1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4/*
5 *	e100.c: Intel(R) PRO/100 ethernet driver
6 *
7 *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
8 *	original e100 driver, but better described as a munging of
9 *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
10 *
11 *	References:
12 *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
13 *		Open Source Software Developers Manual,
14 *		http://sourceforge.net/projects/e1000
15 *
16 *
17 *	                      Theory of Operation
18 *
19 *	I.   General
20 *
21 *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22 *	controller family, which includes the 82557, 82558, 82559, 82550,
23 *	82551, and 82562 devices.  82558 and greater controllers
24 *	integrate the Intel 82555 PHY.  The controllers are used in
25 *	server and client network interface cards, as well as in
26 *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27 *	configurations.  8255x supports a 32-bit linear addressing
28 *	mode and operates at 33Mhz PCI clock rate.
29 *
30 *	II.  Driver Operation
31 *
32 *	Memory-mapped mode is used exclusively to access the device's
33 *	shared-memory structure, the Control/Status Registers (CSR). All
34 *	setup, configuration, and control of the device, including queuing
35 *	of Tx, Rx, and configuration commands is through the CSR.
36 *	cmd_lock serializes accesses to the CSR command register.  cb_lock
37 *	protects the shared Command Block List (CBL).
38 *
39 *	8255x is highly MII-compliant and all access to the PHY go
40 *	through the Management Data Interface (MDI).  Consequently, the
41 *	driver leverages the mii.c library shared with other MII-compliant
42 *	devices.
43 *
44 *	Big- and Little-Endian byte order as well as 32- and 64-bit
45 *	archs are supported.  Weak-ordered memory and non-cache-coherent
46 *	archs are supported.
47 *
48 *	III. Transmit
49 *
50 *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
51 *	together in a fixed-size ring (CBL) thus forming the flexible mode
52 *	memory structure.  A TCB marked with the suspend-bit indicates
53 *	the end of the ring.  The last TCB processed suspends the
54 *	controller, and the controller can be restarted by issue a CU
55 *	resume command to continue from the suspend point, or a CU start
56 *	command to start at a given position in the ring.
57 *
58 *	Non-Tx commands (config, multicast setup, etc) are linked
59 *	into the CBL ring along with Tx commands.  The common structure
60 *	used for both Tx and non-Tx commands is the Command Block (CB).
61 *
62 *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
63 *	is the next CB to check for completion; cb_to_send is the first
64 *	CB to start on in case of a previous failure to resume.  CB clean
65 *	up happens in interrupt context in response to a CU interrupt.
66 *	cbs_avail keeps track of number of free CB resources available.
67 *
68 * 	Hardware padding of short packets to minimum packet size is
69 * 	enabled.  82557 pads with 7Eh, while the later controllers pad
70 * 	with 00h.
71 *
72 *	IV.  Receive
73 *
74 *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
75 *	Descriptors (RFD) + data buffer, thus forming the simplified mode
76 *	memory structure.  Rx skbs are allocated to contain both the RFD
77 *	and the data buffer, but the RFD is pulled off before the skb is
78 *	indicated.  The data buffer is aligned such that encapsulated
79 *	protocol headers are u32-aligned.  Since the RFD is part of the
80 *	mapped shared memory, and completion status is contained within
81 *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
82 *	view from software and hardware.
83 *
84 *	In order to keep updates to the RFD link field from colliding with
85 *	hardware writes to mark packets complete, we use the feature that
86 *	hardware will not write to a size 0 descriptor and mark the previous
87 *	packet as end-of-list (EL).   After updating the link, we remove EL
88 *	and only then restore the size such that hardware may use the
89 *	previous-to-end RFD.
90 *
91 *	Under typical operation, the  receive unit (RU) is start once,
92 *	and the controller happily fills RFDs as frames arrive.  If
93 *	replacement RFDs cannot be allocated, or the RU goes non-active,
94 *	the RU must be restarted.  Frame arrival generates an interrupt,
95 *	and Rx indication and re-allocation happen in the same context,
96 *	therefore no locking is required.  A software-generated interrupt
97 *	is generated from the watchdog to recover from a failed allocation
98 *	scenario where all Rx resources have been indicated and none re-
99 *	placed.
100 *
101 *	V.   Miscellaneous
102 *
103 * 	VLAN offloading of tagging, stripping and filtering is not
104 * 	supported, but driver will accommodate the extra 4-byte VLAN tag
105 * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
106 * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
107 * 	not supported (hardware limitation).
108 *
109 * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
110 *
111 * 	Thanks to JC (jchapman@katalix.com) for helping with
112 * 	testing/troubleshooting the development driver.
