1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include "e1000.h"
5#include <linux/ethtool.h>
6
7static s32 e1000_wait_autoneg(struct e1000_hw *hw);
8static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
9					  u16 *data, bool read, bool page_set);
10static u32 e1000_get_phy_addr_for_hv_page(u32 page);
11static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
12					  u16 *data, bool read);
13
14/* Cable length tables */
15static const u16 e1000_m88_cable_length_table[] = {
16	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
17};
18
19#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
20		ARRAY_SIZE(e1000_m88_cable_length_table)
21
22static const u16 e1000_igp_2_cable_length_table[] = {
23	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
24	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
25	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
26	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
27	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
28	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
29	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
30	124
31};
32
33#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
34		ARRAY_SIZE(e1000_igp_2_cable_length_table)
35
36/**
37 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
38 *  @hw: pointer to the HW structure
39 *
40 *  Read the PHY management control register and check whether a PHY reset
41 *  is blocked.  If a reset is not blocked return 0, otherwise
42 *  return E1000_BLK_PHY_RESET (12).
43 **/
44s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
45{
46	u32 manc;
47
48	manc = er32(MANC);
49
50	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
51}
52
53/**
54 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
55 *  @hw: pointer to the HW structure
56 *
57 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
58 *  revision in the hardware structure.
59 **/
60s32 e1000e_get_phy_id(struct e1000_hw *hw)
61{
62	struct e1000_phy_info *phy = &hw->phy;
63	s32 ret_val = 0;
64	u16 phy_id;
65	u16 retry_count = 0;
66
67	if (!phy->ops.read_reg)
68		return 0;
69
70	while (retry_count < 2) {
71		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
72		if (ret_val)
73			return ret_val;
74
75		phy->id = (u32)(phy_id << 16);
76		usleep_range(20, 40);
77		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
78		if (ret_val)
79			return ret_val;
80
81		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
82		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
83
84		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
85			return 0;
86
87		retry_count++;
88	}
89
90	return 0;
91}
92
93/**
94 *  e1000e_phy_reset_dsp - Reset PHY DSP
95 *  @hw: pointer to the HW structure
96 *
97 *  Reset the digital signal processor.
98 **/
99s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
100{
101	s32 ret_val;
102
103	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
104	if (ret_val)
105		return ret_val;
106
107	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
108}
109
110void e1000e_disable_phy_retry(struct e1000_hw *hw)
111{
112	hw->phy.retry_enabled = false;
113}
114
115void e1000e_enable_phy_retry(struct e1000_hw *hw)
116{
117	hw->phy.retry_enabled = true;
118}
119
120/**
121 *  e1000e_read_phy_reg_mdic - Read MDI control register
122 *  @hw: pointer to the HW structure
123 *  @offset: register offset to be read
124 *  @data: pointer to the read data
125 *
126 *  Reads the MDI control register in the PHY at offset and stores the
127 *  information read to data.
128 **/
129s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
130{
131	u32 i, mdic = 0, retry_counter, retry_max;
132	struct e1000_phy_info *phy = &hw->phy;
133	bool success;
134
135	if (offset > MAX_PHY_REG_ADDRESS) {
136		e_dbg("PHY Address %d is out of range\n", offset);
137		return -E1000_ERR_PARAM;
138	}
139
140	retry_max = phy->retry_enabled ? phy->retry_count : 0;
141
142	/* Set up Op-code, Phy Address, and register offset in the MDI
143	 * Control register.  The MAC will take care of interfacing with the
144	 * PHY to retrieve the desired data.
145	 */
146	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
147		success = true;
148
149		mdic = ((offset << E1000_MDIC_REG_SHIFT) |
150			(phy->addr << E1000_MDIC_PHY_SHIFT) |
151			(E1000_MDIC_OP_READ));
152
153		ew32(MDIC, mdic);
154
155		/* Poll the ready bit to see if the MDI read completed
156		 * Increasing the time out as testing showed failures with
157		 * the lower time out
158		 */
159		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
160			udelay(50);
161			mdic = er32(MDIC);
162			if (mdic & E1000_MDIC_READY)
163				break;
164		}
165		if (!(mdic & E1000_MDIC_READY)) {
166			e_dbg("MDI Read PHY Reg Address %d did not complete\n",
167			      offset);
168			success = false;
169		}
170		if (mdic & E1000_MDIC_ERROR) {
171			e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
172			success = false;
173		}
174		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
175			e_dbg("MDI Read offset error - requested %d, returned %d\n",
176			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
177			success = false;
178		}
179
180		/* Allow some time after each MDIC transaction to avoid
181		 * reading duplicate data in the next MDIC transaction.
182		 */
183		if (hw->mac.type == e1000_pch2lan)
184			udelay(100);
185
186		if (success) {
187			*data = (u16)mdic;
188			return 0;
189		}
190
191		if (retry_counter != retry_max) {
192			e_dbg("Perform retry on PHY transaction...\n");
193			mdelay(10);
194		}
195	}
196
197	return -E1000_ERR_PHY;
198}
199
200/**
201 *  e1000e_write_phy_reg_mdic - Write MDI control register
202 *  @hw: pointer to the HW structure
203 *  @offset: register offset to write to
204 *  @data: data to write to register at offset
205 *
206 *  Writes data to MDI control register in the PHY at offset.
207 **/
208s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
209{
210	u32 i, mdic = 0, retry_counter, retry_max;
211	struct e1000_phy_info *phy = &hw->phy;
212	bool success;
213
214	if (offset > MAX_PHY_REG_ADDRESS) {
215		e_dbg("PHY Address %d is out of range\n", offset);
216		return -E1000_ERR_PARAM;
217	}
218
219	retry_max = phy->retry_enabled ? phy->retry_count : 0;
220
221	/* Set up Op-code, Phy Address, and register offset in the MDI
222	 * Control register.  The MAC will take care of interfacing with the
223	 * PHY to retrieve the desired data.
224	 */
225	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
226		success = true;
227
228		mdic = (((u32)data) |
229			(offset << E1000_MDIC_REG_SHIFT) |
230			(phy->addr << E1000_MDIC_PHY_SHIFT) |
231			(E1000_MDIC_OP_WRITE));
232
233		ew32(MDIC, mdic);
234
235		/* Poll the ready bit to see if the MDI read completed
236		 * Increasing the time out as testing showed failures with
237		 * the lower time out
238		 */
239		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
240			udelay(50);
241			mdic = er32(MDIC);
242			if (mdic & E1000_MDIC_READY)
243				break;
244		}
245		if (!(mdic & E1000_MDIC_READY)) {
246			e_dbg("MDI Write PHY Reg Address %d did not complete\n",
247			      offset);
248			success = false;
249		}
250		if (mdic & E1000_MDIC_ERROR) {
251			e_dbg("MDI Write PHY Reg Address %d Error\n", offset);
252			success = false;
253		}
254		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
255			e_dbg("MDI Write offset error - requested %d, returned %d\n",
256			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
257			success = false;
258		}
259
260		/* Allow some time after each MDIC transaction to avoid
261		 * reading duplicate data in the next MDIC transaction.
262		 */
263		if (hw->mac.type == e1000_pch2lan)
264			udelay(100);
265
266		if (success)
267			return 0;
268
269		if (retry_counter != retry_max) {
270			e_dbg("Perform retry on PHY transaction...\n");
271			mdelay(10);
272		}
273	}
274
275	return -E1000_ERR_PHY;
276}
277
278/**
279 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
280 *  @hw: pointer to the HW structure
281 *  @offset: register offset to be read
282 *  @data: pointer to the read data
283 *
284 *  Acquires semaphore, if necessary, then reads the PHY register at offset
285 *  and storing the retrieved information in data.  Release any acquired
286 *  semaphores before exiting.
287 **/
288s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
289{
290	s32 ret_val;
291
292	ret_val = hw->phy.ops.acquire(hw);
293	if (ret_val)
294		return ret_val;
295
296	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
297					   data);
298
299	hw->phy.ops.release(hw);
300
301	return ret_val;
302}
303
304/**
305 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
306 *  @hw: pointer to the HW structure
307 *  @offset: register offset to write to
308 *  @data: data to write at register offset
309 *
310 *  Acquires semaphore, if necessary, then writes the data to PHY register
311 *  at the offset.  Release any acquired semaphores before exiting.
312 **/
313s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
314{
315	s32 ret_val;
316
317	ret_val = hw->phy.ops.acquire(hw);
318	if (ret_val)
319		return ret_val;
320
321	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
322					    data);
323
324	hw->phy.ops.release(hw);
325
326	return ret_val;
327}
328
329/**
330 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
331 *  @hw: pointer to the HW structure
332 *  @page: page to set (shifted left when necessary)
333 *
334 *  Sets PHY page required for PHY register access.  Assumes semaphore is
335 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
336 *  must set it appropriately (if necessary) after this function returns.
337 **/
338s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
339{
340	e_dbg("Setting page 0x%x\n", page);
341
342	hw->phy.addr = 1;
343
344	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
345}
346
347/**
348 *  __e1000e_read_phy_reg_igp - Read igp PHY register
349 *  @hw: pointer to the HW structure
350 *  @offset: register offset to be read
351 *  @data: pointer to the read data
352 *  @locked: semaphore has already been acquired or not
353 *
354 *  Acquires semaphore, if necessary, then reads the PHY register at offset
355 *  and stores the retrieved information in data.  Release any acquired
356 *  semaphores before exiting.
357 **/
358static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
359				     bool locked)
360{
361	s32 ret_val = 0;
362
363	if (!locked) {
364		if (!hw->phy.ops.acquire)
365			return 0;
366
367		ret_val = hw->phy.ops.acquire(hw);
368		if (ret_val)
369			return ret_val;
370	}
371
372	if (offset > MAX_PHY_MULTI_PAGE_REG)
373		ret_val = e1000e_write_phy_reg_mdic(hw,
374						    IGP01E1000_PHY_PAGE_SELECT,
375						    (u16)offset);
376	if (!ret_val)
377		ret_val = e1000e_read_phy_reg_mdic(hw,
378						   MAX_PHY_REG_ADDRESS & offset,
379						   data);
380	if (!locked)
381		hw->phy.ops.release(hw);
382
383	return ret_val;
384}
385
386/**
387 *  e1000e_read_phy_reg_igp - Read igp PHY register
388 *  @hw: pointer to the HW structure
389 *  @offset: register offset to be read
390 *  @data: pointer to the read data
391 *
392 *  Acquires semaphore then reads the PHY register at offset and stores the
393 *  retrieved information in data.
394 *  Release the acquired semaphore before exiting.
395 **/
396s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
397{
398	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
399}
400
401/**
402 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
403 *  @hw: pointer to the HW structure
404 *  @offset: register offset to be read
405 *  @data: pointer to the read data
406 *
407 *  Reads the PHY register at offset and stores the retrieved information
408 *  in data.  Assumes semaphore already acquired.
409 **/
410s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
411{
412	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
413}
414
415/**
416 *  __e1000e_write_phy_reg_igp - Write igp PHY register
417 *  @hw: pointer to the HW structure
418 *  @offset: register offset to write to
419 *  @data: data to write at register offset
420 *  @locked: semaphore has already been acquired or not
421 *
422 *  Acquires semaphore, if necessary, then writes the data to PHY register
423 *  at the offset.  Release any acquired semaphores before exiting.
