Global Device Timer */
70	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
71
72	/* Store the timeout */
73	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
74
75	if (ret_code)
76		i40e_debug(hw, I40E_DEBUG_NVM,
77			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
78			   access, time_left, ret_code, hw->aq.asq_last_status);
79
80	if (ret_code && time_left) {
81		/* Poll until the current NVM owner timeouts */
82		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
83		while ((gtime < timeout) && time_left) {
84			usleep_range(10000, 20000);
85			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
86			ret_code = i40e_aq_request_resource(hw,
87							I40E_NVM_RESOURCE_ID,
88							access, 0, &time_left,
89							NULL);
90			if (!ret_code) {
91				hw->nvm.hw_semaphore_timeout =
92					    I40E_MS_TO_GTIME(time_left) + gtime;
93				break;
94			}
95		}
96		if (ret_code) {
97			hw->nvm.hw_semaphore_timeout = 0;
98			i40e_debug(hw, I40E_DEBUG_NVM,
99				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
100				   time_left, ret_code, hw->aq.asq_last_status);
101		}
102	}
103
104i40e_i40e_acquire_nvm_exit:
105	return ret_code;
106}
107
108/**
109 * i40e_release_nvm - Generic request for releasing the NVM ownership
110 * @hw: pointer to the HW structure
111 *
112 * This function will release NVM resource via the proper Admin Command.
113 **/
114void i40e_release_nvm(struct i40e_hw *hw)
115{
116	u32 total_delay = 0;
117	int ret_code = 0;
118
119	if (hw->nvm.blank_nvm_mode)
120		return;
121
122	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
123
124	/* there are some rare cases when trying to release the resource
125	 * results in an admin Q timeout, so handle them correctly
126	 */
127	while ((ret_code == -EIO) &&
128	       (total_delay < hw->aq.asq_cmd_timeout)) {
129		usleep_range(1000, 2000);
130		ret_code = i40e_aq_release_resource(hw,
131						    I40E_NVM_RESOURCE_ID,
132						    0, NULL);
133		total_delay++;
134	}
135}
136
137/**
138 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
139 * @hw: pointer to the HW structure
140 *
141 * Polls the SRCTL Shadow RAM register done bit.
142 **/
143static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
144{
145	int ret_code = -EIO;
146	u32 srctl, wait_cnt;
147
148	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
149	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
150		srctl = rd32(hw, I40E_GLNVM_SRCTL);
151		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
152			ret_code = 0;
153			break;
154		}
155		udelay(5);
156	}
157	if (ret_code == -EIO)
158		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
159	return ret_code;
160}
161
162/**
163 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
164 * @hw: pointer to the HW structure
165 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
166 * @data: word read from the Shadow RAM
167 *
168 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
169 **/
170static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
171				    u16 *data)
172{
173	int ret_code = -EIO;
174	u32 sr_reg;
175
176	if (offset >= hw->nvm.sr_size) {
177		i40e_debug(hw, I40E_DEBUG_NVM,
178			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
179			   offset, hw->nvm.sr_size);
180		ret_code = -EINVAL;
181		goto read_nvm_exit;
182	}
183
184	/* Poll the done bit first */
185	ret_code = i40e_poll_sr_srctl_done_bit(hw);
186	if (!ret_code) {
187		/* Write the address and start reading */
188		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
189			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
190		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
191
192		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
193		ret_code = i40e_poll_sr_srctl_done_bit(hw);
194		if (!ret_code) {
195			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
196			*data = FIELD_GET(I40E_GLNVM_SRDATA_RDDATA_MASK,
197					  sr_reg);
198		}
199	}
200	if (ret_code)
201		i40e_debug(hw, I40E_DEBUG_NVM,
202			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
203			   offset);
204
205read_nvm_exit:
206	return ret_code;
207}
208
209/**
210 * i40e_read_nvm_aq - Read Shadow RAM.
211 * @hw: pointer to the HW structure.
212 * @module_pointer: module pointer location in words from the NVM beginning
213 * @offset: offset in words from module start
214 * @words: number of words to read
215 * @data: buffer with words to read to the Shadow RAM
216 * @last_command: tells the AdminQ that this is the last command
217 *
218 * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
219 **/
220static int i40e_read_nvm_aq(struct i40e_hw *hw,
221			    u8 module_pointer, u32 offset,
222			    u16 words, void *data,
223			    bool last_command)
224{
225	struct i40e_asq_cmd_details cmd_details;
226	int ret_code = -EIO;
227
228	memset(&cmd_details, 0, sizeof(cmd_details));
229	cmd_details.wb_desc = &hw->nvm_wb_desc;
230
231	/* Here we are checking the SR limit only for the flat memory model.
232	 * We cannot do it for the module-based model, as we did not acquire
233	 * the NVM resource yet (we cannot get the module pointer value).
234	 * Firmware will check the module-based model.
235	 */
236	if ((offset + words) > hw->nvm.sr_size)
237		i40e_debug(hw, I40E_DEBUG_NVM,
238			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
239			   (offset + words), hw->nvm.sr_size);
240	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
241		/* We can read only up to 4KB (one sector), in one AQ write */
242		i40e_debug(hw, I40E_DEBUG_NVM,
243			   "NVM read fail error: tried to read %d words, limit is %d.\n",
244			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
245	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
246		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
247		/* A single read cannot spread over two sectors */
248		i40e_debug(hw, I40E_DEBUG_NVM,
249			   "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
250			   offset, words);
251	else
252		ret_code = i40e_aq_read_nvm(hw, module_pointer,
253					    2 * offset,  /*bytes*/
254					    2 * words,   /*bytes*/
255					    data, last_command, &cmd_details);
256
257	return ret_code;
258}
259
260/**
261 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
262 * @hw: pointer to the HW structure
263 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
264 * @data: word read from the Shadow RAM
265 *
266 * Reads one 16 bit word from the Shadow RAM using the AdminQ
267 **/
268static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
269				 u16 *data)
270{
271	int ret_code = -EIO;
272
273	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
274	*data = le16_to_cpu(*(__le16 *)data);
275
276	return ret_code;
277}
278
279/**
280 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
281 * @hw: pointer to the HW structure
282 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
283 * @data: word read from the Shadow RAM
284 *
285 * Reads one 16 bit word from the Shadow RAM.