113 *
114 * 	TODO:
115 * 	o several entry points race with dev->close
116 * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
117 *
118 *	FIXES:
119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120 *	- Stratus87247: protect MDI control register manipulations
121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
123 */
124
125#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
126
127#include <linux/hardirq.h>
128#include <linux/interrupt.h>
129#include <linux/module.h>
130#include <linux/moduleparam.h>
131#include <linux/kernel.h>
132#include <linux/types.h>
133#include <linux/sched.h>
134#include <linux/slab.h>
135#include <linux/delay.h>
136#include <linux/init.h>
137#include <linux/pci.h>
138#include <linux/dma-mapping.h>
139#include <linux/dmapool.h>
140#include <linux/netdevice.h>
141#include <linux/etherdevice.h>
142#include <linux/mii.h>
143#include <linux/if_vlan.h>
144#include <linux/skbuff.h>
145#include <linux/ethtool.h>
146#include <linux/string.h>
147#include <linux/firmware.h>
148#include <linux/rtnetlink.h>
149#include <asm/unaligned.h>
150
151
152#define DRV_NAME		"e100"
153#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
154#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
155
156#define E100_WATCHDOG_PERIOD	(2 * HZ)
157#define E100_NAPI_WEIGHT	16
158
159#define FIRMWARE_D101M		"e100/d101m_ucode.bin"
160#define FIRMWARE_D101S		"e100/d101s_ucode.bin"
161#define FIRMWARE_D102E		"e100/d102e_ucode.bin"
162
163MODULE_DESCRIPTION(DRV_DESCRIPTION);
164MODULE_AUTHOR(DRV_COPYRIGHT);
165MODULE_LICENSE("GPL v2");
166MODULE_FIRMWARE(FIRMWARE_D101M);
167MODULE_FIRMWARE(FIRMWARE_D101S);
168MODULE_FIRMWARE(FIRMWARE_D102E);
169
170static int debug = 3;
171static int eeprom_bad_csum_allow = 0;
172static int use_io = 0;
173module_param(debug, int, 0);
174module_param(eeprom_bad_csum_allow, int, 0444);
175module_param(use_io, int, 0444);
176MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
177MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
178MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
179
180#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
181	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
182	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
183static const struct pci_device_id e100_id_table[] = {
184	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
185	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
186	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
187	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
188	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
189	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
190	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
191	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
192	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
193	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
194	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
195	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
196	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
197	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
198	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
199	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
200	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
201	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
202	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
203	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
204	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
205	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
206	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
207	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
208	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
209	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
210	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
211	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
212	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
213	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
214	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
215	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
216	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
217	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
218	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
219	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
220	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
221	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
222	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
223	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
224	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
225	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
226	{ 0, }
227};
228MODULE_DEVICE_TABLE(pci, e100_id_table);
229
230enum mac {
231	mac_82557_D100_A  = 0,
232	mac_82557_D100_B  = 1,
233	mac_82557_D100_C  = 2,
234	mac_82558_D101_A4 = 4,
235	mac_82558_D101_B0 = 5,
236	mac_82559_D101M   = 8,
237	mac_82559_D101S   = 9,
238	mac_82550_D102    = 12,
239	mac_82550_D102_C  = 13,
240	mac_82551_E       = 14,
241	mac_82551_F       = 15,
242	mac_82551_10      = 16,
243	mac_unknown       = 0xFF,
244};
245
246enum phy {
247	phy_100a     = 0x000003E0,
248	phy_100c     = 0x035002A8,
249	phy_82555_tx = 0x015002A8,
250	phy_nsc_tx   = 0x5C002000,
251	phy_82562_et = 0x033002A8,
252	phy_82562_em = 0x032002A8,
253	phy_82562_ek = 0x031002A8,
254	phy_82562_eh = 0x017002A8,
255	phy_82552_v  = 0xd061004d,
256	phy_unknown  = 0xFFFFFFFF,
257};
258
259/* CSR (Control/Status Registers) */
260struct csr {
261	struct {
262		u8 status;
263		u8 stat_ack;
264		u8 cmd_lo;
265		u8 cmd_hi;
266		u32 gen_ptr;
267	} scb;
268	u32 port;
269	u16 flash_ctrl;
270	u8 eeprom_ctrl_lo;
271	u8 eeprom_ctrl_hi;
272	u32 mdi_ctrl;
273	u32 rx_dma_count;
274};
275
276enum scb_status {
277	rus_no_res       = 0x08,
278	rus_ready        = 0x10,
279	rus_mask         = 0x3C,
280};
281
282enum ru_state  {
283	RU_SUSPENDED = 0,
284	RU_RUNNING	 = 1,
285	RU_UNINITIALIZED = -1,
286};
287
288enum scb_stat_ack {
289	stat_ack_not_ours    = 0x00,
290	stat_ack_sw_gen      = 0x04,
291	stat_ack_rnr         = 0x10,
292	stat_ack_cu_idle     = 0x20,
293	stat_ack_frame_rx    = 0x40,
294	stat_ack_cu_cmd_done = 0x80,
295	stat_ack_not_present = 0xFF,
296	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
297	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
298};
299
300enum scb_cmd_hi {
301	irq_mask_none = 0x00,
302	irq_mask_all  = 0x01,
303	irq_sw_gen    = 0x02,
304};
305
306enum scb_cmd_lo {
307	cuc_nop        = 0x00,
308	ruc_start      = 0x01,
309	ruc_load_base  = 0x06,
310	cuc_start      = 0x10,
311	cuc_resume     = 0x20,
312	cuc_dump_addr  = 0x40,
313	cuc_dump_stats = 0x50,
314	cuc_load_base  = 0x60,
315	cuc_dump_reset = 0x70,
316};
317
318enum cuc_dump {
319	cuc_dump_complete       = 0x0000A005,
320	cuc_dump_reset_complete = 0x0000A007,
321};
322
323enum port {
324	software_reset  = 0x0000,
325	selftest        = 0x0001,
326	selective_reset = 0x0002,
327};
328
329enum eeprom_ctrl_lo {
330	eesk = 0x01,
331	eecs = 0x02,
332	eedi = 0x04,
333	eedo = 0x08,
334};
335
336enum mdi_ctrl {
337	mdi_write = 0x04000000,
338	mdi_read  = 0x08000000,
339	mdi_ready = 0x10000000,
340};
341
342enum eeprom_op {
343	op_write = 0x05,
344	op_read  = 0x06,
345	op_ewds  = 0x10,
346	op_ewen  = 0x13,
347};
348
349enum eeprom_offsets {
350	eeprom_cnfg_mdix  = 0x03,
351	eeprom_phy_iface  = 0x06,
352	eeprom_id         = 0x0A,
353	eeprom_config_asf = 0x0D,
354	eeprom_smbus_addr = 0x90,
355};
356
357enum eeprom_cnfg_mdix {
358	eeprom_mdix_enabled = 0x0080,
359};
360
361enum eeprom_phy_iface {
362	NoSuchPhy = 0,
363	I82553AB,
364	I82553C,
365	I82503,
366	DP83840,
367	S80C240,
368	S80C24,
369	I82555,
370	DP83840A = 10,
371};
372
373enum eeprom_id {
374	eeprom_id_wol = 0x0020,
375};
376
377enum eeprom_config_asf {
378	eeprom_asf = 0x8000,
379	eeprom_gcl = 0x4000,
380};
381
382enum cb_status {
383	cb_complete = 0x8000,
384	cb_ok       = 0x2000,
385};
386
387/*
388 * cb_command - Command Block flags
389 * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
390 */
391enum cb_command {
392	cb_nop    = 0x0000,
393	cb_iaaddr = 0x0001,
394	cb_config = 0x0002,
395	cb_multi  = 0x0003,
396	cb_tx     = 0x0004,
397	cb_ucode  = 0x0005,
398	cb_dump   = 0x0006,
399	cb_tx_sf  = 0x0008,
400	cb_tx_nc  = 0x0010,
401	cb_cid    = 0x1f00,