424 **/
425static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
426				      bool locked)
427{
428	s32 ret_val = 0;
429
430	if (!locked) {
431		if (!hw->phy.ops.acquire)
432			return 0;
433
434		ret_val = hw->phy.ops.acquire(hw);
435		if (ret_val)
436			return ret_val;
437	}
438
439	if (offset > MAX_PHY_MULTI_PAGE_REG)
440		ret_val = e1000e_write_phy_reg_mdic(hw,
441						    IGP01E1000_PHY_PAGE_SELECT,
442						    (u16)offset);
443	if (!ret_val)
444		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
445						    offset, data);
446	if (!locked)
447		hw->phy.ops.release(hw);
448
449	return ret_val;
450}
451
452/**
453 *  e1000e_write_phy_reg_igp - Write igp PHY register
454 *  @hw: pointer to the HW structure
455 *  @offset: register offset to write to
456 *  @data: data to write at register offset
457 *
458 *  Acquires semaphore then writes the data to PHY register
459 *  at the offset.  Release any acquired semaphores before exiting.
460 **/
461s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
462{
463	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
464}
465
466/**
467 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
468 *  @hw: pointer to the HW structure
469 *  @offset: register offset to write to
470 *  @data: data to write at register offset
471 *
472 *  Writes the data to PHY register at the offset.
473 *  Assumes semaphore already acquired.
474 **/
475s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
476{
477	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
478}
479
480/**
481 *  __e1000_read_kmrn_reg - Read kumeran register
482 *  @hw: pointer to the HW structure
483 *  @offset: register offset to be read
484 *  @data: pointer to the read data
485 *  @locked: semaphore has already been acquired or not
486 *
487 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
488 *  using the kumeran interface.  The information retrieved is stored in data.
489 *  Release any acquired semaphores before exiting.
490 **/
491static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
492				 bool locked)
493{
494	u32 kmrnctrlsta;
495
496	if (!locked) {
497		s32 ret_val = 0;
498
499		if (!hw->phy.ops.acquire)
500			return 0;
501
502		ret_val = hw->phy.ops.acquire(hw);
503		if (ret_val)
504			return ret_val;
505	}
506
507	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
508		      E1000_KMRNCTRLSTA_REN;
509	ew32(KMRNCTRLSTA, kmrnctrlsta);
510	e1e_flush();
511
512	udelay(2);
513
514	kmrnctrlsta = er32(KMRNCTRLSTA);
515	*data = (u16)kmrnctrlsta;
516
517	if (!locked)
518		hw->phy.ops.release(hw);
519
520	return 0;
521}
522
523/**
524 *  e1000e_read_kmrn_reg -  Read kumeran register
525 *  @hw: pointer to the HW structure
526 *  @offset: register offset to be read
527 *  @data: pointer to the read data
528 *
529 *  Acquires semaphore then reads the PHY register at offset using the
530 *  kumeran interface.  The information retrieved is stored in data.
531 *  Release the acquired semaphore before exiting.
532 **/
533s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
534{
535	return __e1000_read_kmrn_reg(hw, offset, data, false);
536}
537
538/**
539 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
540 *  @hw: pointer to the HW structure
541 *  @offset: register offset to be read
542 *  @data: pointer to the read data
543 *
544 *  Reads the PHY register at offset using the kumeran interface.  The
545 *  information retrieved is stored in data.
546 *  Assumes semaphore already acquired.
547 **/
548s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
549{
550	return __e1000_read_kmrn_reg(hw, offset, data, true);
551}
552
553/**
554 *  __e1000_write_kmrn_reg - Write kumeran register
555 *  @hw: pointer to the HW structure
556 *  @offset: register offset to write to
557 *  @data: data to write at register offset
558 *  @locked: semaphore has already been acquired or not
559 *
560 *  Acquires semaphore, if necessary.  Then write the data to PHY register
561 *  at the offset using the kumeran interface.  Release any acquired semaphores
562 *  before exiting.
563 **/
564static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
565				  bool locked)
566{
567	u32 kmrnctrlsta;
568
569	if (!locked) {
570		s32 ret_val = 0;
571
572		if (!hw->phy.ops.acquire)
573			return 0;
574
575		ret_val = hw->phy.ops.acquire(hw);
576		if (ret_val)
577			return ret_val;
578	}
579
580	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
581	ew32(KMRNCTRLSTA, kmrnctrlsta);
582	e1e_flush();
583
584	udelay(2);
585
586	if (!locked)
587		hw->phy.ops.release(hw);
588
589	return 0;
590}
591
592/**
593 *  e1000e_write_kmrn_reg -  Write kumeran register
594 *  @hw: pointer to the HW structure
595 *  @offset: register offset to write to
596 *  @data: data to write at register offset
597 *
598 *  Acquires semaphore then writes the data to the PHY register at the offset
599 *  using the kumeran interface.  Release the acquired semaphore before exiting.
600 **/
601s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
602{
603	return __e1000_write_kmrn_reg(hw, offset, data, false);
604}
605
606/**
607 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
608 *  @hw: pointer to the HW structure
609 *  @offset: register offset to write to
610 *  @data: data to write at register offset
611 *
612 *  Write the data to PHY register at the offset using the kumeran interface.
613 *  Assumes semaphore already acquired.
614 **/
615s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
616{
617	return __e1000_write_kmrn_reg(hw, offset, data, true);
618}
619
620/**
621 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
622 *  @hw: pointer to the HW structure
623 *
624 *  Sets up Master/slave mode
625 **/
626static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
627{
628	s32 ret_val;
629	u16 phy_data;
630
631	/* Resolve Master/Slave mode */
632	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
633	if (ret_val)
634		return ret_val;
635
636	/* load defaults for future use */
637	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
638	    ((phy_data & CTL1000_AS_MASTER) ?
639	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
640
641	switch (hw->phy.ms_type) {
642	case e1000_ms_force_master:
643		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
644		break;
645	case e1000_ms_force_slave:
646		phy_data |= CTL1000_ENABLE_MASTER;
647		phy_data &= ~(CTL1000_AS_MASTER);
648		break;
649	case e1000_ms_auto:
650		phy_data &= ~CTL1000_ENABLE_MASTER;
651		fallthrough;
652	default:
653		break;
654	}
655
656	return e1e_wphy(hw, MII_CTRL1000, phy_data);
657}
658
659/**
660 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
661 *  @hw: pointer to the HW structure
662 *
663 *  Sets up Carrier-sense on Transmit and downshift values.
664 **/
665s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
666{
667	s32 ret_val;
668	u16 phy_data;
669
670	/* Enable CRS on Tx. This must be set for half-duplex operation. */
671	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
672	if (ret_val)
673		return ret_val;
674
675	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
676
677	/* Enable downshift */
678	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
679
680	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
681	if (ret_val)
682		return ret_val;
683
684	/* Set MDI/MDIX mode */
685	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
686	if (ret_val)
687		return ret_val;
688	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
689	/* Options:
690	 *   0 - Auto (default)
691	 *   1 - MDI mode
692	 *   2 - MDI-X mode
693	 */
694	switch (hw->phy.mdix) {
695	case 1:
696		break;
697	case 2:
698		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
699		break;
700	case 0:
701	default:
702		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
703		break;
704	}
705	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
706	if (ret_val)
707		return ret_val;
708
709	return e1000_set_master_slave_mode(hw);
710}
711
712/**
713 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
714 *  @hw: pointer to the HW structure
715 *
716 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
717 *  and downshift values are set also.
718 **/
719s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
720{
721	struct e1000_phy_info *phy = &hw->phy;
722	s32 ret_val;
723	u16 phy_data;
724
725	/* Enable CRS on Tx. This must be set for half-duplex operation. */
726	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
727	if (ret_val)
728		return ret_val;
729
730	/* For BM PHY this bit is downshift enable */
731	if (phy->type != e1000_phy_bm)
732		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
733
734	/* Options:
735	 *   MDI/MDI-X = 0 (default)
736	 *   0 - Auto for all speeds
737	 *   1 - MDI mode
738	 *   2 - MDI-X mode
739	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
740	 */
741	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
742
743	switch (phy->mdix) {
744	case 1:
745		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
746		break;
747	case 2:
748		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
749		break;
750	case 3:
751		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
752		break;
753	case 0:
754	default:
755		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
756		break;
757	}
758
759	/* Options:
760	 *   disable_polarity_correction = 0 (default)
761	 *       Automatic Correction for Reversed Cable Polarity
762	 *   0 - Disabled
763	 *   1 - Enabled
764	 */
765	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
766	if (phy->disable_polarity_correction)
767		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
768
769	/* Enable downshift on BM (disabled by default) */
770	if (phy->type == e1000_phy_bm) {
771		/* For 82574/82583, first disable then enable downshift */
772		if (phy->id == BME1000_E_PHY_ID_R2) {
773			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
774			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
775					   phy_data);
776			if (ret_val)
777				return ret_val;
778			/* Commit the changes. */
779			ret_val = phy->ops.commit(hw);
780			if (ret_val) {
781				e_dbg("Error committing the PHY changes\n");
782				return ret_val;
783			}
784		}
785
786		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
787	}
788
789	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
790	if (ret_val)
791		return ret_val;
792
793	if ((phy->type == e1000_phy_m88) &&
794	    (phy->revision < E1000_REVISION_4) &&
795	    (phy->id != BME1000_E_PHY_ID_R2)) {
796		/* Force TX_CLK in the Extended PHY Specific Control Register
797		 * to 25MHz clock.
798		 */
799		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
800		if (ret_val)
801			return ret_val;
802
803		phy_data |= M88E1000_EPSCR_TX_CLK_25;
804
805		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
806			/* 82573L PHY - set the downshift counter to 5x. */
807			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
808			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
809		} else {
810			/* Configure Master and Slave downshift values */
811			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
812				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
813			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
814				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
815		}
816		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
817		if (ret_val)
818			return ret_val;
819	}
820
821	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
822		/* Set PHY page 0, register 29 to 0x0003 */
823		ret_val = e1e_wphy(hw, 29, 0x0003);
824		if (ret_val)
825			return ret_val;
826
827		/* Set PHY page 0, register 30 to 0x0000 */
828		ret_val = e1e_wphy(hw, 30, 0x0000);
829		if (ret_val)
830			return ret_val;
831	}
832
833	/* Commit the changes. */
834	if (phy->ops.commit) {
835		ret_val = phy->ops.commit(hw);
836		if (ret_val) {
837			e_dbg("Error committing the PHY changes\n");
838			return ret_val;
839		}
840	}
841
842	if (phy->type == e1000_phy_82578) {
843		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
844		if (ret_val)
845			return ret_val;
846
847		/* 82578 PHY - set the downshift count to 1x. */
848		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
849		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
850		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
851		if (ret_val)
852			return ret_val;
853	}
854
855	return 0;
856}
857
858/**
859 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
860 *  @hw: pointer to the HW structure
861 *
862 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
863 *  igp PHY's.
864 **/
865s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
866{
867	struct e1000_phy_info *phy = &hw->phy;
868	s32 ret_val;
869	u16 data;
870
871	ret_val = e1000_phy_hw_reset(hw);
872	if (ret_val) {
873		e_dbg("Error resetting the PHY.\n");
874		return ret_val;
875	}
876
877	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
878	 * timeout issues when LFS is enabled.