286 *
287 * Do not use this function except in cases where the nvm lock is already
288 * taken via i40e_acquire_nvm().
289 **/
290static int __i40e_read_nvm_word(struct i40e_hw *hw,
291				u16 offset, u16 *data)
292{
293	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
294		return i40e_read_nvm_word_aq(hw, offset, data);
295
296	return i40e_read_nvm_word_srctl(hw, offset, data);
297}
298
299/**
300 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
301 * @hw: pointer to the HW structure
302 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
303 * @data: word read from the Shadow RAM
304 *
305 * Reads one 16 bit word from the Shadow RAM.
306 **/
307int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
308		       u16 *data)
309{
310	int ret_code = 0;
311
312	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
313		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
314	if (ret_code)
315		return ret_code;
316
317	ret_code = __i40e_read_nvm_word(hw, offset, data);
318
319	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
320		i40e_release_nvm(hw);
321
322	return ret_code;
323}
324
325/**
326 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
327 * @hw: Pointer to the HW structure
328 * @module_ptr: Pointer to module in words with respect to NVM beginning
329 * @module_offset: Offset in words from module start
330 * @data_offset: Offset in words from reading data area start
331 * @words_data_size: Words to read from NVM
332 * @data_ptr: Pointer to memory location where resulting buffer will be stored
333 **/
334int i40e_read_nvm_module_data(struct i40e_hw *hw,
335			      u8 module_ptr,
336			      u16 module_offset,
337			      u16 data_offset,
338			      u16 words_data_size,
339			      u16 *data_ptr)
340{
341	u16 specific_ptr = 0;
342	u16 ptr_value = 0;
343	u32 offset = 0;
344	int status;
345
346	if (module_ptr != 0) {
347		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
348		if (status) {
349			i40e_debug(hw, I40E_DEBUG_ALL,
350				   "Reading nvm word failed.Error code: %d.\n",
351				   status);
352			return -EIO;
353		}
354	}
355#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
356#define I40E_NVM_INVALID_VAL 0xFFFF
357
358	/* Pointer not initialized */
359	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
360	    ptr_value == I40E_NVM_INVALID_VAL) {
361		i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
362		return -EINVAL;
363	}
364
365	/* Check whether the module is in SR mapped area or outside */
366	if (ptr_value & I40E_PTR_TYPE) {
367		/* Pointer points outside of the Shared RAM mapped area */
368		i40e_debug(hw, I40E_DEBUG_ALL,
369			   "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
370
371		return -EINVAL;
372	} else {
373		/* Read from the Shadow RAM */
374
375		status = i40e_read_nvm_word(hw, ptr_value + module_offset,
376					    &specific_ptr);
377		if (status) {
378			i40e_debug(hw, I40E_DEBUG_ALL,
379				   "Reading nvm word failed.Error code: %d.\n",
380				   status);
381			return -EIO;
382		}
383
384		offset = ptr_value + module_offset + specific_ptr +
385			data_offset;
386
387		status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
388					      data_ptr);
389		if (status) {
390			i40e_debug(hw, I40E_DEBUG_ALL,
391				   "Reading nvm buffer failed.Error code: %d.\n",
392				   status);
393		}
394	}
395
396	return status;
397}
398
399/**
400 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
401 * @hw: pointer to the HW structure
402 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
403 * @words: (in) number of words to read; (out) number of words actually read
404 * @data: words read from the Shadow RAM
405 *
406 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
407 * method. The buffer read is preceded by the NVM ownership take
408 * and followed by the release.
409 **/
410static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
411				      u16 *words, u16 *data)
412{
413	int ret_code = 0;
414	u16 index, word;
415
416	/* Loop thru the selected region */
417	for (word = 0; word < *words; word++) {
418		index = offset + word;
419		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
420		if (ret_code)
421			break;
422	}
423
424	/* Update the number of words read from the Shadow RAM */
425	*words = word;
426
427	return ret_code;
428}
429
430/**
431 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
432 * @hw: pointer to the HW structure
433 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
434 * @words: (in) number of words to read; (out) number of words actually read
435 * @data: words read from the Shadow RAM
436 *
437 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
438 * method. The buffer read is preceded by the NVM ownership take
439 * and followed by the release.
440 **/
441static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
442				   u16 *words, u16 *data)
443{
444	bool last_cmd = false;
445	u16 words_read = 0;
446	u16 read_size;
447	int ret_code;
448	u16 i = 0;
449
450	do {
451		/* Calculate number of bytes we should read in this step.
452		 * FVL AQ do not allow to read more than one page at a time or
453		 * to cross page boundaries.
454		 */
455		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
456			read_size = min(*words,
457					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
458				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
459		else
460			read_size = min((*words - words_read),
461					I40E_SR_SECTOR_SIZE_IN_WORDS);
462
463		/* Check if this is last command, if so set proper flag */
464		if ((words_read + read_size) >= *words)
465			last_cmd = true;
466
467		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
468					    data + words_read, last_cmd);
469		if (ret_code)
470			goto read_nvm_buffer_aq_exit;
471
472		/* Increment counter for words already read and move offset to
473		 * new read location
474		 */
475		words_read += read_size;
476		offset += read_size;
477	} while (words_read < *words);
478
479	for (i = 0; i < *words; i++)
480		data[i] = le16_to_cpu(((__le16 *)data)[i]);
481
482read_nvm_buffer_aq_exit:
483	*words = words_read;
484	return ret_code;
485}
486
487/**
488 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
489 * @hw: pointer to the HW structure
490 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
491 * @words: (in) number of words to read; (out) number of words actually read
492 * @data: words read from the Shadow RAM
493 *
494 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
495 * method.
