1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2019 Intel Corporation. */
3
4#include <linux/types.h>
5#include <linux/module.h>
6#include <net/ipv6.h>
7#include <net/ip.h>
8#include <net/tcp.h>
9#include <linux/if_macvlan.h>
10#include <linux/prefetch.h>
11
12#include "fm10k.h"
13
14#define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
15char fm10k_driver_name[] = "fm10k";
16static const char fm10k_driver_string[] = DRV_SUMMARY;
17static const char fm10k_copyright[] =
18	"Copyright(c) 2013 - 2019 Intel Corporation.";
19
20MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
21MODULE_DESCRIPTION(DRV_SUMMARY);
22MODULE_LICENSE("GPL v2");
23
24/* single workqueue for entire fm10k driver */
25struct workqueue_struct *fm10k_workqueue;
26
27/**
28 * fm10k_init_module - Driver Registration Routine
29 *
30 * fm10k_init_module is the first routine called when the driver is
31 * loaded.  All it does is register with the PCI subsystem.
32 **/
33static int __init fm10k_init_module(void)
34{
35	int ret;
36
37	pr_info("%s\n", fm10k_driver_string);
38	pr_info("%s\n", fm10k_copyright);
39
40	/* create driver workqueue */
41	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
42					  fm10k_driver_name);
43	if (!fm10k_workqueue)
44		return -ENOMEM;
45
46	fm10k_dbg_init();
47
48	ret = fm10k_register_pci_driver();
49	if (ret) {
50		fm10k_dbg_exit();
51		destroy_workqueue(fm10k_workqueue);
52	}
53
54	return ret;
55}
56module_init(fm10k_init_module);
57
58/**
59 * fm10k_exit_module - Driver Exit Cleanup Routine
60 *
61 * fm10k_exit_module is called just before the driver is removed
62 * from memory.
63 **/
64static void __exit fm10k_exit_module(void)
65{
66	fm10k_unregister_pci_driver();
67
68	fm10k_dbg_exit();
69
70	/* destroy driver workqueue */
71	destroy_workqueue(fm10k_workqueue);
72}
73module_exit(fm10k_exit_module);
74
75static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
76				    struct fm10k_rx_buffer *bi)
77{
78	struct page *page = bi->page;
79	dma_addr_t dma;
80
81	/* Only page will be NULL if buffer was consumed */
82	if (likely(page))
83		return true;
84
85	/* alloc new page for storage */
86	page = dev_alloc_page();
87	if (unlikely(!page)) {
88		rx_ring->rx_stats.alloc_failed++;
89		return false;
90	}
91
92	/* map page for use */
93	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
94
95	/* if mapping failed free memory back to system since
96	 * there isn't much point in holding memory we can't use
97	 */
98	if (dma_mapping_error(rx_ring->dev, dma)) {
99		__free_page(page);
100
101		rx_ring->rx_stats.alloc_failed++;
102		return false;
103	}
104
105	bi->dma = dma;
106	bi->page = page;
107	bi->page_offset = 0;
108
109	return true;
110}
111
112/**
113 * fm10k_alloc_rx_buffers - Replace used receive buffers
114 * @rx_ring: ring to place buffers on
115 * @cleaned_count: number of buffers to replace
116 **/
117void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
118{
119	union fm10k_rx_desc *rx_desc;
120	struct fm10k_rx_buffer *bi;
121	u16 i = rx_ring->next_to_use;
122
123	/* nothing to do */
124	if (!cleaned_count)
125		return;
126
127	rx_desc = FM10K_RX_DESC(rx_ring, i);
128	bi = &rx_ring->rx_buffer[i];
129	i -= rx_ring->count;
130
131	do {
132		if (!fm10k_alloc_mapped_page(rx_ring, bi))
133			break;
134
135		/* Refresh the desc even if buffer_addrs didn't change
136		 * because each write-back erases this info.
137		 */
138		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
139
140		rx_desc++;
141		bi++;
142		i++;
143		if (unlikely(!i)) {
144			rx_desc = FM10K_RX_DESC(rx_ring, 0);
145			bi = rx_ring->rx_buffer;
146			i -= rx_ring->count;
147		}
148
149		/* clear the status bits for the next_to_use descriptor */
150		rx_desc->d.staterr = 0;
151
152		cleaned_count--;
153	} while (cleaned_count);
154
155	i += rx_ring->count;
156
157	if (rx_ring->next_to_use != i) {
158		/* record the next descriptor to use */
159		rx_ring->next_to_use = i;
160
161		/* update next to alloc since we have filled the ring */
162		rx_ring->next_to_alloc = i;
163
164		/* Force memory writes to complete before letting h/w
165		 * know there are new descriptors to fetch.  (Only
166		 * applicable for weak-ordered memory model archs,
167		 * such as IA-64).
168		 */
169		wmb();
170
171		/* notify hardware of new descriptors */
172		writel(i, rx_ring->tail);
173	}
174}
175
176/**
177 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
178 * @rx_ring: rx descriptor ring to store buffers on
179 * @old_buff: donor buffer to have page reused
180 *
181 * Synchronizes page for reuse by the interface
182 **/
183static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
184				struct fm10k_rx_buffer *old_buff)
185{
186	struct fm10k_rx_buffer *new_buff;
187	u16 nta = rx_ring->next_to_alloc;
188
189	new_buff = &rx_ring->rx_buffer[nta];
190
191	/* update, and store next to alloc */
192	nta++;
193	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
194
195	/* transfer page from old buffer to new buffer */
196	*new_buff = *old_buff;
197
198	/* sync the buffer for use by the device */
199	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
200					 old_buff->page_offset,
201					 FM10K_RX_BUFSZ,
202					 DMA_FROM_DEVICE);
203}
204
205static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
206				    struct page *page,
207				    unsigned int __maybe_unused truesize)
208{
209	/* avoid re-using remote and pfmemalloc pages */
210	if (!dev_page_is_reusable(page))
211		return false;
212
213#if (PAGE_SIZE < 8192)
214	/* if we are only owner of page we can reuse it */
215	if (unlikely(page_count(page) != 1))
216		return false;
217
218	/* flip page offset to other buffer */
219	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
220#else
221	/* move offset up to the next cache line */
222	rx_buffer->page_offset += truesize;
223
224	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
225		return false;
226#endif
227
228	/* Even if we own the page, we are not allowed to use atomic_set()
229	 * This would break get_page_unless_zero() users.
230	 */
231	page_ref_inc(page);
232
233	return true;
234}
235
236/**
237 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
238 * @rx_buffer: buffer containing page to add
239 * @size: packet size from rx_desc
240 * @rx_desc: descriptor containing length of buffer written by hardware
241 * @skb: sk_buff to place the data into
242 *
243 * This function will add the data contained in rx_buffer->page to the skb.
244 * This is done either through a direct copy if the data in the buffer is
245 * less than the skb header size, otherwise it will just attach the page as
246 * a frag to the skb.
247 *
248 * The function will then update the page offset if necessary and return
249 * true if the buffer can be reused by the interface.