402	cb_i      = 0x2000,
403	cb_s      = 0x4000,
404	cb_el     = 0x8000,
405};
406
407struct rfd {
408	__le16 status;
409	__le16 command;
410	__le32 link;
411	__le32 rbd;
412	__le16 actual_size;
413	__le16 size;
414};
415
416struct rx {
417	struct rx *next, *prev;
418	struct sk_buff *skb;
419	dma_addr_t dma_addr;
420};
421
422#if defined(__BIG_ENDIAN_BITFIELD)
423#define X(a,b)	b,a
424#else
425#define X(a,b)	a,b
426#endif
427struct config {
428/*0*/	u8 X(byte_count:6, pad0:2);
429/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
430/*2*/	u8 adaptive_ifs;
431/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
432	   term_write_cache_line:1), pad3:4);
433/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
434/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
435/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
436	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
437	   rx_save_overruns : 1), rx_save_bad_frames : 1);
438/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
439	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
440	   tx_dynamic_tbd:1);
441/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
442/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
443	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
444/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
445	   loopback:2);
446/*11*/	u8 X(linear_priority:3, pad11:5);
447/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
448/*13*/	u8 ip_addr_lo;
449/*14*/	u8 ip_addr_hi;
450/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
451	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
452	   pad15_2:1), crs_or_cdt:1);
453/*16*/	u8 fc_delay_lo;
454/*17*/	u8 fc_delay_hi;
455/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
456	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
457/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
458	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
459	   full_duplex_force:1), full_duplex_pin:1);
460/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
461/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
462/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
463	u8 pad_d102[9];
464};
465
466#define E100_MAX_MULTICAST_ADDRS	64
467struct multi {
468	__le16 count;
469	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
470};
471
472/* Important: keep total struct u32-aligned */
473#define UCODE_SIZE			134
474struct cb {
475	__le16 status;
476	__le16 command;
477	__le32 link;
478	union {
479		u8 iaaddr[ETH_ALEN];
480		__le32 ucode[UCODE_SIZE];
481		struct config config;
482		struct multi multi;
483		struct {
484			u32 tbd_array;
485			u16 tcb_byte_count;
486			u8 threshold;
487			u8 tbd_count;
488			struct {
489				__le32 buf_addr;
490				__le16 size;
491				u16 eol;
492			} tbd;
493		} tcb;
494		__le32 dump_buffer_addr;
495	} u;
496	struct cb *next, *prev;
497	dma_addr_t dma_addr;
498	struct sk_buff *skb;
499};
500
501enum loopback {
502	lb_none = 0, lb_mac = 1, lb_phy = 3,
503};
504
505struct stats {
506	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
507		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
508		tx_multiple_collisions, tx_total_collisions;
509	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
510		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
511		rx_short_frame_errors;
512	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
513	__le16 xmt_tco_frames, rcv_tco_frames;
514	__le32 complete;
515};
516
517struct mem {
518	struct {
519		u32 signature;
520		u32 result;
521	} selftest;
522	struct stats stats;
523	u8 dump_buf[596];
524};
525
526struct param_range {
527	u32 min;
528	u32 max;
529	u32 count;
530};
531
532struct params {
533	struct param_range rfds;
534	struct param_range cbs;
535};
536
537struct nic {
538	/* Begin: frequently used values: keep adjacent for cache effect */
539	u32 msg_enable				____cacheline_aligned;
540	struct net_device *netdev;
541	struct pci_dev *pdev;
542	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
543
544	struct rx *rxs				____cacheline_aligned;
545	struct rx *rx_to_use;
546	struct rx *rx_to_clean;
547	struct rfd blank_rfd;
548	enum ru_state ru_running;
549
550	spinlock_t cb_lock			____cacheline_aligned;
551	spinlock_t cmd_lock;
552	struct csr __iomem *csr;
553	enum scb_cmd_lo cuc_cmd;
554	unsigned int cbs_avail;
555	struct napi_struct napi;
556	struct cb *cbs;
557	struct cb *cb_to_use;
558	struct cb *cb_to_send;
559	struct cb *cb_to_clean;
560	__le16 tx_command;
561	/* End: frequently used values: keep adjacent for cache effect */
562
563	enum {
564		ich                = (1 << 0),
565		promiscuous        = (1 << 1),
566		multicast_all      = (1 << 2),
567		wol_magic          = (1 << 3),
568		ich_10h_workaround = (1 << 4),
569	} flags					____cacheline_aligned;
570
571	enum mac mac;
572	enum phy phy;
573	struct params params;
574	struct timer_list watchdog;
575	struct mii_if_info mii;
576	struct work_struct tx_timeout_task;
577	enum loopback loopback;
578
579	struct mem *mem;
580	dma_addr_t dma_addr;
581
582	struct dma_pool *cbs_pool;
583	dma_addr_t cbs_dma_addr;
584	u8 adaptive_ifs;
585	u8 tx_threshold;
586	u32 tx_frames;
587	u32 tx_collisions;
588	u32 tx_deferred;
589	u32 tx_single_collisions;
590	u32 tx_multiple_collisions;
591	u32 tx_fc_pause;
592	u32 tx_tco_frames;
593
594	u32 rx_fc_pause;
595	u32 rx_fc_unsupported;
596	u32 rx_tco_frames;
597	u32 rx_short_frame_errors;
598	u32 rx_over_length_errors;
599
600	u16 eeprom_wc;
601	__le16 eeprom[256];
602	spinlock_t mdio_lock;
603	const struct firmware *fw;
604};
605
606static inline void e100_write_flush(struct nic *nic)
607{
608	/* Flush previous PCI writes through intermediate bridges
609	 * by doing a benign read */
610	(void)ioread8(&nic->csr->scb.status);
611}
612
613static void e100_enable_irq(struct nic *nic)
614{
615	unsigned long flags;
616
617	spin_lock_irqsave(&nic->cmd_lock, flags);
618	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
619	e100_write_flush(nic);
620	spin_unlock_irqrestore(&nic->cmd_lock, flags);
621}
622
623static void e100_disable_irq(struct nic *nic)
624{
625	unsigned long flags;
626
627	spin_lock_irqsave(&nic->cmd_lock, flags);
628	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
629	e100_write_flush(nic);
630	spin_unlock_irqrestore(&nic->cmd_lock, flags);
631}
632
633static void e100_hw_reset(struct nic *nic)
634{
635	/* Put CU and RU into idle with a selective reset to get
636	 * device off of PCI bus */
637	iowrite32(selective_reset, &nic->csr->port);
638	e100_write_flush(nic); udelay(20);
639
640	/* Now fully reset device */
641	iowrite32(software_reset, &nic->csr->port);
642	e100_write_flush(nic); udelay(20);
643
644	/* Mask off our interrupt line - it's unmasked after reset */
645	e100_disable_irq(nic);
646}
647
648static int e100_self_test(struct nic *nic)
649{
650	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
651
652	/* Passing the self-test is a pretty good indication
653	 * that the device can DMA to/from host memory */
654
655	nic->mem->selftest.signature = 0;
656	nic->mem->selftest.result = 0xFFFFFFFF;
657
658	iowrite32(selftest | dma_addr, &nic->csr->port);
659	e100_write_flush(nic);
660	/* Wait 10 msec for self-test to complete */
661	msleep(10);
662
663	/* Interrupts are enabled after self-test */
664	e100_disable_irq(nic);
665
666	/* Check results of self-test */
667	if (nic->mem->selftest.result != 0) {
668		netif_err(nic, hw, nic->netdev,
669			  "Self-test failed: result=0x%08X\n",
670			  nic->mem->selftest.result);
671		return -ETIMEDOUT;
672	}
673	if (nic->mem->selftest.signature == 0) {
674		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
675		return -ETIMEDOUT;
676	}
677
678	return 0;
679}
680
681static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
682{
683	u32 cmd_addr_data[3];
684	u8 ctrl;
685	int i, j;
686
687	/* Three cmds: write/erase enable, write data, write/erase disable */
688	cmd_addr_data[0] = op_ewen << (addr_len - 2);
689	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
690		le16_to_cpu(data);
691	cmd_addr_data[2] = op_ewds << (addr_len - 2);
692
693	/* Bit-bang cmds to write word to eeprom */
694	for (j = 0; j < 3; j++) {
695
696		/* Chip select */
697		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
698		e100_write_flush(nic); udelay(4);
699
700		for (i = 31; i >= 0; i--) {
701			ctrl = (cmd_addr_data[j] & (1 << i)) ?