496 **/
497static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
498				  u16 offset, u16 *words,
499				  u16 *data)
500{
501	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
502		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
503
504	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
505}
506
507/**
508 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
509 * @hw: pointer to the HW structure
510 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
511 * @words: (in) number of words to read; (out) number of words actually read
512 * @data: words read from the Shadow RAM
513 *
514 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
515 * method. The buffer read is preceded by the NVM ownership take
516 * and followed by the release.
517 **/
518int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
519			 u16 *words, u16 *data)
520{
521	int ret_code = 0;
522
523	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) {
524		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
525		if (!ret_code) {
526			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
527							   data);
528			i40e_release_nvm(hw);
529		}
530	} else {
531		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
532	}
533
534	return ret_code;
535}
536
537/**
538 * i40e_write_nvm_aq - Writes Shadow RAM.
539 * @hw: pointer to the HW structure.
540 * @module_pointer: module pointer location in words from the NVM beginning
541 * @offset: offset in words from module start
542 * @words: number of words to write
543 * @data: buffer with words to write to the Shadow RAM
544 * @last_command: tells the AdminQ that this is the last command
545 *
546 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
547 **/
548static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
549			     u32 offset, u16 words, void *data,
550			     bool last_command)
551{
552	struct i40e_asq_cmd_details cmd_details;
553	int ret_code = -EIO;
554
555	memset(&cmd_details, 0, sizeof(cmd_details));
556	cmd_details.wb_desc = &hw->nvm_wb_desc;
557
558	/* Here we are checking the SR limit only for the flat memory model.
559	 * We cannot do it for the module-based model, as we did not acquire
560	 * the NVM resource yet (we cannot get the module pointer value).
561	 * Firmware will check the module-based model.
562	 */
563	if ((offset + words) > hw->nvm.sr_size)
564		i40e_debug(hw, I40E_DEBUG_NVM,
565			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
566			   (offset + words), hw->nvm.sr_size);
567	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
568		/* We can write only up to 4KB (one sector), in one AQ write */
569		i40e_debug(hw, I40E_DEBUG_NVM,
570			   "NVM write fail error: tried to write %d words, limit is %d.\n",
571			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
572	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
573		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
574		/* A single write cannot spread over two sectors */
575		i40e_debug(hw, I40E_DEBUG_NVM,
576			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
577			   offset, words);
578	else
579		ret_code = i40e_aq_update_nvm(hw, module_pointer,
580					      2 * offset,  /*bytes*/
581					      2 * words,   /*bytes*/
582					      data, last_command, 0,
583					      &cmd_details);
584
585	return ret_code;
586}
587
588/**
589 * i40e_calc_nvm_checksum - Calculates and returns the checksum
590 * @hw: pointer to hardware structure
591 * @checksum: pointer to the checksum
592 *
593 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
594 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
595 * is customer specific and unknown. Therefore, this function skips all maximum
596 * possible size of VPD (1kB).
597 **/
598static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
599				  u16 *checksum)
600{
601	struct i40e_virt_mem vmem;
602	u16 pcie_alt_module = 0;
603	u16 checksum_local = 0;
604	u16 vpd_module = 0;
605	int ret_code;
606	u16 *data;
607	u16 i = 0;
608
609	ret_code = i40e_allocate_virt_mem(hw, &vmem,
610				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
611	if (ret_code)
612		goto i40e_calc_nvm_checksum_exit;
613	data = (u16 *)vmem.va;
614
615	/* read pointer to VPD area */
616	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
617	if (ret_code) {
618		ret_code = -EIO;
619		goto i40e_calc_nvm_checksum_exit;
620	}
621
622	/* read pointer to PCIe Alt Auto-load module */
623	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
624					&pcie_alt_module);
625	if (ret_code) {
626		ret_code = -EIO;
627		goto i40e_calc_nvm_checksum_exit;
628	}
629
630	/* Calculate SW checksum that covers the whole 64kB shadow RAM
631	 * except the VPD and PCIe ALT Auto-load modules
632	 */
633	for (i = 0; i < hw->nvm.sr_size; i++) {
634		/* Read SR page */
635		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
636			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
637
638			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
639			if (ret_code) {
640				ret_code = -EIO;
641				goto i40e_calc_nvm_checksum_exit;
642			}
643		}
644
645		/* Skip Checksum word */
646		if (i == I40E_SR_SW_CHECKSUM_WORD)
647			continue;
648		/* Skip VPD module (convert byte size to word count) */
649		if ((i >= (u32)vpd_module) &&
650		    (i < ((u32)vpd_module +
651		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
652			continue;
653		}
654		/* Skip PCIe ALT module (convert byte size to word count) */
655		if ((i >= (u32)pcie_alt_module) &&
656		    (i < ((u32)pcie_alt_module +
657		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
658			continue;
659		}
660
661		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
662	}
663
664	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
665
666i40e_calc_nvm_checksum_exit:
667	i40e_free_virt_mem(hw, &vmem);
668	return ret_code;
669}
670
671/**
672 * i40e_update_nvm_checksum - Updates the NVM checksum
673 * @hw: pointer to hardware structure
674 *
675 * NVM ownership must be acquired before calling this function and released
676 * on ARQ completion event reception by caller.
677 * This function will commit SR to NVM.
678 **/
679int i40e_update_nvm_checksum(struct i40e_hw *hw)
680{
681	__le16 le_sum;
682	int ret_code;
683	u16 checksum;
684
685	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
686	if (!ret_code) {
687		le_sum = cpu_to_le16(checksum);
688		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
689					     1, &le_sum, true);
690	}
691
692	return ret_code;
693}
694
695/**
696 * i40e_validate_nvm_checksum - Validate EEPROM checksum
697 * @hw: pointer to hardware structure
698 * @checksum: calculated checksum
699 *
700 * Performs checksum calculation and validates the NVM SW checksum. If the
701 * caller does not need checksum, the value can be NULL.