250 **/
251static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
252			      unsigned int size,
253			      union fm10k_rx_desc *rx_desc,
254			      struct sk_buff *skb)
255{
256	struct page *page = rx_buffer->page;
257	unsigned char *va = page_address(page) + rx_buffer->page_offset;
258#if (PAGE_SIZE < 8192)
259	unsigned int truesize = FM10K_RX_BUFSZ;
260#else
261	unsigned int truesize = ALIGN(size, 512);
262#endif
263	unsigned int pull_len;
264
265	if (unlikely(skb_is_nonlinear(skb)))
266		goto add_tail_frag;
267
268	if (likely(size <= FM10K_RX_HDR_LEN)) {
269		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
270
271		/* page is reusable, we can reuse buffer as-is */
272		if (dev_page_is_reusable(page))
273			return true;
274
275		/* this page cannot be reused so discard it */
276		__free_page(page);
277		return false;
278	}
279
280	/* we need the header to contain the greater of either ETH_HLEN or
281	 * 60 bytes if the skb->len is less than 60 for skb_pad.
282	 */
283	pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
284
285	/* align pull length to size of long to optimize memcpy performance */
286	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
287
288	/* update all of the pointers */
289	va += pull_len;
290	size -= pull_len;
291
292add_tail_frag:
293	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
294			(unsigned long)va & ~PAGE_MASK, size, truesize);
295
296	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
297}
298
299static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
300					     union fm10k_rx_desc *rx_desc,
301					     struct sk_buff *skb)
302{
303	unsigned int size = le16_to_cpu(rx_desc->w.length);
304	struct fm10k_rx_buffer *rx_buffer;
305	struct page *page;
306
307	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
308	page = rx_buffer->page;
309	prefetchw(page);
310
311	if (likely(!skb)) {
312		void *page_addr = page_address(page) +
313				  rx_buffer->page_offset;
314
315		/* prefetch first cache line of first page */
316		net_prefetch(page_addr);
317
318		/* allocate a skb to store the frags */
319		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
320				     FM10K_RX_HDR_LEN);
321		if (unlikely(!skb)) {
322			rx_ring->rx_stats.alloc_failed++;
323			return NULL;
324		}
325
326		/* we will be copying header into skb->data in
327		 * pskb_may_pull so it is in our interest to prefetch
328		 * it now to avoid a possible cache miss
329		 */
330		prefetchw(skb->data);
331	}
332
333	/* we are reusing so sync this buffer for CPU use */
334	dma_sync_single_range_for_cpu(rx_ring->dev,
335				      rx_buffer->dma,
336				      rx_buffer->page_offset,
337				      size,
338				      DMA_FROM_DEVICE);
339
340	/* pull page into skb */
341	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
342		/* hand second half of page back to the ring */
343		fm10k_reuse_rx_page(rx_ring, rx_buffer);
344	} else {
345		/* we are not reusing the buffer so unmap it */
346		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
347			       PAGE_SIZE, DMA_FROM_DEVICE);
348	}
349
350	/* clear contents of rx_buffer */
351	rx_buffer->page = NULL;
352
353	return skb;
354}
355
356static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
357				     union fm10k_rx_desc *rx_desc,
358				     struct sk_buff *skb)
359{
360	skb_checksum_none_assert(skb);
361
362	/* Rx checksum disabled via ethtool */
363	if (!(ring->netdev->features & NETIF_F_RXCSUM))
364		return;
365
366	/* TCP/UDP checksum error bit is set */
367	if (fm10k_test_staterr(rx_desc,
368			       FM10K_RXD_STATUS_L4E |
369			       FM10K_RXD_STATUS_L4E2 |
370			       FM10K_RXD_STATUS_IPE |
371			       FM10K_RXD_STATUS_IPE2)) {
372		ring->rx_stats.csum_err++;
373		return;
374	}
375
376	/* It must be a TCP or UDP packet with a valid checksum */
377	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
378		skb->encapsulation = true;
379	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
380		return;
381
382	skb->ip_summed = CHECKSUM_UNNECESSARY;
383
384	ring->rx_stats.csum_good++;
385}
386
387#define FM10K_RSS_L4_TYPES_MASK \
388	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
389	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
390	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
391	 BIT(FM10K_RSSTYPE_IPV6_UDP))
392
393static inline void fm10k_rx_hash(struct fm10k_ring *ring,
394				 union fm10k_rx_desc *rx_desc,
395				 struct sk_buff *skb)
396{
397	u16 rss_type;
398
399	if (!(ring->netdev->features & NETIF_F_RXHASH))
400		return;
401
402	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
403	if (!rss_type)
404		return;
405
406	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
407		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
408		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
409}
410
411static void fm10k_type_trans(struct fm10k_ring *rx_ring,
412			     union fm10k_rx_desc __maybe_unused *rx_desc,
413			     struct sk_buff *skb)
414{
415	struct net_device *dev = rx_ring->netdev;
416	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
417
418	/* check to see if DGLORT belongs to a MACVLAN */
419	if (l2_accel) {
420		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
421
422		idx -= l2_accel->dglort;
423		if (idx < l2_accel->size && l2_accel->macvlan[idx])
424			dev = l2_accel->macvlan[idx];
425		else
426			l2_accel = NULL;
427	}
428
429	/* Record Rx queue, or update macvlan statistics */
430	if (!l2_accel)
431		skb_record_rx_queue(skb, rx_ring->queue_index);
432	else
433		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
434				 false);
435
436	skb->protocol = eth_type_trans(skb, dev);
437}
438
439/**
440 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
441 * @rx_ring: rx descriptor ring packet is being transacted on
442 * @rx_desc: pointer to the EOP Rx descriptor
443 * @skb: pointer to current skb being populated
444 *
445 * This function checks the ring, descriptor, and packet information in
446 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
447 * other fields within the skb.
448 **/
449static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
450					     union fm10k_rx_desc *rx_desc,
451					     struct sk_buff *skb)
452{
453	unsigned int len = skb->len;
454
455	fm10k_rx_hash(rx_ring, rx_desc, skb);
456
457	fm10k_rx_checksum(rx_ring, rx_desc, skb);
458
459	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
460
461	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
462
463	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
464
465	if (rx_desc->w.vlan) {
466		u16 vid = le16_to_cpu(rx_desc->w.vlan);
467
468		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
469			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
470		else if (vid & VLAN_PRIO_MASK)
471			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
472					       vid & VLAN_PRIO_MASK);
473	}
474
475	fm10k_type_trans(rx_ring, rx_desc, skb);
476
477	return len;
478}
479
480/**
481 * fm10k_is_non_eop - process handling of non-EOP buffers
482 * @rx_ring: Rx ring being processed
483 * @rx_desc: Rx descriptor for current buffer
484 *
485 * This function updates next to clean.  If the buffer is an EOP buffer
486 * this function exits returning false, otherwise it will place the
487 * sk_buff in the next buffer to be chained and return true indicating
488 * that this is in fact a non-EOP buffer.
489 **/
490static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
491			     union fm10k_rx_desc *rx_desc)
492{
493	u32 ntc = rx_ring->next_to_clean + 1;
494
495	/* fetch, update, and store next to clean */
496	ntc = (ntc < rx_ring->count) ? ntc : 0;
497	rx_ring->next_to_clean = ntc;
498
499	prefetch(FM10K_RX_DESC(rx_ring, ntc));
500
501	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
502		return false;
503
504	return true;
505}
506
507/**
508 * fm10k_cleanup_headers - Correct corrupted or empty headers
509 * @rx_ring: rx descriptor ring packet is being transacted on
510 * @rx_desc: pointer to the EOP Rx descriptor
511 * @skb: pointer to current skb being fixed
512 *
513 * Address the case where we are pulling data in on pages only
514 * and as such no data is present in the skb header.
515 *
516 * In addition if skb is not at least 60 bytes we need to pad it so that
517 * it is large enough to qualify as a valid Ethernet frame.
518 *
519 * Returns true if an error was encountered and skb was freed.