879	 */
880	msleep(100);
881
882	/* disable lplu d0 during driver init */
883	if (hw->phy.ops.set_d0_lplu_state) {
884		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
885		if (ret_val) {
886			e_dbg("Error Disabling LPLU D0\n");
887			return ret_val;
888		}
889	}
890	/* Configure mdi-mdix settings */
891	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
892	if (ret_val)
893		return ret_val;
894
895	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
896
897	switch (phy->mdix) {
898	case 1:
899		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
900		break;
901	case 2:
902		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
903		break;
904	case 0:
905	default:
906		data |= IGP01E1000_PSCR_AUTO_MDIX;
907		break;
908	}
909	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
910	if (ret_val)
911		return ret_val;
912
913	/* set auto-master slave resolution settings */
914	if (hw->mac.autoneg) {
915		/* when autonegotiation advertisement is only 1000Mbps then we
916		 * should disable SmartSpeed and enable Auto MasterSlave
917		 * resolution as hardware default.
918		 */
919		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
920			/* Disable SmartSpeed */
921			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
922					   &data);
923			if (ret_val)
924				return ret_val;
925
926			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
927			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
928					   data);
929			if (ret_val)
930				return ret_val;
931
932			/* Set auto Master/Slave resolution process */
933			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
934			if (ret_val)
935				return ret_val;
936
937			data &= ~CTL1000_ENABLE_MASTER;
938			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
939			if (ret_val)
940				return ret_val;
941		}
942
943		ret_val = e1000_set_master_slave_mode(hw);
944	}
945
946	return ret_val;
947}
948
949/**
950 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
951 *  @hw: pointer to the HW structure
952 *
953 *  Reads the MII auto-neg advertisement register and/or the 1000T control
954 *  register and if the PHY is already setup for auto-negotiation, then
955 *  return successful.  Otherwise, setup advertisement and flow control to
956 *  the appropriate values for the wanted auto-negotiation.
957 **/
958static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
959{
960	struct e1000_phy_info *phy = &hw->phy;
961	s32 ret_val;
962	u16 mii_autoneg_adv_reg;
963	u16 mii_1000t_ctrl_reg = 0;
964
965	phy->autoneg_advertised &= phy->autoneg_mask;
966
967	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
968	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
969	if (ret_val)
970		return ret_val;
971
972	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
973		/* Read the MII 1000Base-T Control Register (Address 9). */
974		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
975		if (ret_val)
976			return ret_val;
977	}
978
979	/* Need to parse both autoneg_advertised and fc and set up
980	 * the appropriate PHY registers.  First we will parse for
981	 * autoneg_advertised software override.  Since we can advertise
982	 * a plethora of combinations, we need to check each bit
983	 * individually.
984	 */
985
986	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
987	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
988	 * the  1000Base-T Control Register (Address 9).
989	 */
990	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
991				 ADVERTISE_100HALF |
992				 ADVERTISE_10FULL | ADVERTISE_10HALF);
993	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
994
995	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
996
997	/* Do we want to advertise 10 Mb Half Duplex? */
998	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
999		e_dbg("Advertise 10mb Half duplex\n");
1000		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
1001	}
1002
1003	/* Do we want to advertise 10 Mb Full Duplex? */
1004	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1005		e_dbg("Advertise 10mb Full duplex\n");
1006		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
1007	}
1008
1009	/* Do we want to advertise 100 Mb Half Duplex? */
1010	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1011		e_dbg("Advertise 100mb Half duplex\n");
1012		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
1013	}
1014
1015	/* Do we want to advertise 100 Mb Full Duplex? */
1016	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1017		e_dbg("Advertise 100mb Full duplex\n");
1018		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
1019	}
1020
1021	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1022	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1023		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1024
1025	/* Do we want to advertise 1000 Mb Full Duplex? */
1026	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1027		e_dbg("Advertise 1000mb Full duplex\n");
1028		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1029	}
1030
1031	/* Check for a software override of the flow control settings, and
1032	 * setup the PHY advertisement registers accordingly.  If
1033	 * auto-negotiation is enabled, then software will have to set the
1034	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1035	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1036	 * negotiation.
1037	 *
1038	 * The possible values of the "fc" parameter are:
1039	 *      0:  Flow control is completely disabled
1040	 *      1:  Rx flow control is enabled (we can receive pause frames
1041	 *          but not send pause frames).
1042	 *      2:  Tx flow control is enabled (we can send pause frames
1043	 *          but we do not support receiving pause frames).
1044	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1045	 *  other:  No software override.  The flow control configuration
1046	 *          in the EEPROM is used.
1047	 */
1048	switch (hw->fc.current_mode) {
1049	case e1000_fc_none:
1050		/* Flow control (Rx & Tx) is completely disabled by a
1051		 * software over-ride.
1052		 */
1053		mii_autoneg_adv_reg &=
1054		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1055		phy->autoneg_advertised &=
1056		    ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1057		break;
1058	case e1000_fc_rx_pause:
1059		/* Rx Flow control is enabled, and Tx Flow control is
1060		 * disabled, by a software over-ride.
1061		 *
1062		 * Since there really isn't a way to advertise that we are
1063		 * capable of Rx Pause ONLY, we will advertise that we
1064		 * support both symmetric and asymmetric Rx PAUSE.  Later
1065		 * (in e1000e_config_fc_after_link_up) we will disable the
1066		 * hw's ability to send PAUSE frames.
1067		 */
1068		mii_autoneg_adv_reg |=
1069		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1070		phy->autoneg_advertised |=
1071		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1072		break;
1073	case e1000_fc_tx_pause:
1074		/* Tx Flow control is enabled, and Rx Flow control is
1075		 * disabled, by a software over-ride.
1076		 */
1077		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1078		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1079		phy->autoneg_advertised |= ADVERTISED_Asym_Pause;
1080		phy->autoneg_advertised &= ~ADVERTISED_Pause;
1081		break;
1082	case e1000_fc_full:
1083		/* Flow control (both Rx and Tx) is enabled by a software
1084		 * over-ride.
1085		 */
1086		mii_autoneg_adv_reg |=
1087		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1088		phy->autoneg_advertised |=
1089		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1090		break;
1091	default:
1092		e_dbg("Flow control param set incorrectly\n");
1093		return -E1000_ERR_CONFIG;
1094	}
1095
1096	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1097	if (ret_val)
1098		return ret_val;
1099
1100	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1101
1102	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1103		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1104
1105	return ret_val;
1106}
1107
1108/**
1109 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1110 *  @hw: pointer to the HW structure
1111 *
1112 *  Performs initial bounds checking on autoneg advertisement parameter, then
1113 *  configure to advertise the full capability.  Setup the PHY to autoneg
1114 *  and restart the negotiation process between the link partner.  If
1115 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1116 **/
1117static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1118{
1119	struct e1000_phy_info *phy = &hw->phy;
1120	s32 ret_val;
1121	u16 phy_ctrl;
1122
1123	/* Perform some bounds checking on the autoneg advertisement
1124	 * parameter.
1125	 */
1126	phy->autoneg_advertised &= phy->autoneg_mask;
1127
1128	/* If autoneg_advertised is zero, we assume it was not defaulted
1129	 * by the calling code so we set to advertise full capability.
1130	 */
1131	if (!phy->autoneg_advertised)
1132		phy->autoneg_advertised = phy->autoneg_mask;
1133
1134	e_dbg("Reconfiguring auto-neg advertisement params\n");
1135	ret_val = e1000_phy_setup_autoneg(hw);
1136	if (ret_val) {
1137		e_dbg("Error Setting up Auto-Negotiation\n");
1138		return ret_val;
1139	}
1140	e_dbg("Restarting Auto-Neg\n");
1141
1142	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1143	 * the Auto Neg Restart bit in the PHY control register.
1144	 */
1145	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1146	if (ret_val)
1147		return ret_val;
1148
1149	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1150	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1151	if (ret_val)
1152		return ret_val;
1153
1154	/* Does the user want to wait for Auto-Neg to complete here, or
1155	 * check at a later time (for example, callback routine).
1156	 */
1157	if (phy->autoneg_wait_to_complete) {
1158		ret_val = e1000_wait_autoneg(hw);
1159		if (ret_val) {
1160			e_dbg("Error while waiting for autoneg to complete\n");
1161			return ret_val;
1162		}
1163	}
1164
1165	hw->mac.get_link_status = true;
1166
1167	return ret_val;
1168}
1169
1170/**
1171 *  e1000e_setup_copper_link - Configure copper link settings
1172 *  @hw: pointer to the HW structure
1173 *
1174 *  Calls the appropriate function to configure the link for auto-neg or forced
1175 *  speed and duplex.  Then we check for link, once link is established calls
1176 *  to configure collision distance and flow control are called.  If link is
1177 *  not established, we return -E1000_ERR_PHY (-2).
1178 **/
1179s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1180{
1181	s32 ret_val;
1182	bool link;
1183
1184	if (hw->mac.autoneg) {
1185		/* Setup autoneg and flow control advertisement and perform
1186		 * autonegotiation.
1187		 */
1188		ret_val = e1000_copper_link_autoneg(hw);
1189		if (ret_val)
1190			return ret_val;
1191	} else {
1192		/* PHY will be set to 10H, 10F, 100H or 100F
1193		 * depending on user settings.
1194		 */
1195		e_dbg("Forcing Speed and Duplex\n");
1196		ret_val = hw->phy.ops.force_speed_duplex(hw);
1197		if (ret_val) {
1198			e_dbg("Error Forcing Speed and Duplex\n");
1199			return ret_val;
1200		}
1201	}
1202
1203	/* Check link status. Wait up to 100 microseconds for link to become
1204	 * valid.
1205	 */
1206	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1207					      &link);
1208	if (ret_val)
1209		return ret_val;
1210
1211	if (link) {
1212		e_dbg("Valid link established!!!\n");
1213		hw->mac.ops.config_collision_dist(hw);
1214		ret_val = e1000e_config_fc_after_link_up(hw);
1215	} else {
1216		e_dbg("Unable to establish link!!!\n");
1217	}
1218
1219	return ret_val;
1220}
1221
1222/**
1223 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1224 *  @hw: pointer to the HW structure
1225 *
1226 *  Calls the PHY setup function to force speed and duplex.  Clears the
1227 *  auto-crossover to force MDI manually.  Waits for link and returns
1228 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1229 **/
1230s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1231{
1232	struct e1000_phy_info *phy = &hw->phy;
1233	s32 ret_val;
1234	u16 phy_data;
1235	bool link;
1236
1237	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1238	if (ret_val)
1239		return ret_val;
1240
1241	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1242
1243	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1244	if (ret_val)
1245		return ret_val;
1246
1247	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1248	 * forced whenever speed and duplex are forced.
1249	 */
1250	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1251	if (ret_val)
1252		return ret_val;
1253
1254	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1255	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1256
1257	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1258	if (ret_val)
1259		return ret_val;
1260
1261	e_dbg("IGP PSCR: %X\n", phy_data);
1262
1263	udelay(1);
1264
1265	if (phy->autoneg_wait_to_complete) {
1266		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1267
1268		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1269						      100000, &link);
1270		if (ret_val)
1271			return ret_val;
1272
1273		if (!link)
1274			e_dbg("Link taking longer than expected.\n");
1275
1276		/* Try once more */
1277		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1278						      100000, &link);
1279	}
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1286 *  @hw: pointer to the HW structure
1287 *
1288 *  Calls the PHY setup function to force speed and duplex.  Clears the
1289 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1290 *  changes.  If time expires while waiting for link up, we reset the DSP.