702				eecs | eedi : eecs;
703			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
704			e100_write_flush(nic); udelay(4);
705
706			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
707			e100_write_flush(nic); udelay(4);
708		}
709		/* Wait 10 msec for cmd to complete */
710		msleep(10);
711
712		/* Chip deselect */
713		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
714		e100_write_flush(nic); udelay(4);
715	}
716};
717
718/* General technique stolen from the eepro100 driver - very clever */
719static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
720{
721	u32 cmd_addr_data;
722	u16 data = 0;
723	u8 ctrl;
724	int i;
725
726	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
727
728	/* Chip select */
729	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
730	e100_write_flush(nic); udelay(4);
731
732	/* Bit-bang to read word from eeprom */
733	for (i = 31; i >= 0; i--) {
734		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
735		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
736		e100_write_flush(nic); udelay(4);
737
738		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
739		e100_write_flush(nic); udelay(4);
740
741		/* Eeprom drives a dummy zero to EEDO after receiving
742		 * complete address.  Use this to adjust addr_len. */
743		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
744		if (!(ctrl & eedo) && i > 16) {
745			*addr_len -= (i - 16);
746			i = 17;
747		}
748
749		data = (data << 1) | (ctrl & eedo ? 1 : 0);
750	}
751
752	/* Chip deselect */
753	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
754	e100_write_flush(nic); udelay(4);
755
756	return cpu_to_le16(data);
757};
758
759/* Load entire EEPROM image into driver cache and validate checksum */
760static int e100_eeprom_load(struct nic *nic)
761{
762	u16 addr, addr_len = 8, checksum = 0;
763
764	/* Try reading with an 8-bit addr len to discover actual addr len */
765	e100_eeprom_read(nic, &addr_len, 0);
766	nic->eeprom_wc = 1 << addr_len;
767
768	for (addr = 0; addr < nic->eeprom_wc; addr++) {
769		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
770		if (addr < nic->eeprom_wc - 1)
771			checksum += le16_to_cpu(nic->eeprom[addr]);
772	}
773
774	/* The checksum, stored in the last word, is calculated such that
775	 * the sum of words should be 0xBABA */
776	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
777		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
778		if (!eeprom_bad_csum_allow)
779			return -EAGAIN;
780	}
781
782	return 0;
783}
784
785/* Save (portion of) driver EEPROM cache to device and update checksum */
786static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
787{
788	u16 addr, addr_len = 8, checksum = 0;
789
790	/* Try reading with an 8-bit addr len to discover actual addr len */
791	e100_eeprom_read(nic, &addr_len, 0);
792	nic->eeprom_wc = 1 << addr_len;
793
794	if (start + count >= nic->eeprom_wc)
795		return -EINVAL;
796
797	for (addr = start; addr < start + count; addr++)
798		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
799
800	/* The checksum, stored in the last word, is calculated such that
801	 * the sum of words should be 0xBABA */
802	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
803		checksum += le16_to_cpu(nic->eeprom[addr]);
804	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
805	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
806		nic->eeprom[nic->eeprom_wc - 1]);
807
808	return 0;
809}
810
811#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
812#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
813static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
814{
815	unsigned long flags;
816	unsigned int i;
817	int err = 0;
818
819	spin_lock_irqsave(&nic->cmd_lock, flags);
820
821	/* Previous command is accepted when SCB clears */
822	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
823		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
824			break;
825		cpu_relax();
826		if (unlikely(i > E100_WAIT_SCB_FAST))
827			udelay(5);
828	}
829	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
830		err = -EAGAIN;
831		goto err_unlock;
832	}
833
834	if (unlikely(cmd != cuc_resume))
835		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
836	iowrite8(cmd, &nic->csr->scb.cmd_lo);
837
838err_unlock:
839	spin_unlock_irqrestore(&nic->cmd_lock, flags);
840
841	return err;
842}
843
844static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
845	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
846{
847	struct cb *cb;
848	unsigned long flags;
849	int err;
850
851	spin_lock_irqsave(&nic->cb_lock, flags);
852
853	if (unlikely(!nic->cbs_avail)) {
854		err = -ENOMEM;
855		goto err_unlock;
856	}
857
858	cb = nic->cb_to_use;
859	nic->cb_to_use = cb->next;
860	nic->cbs_avail--;
861	cb->skb = skb;
862
863	err = cb_prepare(nic, cb, skb);
864	if (err)
865		goto err_unlock;
866
867	if (unlikely(!nic->cbs_avail))
868		err = -ENOSPC;
869
870
871	/* Order is important otherwise we'll be in a race with h/w:
872	 * set S-bit in current first, then clear S-bit in previous. */
873	cb->command |= cpu_to_le16(cb_s);
874	dma_wmb();
875	cb->prev->command &= cpu_to_le16(~cb_s);
876
877	while (nic->cb_to_send != nic->cb_to_use) {
878		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
879			nic->cb_to_send->dma_addr))) {
880			/* Ok, here's where things get sticky.  It's
881			 * possible that we can't schedule the command
882			 * because the controller is too busy, so
883			 * let's just queue the command and try again
884			 * when another command is scheduled. */
885			if (err == -ENOSPC) {
886				//request a reset
887				schedule_work(&nic->tx_timeout_task);
888			}
889			break;
890		} else {
891			nic->cuc_cmd = cuc_resume;
892			nic->cb_to_send = nic->cb_to_send->next;
893		}
894	}
895
896err_unlock:
897	spin_unlock_irqrestore(&nic->cb_lock, flags);
898
899	return err;
900}
901
902static int mdio_read(struct net_device *netdev, int addr, int reg)
903{
904	struct nic *nic = netdev_priv(netdev);
905	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
906}
907
908static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
909{
910	struct nic *nic = netdev_priv(netdev);
911
912	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
913}
914
915/* the standard mdio_ctrl() function for usual MII-compliant hardware */
916static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
917{
918	u32 data_out = 0;
919	unsigned int i;
920	unsigned long flags;
921
922
923	/*
924	 * Stratus87247: we shouldn't be writing the MDI control
925	 * register until the Ready bit shows True.  Also, since
926	 * manipulation of the MDI control registers is a multi-step
927	 * procedure it should be done under lock.