702 **/
703int i40e_validate_nvm_checksum(struct i40e_hw *hw,
704			       u16 *checksum)
705{
706	u16 checksum_local = 0;
707	u16 checksum_sr = 0;
708	int ret_code = 0;
709
710	/* We must acquire the NVM lock in order to correctly synchronize the
711	 * NVM accesses across multiple PFs. Without doing so it is possible
712	 * for one of the PFs to read invalid data potentially indicating that
713	 * the checksum is invalid.
714	 */
715	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
716	if (ret_code)
717		return ret_code;
718	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
719	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
720	i40e_release_nvm(hw);
721	if (ret_code)
722		return ret_code;
723
724	/* Verify read checksum from EEPROM is the same as
725	 * calculated checksum
726	 */
727	if (checksum_local != checksum_sr)
728		ret_code = -EIO;
729
730	/* If the user cares, return the calculated checksum */
731	if (checksum)
732		*checksum = checksum_local;
733
734	return ret_code;
735}
736
737static int i40e_nvmupd_state_init(struct i40e_hw *hw,
738				  struct i40e_nvm_access *cmd,
739				  u8 *bytes, int *perrno);
740static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
741				     struct i40e_nvm_access *cmd,
742				     u8 *bytes, int *perrno);
743static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
744				     struct i40e_nvm_access *cmd,
745				     u8 *bytes, int *errno);
746static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
747						struct i40e_nvm_access *cmd,
748						int *perrno);
749static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
750				 struct i40e_nvm_access *cmd,
751				 int *perrno);
752static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
753				 struct i40e_nvm_access *cmd,
754				 u8 *bytes, int *perrno);
755static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
756				struct i40e_nvm_access *cmd,
757				u8 *bytes, int *perrno);
758static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
759			       struct i40e_nvm_access *cmd,
760			       u8 *bytes, int *perrno);
761static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
762				     struct i40e_nvm_access *cmd,
763				     u8 *bytes, int *perrno);
764static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
765				    struct i40e_nvm_access *cmd,
766				    u8 *bytes, int *perrno);
767static inline u8 i40e_nvmupd_get_module(u32 val)
768{
769	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
770}
771static inline u8 i40e_nvmupd_get_transaction(u32 val)
772{
773	return FIELD_GET(I40E_NVM_TRANS_MASK, val);
774}
775
776static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
777{
778	return FIELD_GET(I40E_NVM_PRESERVATION_FLAGS_MASK, val);
779}
780
781static const char * const i40e_nvm_update_state_str[] = {
782	"I40E_NVMUPD_INVALID",
783	"I40E_NVMUPD_READ_CON",
784	"I40E_NVMUPD_READ_SNT",
785	"I40E_NVMUPD_READ_LCB",
786	"I40E_NVMUPD_READ_SA",
787	"I40E_NVMUPD_WRITE_ERA",
788	"I40E_NVMUPD_WRITE_CON",
789	"I40E_NVMUPD_WRITE_SNT",
790	"I40E_NVMUPD_WRITE_LCB",
791	"I40E_NVMUPD_WRITE_SA",
792	"I40E_NVMUPD_CSUM_CON",
793	"I40E_NVMUPD_CSUM_SA",
794	"I40E_NVMUPD_CSUM_LCB",
795	"I40E_NVMUPD_STATUS",
796	"I40E_NVMUPD_EXEC_AQ",
797	"I40E_NVMUPD_GET_AQ_RESULT",
798	"I40E_NVMUPD_GET_AQ_EVENT",
799};
800
801/**
802 * i40e_nvmupd_command - Process an NVM update command
803 * @hw: pointer to hardware structure
804 * @cmd: pointer to nvm update command
805 * @bytes: pointer to the data buffer
806 * @perrno: pointer to return error code
807 *
808 * Dispatches command depending on what update state is current
809 **/
810int i40e_nvmupd_command(struct i40e_hw *hw,
811			struct i40e_nvm_access *cmd,
812			u8 *bytes, int *perrno)
813{
814	enum i40e_nvmupd_cmd upd_cmd;
815	int status;
816
817	/* assume success */
818	*perrno = 0;
819
820	/* early check for status command and debug msgs */
821	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
822
823	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
824		   i40e_nvm_update_state_str[upd_cmd],
825		   hw->nvmupd_state,
826		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
827		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
828
829	if (upd_cmd == I40E_NVMUPD_INVALID) {
830		*perrno = -EFAULT;
831		i40e_debug(hw, I40E_DEBUG_NVM,
832			   "i40e_nvmupd_validate_command returns %d errno %d\n",
833			   upd_cmd, *perrno);
834	}
835
836	/* a status request returns immediately rather than
837	 * going into the state machine
838	 */
839	if (upd_cmd == I40E_NVMUPD_STATUS) {
840		if (!cmd->data_size) {
841			*perrno = -EFAULT;
842			return -EINVAL;
843		}
844
845		bytes[0] = hw->nvmupd_state;
846
847		if (cmd->data_size >= 4) {
848			bytes[1] = 0;
849			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
850		}
851
852		/* Clear error status on read */
853		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
854			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
855
856		return 0;
857	}
858
859	/* Clear status even it is not read and log */
860	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
861		i40e_debug(hw, I40E_DEBUG_NVM,
862			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
863		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
864	}
865
866	/* Acquire lock to prevent race condition where adminq_task
867	 * can execute after i40e_nvmupd_nvm_read/write but before state
868	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
869	 *
870	 * During NVMUpdate, it is observed that lock could be held for
871	 * ~5ms for most commands. However lock is held for ~60ms for
872	 * NVMUPD_CSUM_LCB command.