1291 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1292 *  successful completion, else return corresponding error code.
1293 **/
1294s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1295{
1296	struct e1000_phy_info *phy = &hw->phy;
1297	s32 ret_val;
1298	u16 phy_data;
1299	bool link;
1300
1301	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1302	 * forced whenever speed and duplex are forced.
1303	 */
1304	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1305	if (ret_val)
1306		return ret_val;
1307
1308	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1309	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1310	if (ret_val)
1311		return ret_val;
1312
1313	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1314
1315	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1316	if (ret_val)
1317		return ret_val;
1318
1319	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1320
1321	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1322	if (ret_val)
1323		return ret_val;
1324
1325	/* Reset the phy to commit changes. */
1326	if (hw->phy.ops.commit) {
1327		ret_val = hw->phy.ops.commit(hw);
1328		if (ret_val)
1329			return ret_val;
1330	}
1331
1332	if (phy->autoneg_wait_to_complete) {
1333		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1334
1335		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1336						      100000, &link);
1337		if (ret_val)
1338			return ret_val;
1339
1340		if (!link) {
1341			if (hw->phy.type != e1000_phy_m88) {
1342				e_dbg("Link taking longer than expected.\n");
1343			} else {
1344				/* We didn't get link.
1345				 * Reset the DSP and cross our fingers.
1346				 */
1347				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1348						   0x001d);
1349				if (ret_val)
1350					return ret_val;
1351				ret_val = e1000e_phy_reset_dsp(hw);
1352				if (ret_val)
1353					return ret_val;
1354			}
1355		}
1356
1357		/* Try once more */
1358		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1359						      100000, &link);
1360		if (ret_val)
1361			return ret_val;
1362	}
1363
1364	if (hw->phy.type != e1000_phy_m88)
1365		return 0;
1366
1367	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1368	if (ret_val)
1369		return ret_val;
1370
1371	/* Resetting the phy means we need to re-force TX_CLK in the
1372	 * Extended PHY Specific Control Register to 25MHz clock from
1373	 * the reset value of 2.5MHz.
1374	 */
1375	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1376	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1377	if (ret_val)
1378		return ret_val;
1379
1380	/* In addition, we must re-enable CRS on Tx for both half and full
1381	 * duplex.
1382	 */
1383	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1384	if (ret_val)
1385		return ret_val;
1386
1387	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1388	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1389
1390	return ret_val;
1391}
1392
1393/**
1394 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1395 *  @hw: pointer to the HW structure
1396 *
1397 *  Forces the speed and duplex settings of the PHY.
1398 *  This is a function pointer entry point only called by
1399 *  PHY setup routines.
1400 **/
1401s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1402{
1403	struct e1000_phy_info *phy = &hw->phy;
1404	s32 ret_val;
1405	u16 data;
1406	bool link;
1407
1408	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1409	if (ret_val)
1410		return ret_val;
1411
1412	e1000e_phy_force_speed_duplex_setup(hw, &data);
1413
1414	ret_val = e1e_wphy(hw, MII_BMCR, data);
1415	if (ret_val)
1416		return ret_val;
1417
1418	/* Disable MDI-X support for 10/100 */
1419	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1420	if (ret_val)
1421		return ret_val;
1422
1423	data &= ~IFE_PMC_AUTO_MDIX;
1424	data &= ~IFE_PMC_FORCE_MDIX;
1425
1426	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1427	if (ret_val)
1428		return ret_val;
1429
1430	e_dbg("IFE PMC: %X\n", data);
1431
1432	udelay(1);
1433
1434	if (phy->autoneg_wait_to_complete) {
1435		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1436
1437		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1438						      100000, &link);
1439		if (ret_val)
1440			return ret_val;
1441
1442		if (!link)
1443			e_dbg("Link taking longer than expected.\n");
1444
1445		/* Try once more */
1446		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1447						      100000, &link);
1448		if (ret_val)
1449			return ret_val;
1450	}
1451
1452	return 0;
1453}
1454
1455/**
1456 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1457 *  @hw: pointer to the HW structure
1458 *  @phy_ctrl: pointer to current value of MII_BMCR
1459 *
1460 *  Forces speed and duplex on the PHY by doing the following: disable flow
1461 *  control, force speed/duplex on the MAC, disable auto speed detection,
1462 *  disable auto-negotiation, configure duplex, configure speed, configure
1463 *  the collision distance, write configuration to CTRL register.  The
1464 *  caller must write to the MII_BMCR register for these settings to
1465 *  take affect.
1466 **/
1467void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1468{
1469	struct e1000_mac_info *mac = &hw->mac;
1470	u32 ctrl;
1471
1472	/* Turn off flow control when forcing speed/duplex */
1473	hw->fc.current_mode = e1000_fc_none;
1474
1475	/* Force speed/duplex on the mac */
1476	ctrl = er32(CTRL);
1477	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1478	ctrl &= ~E1000_CTRL_SPD_SEL;
1479
1480	/* Disable Auto Speed Detection */
1481	ctrl &= ~E1000_CTRL_ASDE;
1482
1483	/* Disable autoneg on the phy */
1484	*phy_ctrl &= ~BMCR_ANENABLE;
1485
1486	/* Forcing Full or Half Duplex? */
1487	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1488		ctrl &= ~E1000_CTRL_FD;
1489		*phy_ctrl &= ~BMCR_FULLDPLX;
1490		e_dbg("Half Duplex\n");
1491	} else {
1492		ctrl |= E1000_CTRL_FD;
1493		*phy_ctrl |= BMCR_FULLDPLX;
1494		e_dbg("Full Duplex\n");
1495	}
1496
1497	/* Forcing 10mb or 100mb? */
1498	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1499		ctrl |= E1000_CTRL_SPD_100;
1500		*phy_ctrl |= BMCR_SPEED100;
1501		*phy_ctrl &= ~BMCR_SPEED1000;
1502		e_dbg("Forcing 100mb\n");
1503	} else {
1504		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1505		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1506		e_dbg("Forcing 10mb\n");
1507	}
1508
1509	hw->mac.ops.config_collision_dist(hw);
1510
1511	ew32(CTRL, ctrl);
1512}
1513
1514/**
1515 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1516 *  @hw: pointer to the HW structure
1517 *  @active: boolean used to enable/disable lplu
1518 *
1519 *  Success returns 0, Failure returns 1
1520 *
1521 *  The low power link up (lplu) state is set to the power management level D3
1522 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1523 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1524 *  is used during Dx states where the power conservation is most important.
1525 *  During driver activity, SmartSpeed should be enabled so performance is
1526 *  maintained.
1527 **/
1528s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1529{
1530	struct e1000_phy_info *phy = &hw->phy;
1531	s32 ret_val;
1532	u16 data;
1533
1534	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1535	if (ret_val)
1536		return ret_val;
1537
1538	if (!active) {
1539		data &= ~IGP02E1000_PM_D3_LPLU;
1540		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1541		if (ret_val)
1542			return ret_val;
1543		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1544		 * during Dx states where the power conservation is most
1545		 * important.  During driver activity we should enable
1546		 * SmartSpeed, so performance is maintained.
1547		 */
1548		if (phy->smart_speed == e1000_smart_speed_on) {
1549			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1550					   &data);
1551			if (ret_val)
1552				return ret_val;
1553
1554			data |= IGP01E1000_PSCFR_SMART_SPEED;
1555			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1556					   data);
1557			if (ret_val)
1558				return ret_val;
1559		} else if (phy->smart_speed == e1000_smart_speed_off) {
1560			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1561					   &data);
1562			if (ret_val)
1563				return ret_val;
1564
1565			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1566			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1567					   data);
1568			if (ret_val)
1569				return ret_val;
1570		}
1571	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1572		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1573		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1574		data |= IGP02E1000_PM_D3_LPLU;
1575		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1576		if (ret_val)
1577			return ret_val;
1578
1579		/* When LPLU is enabled, we should disable SmartSpeed */
1580		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1581		if (ret_val)
1582			return ret_val;
1583
1584		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1585		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1586	}
1587
1588	return ret_val;
1589}
1590
1591/**
1592 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1593 *  @hw: pointer to the HW structure
1594 *
1595 *  Success returns 0, Failure returns 1
1596 *
1597 *  A downshift is detected by querying the PHY link health.
1598 **/
1599s32 e1000e_check_downshift(struct e1000_hw *hw)
1600{
1601	struct e1000_phy_info *phy = &hw->phy;
1602	s32 ret_val;
1603	u16 phy_data, offset, mask;
1604
1605	switch (phy->type) {
1606	case e1000_phy_m88:
1607	case e1000_phy_gg82563:
1608	case e1000_phy_bm:
1609	case e1000_phy_82578:
1610		offset = M88E1000_PHY_SPEC_STATUS;
1611		mask = M88E1000_PSSR_DOWNSHIFT;
1612		break;
1613	case e1000_phy_igp_2:
1614	case e1000_phy_igp_3:
1615		offset = IGP01E1000_PHY_LINK_HEALTH;
1616		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1617		break;
1618	default:
1619		/* speed downshift not supported */
1620		phy->speed_downgraded = false;
1621		return 0;
1622	}
1623
1624	ret_val = e1e_rphy(hw, offset, &phy_data);
1625
1626	if (!ret_val)
1627		phy->speed_downgraded = !!(phy_data & mask);
1628
1629	return ret_val;
1630}
1631
1632/**
1633 *  e1000_check_polarity_m88 - Checks the polarity.
1634 *  @hw: pointer to the HW structure
1635 *
1636 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1637 *
1638 *  Polarity is determined based on the PHY specific status register.
1639 **/
1640s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1641{
1642	struct e1000_phy_info *phy = &hw->phy;
1643	s32 ret_val;
1644	u16 data;
1645
1646	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1647
1648	if (!ret_val)
1649		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1650				       ? e1000_rev_polarity_reversed
1651				       : e1000_rev_polarity_normal);
1652
1653	return ret_val;
1654}
1655
1656/**
1657 *  e1000_check_polarity_igp - Checks the polarity.
1658 *  @hw: pointer to the HW structure
1659 *
1660 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1661 *
1662 *  Polarity is determined based on the PHY port status register, and the
1663 *  current speed (since there is no polarity at 100Mbps).
1664 **/
1665s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1666{
1667	struct e1000_phy_info *phy = &hw->phy;
1668	s32 ret_val;
1669	u16 data, offset, mask;
1670
1671	/* Polarity is determined based on the speed of
1672	 * our connection.
1673	 */
1674	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1675	if (ret_val)
1676		return ret_val;
1677
1678	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1679	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1680		offset = IGP01E1000_PHY_PCS_INIT_REG;
1681		mask = IGP01E1000_PHY_POLARITY_MASK;
1682	} else {
1683		/* This really only applies to 10Mbps since
1684		 * there is no polarity for 100Mbps (always 0).