520 **/
521static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
522				  union fm10k_rx_desc *rx_desc,
523				  struct sk_buff *skb)
524{
525	if (unlikely((fm10k_test_staterr(rx_desc,
526					 FM10K_RXD_STATUS_RXE)))) {
527#define FM10K_TEST_RXD_BIT(rxd, bit) \
528	((rxd)->w.csum_err & cpu_to_le16(bit))
529		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
530			rx_ring->rx_stats.switch_errors++;
531		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
532			rx_ring->rx_stats.drops++;
533		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
534			rx_ring->rx_stats.pp_errors++;
535		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
536			rx_ring->rx_stats.link_errors++;
537		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
538			rx_ring->rx_stats.length_errors++;
539		dev_kfree_skb_any(skb);
540		rx_ring->rx_stats.errors++;
541		return true;
542	}
543
544	/* if eth_skb_pad returns an error the skb was freed */
545	if (eth_skb_pad(skb))
546		return true;
547
548	return false;
549}
550
551/**
552 * fm10k_receive_skb - helper function to handle rx indications
553 * @q_vector: structure containing interrupt and ring information
554 * @skb: packet to send up
555 **/
556static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
557			      struct sk_buff *skb)
558{
559	napi_gro_receive(&q_vector->napi, skb);
560}
561
562static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
563			      struct fm10k_ring *rx_ring,
564			      int budget)
565{
566	struct sk_buff *skb = rx_ring->skb;
567	unsigned int total_bytes = 0, total_packets = 0;
568	u16 cleaned_count = fm10k_desc_unused(rx_ring);
569
570	while (likely(total_packets < budget)) {
571		union fm10k_rx_desc *rx_desc;
572
573		/* return some buffers to hardware, one at a time is too slow */
574		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
575			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
576			cleaned_count = 0;
577		}
578
579		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
580
581		if (!rx_desc->d.staterr)
582			break;
583
584		/* This memory barrier is needed to keep us from reading
585		 * any other fields out of the rx_desc until we know the
586		 * descriptor has been written back
587		 */
588		dma_rmb();
589
590		/* retrieve a buffer from the ring */
591		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
592
593		/* exit if we failed to retrieve a buffer */
594		if (!skb)
595			break;
596
597		cleaned_count++;
598
599		/* fetch next buffer in frame if non-eop */
600		if (fm10k_is_non_eop(rx_ring, rx_desc))
601			continue;
602
603		/* verify the packet layout is correct */
604		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
605			skb = NULL;
606			continue;
607		}
608
609		/* populate checksum, timestamp, VLAN, and protocol */
610		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
611
612		fm10k_receive_skb(q_vector, skb);
613
614		/* reset skb pointer */
615		skb = NULL;
616
617		/* update budget accounting */
618		total_packets++;
619	}
620
621	/* place incomplete frames back on ring for completion */
622	rx_ring->skb = skb;
623
624	u64_stats_update_begin(&rx_ring->syncp);
625	rx_ring->stats.packets += total_packets;
626	rx_ring->stats.bytes += total_bytes;
627	u64_stats_update_end(&rx_ring->syncp);
628	q_vector->rx.total_packets += total_packets;
629	q_vector->rx.total_bytes += total_bytes;
630
631	return total_packets;
632}
633
634#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
635static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
636{
637	struct fm10k_intfc *interface = netdev_priv(skb->dev);
638
639	if (interface->vxlan_port != udp_hdr(skb)->dest)
640		return NULL;
641
642	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
643	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
644}
645
646#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
647#define NVGRE_TNI htons(0x2000)
648struct fm10k_nvgre_hdr {
649	__be16 flags;
650	__be16 proto;
651	__be32 tni;
652};
653
654static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
655{
656	struct fm10k_nvgre_hdr *nvgre_hdr;
657	int hlen = ip_hdrlen(skb);
658
659	/* currently only IPv4 is supported due to hlen above */
660	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
661		return NULL;
662
663	/* our transport header should be NVGRE */
664	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
665
666	/* verify all reserved flags are 0 */
667	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
668		return NULL;
669
670	/* report start of ethernet header */
671	if (nvgre_hdr->flags & NVGRE_TNI)
672		return (struct ethhdr *)(nvgre_hdr + 1);
673
674	return (struct ethhdr *)(&nvgre_hdr->tni);
675}
676
677__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
678{
679	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
680	struct ethhdr *eth_hdr;
681
682	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
683	    skb->inner_protocol != htons(ETH_P_TEB))
684		return 0;
685
686	switch (vlan_get_protocol(skb)) {
687	case htons(ETH_P_IP):
688		l4_hdr = ip_hdr(skb)->protocol;
689		break;
690	case htons(ETH_P_IPV6):
691		l4_hdr = ipv6_hdr(skb)->nexthdr;
692		break;
693	default:
694		return 0;
695	}
696
697	switch (l4_hdr) {
698	case IPPROTO_UDP:
699		eth_hdr = fm10k_port_is_vxlan(skb);
700		break;
701	case IPPROTO_GRE:
702		eth_hdr = fm10k_gre_is_nvgre(skb);
703		break;
704	default:
705		return 0;
706	}
707
708	if (!eth_hdr)
709		return 0;
710
711	switch (eth_hdr->h_proto) {
712	case htons(ETH_P_IP):
713		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
714		break;
715	case htons(ETH_P_IPV6):
716		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
717		break;
718	default:
719		return 0;
720	}
721
722	switch (inner_l4_hdr) {
723	case IPPROTO_TCP:
724		inner_l4_hlen = inner_tcp_hdrlen(skb);
725		break;
726	case IPPROTO_UDP:
727		inner_l4_hlen = 8;
728		break;
729	default:
730		return 0;
731	}
732
733	/* The hardware allows tunnel offloads only if the combined inner and
734	 * outer header is 184 bytes or less
735	 */
736	if (skb_inner_transport_header(skb) + inner_l4_hlen -
737	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
738		return 0;
739
740	return eth_hdr->h_proto;
741}
742
743static int fm10k_tso(struct fm10k_ring *tx_ring,
744		     struct fm10k_tx_buffer *first)
745{
746	struct sk_buff *skb = first->skb;
747	struct fm10k_tx_desc *tx_desc;
748	unsigned char *th;
749	u8 hdrlen;
750
751	if (skb->ip_summed != CHECKSUM_PARTIAL)
752		return 0;
753
754	if (!skb_is_gso(skb))
755		return 0;
756
757	/* compute header lengths */
758	if (skb->encapsulation) {
759		if (!fm10k_tx_encap_offload(skb))
760			goto err_vxlan;
761		th = skb_inner_transport_header(skb);
762	} else {
763		th = skb_transport_header(skb);
764	}
765
766	/* compute offset from SOF to transport header and add header len */
767	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
768
769	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
770
771	/* update gso size and bytecount with header size */
772	first->gso_segs = skb_shinfo(skb)->gso_segs;