873	 */
874	mutex_lock(&hw->aq.arq_mutex);
875	switch (hw->nvmupd_state) {
876	case I40E_NVMUPD_STATE_INIT:
877		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
878		break;
879
880	case I40E_NVMUPD_STATE_READING:
881		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
882		break;
883
884	case I40E_NVMUPD_STATE_WRITING:
885		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
886		break;
887
888	case I40E_NVMUPD_STATE_INIT_WAIT:
889	case I40E_NVMUPD_STATE_WRITE_WAIT:
890		/* if we need to stop waiting for an event, clear
891		 * the wait info and return before doing anything else
892		 */
893		if (cmd->offset == 0xffff) {
894			i40e_nvmupd_clear_wait_state(hw);
895			status = 0;
896			break;
897		}
898
899		status = -EBUSY;
900		*perrno = -EBUSY;
901		break;
902
903	default:
904		/* invalid state, should never happen */
905		i40e_debug(hw, I40E_DEBUG_NVM,
906			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
907		status = -EOPNOTSUPP;
908		*perrno = -ESRCH;
909		break;
910	}
911
912	mutex_unlock(&hw->aq.arq_mutex);
913	return status;
914}
915
916/**
917 * i40e_nvmupd_state_init - Handle NVM update state Init
918 * @hw: pointer to hardware structure
919 * @cmd: pointer to nvm update command buffer
920 * @bytes: pointer to the data buffer
921 * @perrno: pointer to return error code
922 *
923 * Process legitimate commands of the Init state and conditionally set next
924 * state. Reject all other commands.
925 **/
926static int i40e_nvmupd_state_init(struct i40e_hw *hw,
927				  struct i40e_nvm_access *cmd,
928				  u8 *bytes, int *perrno)
929{
930	enum i40e_nvmupd_cmd upd_cmd;
931	int status = 0;
932
933	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
934
935	switch (upd_cmd) {
936	case I40E_NVMUPD_READ_SA:
937		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
938		if (status) {
939			*perrno = i40e_aq_rc_to_posix(status,
940						     hw->aq.asq_last_status);
941		} else {
942			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
943			i40e_release_nvm(hw);
944		}
945		break;
946
947	case I40E_NVMUPD_READ_SNT:
948		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
949		if (status) {
950			*perrno = i40e_aq_rc_to_posix(status,
951						     hw->aq.asq_last_status);
952		} else {
953			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
954			if (status)
955				i40e_release_nvm(hw);
956			else
957				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
958		}
959		break;
960
961	case I40E_NVMUPD_WRITE_ERA:
962		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
963		if (status) {
964			*perrno = i40e_aq_rc_to_posix(status,
965						     hw->aq.asq_last_status);
966		} else {
967			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
968			if (status) {
969				i40e_release_nvm(hw);
970			} else {
971				hw->nvm_release_on_done = true;
972				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
973				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
974			}
975		}
976		break;
977
978	case I40E_NVMUPD_WRITE_SA:
979		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
980		if (status) {
981			*perrno = i40e_aq_rc_to_posix(status,
982						     hw->aq.asq_last_status);
983		} else {
984			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
985			if (status) {
986				i40e_release_nvm(hw);
987			} else {
988				hw->nvm_release_on_done = true;
989				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
990				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
991			}
992		}
993		break;
994
995	case I40E_NVMUPD_WRITE_SNT:
996		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
997		if (status) {
998			*perrno = i40e_aq_rc_to_posix(status,
999						     hw->aq.asq_last_status);
1000		} else {
1001			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1002			if (status) {
1003				i40e_release_nvm(hw);
1004			} else {
1005				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1006				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1007			}
1008		}
1009		break;
1010
1011	case I40E_NVMUPD_CSUM_SA:
1012		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1013		if (status) {
1014			*perrno = i40e_aq_rc_to_posix(status,
1015						     hw->aq.asq_last_status);
1016		} else {
1017			status = i40e_update_nvm_checksum(hw);
1018			if (status) {
1019				*perrno = hw->aq.asq_last_status ?
1020				   i40e_aq_rc_to_posix(status,
1021						       hw->aq.asq_last_status) :
1022				   -EIO;
1023				i40e_release_nvm(hw);
1024			} else {
1025				hw->nvm_release_on_done = true;
1026				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1027				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1028			}
1029		}
1030		break;
1031
1032	case I40E_NVMUPD_EXEC_AQ:
1033		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1034		break;
1035
1036	case I40E_NVMUPD_GET_AQ_RESULT:
1037		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1038		break;
1039
1040	case I40E_NVMUPD_GET_AQ_EVENT:
1041		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1042		break;
1043
1044	default:
1045		i40e_debug(hw, I40E_DEBUG_NVM,
1046			   "NVMUPD: bad cmd %s in init state\n",
1047			   i40e_nvm_update_state_str[upd_cmd]);
1048		status = -EIO;
1049		*perrno = -ESRCH;
1050		break;
1051	}
1052	return status;
1053}
1054
1055/**
1056 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1057 * @hw: pointer to hardware structure
1058 * @cmd: pointer to nvm update command buffer
1059 * @bytes: pointer to the data buffer
1060 * @perrno: pointer to return error code
1061 *
1062 * NVM ownership is already held.  Process legitimate commands and set any
1063 * change in state; reject all other commands.