1685		 */
1686		offset = IGP01E1000_PHY_PORT_STATUS;
1687		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1688	}
1689
1690	ret_val = e1e_rphy(hw, offset, &data);
1691
1692	if (!ret_val)
1693		phy->cable_polarity = ((data & mask)
1694				       ? e1000_rev_polarity_reversed
1695				       : e1000_rev_polarity_normal);
1696
1697	return ret_val;
1698}
1699
1700/**
1701 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1702 *  @hw: pointer to the HW structure
1703 *
1704 *  Polarity is determined on the polarity reversal feature being enabled.
1705 **/
1706s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1707{
1708	struct e1000_phy_info *phy = &hw->phy;
1709	s32 ret_val;
1710	u16 phy_data, offset, mask;
1711
1712	/* Polarity is determined based on the reversal feature being enabled.
1713	 */
1714	if (phy->polarity_correction) {
1715		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1716		mask = IFE_PESC_POLARITY_REVERSED;
1717	} else {
1718		offset = IFE_PHY_SPECIAL_CONTROL;
1719		mask = IFE_PSC_FORCE_POLARITY;
1720	}
1721
1722	ret_val = e1e_rphy(hw, offset, &phy_data);
1723
1724	if (!ret_val)
1725		phy->cable_polarity = ((phy_data & mask)
1726				       ? e1000_rev_polarity_reversed
1727				       : e1000_rev_polarity_normal);
1728
1729	return ret_val;
1730}
1731
1732/**
1733 *  e1000_wait_autoneg - Wait for auto-neg completion
1734 *  @hw: pointer to the HW structure
1735 *
1736 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1737 *  limit to expire, which ever happens first.
1738 **/
1739static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1740{
1741	s32 ret_val = 0;
1742	u16 i, phy_status;
1743
1744	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1745	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1746		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747		if (ret_val)
1748			break;
1749		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1750		if (ret_val)
1751			break;
1752		if (phy_status & BMSR_ANEGCOMPLETE)
1753			break;
1754		msleep(100);
1755	}
1756
1757	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1758	 * has completed.
1759	 */
1760	return ret_val;
1761}
1762
1763/**
1764 *  e1000e_phy_has_link_generic - Polls PHY for link
1765 *  @hw: pointer to the HW structure
1766 *  @iterations: number of times to poll for link
1767 *  @usec_interval: delay between polling attempts
1768 *  @success: pointer to whether polling was successful or not
1769 *
1770 *  Polls the PHY status register for link, 'iterations' number of times.
1771 **/
1772s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1773				u32 usec_interval, bool *success)
1774{
1775	s32 ret_val = 0;
1776	u16 i, phy_status;
1777
1778	*success = false;
1779	for (i = 0; i < iterations; i++) {
1780		/* Some PHYs require the MII_BMSR register to be read
1781		 * twice due to the link bit being sticky.  No harm doing
1782		 * it across the board.
1783		 */
1784		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1785		if (ret_val) {
1786			/* If the first read fails, another entity may have
1787			 * ownership of the resources, wait and try again to
1788			 * see if they have relinquished the resources yet.
1789			 */
1790			if (usec_interval >= 1000)
1791				msleep(usec_interval / 1000);
1792			else
1793				udelay(usec_interval);
1794		}
1795		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1796		if (ret_val)
1797			break;
1798		if (phy_status & BMSR_LSTATUS) {
1799			*success = true;
1800			break;
1801		}
1802		if (usec_interval >= 1000)
1803			msleep(usec_interval / 1000);
1804		else
1805			udelay(usec_interval);
1806	}
1807
1808	return ret_val;
1809}
1810
1811/**
1812 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1813 *  @hw: pointer to the HW structure
1814 *
1815 *  Reads the PHY specific status register to retrieve the cable length
1816 *  information.  The cable length is determined by averaging the minimum and
1817 *  maximum values to get the "average" cable length.  The m88 PHY has four
1818 *  possible cable length values, which are:
1819 *	Register Value		Cable Length
1820 *	0			< 50 meters
1821 *	1			50 - 80 meters
1822 *	2			80 - 110 meters
1823 *	3			110 - 140 meters
1824 *	4			> 140 meters
1825 **/
1826s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1827{
1828	struct e1000_phy_info *phy = &hw->phy;
1829	s32 ret_val;
1830	u16 phy_data, index;
1831
1832	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1833	if (ret_val)
1834		return ret_val;
1835
1836	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
1837
1838	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1839		return -E1000_ERR_PHY;
1840
1841	phy->min_cable_length = e1000_m88_cable_length_table[index];
1842	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1843
1844	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1845
1846	return 0;
1847}
1848
1849/**
1850 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1851 *  @hw: pointer to the HW structure
1852 *
1853 *  The automatic gain control (agc) normalizes the amplitude of the
1854 *  received signal, adjusting for the attenuation produced by the
1855 *  cable.  By reading the AGC registers, which represent the
1856 *  combination of coarse and fine gain value, the value can be put
1857 *  into a lookup table to obtain the approximate cable length
1858 *  for each channel.
1859 **/
1860s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1861{
1862	struct e1000_phy_info *phy = &hw->phy;
1863	s32 ret_val;
1864	u16 phy_data, i, agc_value = 0;
1865	u16 cur_agc_index, max_agc_index = 0;
1866	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1867	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1868		IGP02E1000_PHY_AGC_A,
1869		IGP02E1000_PHY_AGC_B,
1870		IGP02E1000_PHY_AGC_C,
1871		IGP02E1000_PHY_AGC_D
1872	};
1873
1874	/* Read the AGC registers for all channels */
1875	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1876		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1877		if (ret_val)
1878			return ret_val;
1879
1880		/* Getting bits 15:9, which represent the combination of
1881		 * coarse and fine gain values.  The result is a number
1882		 * that can be put into the lookup table to obtain the
1883		 * approximate cable length.
1884		 */
1885		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1886				 IGP02E1000_AGC_LENGTH_MASK);
1887
1888		/* Array index bound check. */
1889		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1890		    (cur_agc_index == 0))
1891			return -E1000_ERR_PHY;
1892
1893		/* Remove min & max AGC values from calculation. */
1894		if (e1000_igp_2_cable_length_table[min_agc_index] >
1895		    e1000_igp_2_cable_length_table[cur_agc_index])
1896			min_agc_index = cur_agc_index;
1897		if (e1000_igp_2_cable_length_table[max_agc_index] <
1898		    e1000_igp_2_cable_length_table[cur_agc_index])
1899			max_agc_index = cur_agc_index;
1900
1901		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1902	}
1903
1904	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1905		      e1000_igp_2_cable_length_table[max_agc_index]);
1906	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1907
1908	/* Calculate cable length with the error range of +/- 10 meters. */
1909	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1910				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1911	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1912
1913	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1914
1915	return 0;
1916}
1917
1918/**
1919 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1920 *  @hw: pointer to the HW structure
1921 *
1922 *  Valid for only copper links.  Read the PHY status register (sticky read)
1923 *  to verify that link is up.  Read the PHY special control register to
1924 *  determine the polarity and 10base-T extended distance.  Read the PHY
1925 *  special status register to determine MDI/MDIx and current speed.  If
1926 *  speed is 1000, then determine cable length, local and remote receiver.
1927 **/
1928s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1929{
1930	struct e1000_phy_info *phy = &hw->phy;
1931	s32 ret_val;
1932	u16 phy_data;
1933	bool link;
1934
1935	if (phy->media_type != e1000_media_type_copper) {
1936		e_dbg("Phy info is only valid for copper media\n");
1937		return -E1000_ERR_CONFIG;
1938	}
1939
1940	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1941	if (ret_val)
1942		return ret_val;
1943
1944	if (!link) {
1945		e_dbg("Phy info is only valid if link is up\n");
1946		return -E1000_ERR_CONFIG;
1947	}
1948
1949	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1950	if (ret_val)
1951		return ret_val;
1952
1953	phy->polarity_correction = !!(phy_data &
1954				      M88E1000_PSCR_POLARITY_REVERSAL);
1955
1956	ret_val = e1000_check_polarity_m88(hw);
1957	if (ret_val)
1958		return ret_val;
1959
1960	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1961	if (ret_val)
1962		return ret_val;
1963
1964	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1965
1966	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1967		ret_val = hw->phy.ops.get_cable_length(hw);
1968		if (ret_val)
1969			return ret_val;
1970
1971		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1972		if (ret_val)
1973			return ret_val;
1974
1975		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1976		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1977
1978		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1979		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1980	} else {
1981		/* Set values to "undefined" */
1982		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1983		phy->local_rx = e1000_1000t_rx_status_undefined;
1984		phy->remote_rx = e1000_1000t_rx_status_undefined;
1985	}
1986
1987	return ret_val;
1988}
1989
1990/**
1991 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1992 *  @hw: pointer to the HW structure
1993 *
1994 *  Read PHY status to determine if link is up.  If link is up, then
1995 *  set/determine 10base-T extended distance and polarity correction.  Read
1996 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1997 *  determine on the cable length, local and remote receiver.
1998 **/
1999s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2000{
2001	struct e1000_phy_info *phy = &hw->phy;
2002	s32 ret_val;
2003	u16 data;
2004	bool link;
2005
2006	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2007	if (ret_val)
2008		return ret_val;
2009
2010	if (!link) {
2011		e_dbg("Phy info is only valid if link is up\n");
2012		return -E1000_ERR_CONFIG;
2013	}
2014
2015	phy->polarity_correction = true;
2016
2017	ret_val = e1000_check_polarity_igp(hw);
2018	if (ret_val)
2019		return ret_val;
2020
2021	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2022	if (ret_val)
2023		return ret_val;
2024
2025	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2026
2027	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2028	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2029		ret_val = phy->ops.get_cable_length(hw);
2030		if (ret_val)
2031			return ret_val;
2032
2033		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2034		if (ret_val)
2035			return ret_val;
2036
2037		phy->local_rx = (data & LPA_1000LOCALRXOK)
2038		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2039
2040		phy->remote_rx = (data & LPA_1000REMRXOK)
2041		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2042	} else {
2043		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2044		phy->local_rx = e1000_1000t_rx_status_undefined;
2045		phy->remote_rx = e1000_1000t_rx_status_undefined;
2046	}
2047
2048	return ret_val;
2049}
2050
2051/**
2052 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2053 *  @hw: pointer to the HW structure
2054 *
2055 *  Populates "phy" structure with various feature states.
2056 **/
2057s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2058{
2059	struct e1000_phy_info *phy = &hw->phy;
2060	s32 ret_val;
2061	u16 data;
2062	bool link;
2063
2064	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2065	if (ret_val)
2066		return ret_val;
2067
2068	if (!link) {
2069		e_dbg("Phy info is only valid if link is up\n");
2070		return -E1000_ERR_CONFIG;
2071	}
2072
2073	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2074	if (ret_val)
2075		return ret_val;
2076	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2077
2078	if (phy->polarity_correction) {
2079		ret_val = e1000_check_polarity_ife(hw);
2080		if (ret_val)
2081			return ret_val;
2082	} else {
2083		/* Polarity is forced */
2084		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2085				       ? e1000_rev_polarity_reversed
2086				       : e1000_rev_polarity_normal);
2087	}
2088
2089	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2090	if (ret_val)
2091		return ret_val;
2092
2093	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2094
2095	/* The following parameters are undefined for 10/100 operation. */
2096	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2097	phy->local_rx = e1000_1000t_rx_status_undefined;
2098	phy->remote_rx = e1000_1000t_rx_status_undefined;
2099
2100	return 0;
2101}
2102
2103/**
2104 *  e1000e_phy_sw_reset - PHY software reset
2105 *  @hw: pointer to the HW structure
2106 *
2107 *  Does a software reset of the PHY by reading the PHY control register and
2108 *  setting/write the control register reset bit to the PHY.