773	first->bytecount += (first->gso_segs - 1) * hdrlen;
774
775	/* populate Tx descriptor header size and mss */
776	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
777	tx_desc->hdrlen = hdrlen;
778	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
779
780	return 1;
781
782err_vxlan:
783	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
784	if (net_ratelimit())
785		netdev_err(tx_ring->netdev,
786			   "TSO requested for unsupported tunnel, disabling offload\n");
787	return -1;
788}
789
790static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
791			  struct fm10k_tx_buffer *first)
792{
793	struct sk_buff *skb = first->skb;
794	struct fm10k_tx_desc *tx_desc;
795	union {
796		struct iphdr *ipv4;
797		struct ipv6hdr *ipv6;
798		u8 *raw;
799	} network_hdr;
800	u8 *transport_hdr;
801	__be16 frag_off;
802	__be16 protocol;
803	u8 l4_hdr = 0;
804
805	if (skb->ip_summed != CHECKSUM_PARTIAL)
806		goto no_csum;
807
808	if (skb->encapsulation) {
809		protocol = fm10k_tx_encap_offload(skb);
810		if (!protocol) {
811			if (skb_checksum_help(skb)) {
812				dev_warn(tx_ring->dev,
813					 "failed to offload encap csum!\n");
814				tx_ring->tx_stats.csum_err++;
815			}
816			goto no_csum;
817		}
818		network_hdr.raw = skb_inner_network_header(skb);
819		transport_hdr = skb_inner_transport_header(skb);
820	} else {
821		protocol = vlan_get_protocol(skb);
822		network_hdr.raw = skb_network_header(skb);
823		transport_hdr = skb_transport_header(skb);
824	}
825
826	switch (protocol) {
827	case htons(ETH_P_IP):
828		l4_hdr = network_hdr.ipv4->protocol;
829		break;
830	case htons(ETH_P_IPV6):
831		l4_hdr = network_hdr.ipv6->nexthdr;
832		if (likely((transport_hdr - network_hdr.raw) ==
833			   sizeof(struct ipv6hdr)))
834			break;
835		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
836				      sizeof(struct ipv6hdr),
837				 &l4_hdr, &frag_off);
838		if (unlikely(frag_off))
839			l4_hdr = NEXTHDR_FRAGMENT;
840		break;
841	default:
842		break;
843	}
844
845	switch (l4_hdr) {
846	case IPPROTO_TCP:
847	case IPPROTO_UDP:
848		break;
849	case IPPROTO_GRE:
850		if (skb->encapsulation)
851			break;
852		fallthrough;
853	default:
854		if (unlikely(net_ratelimit())) {
855			dev_warn(tx_ring->dev,
856				 "partial checksum, version=%d l4 proto=%x\n",
857				 protocol, l4_hdr);
858		}
859		skb_checksum_help(skb);
860		tx_ring->tx_stats.csum_err++;
861		goto no_csum;
862	}
863
864	/* update TX checksum flag */
865	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
866	tx_ring->tx_stats.csum_good++;
867
868no_csum:
869	/* populate Tx descriptor header size and mss */
870	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
871	tx_desc->hdrlen = 0;
872	tx_desc->mss = 0;
873}
874
875#define FM10K_SET_FLAG(_input, _flag, _result) \
876	((_flag <= _result) ? \
877	 ((u32)(_input & _flag) * (_result / _flag)) : \
878	 ((u32)(_input & _flag) / (_flag / _result)))
879
880static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
881{
882	/* set type for advanced descriptor with frame checksum insertion */
883	u32 desc_flags = 0;
884
885	/* set checksum offload bits */
886	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
887				     FM10K_TXD_FLAG_CSUM);
888
889	return desc_flags;
890}
891
892static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
893			       struct fm10k_tx_desc *tx_desc, u16 i,
894			       dma_addr_t dma, unsigned int size, u8 desc_flags)
895{
896	/* set RS and INT for last frame in a cache line */
897	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
898		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
899
900	/* record values to descriptor */
901	tx_desc->buffer_addr = cpu_to_le64(dma);
902	tx_desc->flags = desc_flags;
903	tx_desc->buflen = cpu_to_le16(size);
904
905	/* return true if we just wrapped the ring */
906	return i == tx_ring->count;
907}
908
909static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
910{
911	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
912
913	/* Memory barrier before checking head and tail */
914	smp_mb();
915
916	/* Check again in a case another CPU has just made room available */
917	if (likely(fm10k_desc_unused(tx_ring) < size))
918		return -EBUSY;
919
920	/* A reprieve! - use start_queue because it doesn't call schedule */
921	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
922	++tx_ring->tx_stats.restart_queue;
923	return 0;
924}
925
926static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
927{
928	if (likely(fm10k_desc_unused(tx_ring) >= size))
929		return 0;
930	return __fm10k_maybe_stop_tx(tx_ring, size);
931}
932
933static void fm10k_tx_map(struct fm10k_ring *tx_ring,
934			 struct fm10k_tx_buffer *first)
935{
936	struct sk_buff *skb = first->skb;
937	struct fm10k_tx_buffer *tx_buffer;
938	struct fm10k_tx_desc *tx_desc;
939	skb_frag_t *frag;
940	unsigned char *data;
941	dma_addr_t dma;
942	unsigned int data_len, size;
943	u32 tx_flags = first->tx_flags;
944	u16 i = tx_ring->next_to_use;
945	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
946
947	tx_desc = FM10K_TX_DESC(tx_ring, i);
948
949	/* add HW VLAN tag */
950	if (skb_vlan_tag_present(skb))
951		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
952	else
953		tx_desc->vlan = 0;
954
955	size = skb_headlen(skb);
956	data = skb->data;
957
958	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
959
960	data_len = skb->data_len;
961	tx_buffer = first;
962
963	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
964		if (dma_mapping_error(tx_ring->dev, dma))
965			goto dma_error;
966
967		/* record length, and DMA address */
968		dma_unmap_len_set(tx_buffer, len, size);
969		dma_unmap_addr_set(tx_buffer, dma, dma);
970
971		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
972			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
973					       FM10K_MAX_DATA_PER_TXD, flags)) {
974				tx_desc = FM10K_TX_DESC(tx_ring, 0);
975				i = 0;
976			}
977
978			dma += FM10K_MAX_DATA_PER_TXD;
979			size -= FM10K_MAX_DATA_PER_TXD;
980		}
981
982		if (likely(!data_len))
983			break;
984
985		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
986				       dma, size, flags)) {
987			tx_desc = FM10K_TX_DESC(tx_ring, 0);
988			i = 0;
989		}
990
991		size = skb_frag_size(frag);
992		data_len -= size;
993
994		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
995				       DMA_TO_DEVICE);
996
997		tx_buffer = &tx_ring->tx_buffer[i];
998	}
999
1000	/* write last descriptor with LAST bit set */
1001	flags |= FM10K_TXD_FLAG_LAST;
1002
1003	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1004		i = 0;
1005
1006	/* record bytecount for BQL */
1007	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1008
1009	/* record SW timestamp if HW timestamp is not available */
1010	skb_tx_timestamp(first->skb);
1011
1012	/* Force memory writes to complete before letting h/w know there
1013	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1014	 * memory model archs, such as IA-64).
1015	 *
1016	 * We also need this memory barrier to make certain all of the
1017	 * status bits have been updated before next_to_watch is written.