928	 */
929	spin_lock_irqsave(&nic->mdio_lock, flags);
930	for (i = 100; i; --i) {
931		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
932			break;
933		udelay(20);
934	}
935	if (unlikely(!i)) {
936		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
937		spin_unlock_irqrestore(&nic->mdio_lock, flags);
938		return 0;		/* No way to indicate timeout error */
939	}
940	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
941
942	for (i = 0; i < 100; i++) {
943		udelay(20);
944		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
945			break;
946	}
947	spin_unlock_irqrestore(&nic->mdio_lock, flags);
948	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
949		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
950		     dir == mdi_read ? "READ" : "WRITE",
951		     addr, reg, data, data_out);
952	return (u16)data_out;
953}
954
955/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
956static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
957				 u32 addr,
958				 u32 dir,
959				 u32 reg,
960				 u16 data)
961{
962	if ((reg == MII_BMCR) && (dir == mdi_write)) {
963		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
964			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
965							MII_ADVERTISE);
966
967			/*
968			 * Workaround Si issue where sometimes the part will not
969			 * autoneg to 100Mbps even when advertised.
970			 */
971			if (advert & ADVERTISE_100FULL)
972				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
973			else if (advert & ADVERTISE_100HALF)
974				data |= BMCR_SPEED100;
975		}
976	}
977	return mdio_ctrl_hw(nic, addr, dir, reg, data);
978}
979
980/* Fully software-emulated mdio_ctrl() function for cards without
981 * MII-compliant PHYs.
982 * For now, this is mainly geared towards 80c24 support; in case of further
983 * requirements for other types (i82503, ...?) either extend this mechanism
984 * or split it, whichever is cleaner.
985 */
986static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
987				      u32 addr,
988				      u32 dir,
989				      u32 reg,
990				      u16 data)
991{
992	/* might need to allocate a netdev_priv'ed register array eventually
993	 * to be able to record state changes, but for now
994	 * some fully hardcoded register handling ought to be ok I guess. */
995
996	if (dir == mdi_read) {
997		switch (reg) {
998		case MII_BMCR:
999			/* Auto-negotiation, right? */
1000			return  BMCR_ANENABLE |
1001				BMCR_FULLDPLX;
1002		case MII_BMSR:
1003			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1004				BMSR_ANEGCAPABLE |
1005				BMSR_10FULL;
1006		case MII_ADVERTISE:
1007			/* 80c24 is a "combo card" PHY, right? */
1008			return	ADVERTISE_10HALF |
1009				ADVERTISE_10FULL;
1010		default:
1011			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1012				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1013				     dir == mdi_read ? "READ" : "WRITE",
1014				     addr, reg, data);
1015			return 0xFFFF;
1016		}
1017	} else {
1018		switch (reg) {
1019		default:
1020			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1021				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1022				     dir == mdi_read ? "READ" : "WRITE",
1023				     addr, reg, data);
1024			return 0xFFFF;
1025		}
1026	}
1027}
1028static inline int e100_phy_supports_mii(struct nic *nic)
1029{
1030	/* for now, just check it by comparing whether we
1031	   are using MII software emulation.
1032	*/
1033	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1034}
1035
1036static void e100_get_defaults(struct nic *nic)
1037{
1038	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1039	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1040
1041	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1042	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1043	if (nic->mac == mac_unknown)
1044		nic->mac = mac_82557_D100_A;
1045
1046	nic->params.rfds = rfds;
1047	nic->params.cbs = cbs;
1048
1049	/* Quadwords to DMA into FIFO before starting frame transmit */
1050	nic->tx_threshold = 0xE0;
1051
1052	/* no interrupt for every tx completion, delay = 256us if not 557 */
1053	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1054		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1055
1056	/* Template for a freshly allocated RFD */
1057	nic->blank_rfd.command = 0;
1058	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1059	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1060
1061	/* MII setup */
1062	nic->mii.phy_id_mask = 0x1F;
1063	nic->mii.reg_num_mask = 0x1F;
1064	nic->mii.dev = nic->netdev;
1065	nic->mii.mdio_read = mdio_read;
1066	nic->mii.mdio_write = mdio_write;
1067}
1068
1069static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1070{
1071	struct config *config = &cb->u.config;
1072	u8 *c = (u8 *)config;
1073	struct net_device *netdev = nic->netdev;
1074
1075	cb->command = cpu_to_le16(cb_config);
1076
1077	memset(config, 0, sizeof(struct config));
1078
1079	config->byte_count = 0x16;		/* bytes in this struct */
1080	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1081	config->direct_rx_dma = 0x1;		/* reserved */
1082	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1083	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1084	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1085	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1086	if (e100_phy_supports_mii(nic))
1087		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1088	config->pad10 = 0x6;
1089	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1090	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1091	config->ifs = 0x6;			/* x16 = inter frame spacing */
1092	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1093	config->pad15_1 = 0x1;
1094	config->pad15_2 = 0x1;
1095	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1096	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1097	config->tx_padding = 0x1;		/* 1=pad short frames */
1098	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1099	config->pad18 = 0x1;
1100	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1101	config->pad20_1 = 0x1F;
1102	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1103	config->pad21_1 = 0x5;
1104
1105	config->adaptive_ifs = nic->adaptive_ifs;
1106	config->loopback = nic->loopback;
1107
1108	if (nic->mii.force_media && nic->mii.full_duplex)
1109		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1110
1111	if (nic->flags & promiscuous || nic->loopback) {
1112		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1113		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1114		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1115	}
1116
1117	if (unlikely(netdev->features & NETIF_F_RXFCS))
1118		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1119
1120	if (nic->flags & multicast_all)
1121		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1122
1123	/* disable WoL when up */
1124	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1125		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1126
1127	if (nic->mac >= mac_82558_D101_A4) {
1128		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1129		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1130		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1131		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1132		if (nic->mac >= mac_82559_D101M) {
1133			config->tno_intr = 0x1;		/* TCO stats enable */
1134			/* Enable TCO in extended config */
1135			if (nic->mac >= mac_82551_10) {
1136				config->byte_count = 0x20; /* extended bytes */
1137				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1138			}
1139		} else {
1140			config->standard_stat_counter = 0x0;
1141		}
1142	}
1143
1144	if (netdev->features & NETIF_F_RXALL) {
1145		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1146		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1147		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1148	}
1149
1150	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1151		     c + 0);
1152	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1153		     c + 8);
1154	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1155		     c + 16);
1156	return 0;
1157}
1158
1159/*************************************************************************
1160*  CPUSaver parameters
1161*
1162*  All CPUSaver parameters are 16-bit literals that are part of a
1163*  "move immediate value" instruction.  By changing the value of
1164*  the literal in the instruction before the code is loaded, the
1165*  driver can change the algorithm.