1064 **/
1065static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1066				     struct i40e_nvm_access *cmd,
1067				     u8 *bytes, int *perrno)
1068{
1069	enum i40e_nvmupd_cmd upd_cmd;
1070	int status = 0;
1071
1072	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1073
1074	switch (upd_cmd) {
1075	case I40E_NVMUPD_READ_SA:
1076	case I40E_NVMUPD_READ_CON:
1077		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1078		break;
1079
1080	case I40E_NVMUPD_READ_LCB:
1081		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1082		i40e_release_nvm(hw);
1083		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1084		break;
1085
1086	default:
1087		i40e_debug(hw, I40E_DEBUG_NVM,
1088			   "NVMUPD: bad cmd %s in reading state.\n",
1089			   i40e_nvm_update_state_str[upd_cmd]);
1090		status = -EOPNOTSUPP;
1091		*perrno = -ESRCH;
1092		break;
1093	}
1094	return status;
1095}
1096
1097/**
1098 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1099 * @hw: pointer to hardware structure
1100 * @cmd: pointer to nvm update command buffer
1101 * @bytes: pointer to the data buffer
1102 * @perrno: pointer to return error code
1103 *
1104 * NVM ownership is already held.  Process legitimate commands and set any
1105 * change in state; reject all other commands
1106 **/
1107static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1108				     struct i40e_nvm_access *cmd,
1109				     u8 *bytes, int *perrno)
1110{
1111	enum i40e_nvmupd_cmd upd_cmd;
1112	bool retry_attempt = false;
1113	int status = 0;
1114
1115	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1116
1117retry:
1118	switch (upd_cmd) {
1119	case I40E_NVMUPD_WRITE_CON:
1120		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1121		if (!status) {
1122			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1123			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1124		}
1125		break;
1126
1127	case I40E_NVMUPD_WRITE_LCB:
1128		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1129		if (status) {
1130			*perrno = hw->aq.asq_last_status ?
1131				   i40e_aq_rc_to_posix(status,
1132						       hw->aq.asq_last_status) :
1133				   -EIO;
1134			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1135		} else {
1136			hw->nvm_release_on_done = true;
1137			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1138			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1139		}
1140		break;
1141
1142	case I40E_NVMUPD_CSUM_CON:
1143		/* Assumes the caller has acquired the nvm */
1144		status = i40e_update_nvm_checksum(hw);
1145		if (status) {
1146			*perrno = hw->aq.asq_last_status ?
1147				   i40e_aq_rc_to_posix(status,
1148						       hw->aq.asq_last_status) :
1149				   -EIO;
1150			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1151		} else {
1152			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1153			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1154		}
1155		break;
1156
1157	case I40E_NVMUPD_CSUM_LCB:
1158		/* Assumes the caller has acquired the nvm */
1159		status = i40e_update_nvm_checksum(hw);
1160		if (status) {
1161			*perrno = hw->aq.asq_last_status ?
1162				   i40e_aq_rc_to_posix(status,
1163						       hw->aq.asq_last_status) :
1164				   -EIO;
1165			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1166		} else {
1167			hw->nvm_release_on_done = true;
1168			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1169			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1170		}
1171		break;
1172
1173	default:
1174		i40e_debug(hw, I40E_DEBUG_NVM,
1175			   "NVMUPD: bad cmd %s in writing state.\n",
1176			   i40e_nvm_update_state_str[upd_cmd]);
1177		status = -EOPNOTSUPP;
1178		*perrno = -ESRCH;
1179		break;
1180	}
1181
1182	/* In some circumstances, a multi-write transaction takes longer
1183	 * than the default 3 minute timeout on the write semaphore.  If
1184	 * the write failed with an EBUSY status, this is likely the problem,
1185	 * so here we try to reacquire the semaphore then retry the write.
1186	 * We only do one retry, then give up.
1187	 */
1188	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1189	    !retry_attempt) {
1190		u32 old_asq_status = hw->aq.asq_last_status;
1191		int old_status = status;
1192		u32 gtime;
1193
1194		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1195		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1196			i40e_debug(hw, I40E_DEBUG_ALL,
1197				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1198				   gtime, hw->nvm.hw_semaphore_timeout);
1199			i40e_release_nvm(hw);
1200			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1201			if (status) {
1202				i40e_debug(hw, I40E_DEBUG_ALL,
1203					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1204					   hw->aq.asq_last_status);
1205				status = old_status;
1206				hw->aq.asq_last_status = old_asq_status;
1207			} else {
1208				retry_attempt = true;
1209				goto retry;
1210			}
1211		}
1212	}
1213
1214	return status;
1215}
1216
1217/**
1218 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1219 * @hw: pointer to the hardware structure
1220 **/
1221void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1222{
1223	i40e_debug(hw, I40E_DEBUG_NVM,
1224		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1225		   hw->nvm_wait_opcode);
1226
1227	if (hw->nvm_release_on_done) {
1228		i40e_release_nvm(hw);
1229		hw->nvm_release_on_done = false;
1230	}
1231	hw->nvm_wait_opcode = 0;
1232
1233	if (hw->aq.arq_last_status) {
1234		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1235		return;
1236	}
1237
1238	switch (hw->nvmupd_state) {
1239	case I40E_NVMUPD_STATE_INIT_WAIT:
1240		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1241		break;
1242
1243	case I40E_NVMUPD_STATE_WRITE_WAIT:
1244		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1245		break;
1246
1247	default:
1248		break;
1249	}
1250}
1251
1252/**
1253 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1254 * @hw: pointer to the hardware structure
1255 * @opcode: the event that just happened
1256 * @desc: AdminQ descriptor
1257 **/
1258void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1259				  struct i40e_aq_desc *desc)
1260{
1261	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1262
1263	if (opcode == hw->nvm_wait_opcode) {
1264		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1265		i40e_nvmupd_clear_wait_state(hw);