2109 **/
2110s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2111{
2112	s32 ret_val;
2113	u16 phy_ctrl;
2114
2115	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2116	if (ret_val)
2117		return ret_val;
2118
2119	phy_ctrl |= BMCR_RESET;
2120	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2121	if (ret_val)
2122		return ret_val;
2123
2124	udelay(1);
2125
2126	return ret_val;
2127}
2128
2129/**
2130 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2131 *  @hw: pointer to the HW structure
2132 *
2133 *  Verify the reset block is not blocking us from resetting.  Acquire
2134 *  semaphore (if necessary) and read/set/write the device control reset
2135 *  bit in the PHY.  Wait the appropriate delay time for the device to
2136 *  reset and release the semaphore (if necessary).
2137 **/
2138s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2139{
2140	struct e1000_phy_info *phy = &hw->phy;
2141	s32 ret_val;
2142	u32 ctrl;
2143
2144	if (phy->ops.check_reset_block) {
2145		ret_val = phy->ops.check_reset_block(hw);
2146		if (ret_val)
2147			return 0;
2148	}
2149
2150	ret_val = phy->ops.acquire(hw);
2151	if (ret_val)
2152		return ret_val;
2153
2154	ctrl = er32(CTRL);
2155	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2156	e1e_flush();
2157
2158	udelay(phy->reset_delay_us);
2159
2160	ew32(CTRL, ctrl);
2161	e1e_flush();
2162
2163	usleep_range(150, 300);
2164
2165	phy->ops.release(hw);
2166
2167	return phy->ops.get_cfg_done(hw);
2168}
2169
2170/**
2171 *  e1000e_get_cfg_done_generic - Generic configuration done
2172 *  @hw: pointer to the HW structure
2173 *
2174 *  Generic function to wait 10 milli-seconds for configuration to complete
2175 *  and return success.
2176 **/
2177s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2178{
2179	mdelay(10);
2180
2181	return 0;
2182}
2183
2184/**
2185 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2186 *  @hw: pointer to the HW structure
2187 *
2188 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2189 **/
2190s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2191{
2192	e_dbg("Running IGP 3 PHY init script\n");
2193
2194	/* PHY init IGP 3 */
2195	/* Enable rise/fall, 10-mode work in class-A */
2196	e1e_wphy(hw, 0x2F5B, 0x9018);
2197	/* Remove all caps from Replica path filter */
2198	e1e_wphy(hw, 0x2F52, 0x0000);
2199	/* Bias trimming for ADC, AFE and Driver (Default) */
2200	e1e_wphy(hw, 0x2FB1, 0x8B24);
2201	/* Increase Hybrid poly bias */
2202	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2203	/* Add 4% to Tx amplitude in Gig mode */
2204	e1e_wphy(hw, 0x2010, 0x10B0);
2205	/* Disable trimming (TTT) */
2206	e1e_wphy(hw, 0x2011, 0x0000);
2207	/* Poly DC correction to 94.6% + 2% for all channels */
2208	e1e_wphy(hw, 0x20DD, 0x249A);
2209	/* ABS DC correction to 95.9% */
2210	e1e_wphy(hw, 0x20DE, 0x00D3);
2211	/* BG temp curve trim */
2212	e1e_wphy(hw, 0x28B4, 0x04CE);
2213	/* Increasing ADC OPAMP stage 1 currents to max */
2214	e1e_wphy(hw, 0x2F70, 0x29E4);
2215	/* Force 1000 ( required for enabling PHY regs configuration) */
2216	e1e_wphy(hw, 0x0000, 0x0140);
2217	/* Set upd_freq to 6 */
2218	e1e_wphy(hw, 0x1F30, 0x1606);
2219	/* Disable NPDFE */
2220	e1e_wphy(hw, 0x1F31, 0xB814);
2221	/* Disable adaptive fixed FFE (Default) */
2222	e1e_wphy(hw, 0x1F35, 0x002A);
2223	/* Enable FFE hysteresis */
2224	e1e_wphy(hw, 0x1F3E, 0x0067);
2225	/* Fixed FFE for short cable lengths */
2226	e1e_wphy(hw, 0x1F54, 0x0065);
2227	/* Fixed FFE for medium cable lengths */
2228	e1e_wphy(hw, 0x1F55, 0x002A);
2229	/* Fixed FFE for long cable lengths */
2230	e1e_wphy(hw, 0x1F56, 0x002A);
2231	/* Enable Adaptive Clip Threshold */
2232	e1e_wphy(hw, 0x1F72, 0x3FB0);
2233	/* AHT reset limit to 1 */
2234	e1e_wphy(hw, 0x1F76, 0xC0FF);
2235	/* Set AHT master delay to 127 msec */
2236	e1e_wphy(hw, 0x1F77, 0x1DEC);
2237	/* Set scan bits for AHT */
2238	e1e_wphy(hw, 0x1F78, 0xF9EF);
2239	/* Set AHT Preset bits */
2240	e1e_wphy(hw, 0x1F79, 0x0210);
2241	/* Change integ_factor of channel A to 3 */
2242	e1e_wphy(hw, 0x1895, 0x0003);
2243	/* Change prop_factor of channels BCD to 8 */
2244	e1e_wphy(hw, 0x1796, 0x0008);
2245	/* Change cg_icount + enable integbp for channels BCD */
2246	e1e_wphy(hw, 0x1798, 0xD008);
2247	/* Change cg_icount + enable integbp + change prop_factor_master
2248	 * to 8 for channel A
2249	 */
2250	e1e_wphy(hw, 0x1898, 0xD918);
2251	/* Disable AHT in Slave mode on channel A */
2252	e1e_wphy(hw, 0x187A, 0x0800);
2253	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2254	 * Enable SPD+B2B
2255	 */
2256	e1e_wphy(hw, 0x0019, 0x008D);
2257	/* Enable restart AN on an1000_dis change */
2258	e1e_wphy(hw, 0x001B, 0x2080);
2259	/* Enable wh_fifo read clock in 10/100 modes */
2260	e1e_wphy(hw, 0x0014, 0x0045);
2261	/* Restart AN, Speed selection is 1000 */
2262	e1e_wphy(hw, 0x0000, 0x1340);
2263
2264	return 0;
2265}
2266
2267/**
2268 *  e1000e_get_phy_type_from_id - Get PHY type from id
2269 *  @phy_id: phy_id read from the phy
2270 *
2271 *  Returns the phy type from the id.
2272 **/
2273enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2274{
2275	enum e1000_phy_type phy_type = e1000_phy_unknown;
2276
2277	switch (phy_id) {
2278	case M88E1000_I_PHY_ID:
2279	case M88E1000_E_PHY_ID:
2280	case M88E1111_I_PHY_ID:
2281	case M88E1011_I_PHY_ID:
2282		phy_type = e1000_phy_m88;
2283		break;
2284	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2285		phy_type = e1000_phy_igp_2;
2286		break;
2287	case GG82563_E_PHY_ID:
2288		phy_type = e1000_phy_gg82563;
2289		break;
2290	case IGP03E1000_E_PHY_ID:
2291		phy_type = e1000_phy_igp_3;
2292		break;
2293	case IFE_E_PHY_ID:
2294	case IFE_PLUS_E_PHY_ID:
2295	case IFE_C_E_PHY_ID:
2296		phy_type = e1000_phy_ife;
2297		break;
2298	case BME1000_E_PHY_ID:
2299	case BME1000_E_PHY_ID_R2:
2300		phy_type = e1000_phy_bm;
2301		break;
2302	case I82578_E_PHY_ID:
2303		phy_type = e1000_phy_82578;
2304		break;
2305	case I82577_E_PHY_ID:
2306		phy_type = e1000_phy_82577;
2307		break;
2308	case I82579_E_PHY_ID:
2309		phy_type = e1000_phy_82579;
2310		break;
2311	case I217_E_PHY_ID:
2312		phy_type = e1000_phy_i217;
2313		break;
2314	default:
2315		phy_type = e1000_phy_unknown;
2316		break;
2317	}
2318	return phy_type;
2319}
2320
2321/**
2322 *  e1000e_determine_phy_address - Determines PHY address.
2323 *  @hw: pointer to the HW structure
2324 *
2325 *  This uses a trial and error method to loop through possible PHY
2326 *  addresses. It tests each by reading the PHY ID registers and
2327 *  checking for a match.
2328 **/
2329s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2330{
2331	u32 phy_addr = 0;
2332	u32 i;
2333	enum e1000_phy_type phy_type = e1000_phy_unknown;
2334
2335	hw->phy.id = phy_type;
2336
2337	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2338		hw->phy.addr = phy_addr;
2339		i = 0;
2340
2341		do {
2342			e1000e_get_phy_id(hw);
2343			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2344
2345			/* If phy_type is valid, break - we found our
2346			 * PHY address
2347			 */
2348			if (phy_type != e1000_phy_unknown)
2349				return 0;
2350
2351			usleep_range(1000, 2000);
2352			i++;
2353		} while (i < 10);
2354	}
2355
2356	return -E1000_ERR_PHY_TYPE;
2357}
2358
2359/**
2360 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2361 *  @page: page to access
2362 *  @reg: register to check
2363 *
2364 *  Returns the phy address for the page requested.
2365 **/
2366static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2367{
2368	u32 phy_addr = 2;
2369
2370	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2371		phy_addr = 1;
2372
2373	return phy_addr;
2374}
2375
2376/**
2377 *  e1000e_write_phy_reg_bm - Write BM PHY register
2378 *  @hw: pointer to the HW structure
2379 *  @offset: register offset to write to
2380 *  @data: data to write at register offset
2381 *
2382 *  Acquires semaphore, if necessary, then writes the data to PHY register
2383 *  at the offset.  Release any acquired semaphores before exiting.
2384 **/
2385s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2386{
2387	s32 ret_val;
2388	u32 page = offset >> IGP_PAGE_SHIFT;
2389
2390	ret_val = hw->phy.ops.acquire(hw);
2391	if (ret_val)
2392		return ret_val;
2393
2394	/* Page 800 works differently than the rest so it has its own func */
2395	if (page == BM_WUC_PAGE) {
2396		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2397							 false, false);
2398		goto release;
2399	}
2400
2401	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2402
2403	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2404		u32 page_shift, page_select;
2405
2406		/* Page select is register 31 for phy address 1 and 22 for
2407		 * phy address 2 and 3. Page select is shifted only for
2408		 * phy address 1.
2409		 */
2410		if (hw->phy.addr == 1) {
2411			page_shift = IGP_PAGE_SHIFT;
2412			page_select = IGP01E1000_PHY_PAGE_SELECT;
2413		} else {
2414			page_shift = 0;
2415			page_select = BM_PHY_PAGE_SELECT;
2416		}
2417
2418		/* Page is shifted left, PHY expects (page x 32) */
2419		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2420						    (page << page_shift));
2421		if (ret_val)
2422			goto release;
2423	}
2424
2425	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2426					    data);
2427
2428release:
2429	hw->phy.ops.release(hw);
2430	return ret_val;
2431}
2432
2433/**
2434 *  e1000e_read_phy_reg_bm - Read BM PHY register
2435 *  @hw: pointer to the HW structure
2436 *  @offset: register offset to be read
2437 *  @data: pointer to the read data
2438 *
2439 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2440 *  and storing the retrieved information in data.  Release any acquired
2441 *  semaphores before exiting.