1018	 */
1019	wmb();
1020
1021	/* set next_to_watch value indicating a packet is present */
1022	first->next_to_watch = tx_desc;
1023
1024	tx_ring->next_to_use = i;
1025
1026	/* Make sure there is space in the ring for the next send. */
1027	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1028
1029	/* notify HW of packet */
1030	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1031		writel(i, tx_ring->tail);
1032	}
1033
1034	return;
1035dma_error:
1036	dev_err(tx_ring->dev, "TX DMA map failed\n");
1037
1038	/* clear dma mappings for failed tx_buffer map */
1039	for (;;) {
1040		tx_buffer = &tx_ring->tx_buffer[i];
1041		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1042		if (tx_buffer == first)
1043			break;
1044		if (i == 0)
1045			i = tx_ring->count;
1046		i--;
1047	}
1048
1049	tx_ring->next_to_use = i;
1050}
1051
1052netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1053				  struct fm10k_ring *tx_ring)
1054{
1055	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1056	struct fm10k_tx_buffer *first;
1057	unsigned short f;
1058	u32 tx_flags = 0;
1059	int tso;
1060
1061	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1062	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1063	 *       + 2 desc gap to keep tail from touching head
1064	 * otherwise try next time
1065	 */
1066	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1067		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1068
1069		count += TXD_USE_COUNT(skb_frag_size(frag));
1070	}
1071
1072	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1073		tx_ring->tx_stats.tx_busy++;
1074		return NETDEV_TX_BUSY;
1075	}
1076
1077	/* record the location of the first descriptor for this packet */
1078	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1079	first->skb = skb;
1080	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1081	first->gso_segs = 1;
1082
1083	/* record initial flags and protocol */
1084	first->tx_flags = tx_flags;
1085
1086	tso = fm10k_tso(tx_ring, first);
1087	if (tso < 0)
1088		goto out_drop;
1089	else if (!tso)
1090		fm10k_tx_csum(tx_ring, first);
1091
1092	fm10k_tx_map(tx_ring, first);
1093
1094	return NETDEV_TX_OK;
1095
1096out_drop:
1097	dev_kfree_skb_any(first->skb);
1098	first->skb = NULL;
1099
1100	return NETDEV_TX_OK;
1101}
1102
1103static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1104{
1105	return ring->stats.packets;
1106}
1107
1108/**
1109 * fm10k_get_tx_pending - how many Tx descriptors not processed
1110 * @ring: the ring structure
1111 * @in_sw: is tx_pending being checked in SW or in HW?
1112 */
1113u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1114{
1115	struct fm10k_intfc *interface = ring->q_vector->interface;
1116	struct fm10k_hw *hw = &interface->hw;
1117	u32 head, tail;
1118
1119	if (likely(in_sw)) {
1120		head = ring->next_to_clean;
1121		tail = ring->next_to_use;
1122	} else {
1123		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1124		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1125	}
1126
1127	return ((head <= tail) ? tail : tail + ring->count) - head;
1128}
1129
1130bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1131{
1132	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1133	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1134	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1135
1136	clear_check_for_tx_hang(tx_ring);
1137
1138	/* Check for a hung queue, but be thorough. This verifies
1139	 * that a transmit has been completed since the previous
1140	 * check AND there is at least one packet pending. By
1141	 * requiring this to fail twice we avoid races with
1142	 * clearing the ARMED bit and conditions where we
1143	 * run the check_tx_hang logic with a transmit completion
1144	 * pending but without time to complete it yet.
1145	 */
1146	if (!tx_pending || (tx_done_old != tx_done)) {
1147		/* update completed stats and continue */
1148		tx_ring->tx_stats.tx_done_old = tx_done;
1149		/* reset the countdown */
1150		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1151
1152		return false;
1153	}
1154
1155	/* make sure it is true for two checks in a row */
1156	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1157}
1158
1159/**
1160 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1161 * @interface: driver private struct
1162 **/
1163void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1164{
1165	/* Do the reset outside of interrupt context */
1166	if (!test_bit(__FM10K_DOWN, interface->state)) {
1167		interface->tx_timeout_count++;
1168		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1169		fm10k_service_event_schedule(interface);
1170	}
1171}
1172
1173/**
1174 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1175 * @q_vector: structure containing interrupt and ring information
1176 * @tx_ring: tx ring to clean
1177 * @napi_budget: Used to determine if we are in netpoll
1178 **/
1179static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1180			       struct fm10k_ring *tx_ring, int napi_budget)
1181{
1182	struct fm10k_intfc *interface = q_vector->interface;
1183	struct fm10k_tx_buffer *tx_buffer;
1184	struct fm10k_tx_desc *tx_desc;
1185	unsigned int total_bytes = 0, total_packets = 0;
1186	unsigned int budget = q_vector->tx.work_limit;
1187	unsigned int i = tx_ring->next_to_clean;
1188
1189	if (test_bit(__FM10K_DOWN, interface->state))
1190		return true;
1191
1192	tx_buffer = &tx_ring->tx_buffer[i];
1193	tx_desc = FM10K_TX_DESC(tx_ring, i);
1194	i -= tx_ring->count;
1195
1196	do {
1197		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1198
1199		/* if next_to_watch is not set then there is no work pending */
1200		if (!eop_desc)
1201			break;
1202
1203		/* prevent any other reads prior to eop_desc */
1204		smp_rmb();
1205
1206		/* if DD is not set pending work has not been completed */
1207		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1208			break;
1209
1210		/* clear next_to_watch to prevent false hangs */
1211		tx_buffer->next_to_watch = NULL;
1212
1213		/* update the statistics for this packet */
1214		total_bytes += tx_buffer->bytecount;
1215		total_packets += tx_buffer->gso_segs;
1216
1217		/* free the skb */
1218		napi_consume_skb(tx_buffer->skb, napi_budget);
1219
1220		/* unmap skb header data */
1221		dma_unmap_single(tx_ring->dev,
1222				 dma_unmap_addr(tx_buffer, dma),
1223				 dma_unmap_len(tx_buffer, len),
1224				 DMA_TO_DEVICE);
1225
1226		/* clear tx_buffer data */
1227		tx_buffer->skb = NULL;
1228		dma_unmap_len_set(tx_buffer, len, 0);
1229
1230		/* unmap remaining buffers */
1231		while (tx_desc != eop_desc) {
1232			tx_buffer++;
1233			tx_desc++;
1234			i++;
1235			if (unlikely(!i)) {
1236				i -= tx_ring->count;
1237				tx_buffer = tx_ring->tx_buffer;
1238				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1239			}
1240
1241			/* unmap any remaining paged data */
1242			if (dma_unmap_len(tx_buffer, len)) {
1243				dma_unmap_page(tx_ring->dev,
1244					       dma_unmap_addr(tx_buffer, dma),
1245					       dma_unmap_len(tx_buffer, len),
1246					       DMA_TO_DEVICE);
1247				dma_unmap_len_set(tx_buffer, len, 0);
1248			}
1249		}
1250
1251		/* move us one more past the eop_desc for start of next pkt */
1252		tx_buffer++;
1253		tx_desc++;
1254		i++;
1255		if (unlikely(!i)) {
1256			i -= tx_ring->count;
1257			tx_buffer = tx_ring->tx_buffer;
1258			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1259		}
1260
1261		/* issue prefetch for next Tx descriptor */
1262		prefetch(tx_desc);
1263
1264		/* update budget accounting */
1265		budget--;
1266	} while (likely(budget));
1267
1268	i += tx_ring->count;
1269	tx_ring->next_to_clean = i;
1270	u64_stats_update_begin(&tx_ring->syncp);
1271	tx_ring->stats.bytes += total_bytes;
1272	tx_ring->stats.packets += total_packets;
1273	u64_stats_update_end(&tx_ring->syncp);
1274	q_vector->tx.total_bytes += total_bytes;
1275	q_vector->tx.total_packets += total_packets;
1276
1277	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1278		/* schedule immediate reset if we believe we hung */
1279		struct fm10k_hw *hw = &interface->hw;
1280
1281		netif_err(interface, drv, tx_ring->netdev,
1282			  "Detected Tx Unit Hang\n"
1283			  "  Tx Queue             <%d>\n"
1284			  "  TDH, TDT             <%x>, <%x>\n"
1285			  "  next_to_use          <%x>\n"
1286			  "  next_to_clean        <%x>\n",
1287			  tx_ring->queue_index,
1288			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1289			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1290			  tx_ring->next_to_use, i);
1291
1292		netif_stop_subqueue(tx_ring->netdev,
1293				    tx_ring->queue_index);
1294
1295		netif_info(interface, probe, tx_ring->netdev,
1296			   "tx hang %d detected on queue %d, resetting interface\n",
1297			   interface->tx_timeout_count + 1,
1298			   tx_ring->queue_index);
1299
1300		fm10k_tx_timeout_reset(interface);
1301
1302		/* the netdev is about to reset, no point in enabling stuff */
1303		return true;
1304	}
1305
1306	/* notify netdev of completed buffers */
1307	netdev_tx_completed_queue(txring_txq(tx_ring),
1308				  total_packets, total_bytes);
1309
1310#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1311	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1312		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1313		/* Make sure that anybody stopping the queue after this
1314		 * sees the new next_to_clean.