1266	}
1267}
1268
1269/**
1270 * i40e_nvmupd_validate_command - Validate given command
1271 * @hw: pointer to hardware structure
1272 * @cmd: pointer to nvm update command buffer
1273 * @perrno: pointer to return error code
1274 *
1275 * Return one of the valid command types or I40E_NVMUPD_INVALID
1276 **/
1277static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1278						 struct i40e_nvm_access *cmd,
1279						 int *perrno)
1280{
1281	enum i40e_nvmupd_cmd upd_cmd;
1282	u8 module, transaction;
1283
1284	/* anything that doesn't match a recognized case is an error */
1285	upd_cmd = I40E_NVMUPD_INVALID;
1286
1287	transaction = i40e_nvmupd_get_transaction(cmd->config);
1288	module = i40e_nvmupd_get_module(cmd->config);
1289
1290	/* limits on data size */
1291	if ((cmd->data_size < 1) ||
1292	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1293		i40e_debug(hw, I40E_DEBUG_NVM,
1294			   "i40e_nvmupd_validate_command data_size %d\n",
1295			   cmd->data_size);
1296		*perrno = -EFAULT;
1297		return I40E_NVMUPD_INVALID;
1298	}
1299
1300	switch (cmd->command) {
1301	case I40E_NVM_READ:
1302		switch (transaction) {
1303		case I40E_NVM_CON:
1304			upd_cmd = I40E_NVMUPD_READ_CON;
1305			break;
1306		case I40E_NVM_SNT:
1307			upd_cmd = I40E_NVMUPD_READ_SNT;
1308			break;
1309		case I40E_NVM_LCB:
1310			upd_cmd = I40E_NVMUPD_READ_LCB;
1311			break;
1312		case I40E_NVM_SA:
1313			upd_cmd = I40E_NVMUPD_READ_SA;
1314			break;
1315		case I40E_NVM_EXEC:
1316			if (module == 0xf)
1317				upd_cmd = I40E_NVMUPD_STATUS;
1318			else if (module == 0)
1319				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1320			break;
1321		case I40E_NVM_AQE:
1322			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1323			break;
1324		}
1325		break;
1326
1327	case I40E_NVM_WRITE:
1328		switch (transaction) {
1329		case I40E_NVM_CON:
1330			upd_cmd = I40E_NVMUPD_WRITE_CON;
1331			break;
1332		case I40E_NVM_SNT:
1333			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1334			break;
1335		case I40E_NVM_LCB:
1336			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1337			break;
1338		case I40E_NVM_SA:
1339			upd_cmd = I40E_NVMUPD_WRITE_SA;
1340			break;
1341		case I40E_NVM_ERA:
1342			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1343			break;
1344		case I40E_NVM_CSUM:
1345			upd_cmd = I40E_NVMUPD_CSUM_CON;
1346			break;
1347		case (I40E_NVM_CSUM|I40E_NVM_SA):
1348			upd_cmd = I40E_NVMUPD_CSUM_SA;
1349			break;
1350		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1351			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1352			break;
1353		case I40E_NVM_EXEC:
1354			if (module == 0)
1355				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1356			break;
1357		}
1358		break;
1359	}
1360
1361	return upd_cmd;
1362}
1363
1364/**
1365 * i40e_nvmupd_exec_aq - Run an AQ command
1366 * @hw: pointer to hardware structure
1367 * @cmd: pointer to nvm update command buffer
1368 * @bytes: pointer to the data buffer
1369 * @perrno: pointer to return error code
1370 *
1371 * cmd structure contains identifiers and data buffer
1372 **/
1373static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1374			       struct i40e_nvm_access *cmd,
1375			       u8 *bytes, int *perrno)
1376{
1377	struct i40e_asq_cmd_details cmd_details;
1378	struct i40e_aq_desc *aq_desc;
1379	u32 buff_size = 0;
1380	u8 *buff = NULL;
1381	u32 aq_desc_len;
1382	u32 aq_data_len;
1383	int status;
1384
1385	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1386	if (cmd->offset == 0xffff)
1387		return 0;
1388
1389	memset(&cmd_details, 0, sizeof(cmd_details));
1390	cmd_details.wb_desc = &hw->nvm_wb_desc;
1391
1392	aq_desc_len = sizeof(struct i40e_aq_desc);
1393	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1394
1395	/* get the aq descriptor */
1396	if (cmd->data_size < aq_desc_len) {
1397		i40e_debug(hw, I40E_DEBUG_NVM,
1398			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1399			   cmd->data_size, aq_desc_len);
1400		*perrno = -EINVAL;
1401		return -EINVAL;
1402	}
1403	aq_desc = (struct i40e_aq_desc *)bytes;
1404
1405	/* if data buffer needed, make sure it's ready */
1406	aq_data_len = cmd->data_size - aq_desc_len;
1407	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1408	if (buff_size) {
1409		if (!hw->nvm_buff.va) {
1410			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1411							hw->aq.asq_buf_size);
1412			if (status)
1413				i40e_debug(hw, I40E_DEBUG_NVM,
1414					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1415					   status);
1416		}
1417
1418		if (hw->nvm_buff.va) {
1419			buff = hw->nvm_buff.va;
1420			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1421		}
1422	}
1423
1424	if (cmd->offset)
1425		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1426
1427	/* and away we go! */
1428	status = i40e_asq_send_command(hw, aq_desc, buff,
1429				       buff_size, &cmd_details);
1430	if (status) {
1431		i40e_debug(hw, I40E_DEBUG_NVM,
1432			   "%s err %pe aq_err %s\n",
1433			   __func__, ERR_PTR(status),
1434			   i40e_aq_str(hw, hw->aq.asq_last_status));
1435		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1436		return status;
1437	}
1438
1439	/* should we wait for a followup event? */
1440	if (cmd->offset) {
1441		hw->nvm_wait_opcode = cmd->offset;
1442		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1443	}
1444
1445	return status;
1446}
1447
1448/**
1449 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1450 * @hw: pointer to hardware structure
1451 * @cmd: pointer to nvm update command buffer
1452 * @bytes: pointer to the data buffer
1453 * @perrno: pointer to return error code
1454 *
1455 * cmd structure contains identifiers and data buffer
1456 **/
1457static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1458				     struct i40e_nvm_access *cmd,
1459				     u8 *bytes, int *perrno)
1460{
1461	u32 aq_total_len;
1462	u32 aq_desc_len;
1463	int remainder;
1464	u8 *buff;
1465
1466	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1467
1468	aq_desc_len = sizeof(struct i40e_aq_desc);
1469	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1470
1471	/* check offset range */
1472	if (cmd->offset > aq_total_len) {
1473		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1474			   __func__, cmd->offset, aq_total_len);