1166*
1167*  INTDELAY - This loads the dead-man timer with its initial value.
1168*    When this timer expires the interrupt is asserted, and the
1169*    timer is reset each time a new packet is received.  (see
1170*    BUNDLEMAX below to set the limit on number of chained packets)
1171*    The current default is 0x600 or 1536.  Experiments show that
1172*    the value should probably stay within the 0x200 - 0x1000.
1173*
1174*  BUNDLEMAX -
1175*    This sets the maximum number of frames that will be bundled.  In
1176*    some situations, such as the TCP windowing algorithm, it may be
1177*    better to limit the growth of the bundle size than let it go as
1178*    high as it can, because that could cause too much added latency.
1179*    The default is six, because this is the number of packets in the
1180*    default TCP window size.  A value of 1 would make CPUSaver indicate
1181*    an interrupt for every frame received.  If you do not want to put
1182*    a limit on the bundle size, set this value to xFFFF.
1183*
1184*  BUNDLESMALL -
1185*    This contains a bit-mask describing the minimum size frame that
1186*    will be bundled.  The default masks the lower 7 bits, which means
1187*    that any frame less than 128 bytes in length will not be bundled,
1188*    but will instead immediately generate an interrupt.  This does
1189*    not affect the current bundle in any way.  Any frame that is 128
1190*    bytes or large will be bundled normally.  This feature is meant
1191*    to provide immediate indication of ACK frames in a TCP environment.
1192*    Customers were seeing poor performance when a machine with CPUSaver
1193*    enabled was sending but not receiving.  The delay introduced when
1194*    the ACKs were received was enough to reduce total throughput, because
1195*    the sender would sit idle until the ACK was finally seen.
1196*
1197*    The current default is 0xFF80, which masks out the lower 7 bits.
1198*    This means that any frame which is x7F (127) bytes or smaller
1199*    will cause an immediate interrupt.  Because this value must be a
1200*    bit mask, there are only a few valid values that can be used.  To
1201*    turn this feature off, the driver can write the value xFFFF to the
1202*    lower word of this instruction (in the same way that the other
1203*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1204*    cause an interrupt to be generated for every frame, because all
1205*    standard Ethernet frames are <= 2047 bytes in length.
1206*************************************************************************/
1207
1208/* if you wish to disable the ucode functionality, while maintaining the
1209 * workarounds it provides, set the following defines to:
1210 * BUNDLESMALL 0
1211 * BUNDLEMAX 1
1212 * INTDELAY 1
1213 */
1214#define BUNDLESMALL 1
1215#define BUNDLEMAX (u16)6
1216#define INTDELAY (u16)1536 /* 0x600 */
1217
1218/* Initialize firmware */
1219static const struct firmware *e100_request_firmware(struct nic *nic)
1220{
1221	const char *fw_name;
1222	const struct firmware *fw = nic->fw;
1223	u8 timer, bundle, min_size;
1224	int err = 0;
1225	bool required = false;
1226
1227	/* do not load u-code for ICH devices */
1228	if (nic->flags & ich)
1229		return NULL;
1230
1231	/* Search for ucode match against h/w revision
1232	 *
1233	 * Based on comments in the source code for the FreeBSD fxp
1234	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1235	 *
1236	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1237	 *     with Inline Receive)."
1238	 *
1239	 * So we must fail if it cannot be loaded.
1240	 *
1241	 * The other microcode files are only required for the optional
1242	 * CPUSaver feature.  Nice to have, but no reason to fail.
1243	 */
1244	if (nic->mac == mac_82559_D101M) {
1245		fw_name = FIRMWARE_D101M;
1246	} else if (nic->mac == mac_82559_D101S) {
1247		fw_name = FIRMWARE_D101S;
1248	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1249		fw_name = FIRMWARE_D102E;
1250		required = true;
1251	} else { /* No ucode on other devices */
1252		return NULL;
1253	}
1254
1255	/* If the firmware has not previously been loaded, request a pointer
1256	 * to it. If it was previously loaded, we are reinitializing the
1257	 * adapter, possibly in a resume from hibernate, in which case
1258	 * request_firmware() cannot be used.