1315		 */
1316		smp_mb();
1317		if (__netif_subqueue_stopped(tx_ring->netdev,
1318					     tx_ring->queue_index) &&
1319		    !test_bit(__FM10K_DOWN, interface->state)) {
1320			netif_wake_subqueue(tx_ring->netdev,
1321					    tx_ring->queue_index);
1322			++tx_ring->tx_stats.restart_queue;
1323		}
1324	}
1325
1326	return !!budget;
1327}
1328
1329/**
1330 * fm10k_update_itr - update the dynamic ITR value based on packet size
1331 *
1332 *      Stores a new ITR value based on strictly on packet size.  The
1333 *      divisors and thresholds used by this function were determined based
1334 *      on theoretical maximum wire speed and testing data, in order to
1335 *      minimize response time while increasing bulk throughput.
1336 *
1337 * @ring_container: Container for rings to have ITR updated
1338 **/
1339static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1340{
1341	unsigned int avg_wire_size, packets, itr_round;
1342
1343	/* Only update ITR if we are using adaptive setting */
1344	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1345		goto clear_counts;
1346
1347	packets = ring_container->total_packets;
1348	if (!packets)
1349		goto clear_counts;
1350
1351	avg_wire_size = ring_container->total_bytes / packets;
1352
1353	/* The following is a crude approximation of:
1354	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1355	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1356	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1357	 *
1358	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1359	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1360	 * formula down to
1361	 *
1362	 *  (34 * (size + 24)) / (size + 640) = ITR
1363	 *
1364	 * We first do some math on the packet size and then finally bitshift
1365	 * by 8 after rounding up. We also have to account for PCIe link speed
1366	 * difference as ITR scales based on this.
1367	 */
1368	if (avg_wire_size <= 360) {
1369		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1370		avg_wire_size *= 8;
1371		avg_wire_size += 376;
1372	} else if (avg_wire_size <= 1152) {
1373		/* 77K ints/sec to 45K ints/sec */
1374		avg_wire_size *= 3;
1375		avg_wire_size += 2176;
1376	} else if (avg_wire_size <= 1920) {
1377		/* 45K ints/sec to 38K ints/sec */
1378		avg_wire_size += 4480;
1379	} else {
1380		/* plateau at a limit of 38K ints/sec */
1381		avg_wire_size = 6656;
1382	}
1383
1384	/* Perform final bitshift for division after rounding up to ensure
1385	 * that the calculation will never get below a 1. The bit shift
1386	 * accounts for changes in the ITR due to PCIe link speed.
1387	 */
1388	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1389	avg_wire_size += BIT(itr_round) - 1;
1390	avg_wire_size >>= itr_round;
1391
1392	/* write back value and retain adaptive flag */
1393	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1394
1395clear_counts:
1396	ring_container->total_bytes = 0;
1397	ring_container->total_packets = 0;
1398}
1399
1400static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1401{
1402	/* Enable auto-mask and clear the current mask */
1403	u32 itr = FM10K_ITR_ENABLE;
1404
1405	/* Update Tx ITR */
1406	fm10k_update_itr(&q_vector->tx);
1407
1408	/* Update Rx ITR */
1409	fm10k_update_itr(&q_vector->rx);
1410
1411	/* Store Tx itr in timer slot 0 */
1412	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1413
1414	/* Shift Rx itr to timer slot 1 */
1415	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1416
1417	/* Write the final value to the ITR register */
1418	writel(itr, q_vector->itr);
1419}
1420
1421static int fm10k_poll(struct napi_struct *napi, int budget)
1422{
1423	struct fm10k_q_vector *q_vector =
1424			       container_of(napi, struct fm10k_q_vector, napi);
1425	struct fm10k_ring *ring;
1426	int per_ring_budget, work_done = 0;
1427	bool clean_complete = true;
1428
1429	fm10k_for_each_ring(ring, q_vector->tx) {
1430		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1431			clean_complete = false;
1432	}
1433
1434	/* Handle case where we are called by netpoll with a budget of 0 */
1435	if (budget <= 0)
1436		return budget;
1437
1438	/* attempt to distribute budget to each queue fairly, but don't
1439	 * allow the budget to go below 1 because we'll exit polling
1440	 */
1441	if (q_vector->rx.count > 1)
1442		per_ring_budget = max(budget / q_vector->rx.count, 1);
1443	else
1444		per_ring_budget = budget;
1445
1446	fm10k_for_each_ring(ring, q_vector->rx) {
1447		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1448
1449		work_done += work;
1450		if (work >= per_ring_budget)
1451			clean_complete = false;
1452	}
1453
1454	/* If all work not completed, return budget and keep polling */
1455	if (!clean_complete)
1456		return budget;
1457
1458	/* Exit the polling mode, but don't re-enable interrupts if stack might
1459	 * poll us due to busy-polling
1460	 */
1461	if (likely(napi_complete_done(napi, work_done)))
1462		fm10k_qv_enable(q_vector);
1463
1464	return min(work_done, budget - 1);
1465}
1466
1467/**
1468 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1469 * @interface: board private structure to initialize
1470 *
1471 * When QoS (Quality of Service) is enabled, allocate queues for
1472 * each traffic class.  If multiqueue isn't available,then abort QoS
1473 * initialization.
1474 *
1475 * This function handles all combinations of Qos and RSS.
1476 *
1477 **/
1478static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1479{
1480	struct net_device *dev = interface->netdev;
1481	struct fm10k_ring_feature *f;
1482	int rss_i, i;
1483	int pcs;
1484
1485	/* Map queue offset and counts onto allocated tx queues */
1486	pcs = netdev_get_num_tc(dev);
1487
1488	if (pcs <= 1)
1489		return false;
1490
1491	/* set QoS mask and indices */
1492	f = &interface->ring_feature[RING_F_QOS];
1493	f->indices = pcs;
1494	f->mask = BIT(fls(pcs - 1)) - 1;
1495
1496	/* determine the upper limit for our current DCB mode */
1497	rss_i = interface->hw.mac.max_queues / pcs;
1498	rss_i = BIT(fls(rss_i) - 1);
1499
1500	/* set RSS mask and indices */
1501	f = &interface->ring_feature[RING_F_RSS];
1502	rss_i = min_t(u16, rss_i, f->limit);
1503	f->indices = rss_i;
1504	f->mask = BIT(fls(rss_i - 1)) - 1;
1505
1506	/* configure pause class to queue mapping */
1507	for (i = 0; i < pcs; i++)
1508		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1509
1510	interface->num_rx_queues = rss_i * pcs;
1511	interface->num_tx_queues = rss_i * pcs;
1512
1513	return true;
1514}
1515
1516/**
1517 * fm10k_set_rss_queues: Allocate queues for RSS
1518 * @interface: board private structure to initialize
1519 *
1520 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1521 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1522 *
1523 **/
1524static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1525{
1526	struct fm10k_ring_feature *f;
1527	u16 rss_i;
1528
1529	f = &interface->ring_feature[RING_F_RSS];
1530	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1531
1532	/* record indices and power of 2 mask for RSS */
1533	f->indices = rss_i;
1534	f->mask = BIT(fls(rss_i - 1)) - 1;
1535
1536	interface->num_rx_queues = rss_i;
1537	interface->num_tx_queues = rss_i;
1538
1539	return true;
1540}
1541
1542/**
1543 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1544 * @interface: board private structure to initialize
1545 *
1546 * This is the top level queue allocation routine.  The order here is very
1547 * important, starting with the "most" number of features turned on at once,
1548 * and ending with the smallest set of features.  This way large combinations
1549 * can be allocated if they're turned on, and smaller combinations are the
1550 * fall through conditions.