1475		*perrno = -EINVAL;
1476		return -EINVAL;
1477	}
1478
1479	/* check copylength range */
1480	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1481		int new_len = aq_total_len - cmd->offset;
1482
1483		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1484			   __func__, cmd->data_size, new_len);
1485		cmd->data_size = new_len;
1486	}
1487
1488	remainder = cmd->data_size;
1489	if (cmd->offset < aq_desc_len) {
1490		u32 len = aq_desc_len - cmd->offset;
1491
1492		len = min(len, cmd->data_size);
1493		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1494			   __func__, cmd->offset, cmd->offset + len);
1495
1496		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1497		memcpy(bytes, buff, len);
1498
1499		bytes += len;
1500		remainder -= len;
1501		buff = hw->nvm_buff.va;
1502	} else {
1503		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1504	}
1505
1506	if (remainder > 0) {
1507		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1508
1509		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1510			   __func__, start_byte, start_byte + remainder);
1511		memcpy(bytes, buff, remainder);
1512	}
1513
1514	return 0;
1515}
1516
1517/**
1518 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1519 * @hw: pointer to hardware structure
1520 * @cmd: pointer to nvm update command buffer
1521 * @bytes: pointer to the data buffer
1522 * @perrno: pointer to return error code
1523 *
1524 * cmd structure contains identifiers and data buffer
1525 **/
1526static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1527				    struct i40e_nvm_access *cmd,
1528				    u8 *bytes, int *perrno)
1529{
1530	u32 aq_total_len;
1531	u32 aq_desc_len;
1532
1533	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1534
1535	aq_desc_len = sizeof(struct i40e_aq_desc);
1536	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1537
1538	/* check copylength range */
1539	if (cmd->data_size > aq_total_len) {
1540		i40e_debug(hw, I40E_DEBUG_NVM,
1541			   "%s: copy length %d too big, trimming to %d\n",
1542			   __func__, cmd->data_size, aq_total_len);
1543		cmd->data_size = aq_total_len;
1544	}
1545
1546	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1547
1548	return 0;
1549}
1550
1551/**
1552 * i40e_nvmupd_nvm_read - Read NVM
1553 * @hw: pointer to hardware structure
1554 * @cmd: pointer to nvm update command buffer
1555 * @bytes: pointer to the data buffer
1556 * @perrno: pointer to return error code
1557 *
1558 * cmd structure contains identifiers and data buffer
1559 **/
1560static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1561				struct i40e_nvm_access *cmd,
1562				u8 *bytes, int *perrno)
1563{
1564	struct i40e_asq_cmd_details cmd_details;
1565	u8 module, transaction;
1566	int status;
1567	bool last;
1568
1569	transaction = i40e_nvmupd_get_transaction(cmd->config);
1570	module = i40e_nvmupd_get_module(cmd->config);
1571	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1572
1573	memset(&cmd_details, 0, sizeof(cmd_details));
1574	cmd_details.wb_desc = &hw->nvm_wb_desc;
1575
1576	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1577				  bytes, last, &cmd_details);
1578	if (status) {
1579		i40e_debug(hw, I40E_DEBUG_NVM,
1580			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1581			   module, cmd->offset, cmd->data_size);
1582		i40e_debug(hw, I40E_DEBUG_NVM,
1583			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1584			   status, hw->aq.asq_last_status);
1585		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1586	}
1587
1588	return status;
1589}
1590
1591/**
1592 * i40e_nvmupd_nvm_erase - Erase an NVM module
1593 * @hw: pointer to hardware structure
1594 * @cmd: pointer to nvm update command buffer
1595 * @perrno: pointer to return error code
1596 *
1597 * module, offset, data_size and data are in cmd structure
1598 **/
1599static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1600				 struct i40e_nvm_access *cmd,
1601				 int *perrno)
1602{
1603	struct i40e_asq_cmd_details cmd_details;
1604	u8 module, transaction;
1605	int status = 0;
1606	bool last;
1607
1608	transaction = i40e_nvmupd_get_transaction(cmd->config);
1609	module = i40e_nvmupd_get_module(cmd->config);
1610	last = (transaction & I40E_NVM_LCB);
1611
1612	memset(&cmd_details, 0, sizeof(cmd_details));
1613	cmd_details.wb_desc = &hw->nvm_wb_desc;
1614
1615	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1616				   last, &cmd_details);
1617	if (status) {
1618		i40e_debug(hw, I40E_DEBUG_NVM,
1619			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1620			   module, cmd->offset, cmd->data_size);
1621		i40e_debug(hw, I40E_DEBUG_NVM,
1622			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1623			   status, hw->aq.asq_last_status);
1624		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1625	}
1626
1627	return status;
1628}
1629
1630/**
1631 * i40e_nvmupd_nvm_write - Write NVM
1632 * @hw: pointer to hardware structure
1633 * @cmd: pointer to nvm update command buffer
1634 * @bytes: pointer to the data buffer
1635 * @perrno: pointer to return error code
1636 *
1637 * module, offset, data_size and data are in cmd structure
1638 **/
1639static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1640				 struct i40e_nvm_access *cmd,
1641				 u8 *bytes, int *perrno)
1642{
1643	struct i40e_asq_cmd_details cmd_details;
1644	u8 module, transaction;
1645	u8 preservation_flags;
1646	int status = 0;
1647	bool last;
1648
1649	transaction = i40e_nvmupd_get_transaction(cmd->config);
1650	module = i40e_nvmupd_get_module(cmd->config);
1651	last = (transaction & I40E_NVM_LCB);
1652	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1653
1654	memset(&cmd_details, 0, sizeof(cmd_details));
1655	cmd_details.wb_desc = &hw->nvm_wb_desc;
1656
1657	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1658				    (u16)cmd->data_size, bytes, last,
1659				    preservation_flags, &cmd_details);
1660	if (status) {
1661		i40e_debug(hw, I40E_DEBUG_NVM,
1662			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1663			   module, cmd->offset, cmd->data_size);
1664		i40e_debug(hw, I40E_DEBUG_NVM,
1665			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1666			   status, hw->aq.asq_last_status);
1667		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1668	}
1669
1670	return status;
1671}
1672