1259	 */
1260	if (!fw)
1261		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1262
1263	if (err) {
1264		if (required) {
1265			netif_err(nic, probe, nic->netdev,
1266				  "Failed to load firmware \"%s\": %d\n",
1267				  fw_name, err);
1268			return ERR_PTR(err);
1269		} else {
1270			netif_info(nic, probe, nic->netdev,
1271				   "CPUSaver disabled. Needs \"%s\": %d\n",
1272				   fw_name, err);
1273			return NULL;
1274		}
1275	}
1276
1277	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1278	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1279	if (fw->size != UCODE_SIZE * 4 + 3) {
1280		netif_err(nic, probe, nic->netdev,
1281			  "Firmware \"%s\" has wrong size %zu\n",
1282			  fw_name, fw->size);
1283		release_firmware(fw);
1284		return ERR_PTR(-EINVAL);
1285	}
1286
1287	/* Read timer, bundle and min_size from end of firmware blob */
1288	timer = fw->data[UCODE_SIZE * 4];
1289	bundle = fw->data[UCODE_SIZE * 4 + 1];
1290	min_size = fw->data[UCODE_SIZE * 4 + 2];
1291
1292	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1293	    min_size >= UCODE_SIZE) {
1294		netif_err(nic, probe, nic->netdev,
1295			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1296			  fw_name, timer, bundle, min_size);
1297		release_firmware(fw);
1298		return ERR_PTR(-EINVAL);
1299	}
1300
1301	/* OK, firmware is validated and ready to use. Save a pointer
1302	 * to it in the nic */
1303	nic->fw = fw;
1304	return fw;
1305}
1306
1307static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1308			     struct sk_buff *skb)
1309{
1310	const struct firmware *fw = (void *)skb;
1311	u8 timer, bundle, min_size;
1312
1313	/* It's not a real skb; we just abused the fact that e100_exec_cb
1314	   will pass it through to here... */
1315	cb->skb = NULL;
1316
1317	/* firmware is stored as little endian already */
1318	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1319
1320	/* Read timer, bundle and min_size from end of firmware blob */
1321	timer = fw->data[UCODE_SIZE * 4];
1322	bundle = fw->data[UCODE_SIZE * 4 + 1];
1323	min_size = fw->data[UCODE_SIZE * 4 + 2];
1324
1325	/* Insert user-tunable settings in cb->u.ucode */
1326	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1327	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1328	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1329	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1330	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1331	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1332
1333	cb->command = cpu_to_le16(cb_ucode | cb_el);
1334	return 0;
1335}
1336
1337static inline int e100_load_ucode_wait(struct nic *nic)
1338{
1339	const struct firmware *fw;
1340	int err = 0, counter = 50;
1341	struct cb *cb = nic->cb_to_clean;
1342
1343	fw = e100_request_firmware(nic);
1344	/* If it's NULL, then no ucode is required */
1345	if (IS_ERR_OR_NULL(fw))
1346		return PTR_ERR_OR_ZERO(fw);
1347
1348	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1349		netif_err(nic, probe, nic->netdev,
1350			  "ucode cmd failed with error %d\n", err);
1351
1352	/* must restart cuc */
1353	nic->cuc_cmd = cuc_start;
1354
1355	/* wait for completion */
1356	e100_write_flush(nic);
1357	udelay(10);
1358
1359	/* wait for possibly (ouch) 500ms */
1360	while (!(cb->status & cpu_to_le16(cb_complete))) {
1361		msleep(10);
1362		if (!--counter) break;
1363	}
1364
1365	/* ack any interrupts, something could have been set */
1366	iowrite8(~0, &nic->csr->scb.stat_ack);
1367
1368	/* if the command failed, or is not OK, notify and return */
1369	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1370		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1371		err = -EPERM;
1372	}
1373
1374	return err;
1375}
1376
1377static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1378	struct sk_buff *skb)
1379{
1380	cb->command = cpu_to_le16(cb_iaaddr);
1381	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1382	return 0;
1383}
1384
1385static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1386{
1387	cb->command = cpu_to_le16(cb_dump);
1388	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1389		offsetof(struct mem, dump_buf));
1390	return 0;
1391}
1392
1393static int e100_phy_check_without_mii(struct nic *nic)
1394{
1395	u8 phy_type;
1396	int without_mii;
1397
1398	phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1399
1400	switch (phy_type) {
1401	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1402	case I82503: /* Non-MII PHY; UNTESTED! */
1403	case S80C24: /* Non-MII PHY; tested and working */
1404		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1405		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1406		 * doesn't have a programming interface of any sort.  The
1407		 * media is sensed automatically based on how the link partner
1408		 * is configured.  This is, in essence, manual configuration.
1409		 */
1410		netif_info(nic, probe, nic->netdev,
1411			   "found MII-less i82503 or 80c24 or other PHY\n");
1412
1413		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1414		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1415
1416		/* these might be needed for certain MII-less cards...
1417		 * nic->flags |= ich;
1418		 * nic->flags |= ich_10h_workaround; */
1419
1420		without_mii = 1;
1421		break;
1422	default:
1423		without_mii = 0;
1424		break;
1425	}
1426	return without_mii;
1427}
1428
1429#define NCONFIG_AUTO_SWITCH	0x0080
1430#define MII_NSC_CONG		MII_RESV1
1431#define NSC_CONG_ENABLE		0x0100
1432#define NSC_CONG_TXREADY	0x0400
1433static int e100_phy_init(struct nic *nic)
1434{
1435	struct net_device *netdev = nic->netdev;
1436	u32 addr;
1437	u16 bmcr, stat, id_lo, id_hi, cong;
1438
1439	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1440	for (addr = 0; addr < 32; addr++) {
1441		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1442		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1443		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1444		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1445		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1446			break;
1447	}
1448	if (addr == 32) {
1449		/* uhoh, no PHY detected: check whether we seem to be some
1450		 * weird, rare variant which is *known* to not have any MII.
1451		 * But do this AFTER MII checking only, since this does
1452		 * lookup of EEPROM values which may easily be unreliable. */
1453		if (e100_phy_check_without_mii(nic))
1454			return 0; /* simply return and hope for the best */
1455		else {
1456			/* for unknown cases log a fatal error */
1457			netif_err(nic, hw, nic->netdev,
1458				  "Failed to locate any known PHY, aborting\n");
1459			return -EAGAIN;
1460		}
1461	} else
1462		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1463			     "phy_addr = %d\n", nic->mii.phy_id);
1464
1465	/* Get phy ID */
1466	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1467	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1468	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1469	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1470		     "phy ID = 0x%08X\n", nic->phy);
1471
1472	/* Select the phy and isolate the rest */
1473	for (addr = 0; addr < 32; addr++) {
1474		if (addr != nic->mii.phy_id) {
1475			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1476		} else if (nic->phy != phy_82552_v) {
1477			bmcr = mdio_read(netdev, addr, MII_BMCR);
1478			mdio_write(netdev, addr, MII_BMCR,
1479				bmcr & ~BMCR_ISOLATE);
1480		}
1481	}
1482	/*
1483	 * Workaround for 82552:
1484	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1485	 * other phy_id's) using bmcr value from addr discovery loop above.