1551 *
1552 **/
1553static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1554{
1555	/* Attempt to setup QoS and RSS first */
1556	if (fm10k_set_qos_queues(interface))
1557		return;
1558
1559	/* If we don't have QoS, just fallback to only RSS. */
1560	fm10k_set_rss_queues(interface);
1561}
1562
1563/**
1564 * fm10k_reset_num_queues - Reset the number of queues to zero
1565 * @interface: board private structure
1566 *
1567 * This function should be called whenever we need to reset the number of
1568 * queues after an error condition.
1569 */
1570static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1571{
1572	interface->num_tx_queues = 0;
1573	interface->num_rx_queues = 0;
1574	interface->num_q_vectors = 0;
1575}
1576
1577/**
1578 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1579 * @interface: board private structure to initialize
1580 * @v_count: q_vectors allocated on interface, used for ring interleaving
1581 * @v_idx: index of vector in interface struct
1582 * @txr_count: total number of Tx rings to allocate
1583 * @txr_idx: index of first Tx ring to allocate
1584 * @rxr_count: total number of Rx rings to allocate
1585 * @rxr_idx: index of first Rx ring to allocate
1586 *
1587 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1588 **/
1589static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1590				unsigned int v_count, unsigned int v_idx,
1591				unsigned int txr_count, unsigned int txr_idx,
1592				unsigned int rxr_count, unsigned int rxr_idx)
1593{
1594	struct fm10k_q_vector *q_vector;
1595	struct fm10k_ring *ring;
1596	int ring_count;
1597
1598	ring_count = txr_count + rxr_count;
1599
1600	/* allocate q_vector and rings */
1601	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1602	if (!q_vector)
1603		return -ENOMEM;
1604
1605	/* initialize NAPI */
1606	netif_napi_add(interface->netdev, &q_vector->napi, fm10k_poll);
1607
1608	/* tie q_vector and interface together */
1609	interface->q_vector[v_idx] = q_vector;
1610	q_vector->interface = interface;
1611	q_vector->v_idx = v_idx;
1612
1613	/* initialize pointer to rings */
1614	ring = q_vector->ring;
1615
1616	/* save Tx ring container info */
1617	q_vector->tx.ring = ring;
1618	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1619	q_vector->tx.itr = interface->tx_itr;
1620	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1621	q_vector->tx.count = txr_count;
1622
1623	while (txr_count) {
1624		/* assign generic ring traits */
1625		ring->dev = &interface->pdev->dev;
1626		ring->netdev = interface->netdev;
1627
1628		/* configure backlink on ring */
1629		ring->q_vector = q_vector;
1630
1631		/* apply Tx specific ring traits */
1632		ring->count = interface->tx_ring_count;
1633		ring->queue_index = txr_idx;
1634
1635		/* assign ring to interface */
1636		interface->tx_ring[txr_idx] = ring;
1637
1638		/* update count and index */
1639		txr_count--;
1640		txr_idx += v_count;
1641
1642		/* push pointer to next ring */
1643		ring++;
1644	}
1645
1646	/* save Rx ring container info */
1647	q_vector->rx.ring = ring;
1648	q_vector->rx.itr = interface->rx_itr;
1649	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1650	q_vector->rx.count = rxr_count;
1651
1652	while (rxr_count) {
1653		/* assign generic ring traits */
1654		ring->dev = &interface->pdev->dev;
1655		ring->netdev = interface->netdev;
1656		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1657
1658		/* configure backlink on ring */
1659		ring->q_vector = q_vector;
1660
1661		/* apply Rx specific ring traits */
1662		ring->count = interface->rx_ring_count;
1663		ring->queue_index = rxr_idx;
1664
1665		/* assign ring to interface */
1666		interface->rx_ring[rxr_idx] = ring;
1667
1668		/* update count and index */
1669		rxr_count--;
1670		rxr_idx += v_count;
1671
1672		/* push pointer to next ring */
1673		ring++;
1674	}
1675
1676	fm10k_dbg_q_vector_init(q_vector);
1677
1678	return 0;
1679}
1680
1681/**
1682 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1683 * @interface: board private structure to initialize
1684 * @v_idx: Index of vector to be freed
1685 *
1686 * This function frees the memory allocated to the q_vector.  In addition if
1687 * NAPI is enabled it will delete any references to the NAPI struct prior
1688 * to freeing the q_vector.
1689 **/
1690static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1691{
1692	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1693	struct fm10k_ring *ring;
1694
1695	fm10k_dbg_q_vector_exit(q_vector);
1696
1697	fm10k_for_each_ring(ring, q_vector->tx)
1698		interface->tx_ring[ring->queue_index] = NULL;
1699
1700	fm10k_for_each_ring(ring, q_vector->rx)
1701		interface->rx_ring[ring->queue_index] = NULL;
1702
1703	interface->q_vector[v_idx] = NULL;
1704	netif_napi_del(&q_vector->napi);
1705	kfree_rcu(q_vector, rcu);
1706}
1707
1708/**
1709 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1710 * @interface: board private structure to initialize
1711 *
1712 * We allocate one q_vector per queue interrupt.  If allocation fails we
1713 * return -ENOMEM.
1714 **/
1715static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1716{
1717	unsigned int q_vectors = interface->num_q_vectors;
1718	unsigned int rxr_remaining = interface->num_rx_queues;
1719	unsigned int txr_remaining = interface->num_tx_queues;
1720	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1721	int err;
1722
1723	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1724		for (; rxr_remaining; v_idx++) {
1725			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1726						   0, 0, 1, rxr_idx);
1727			if (err)
1728				goto err_out;
1729
1730			/* update counts and index */
1731			rxr_remaining--;
1732			rxr_idx++;
1733		}
1734	}
1735
1736	for (; v_idx < q_vectors; v_idx++) {
1737		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1738		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1739
1740		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1741					   tqpv, txr_idx,
1742					   rqpv, rxr_idx);
1743
1744		if (err)
1745			goto err_out;
1746
1747		/* update counts and index */
1748		rxr_remaining -= rqpv;
1749		txr_remaining -= tqpv;
1750		rxr_idx++;
1751		txr_idx++;
1752	}
1753
1754	return 0;
1755
1756err_out:
1757	fm10k_reset_num_queues(interface);
1758
1759	while (v_idx--)
1760		fm10k_free_q_vector(interface, v_idx);
1761
1762	return -ENOMEM;
1763}
1764
1765/**
1766 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1767 * @interface: board private structure to initialize
1768 *
1769 * This function frees the memory allocated to the q_vectors.  In addition if
1770 * NAPI is enabled it will delete any references to the NAPI struct prior
1771 * to freeing the q_vector.