2442 **/
2443s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2444{
2445	s32 ret_val;
2446	u32 page = offset >> IGP_PAGE_SHIFT;
2447
2448	ret_val = hw->phy.ops.acquire(hw);
2449	if (ret_val)
2450		return ret_val;
2451
2452	/* Page 800 works differently than the rest so it has its own func */
2453	if (page == BM_WUC_PAGE) {
2454		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2455							 true, false);
2456		goto release;
2457	}
2458
2459	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2460
2461	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2462		u32 page_shift, page_select;
2463
2464		/* Page select is register 31 for phy address 1 and 22 for
2465		 * phy address 2 and 3. Page select is shifted only for
2466		 * phy address 1.
2467		 */
2468		if (hw->phy.addr == 1) {
2469			page_shift = IGP_PAGE_SHIFT;
2470			page_select = IGP01E1000_PHY_PAGE_SELECT;
2471		} else {
2472			page_shift = 0;
2473			page_select = BM_PHY_PAGE_SELECT;
2474		}
2475
2476		/* Page is shifted left, PHY expects (page x 32) */
2477		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2478						    (page << page_shift));
2479		if (ret_val)
2480			goto release;
2481	}
2482
2483	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2484					   data);
2485release:
2486	hw->phy.ops.release(hw);
2487	return ret_val;
2488}
2489
2490/**
2491 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2492 *  @hw: pointer to the HW structure
2493 *  @offset: register offset to be read
2494 *  @data: pointer to the read data
2495 *
2496 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2497 *  and storing the retrieved information in data.  Release any acquired
2498 *  semaphores before exiting.
2499 **/
2500s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2501{
2502	s32 ret_val;
2503	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2504
2505	ret_val = hw->phy.ops.acquire(hw);
2506	if (ret_val)
2507		return ret_val;
2508
2509	/* Page 800 works differently than the rest so it has its own func */
2510	if (page == BM_WUC_PAGE) {
2511		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2512							 true, false);
2513		goto release;
2514	}
2515
2516	hw->phy.addr = 1;
2517
2518	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2519		/* Page is shifted left, PHY expects (page x 32) */
2520		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2521						    page);
2522
2523		if (ret_val)
2524			goto release;
2525	}
2526
2527	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2528					   data);
2529release:
2530	hw->phy.ops.release(hw);
2531	return ret_val;
2532}
2533
2534/**
2535 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2536 *  @hw: pointer to the HW structure
2537 *  @offset: register offset to write to
2538 *  @data: data to write at register offset
2539 *
2540 *  Acquires semaphore, if necessary, then writes the data to PHY register
2541 *  at the offset.  Release any acquired semaphores before exiting.
2542 **/
2543s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2544{
2545	s32 ret_val;
2546	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2547
2548	ret_val = hw->phy.ops.acquire(hw);
2549	if (ret_val)
2550		return ret_val;
2551
2552	/* Page 800 works differently than the rest so it has its own func */
2553	if (page == BM_WUC_PAGE) {
2554		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2555							 false, false);
2556		goto release;
2557	}
2558
2559	hw->phy.addr = 1;
2560
2561	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2562		/* Page is shifted left, PHY expects (page x 32) */
2563		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2564						    page);
2565
2566		if (ret_val)
2567			goto release;
2568	}
2569
2570	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2571					    data);
2572
2573release:
2574	hw->phy.ops.release(hw);
2575	return ret_val;
2576}
2577
2578/**
2579 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2580 *  @hw: pointer to the HW structure
2581 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2582 *
2583 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2584 *  address to store contents of the BM_WUC_ENABLE_REG register.
2585 **/
2586s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2587{
2588	s32 ret_val;
2589	u16 temp;
2590
2591	/* All page select, port ctrl and wakeup registers use phy address 1 */
2592	hw->phy.addr = 1;
2593
2594	/* Select Port Control Registers page */
2595	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2596	if (ret_val) {
2597		e_dbg("Could not set Port Control page\n");
2598		return ret_val;
2599	}
2600
2601	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2602	if (ret_val) {
2603		e_dbg("Could not read PHY register %d.%d\n",
2604		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2605		return ret_val;
2606	}
2607
2608	/* Enable both PHY wakeup mode and Wakeup register page writes.
2609	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2610	 */
2611	temp = *phy_reg;
2612	temp |= BM_WUC_ENABLE_BIT;
2613	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2614
2615	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2616	if (ret_val) {
2617		e_dbg("Could not write PHY register %d.%d\n",
2618		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2619		return ret_val;
2620	}
2621
2622	/* Select Host Wakeup Registers page - caller now able to write
2623	 * registers on the Wakeup registers page
2624	 */
2625	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2626}
2627
2628/**
2629 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2630 *  @hw: pointer to the HW structure
2631 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2632 *
2633 *  Restore BM_WUC_ENABLE_REG to its original value.
2634 *
2635 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2636 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2637 *  caller.
2638 **/
2639s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2640{
2641	s32 ret_val;
2642
2643	/* Select Port Control Registers page */
2644	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2645	if (ret_val) {
2646		e_dbg("Could not set Port Control page\n");
2647		return ret_val;
2648	}
2649
2650	/* Restore 769.17 to its original value */
2651	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2652	if (ret_val)
2653		e_dbg("Could not restore PHY register %d.%d\n",
2654		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2655
2656	return ret_val;
2657}
2658
2659/**
2660 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2661 *  @hw: pointer to the HW structure
2662 *  @offset: register offset to be read or written
2663 *  @data: pointer to the data to read or write
2664 *  @read: determines if operation is read or write
2665 *  @page_set: BM_WUC_PAGE already set and access enabled
2666 *
2667 *  Read the PHY register at offset and store the retrieved information in
2668 *  data, or write data to PHY register at offset.  Note the procedure to
2669 *  access the PHY wakeup registers is different than reading the other PHY
2670 *  registers. It works as such:
2671 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2672 *  2) Set page to 800 for host (801 if we were manageability)
2673 *  3) Write the address using the address opcode (0x11)
2674 *  4) Read or write the data using the data opcode (0x12)
2675 *  5) Restore 769.17.2 to its original value
2676 *
2677 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2678 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2679 *
2680 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2681 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2682 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2683 **/
2684static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2685					  u16 *data, bool read, bool page_set)
2686{
2687	s32 ret_val;
2688	u16 reg = BM_PHY_REG_NUM(offset);
2689	u16 page = BM_PHY_REG_PAGE(offset);
2690	u16 phy_reg = 0;
2691
2692	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2693	if ((hw->mac.type == e1000_pchlan) &&
2694	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2695		e_dbg("Attempting to access page %d while gig enabled.\n",
2696		      page);
2697
2698	if (!page_set) {
2699		/* Enable access to PHY wakeup registers */
2700		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2701		if (ret_val) {
2702			e_dbg("Could not enable PHY wakeup reg access\n");
2703			return ret_val;
2704		}
2705	}
2706
2707	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2708
2709	/* Write the Wakeup register page offset value using opcode 0x11 */
2710	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2711	if (ret_val) {
2712		e_dbg("Could not write address opcode to page %d\n", page);
2713		return ret_val;
2714	}
2715
2716	if (read) {
2717		/* Read the Wakeup register page value using opcode 0x12 */
2718		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2719						   data);
2720	} else {
2721		/* Write the Wakeup register page value using opcode 0x12 */
2722		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2723						    *data);
2724	}
2725
2726	if (ret_val) {
2727		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2728		return ret_val;
2729	}
2730
2731	if (!page_set)
2732		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2733
2734	return ret_val;
2735}
2736
2737/**
2738 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2739 * @hw: pointer to the HW structure
2740 *
2741 * In the case of a PHY power down to save power, or to turn off link during a
2742 * driver unload, or wake on lan is not enabled, restore the link to previous
2743 * settings.
2744 **/
2745void e1000_power_up_phy_copper(struct e1000_hw *hw)
2746{
2747	u16 mii_reg = 0;
2748	int ret;
2749
2750	/* The PHY will retain its settings across a power down/up cycle */
2751	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2752	if (ret) {
2753		e_dbg("Error reading PHY register\n");
2754		return;
2755	}
2756	mii_reg &= ~BMCR_PDOWN;
2757	e1e_wphy(hw, MII_BMCR, mii_reg);
2758}
2759
2760/**
2761 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2762 * @hw: pointer to the HW structure
2763 *
2764 * In the case of a PHY power down to save power, or to turn off link during a
2765 * driver unload, or wake on lan is not enabled, restore the link to previous
2766 * settings.
2767 **/
2768void e1000_power_down_phy_copper(struct e1000_hw *hw)
2769{
2770	u16 mii_reg = 0;
2771	int ret;
2772
2773	/* The PHY will retain its settings across a power down/up cycle */
2774	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2775	if (ret) {
2776		e_dbg("Error reading PHY register\n");
2777		return;
2778	}
2779	mii_reg |= BMCR_PDOWN;
2780	e1e_wphy(hw, MII_BMCR, mii_reg);
2781	usleep_range(1000, 2000);
2782}
2783
2784/**
2785 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2786 *  @hw: pointer to the HW structure
2787 *  @offset: register offset to be read
2788 *  @data: pointer to the read data
2789 *  @locked: semaphore has already been acquired or not
2790 *  @page_set: BM_WUC_PAGE already set and access enabled
2791 *
2792 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2793 *  and stores the retrieved information in data.  Release any acquired
2794 *  semaphore before exiting.
2795 **/
2796static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2797				   bool locked, bool page_set)
2798{
2799	s32 ret_val;
2800	u16 page = BM_PHY_REG_PAGE(offset);
2801	u16 reg = BM_PHY_REG_NUM(offset);
2802	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2803
2804	if (!locked) {
2805		ret_val = hw->phy.ops.acquire(hw);
2806		if (ret_val)
2807			return ret_val;
2808	}
2809
2810	/* Page 800 works differently than the rest so it has its own func */
2811	if (page == BM_WUC_PAGE) {
2812		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2813							 true, page_set);
2814		goto out;
2815	}
2816
2817	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2818		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2819							 data, true);
2820		goto out;
2821	}
2822
2823	if (!page_set) {
2824		if (page == HV_INTC_FC_PAGE_START)
2825			page = 0;
2826
2827		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2828			/* Page is shifted left, PHY expects (page x 32) */
2829			ret_val = e1000_set_page_igp(hw,
2830						     (page << IGP_PAGE_SHIFT));
2831
2832			hw->phy.addr = phy_addr;
2833
2834			if (ret_val)
2835				goto out;
2836		}
2837	}
2838
2839	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2840	      page << IGP_PAGE_SHIFT, reg);
2841
2842	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2843out:
2844	if (!locked)
2845		hw->phy.ops.release(hw);
2846
2847	return ret_val;
2848}
2849
2850/**
2851 *  e1000_read_phy_reg_hv -  Read HV PHY register
2852 *  @hw: pointer to the HW structure
2853 *  @offset: register offset to be read
2854 *  @data: pointer to the read data
2855 *
2856 *  Acquires semaphore then reads the PHY register at offset and stores
2857 *  the retrieved information in data.  Release the acquired semaphore
2858 *  before exiting.