1772 **/
1773static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1774{
1775	int v_idx = interface->num_q_vectors;
1776
1777	fm10k_reset_num_queues(interface);
1778
1779	while (v_idx--)
1780		fm10k_free_q_vector(interface, v_idx);
1781}
1782
1783/**
1784 * fm10k_reset_msix_capability - reset MSI-X capability
1785 * @interface: board private structure to initialize
1786 *
1787 * Reset the MSI-X capability back to its starting state
1788 **/
1789static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1790{
1791	pci_disable_msix(interface->pdev);
1792	kfree(interface->msix_entries);
1793	interface->msix_entries = NULL;
1794}
1795
1796/**
1797 * fm10k_init_msix_capability - configure MSI-X capability
1798 * @interface: board private structure to initialize
1799 *
1800 * Attempt to configure the interrupts using the best available
1801 * capabilities of the hardware and the kernel.
1802 **/
1803static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1804{
1805	struct fm10k_hw *hw = &interface->hw;
1806	int v_budget, vector;
1807
1808	/* It's easy to be greedy for MSI-X vectors, but it really
1809	 * doesn't do us much good if we have a lot more vectors
1810	 * than CPU's.  So let's be conservative and only ask for
1811	 * (roughly) the same number of vectors as there are CPU's.
1812	 * the default is to use pairs of vectors
1813	 */
1814	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1815	v_budget = min_t(u16, v_budget, num_online_cpus());
1816
1817	/* account for vectors not related to queues */
1818	v_budget += NON_Q_VECTORS;
1819
1820	/* At the same time, hardware can only support a maximum of
1821	 * hw.mac->max_msix_vectors vectors.  With features
1822	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1823	 * descriptor queues supported by our device.  Thus, we cap it off in
1824	 * those rare cases where the cpu count also exceeds our vector limit.
1825	 */
1826	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1827
1828	/* A failure in MSI-X entry allocation is fatal. */
1829	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1830					  GFP_KERNEL);
1831	if (!interface->msix_entries)
1832		return -ENOMEM;
1833
1834	/* populate entry values */
1835	for (vector = 0; vector < v_budget; vector++)
1836		interface->msix_entries[vector].entry = vector;
1837
1838	/* Attempt to enable MSI-X with requested value */
1839	v_budget = pci_enable_msix_range(interface->pdev,
1840					 interface->msix_entries,
1841					 MIN_MSIX_COUNT(hw),
1842					 v_budget);
1843	if (v_budget < 0) {
1844		kfree(interface->msix_entries);
1845		interface->msix_entries = NULL;
1846		return v_budget;
1847	}
1848
1849	/* record the number of queues available for q_vectors */
1850	interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1851
1852	return 0;
1853}
1854
1855/**
1856 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1857 * @interface: Interface structure continaining rings and devices
1858 *
1859 * Cache the descriptor ring offsets for Qos
1860 **/
1861static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1862{
1863	struct net_device *dev = interface->netdev;
1864	int pc, offset, rss_i, i;
1865	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1866	u8 num_pcs = netdev_get_num_tc(dev);
1867
1868	if (num_pcs <= 1)
1869		return false;
1870
1871	rss_i = interface->ring_feature[RING_F_RSS].indices;
1872
1873	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1874		int q_idx = pc;
1875
1876		for (i = 0; i < rss_i; i++) {
1877			interface->tx_ring[offset + i]->reg_idx = q_idx;
1878			interface->tx_ring[offset + i]->qos_pc = pc;
1879			interface->rx_ring[offset + i]->reg_idx = q_idx;
1880			interface->rx_ring[offset + i]->qos_pc = pc;
1881			q_idx += pc_stride;
1882		}
1883	}
1884
1885	return true;
1886}
1887
1888/**
1889 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1890 * @interface: Interface structure continaining rings and devices
1891 *
1892 * Cache the descriptor ring offsets for RSS
1893 **/
1894static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1895{
1896	int i;
1897
1898	for (i = 0; i < interface->num_rx_queues; i++)
1899		interface->rx_ring[i]->reg_idx = i;
1900
1901	for (i = 0; i < interface->num_tx_queues; i++)
1902		interface->tx_ring[i]->reg_idx = i;
1903}
1904
1905/**
1906 * fm10k_assign_rings - Map rings to network devices
1907 * @interface: Interface structure containing rings and devices
1908 *
1909 * This function is meant to go though and configure both the network
1910 * devices so that they contain rings, and configure the rings so that
1911 * they function with their network devices.
1912 **/
1913static void fm10k_assign_rings(struct fm10k_intfc *interface)
1914{
1915	if (fm10k_cache_ring_qos(interface))
1916		return;
1917
1918	fm10k_cache_ring_rss(interface);
1919}
1920
1921static void fm10k_init_reta(struct fm10k_intfc *interface)
1922{
1923	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1924	u32 reta;
1925
1926	/* If the Rx flow indirection table has been configured manually, we
1927	 * need to maintain it when possible.
1928	 */
1929	if (netif_is_rxfh_configured(interface->netdev)) {
1930		for (i = FM10K_RETA_SIZE; i--;) {
1931			reta = interface->reta[i];
1932			if ((((reta << 24) >> 24) < rss_i) &&
1933			    (((reta << 16) >> 24) < rss_i) &&
1934			    (((reta <<  8) >> 24) < rss_i) &&
1935			    (((reta)       >> 24) < rss_i))
1936				continue;
1937
1938			/* this should never happen */
1939			dev_err(&interface->pdev->dev,
1940				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1941			goto repopulate_reta;
1942		}
1943
1944		/* do nothing if all of the elements are in bounds */
1945		return;
1946	}
1947
1948repopulate_reta:
1949	fm10k_write_reta(interface, NULL);
1950}
1951
1952/**
1953 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1954 * @interface: board private structure to initialize
1955 *
1956 * We determine which queueing scheme to use based on...
1957 * - Hardware queue count (num_*_queues)
1958 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1959 **/
1960int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1961{
1962	int err;
1963
1964	/* Number of supported queues */
1965	fm10k_set_num_queues(interface);
1966
1967	/* Configure MSI-X capability */
1968	err = fm10k_init_msix_capability(interface);
1969	if (err) {
1970		dev_err(&interface->pdev->dev,
1971			"Unable to initialize MSI-X capability\n");
1972		goto err_init_msix;
1973	}
1974
1975	/* Allocate memory for queues */
1976	err = fm10k_alloc_q_vectors(interface);
1977	if (err) {
1978		dev_err(&interface->pdev->dev,
1979			"Unable to allocate queue vectors\n");
1980		goto err_alloc_q_vectors;
1981	}
1982
1983	/* Map rings to devices, and map devices to physical queues */
1984	fm10k_assign_rings(interface);
1985
1986	/* Initialize RSS redirection table */
1987	fm10k_init_reta(interface);
1988
1989	return 0;
1990
1991err_alloc_q_vectors:
1992	fm10k_reset_msix_capability(interface);
1993err_init_msix:
1994	fm10k_reset_num_queues(interface);
1995	return err;
1996}
1997
1998/**
1999 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2000 * @interface: board private structure to clear queueing scheme on
2001 *
2002 * We go through and clear queueing specific resources and reset the structure
2003 * to pre-load conditions
2004 **/
2005void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2006{
2007	fm10k_free_q_vectors(interface);
2008	fm10k_reset_msix_capability(interface);
2009}
2010