2859 **/
2860s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2861{
2862	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2863}
2864
2865/**
2866 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2867 *  @hw: pointer to the HW structure
2868 *  @offset: register offset to be read
2869 *  @data: pointer to the read data
2870 *
2871 *  Reads the PHY register at offset and stores the retrieved information
2872 *  in data.  Assumes semaphore already acquired.
2873 **/
2874s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2875{
2876	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2877}
2878
2879/**
2880 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2881 *  @hw: pointer to the HW structure
2882 *  @offset: register offset to write to
2883 *  @data: data to write at register offset
2884 *
2885 *  Reads the PHY register at offset and stores the retrieved information
2886 *  in data.  Assumes semaphore already acquired and page already set.
2887 **/
2888s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2889{
2890	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2891}
2892
2893/**
2894 *  __e1000_write_phy_reg_hv - Write HV PHY register
2895 *  @hw: pointer to the HW structure
2896 *  @offset: register offset to write to
2897 *  @data: data to write at register offset
2898 *  @locked: semaphore has already been acquired or not
2899 *  @page_set: BM_WUC_PAGE already set and access enabled
2900 *
2901 *  Acquires semaphore, if necessary, then writes the data to PHY register
2902 *  at the offset.  Release any acquired semaphores before exiting.
2903 **/
2904static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2905				    bool locked, bool page_set)
2906{
2907	s32 ret_val;
2908	u16 page = BM_PHY_REG_PAGE(offset);
2909	u16 reg = BM_PHY_REG_NUM(offset);
2910	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2911
2912	if (!locked) {
2913		ret_val = hw->phy.ops.acquire(hw);
2914		if (ret_val)
2915			return ret_val;
2916	}
2917
2918	/* Page 800 works differently than the rest so it has its own func */
2919	if (page == BM_WUC_PAGE) {
2920		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2921							 false, page_set);
2922		goto out;
2923	}
2924
2925	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2926		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2927							 &data, false);
2928		goto out;
2929	}
2930
2931	if (!page_set) {
2932		if (page == HV_INTC_FC_PAGE_START)
2933			page = 0;
2934
2935		/* Workaround MDIO accesses being disabled after entering IEEE
2936		 * Power Down (when bit 11 of the PHY Control register is set)
2937		 */
2938		if ((hw->phy.type == e1000_phy_82578) &&
2939		    (hw->phy.revision >= 1) &&
2940		    (hw->phy.addr == 2) &&
2941		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2942			u16 data2 = 0x7EFF;
2943
2944			ret_val = e1000_access_phy_debug_regs_hv(hw,
2945								 BIT(6) | 0x3,
2946								 &data2, false);
2947			if (ret_val)
2948				goto out;
2949		}
2950
2951		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2952			/* Page is shifted left, PHY expects (page x 32) */
2953			ret_val = e1000_set_page_igp(hw,
2954						     (page << IGP_PAGE_SHIFT));
2955
2956			hw->phy.addr = phy_addr;
2957
2958			if (ret_val)
2959				goto out;
2960		}
2961	}
2962
2963	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2964	      page << IGP_PAGE_SHIFT, reg);
2965
2966	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2967					    data);
2968
2969out:
2970	if (!locked)
2971		hw->phy.ops.release(hw);
2972
2973	return ret_val;
2974}
2975
2976/**
2977 *  e1000_write_phy_reg_hv - Write HV PHY register
2978 *  @hw: pointer to the HW structure
2979 *  @offset: register offset to write to
2980 *  @data: data to write at register offset
2981 *
2982 *  Acquires semaphore then writes the data to PHY register at the offset.
2983 *  Release the acquired semaphores before exiting.
2984 **/
2985s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2986{
2987	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2988}
2989
2990/**
2991 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2992 *  @hw: pointer to the HW structure
2993 *  @offset: register offset to write to
2994 *  @data: data to write at register offset
2995 *
2996 *  Writes the data to PHY register at the offset.  Assumes semaphore
2997 *  already acquired.
2998 **/
2999s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3000{
3001	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3002}
3003
3004/**
3005 *  e1000_write_phy_reg_page_hv - Write HV PHY register
3006 *  @hw: pointer to the HW structure
3007 *  @offset: register offset to write to
3008 *  @data: data to write at register offset
3009 *
3010 *  Writes the data to PHY register at the offset.  Assumes semaphore
3011 *  already acquired and page already set.
3012 **/
3013s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3014{
3015	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3016}
3017
3018/**
3019 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3020 *  @page: page to be accessed
3021 **/
3022static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3023{
3024	u32 phy_addr = 2;
3025
3026	if (page >= HV_INTC_FC_PAGE_START)
3027		phy_addr = 1;
3028
3029	return phy_addr;
3030}
3031
3032/**
3033 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3034 *  @hw: pointer to the HW structure
3035 *  @offset: register offset to be read or written
3036 *  @data: pointer to the data to be read or written
3037 *  @read: determines if operation is read or write
3038 *
3039 *  Reads the PHY register at offset and stores the retrieved information
3040 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3041 *  to access these regs uses the address port and data port to read/write.
3042 *  These accesses done with PHY address 2 and without using pages.
3043 **/
3044static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3045					  u16 *data, bool read)
3046{
3047	s32 ret_val;
3048	u32 addr_reg;
3049	u32 data_reg;
3050
3051	/* This takes care of the difference with desktop vs mobile phy */
3052	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3053		    I82578_ADDR_REG : I82577_ADDR_REG);
3054	data_reg = addr_reg + 1;
3055
3056	/* All operations in this function are phy address 2 */
3057	hw->phy.addr = 2;
3058
3059	/* masking with 0x3F to remove the page from offset */
3060	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3061	if (ret_val) {
3062		e_dbg("Could not write the Address Offset port register\n");
3063		return ret_val;
3064	}
3065
3066	/* Read or write the data value next */
3067	if (read)
3068		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3069	else
3070		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3071
3072	if (ret_val)
3073		e_dbg("Could not access the Data port register\n");
3074
3075	return ret_val;
3076}
3077
3078/**
3079 *  e1000_link_stall_workaround_hv - Si workaround
3080 *  @hw: pointer to the HW structure
3081 *
3082 *  This function works around a Si bug where the link partner can get
3083 *  a link up indication before the PHY does.  If small packets are sent
3084 *  by the link partner they can be placed in the packet buffer without
3085 *  being properly accounted for by the PHY and will stall preventing
3086 *  further packets from being received.  The workaround is to clear the
3087 *  packet buffer after the PHY detects link up.
3088 **/
3089s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3090{
3091	s32 ret_val = 0;
3092	u16 data;
3093
3094	if (hw->phy.type != e1000_phy_82578)
3095		return 0;
3096
3097	/* Do not apply workaround if in PHY loopback bit 14 set */
3098	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3099	if (ret_val) {
3100		e_dbg("Error reading PHY register\n");
3101		return ret_val;
3102	}
3103	if (data & BMCR_LOOPBACK)
3104		return 0;
3105
3106	/* check if link is up and at 1Gbps */
3107	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3108	if (ret_val)
3109		return ret_val;
3110
3111	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3112		 BM_CS_STATUS_SPEED_MASK);
3113
3114	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3115		     BM_CS_STATUS_SPEED_1000))
3116		return 0;
3117
3118	msleep(200);
3119
3120	/* flush the packets in the fifo buffer */
3121	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3122			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3123			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3124	if (ret_val)
3125		return ret_val;
3126
3127	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3128}
3129
3130/**
3131 *  e1000_check_polarity_82577 - Checks the polarity.
3132 *  @hw: pointer to the HW structure
3133 *
3134 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3135 *
3136 *  Polarity is determined based on the PHY specific status register.
3137 **/
3138s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3139{
3140	struct e1000_phy_info *phy = &hw->phy;
3141	s32 ret_val;
3142	u16 data;
3143
3144	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3145
3146	if (!ret_val)
3147		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3148				       ? e1000_rev_polarity_reversed
3149				       : e1000_rev_polarity_normal);
3150
3151	return ret_val;
3152}
3153
3154/**
3155 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3156 *  @hw: pointer to the HW structure
3157 *
3158 *  Calls the PHY setup function to force speed and duplex.
3159 **/
3160s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3161{
3162	struct e1000_phy_info *phy = &hw->phy;
3163	s32 ret_val;
3164	u16 phy_data;
3165	bool link;
3166
3167	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3168	if (ret_val)
3169		return ret_val;
3170
3171	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3172
3173	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3174	if (ret_val)
3175		return ret_val;
3176
3177	udelay(1);
3178
3179	if (phy->autoneg_wait_to_complete) {
3180		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3181
3182		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3183						      100000, &link);
3184		if (ret_val)
3185			return ret_val;
3186
3187		if (!link)
3188			e_dbg("Link taking longer than expected.\n");
3189
3190		/* Try once more */
3191		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3192						      100000, &link);
3193	}
3194
3195	return ret_val;
3196}
3197
3198/**
3199 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3200 *  @hw: pointer to the HW structure
3201 *
3202 *  Read PHY status to determine if link is up.  If link is up, then
3203 *  set/determine 10base-T extended distance and polarity correction.  Read
3204 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3205 *  determine on the cable length, local and remote receiver.
3206 **/
3207s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3208{
3209	struct e1000_phy_info *phy = &hw->phy;
3210	s32 ret_val;
3211	u16 data;
3212	bool link;
3213
3214	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3215	if (ret_val)
3216		return ret_val;
3217
3218	if (!link) {
3219		e_dbg("Phy info is only valid if link is up\n");
3220		return -E1000_ERR_CONFIG;
3221	}
3222
3223	phy->polarity_correction = true;
3224
3225	ret_val = e1000_check_polarity_82577(hw);
3226	if (ret_val)
3227		return ret_val;
3228
3229	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3230	if (ret_val)
3231		return ret_val;
3232
3233	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3234
3235	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3236	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3237		ret_val = hw->phy.ops.get_cable_length(hw);
3238		if (ret_val)
3239			return ret_val;
3240
3241		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3242		if (ret_val)
3243			return ret_val;
3244
3245		phy->local_rx = (data & LPA_1000LOCALRXOK)
3246		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3247
3248		phy->remote_rx = (data & LPA_1000REMRXOK)
3249		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3250	} else {
3251		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3252		phy->local_rx = e1000_1000t_rx_status_undefined;
3253		phy->remote_rx = e1000_1000t_rx_status_undefined;
3254	}
3255
3256	return 0;
3257}
3258
3259/**
3260 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3261 *  @hw: pointer to the HW structure
3262 *
3263 * Reads the diagnostic status register and verifies result is valid before
3264 * placing it in the phy_cable_length field.
3265 **/
3266s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3267{
3268	struct e1000_phy_info *phy = &hw->phy;
3269	s32 ret_val;
3270	u16 phy_data, length;
3271
3272	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3273	if (ret_val)
3274		return ret_val;
3275
3276	length = FIELD_GET(I82577_DSTATUS_CABLE_LENGTH, phy_data);
3277
3278	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3279		return -E1000_ERR_PHY;
3280
3281	phy->cable_length = length;
3282
3283	return 0;
3284}
3285