1486	 */
1487	if (nic->phy == phy_82552_v)
1488		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1489			bmcr & ~BMCR_ISOLATE);
1490
1491	/* Handle National tx phys */
1492#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1493	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1494		/* Disable congestion control */
1495		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1496		cong |= NSC_CONG_TXREADY;
1497		cong &= ~NSC_CONG_ENABLE;
1498		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1499	}
1500
1501	if (nic->phy == phy_82552_v) {
1502		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1503
1504		/* assign special tweaked mdio_ctrl() function */
1505		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1506
1507		/* Workaround Si not advertising flow-control during autoneg */
1508		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1509		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1510
1511		/* Reset for the above changes to take effect */
1512		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1513		bmcr |= BMCR_RESET;
1514		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1515	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1516	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1517	   (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1518		/* enable/disable MDI/MDI-X auto-switching. */
1519		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1520				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1521	}
1522
1523	return 0;
1524}
1525
1526static int e100_hw_init(struct nic *nic)
1527{
1528	int err = 0;
1529
1530	e100_hw_reset(nic);
1531
1532	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1533	if ((err = e100_self_test(nic)))
1534		return err;
1535
1536	if ((err = e100_phy_init(nic)))
1537		return err;
1538	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1539		return err;
1540	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1541		return err;
1542	if ((err = e100_load_ucode_wait(nic)))
1543		return err;
1544	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1545		return err;
1546	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1547		return err;
1548	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1549		nic->dma_addr + offsetof(struct mem, stats))))
1550		return err;
1551	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1552		return err;
1553
1554	e100_disable_irq(nic);
1555
1556	return 0;
1557}
1558
1559static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1560{
1561	struct net_device *netdev = nic->netdev;
1562	struct netdev_hw_addr *ha;
1563	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1564
1565	cb->command = cpu_to_le16(cb_multi);
1566	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1567	i = 0;
1568	netdev_for_each_mc_addr(ha, netdev) {
1569		if (i == count)
1570			break;
1571		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1572			ETH_ALEN);
1573	}
1574	return 0;
1575}
1576
1577static void e100_set_multicast_list(struct net_device *netdev)
1578{
1579	struct nic *nic = netdev_priv(netdev);
1580
1581	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1582		     "mc_count=%d, flags=0x%04X\n",
1583		     netdev_mc_count(netdev), netdev->flags);
1584
1585	if (netdev->flags & IFF_PROMISC)
1586		nic->flags |= promiscuous;
1587	else
1588		nic->flags &= ~promiscuous;
1589
1590	if (netdev->flags & IFF_ALLMULTI ||
1591		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1592		nic->flags |= multicast_all;
1593	else
1594		nic->flags &= ~multicast_all;
1595
1596	e100_exec_cb(nic, NULL, e100_configure);
1597	e100_exec_cb(nic, NULL, e100_multi);
1598}
1599
1600static void e100_update_stats(struct nic *nic)
1601{
1602	struct net_device *dev = nic->netdev;
1603	struct net_device_stats *ns = &dev->stats;
1604	struct stats *s = &nic->mem->stats;
1605	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1606		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1607		&s->complete;
1608
1609	/* Device's stats reporting may take several microseconds to
1610	 * complete, so we're always waiting for results of the
1611	 * previous command. */
1612
1613	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1614		*complete = 0;
1615		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1616		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1617		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1618		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1619		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1620		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1621		ns->collisions += nic->tx_collisions;
1622		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1623			le32_to_cpu(s->tx_lost_crs);
1624		nic->rx_short_frame_errors +=
1625			le32_to_cpu(s->rx_short_frame_errors);
1626		ns->rx_length_errors = nic->rx_short_frame_errors +
1627			nic->rx_over_length_errors;
1628		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1629		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1630		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1631		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1632		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1633		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1634			le32_to_cpu(s->rx_alignment_errors) +
1635			le32_to_cpu(s->rx_short_frame_errors) +
1636			le32_to_cpu(s->rx_cdt_errors);
1637		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1638		nic->tx_single_collisions +=
1639			le32_to_cpu(s->tx_single_collisions);
1640		nic->tx_multiple_collisions +=
1641			le32_to_cpu(s->tx_multiple_collisions);
1642		if (nic->mac >= mac_82558_D101_A4) {
1643			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1644			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1645			nic->rx_fc_unsupported +=
1646				le32_to_cpu(s->fc_rcv_unsupported);
1647			if (nic->mac >= mac_82559_D101M) {
1648				nic->tx_tco_frames +=
1649					le16_to_cpu(s->xmt_tco_frames);
1650				nic->rx_tco_frames +=
1651					le16_to_cpu(s->rcv_tco_frames);
1652			}
1653		}
1654	}
1655
1656
1657	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1658		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1659			     "exec cuc_dump_reset failed\n");
1660}
1661
1662static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1663{
1664	/* Adjust inter-frame-spacing (IFS) between two transmits if
1665	 * we're getting collisions on a half-duplex connection. */
1666
1667	if (duplex == DUPLEX_HALF) {
1668		u32 prev = nic->adaptive_ifs;
1669		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1670
1671		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1672		   (nic->tx_frames > min_frames)) {
1673			if (nic->adaptive_ifs < 60)
1674				nic->adaptive_ifs += 5;
1675		} else if (nic->tx_frames < min_frames) {
1676			if (nic->adaptive_ifs >= 5)
1677				nic->adaptive_ifs -= 5;
1678		}
1679		if (nic->adaptive_ifs != prev)
1680			e100_exec_cb(nic, NULL, e100_configure);
1681	}
1682}
1683
1684static void e100_watchdog(struct timer_list *t)
1685{
1686	struct nic *nic = from_timer(nic, t, watchdog);
1687	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1688	u32 speed;
1689
1690	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1691		     "right now = %ld\n", jiffies);
1692
1693	/* mii library handles link maintenance tasks */
1694
1695	mii_ethtool_gset(&nic->mii, &cmd);
1696	speed = ethtool_cmd_speed(&cmd);
1697
1698	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1699		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1700			    speed == SPEED_100 ? 100 : 10,
1701			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1702	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1703		netdev_info(nic->netdev, "NIC Link is Down\n");
1704	}
1705
1706	mii_check_link(&nic->mii);
1707
1708	/* Software generated interrupt to recover from (rare) Rx
1709	 * allocation failure.
1710	 * Unfortunately have to use a spinlock to not re-enable interrupts
1711	 * accidentally, due to hardware that shares a register between the
1712	 * interrupt mask bit and the SW Interrupt generation bit */
1713	spin_lock_irq(&nic->cmd_lock);
1714	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1715	e100_write_flush(nic);
1716	spin_unlock_irq(&nic->cmd_lock);
1717
1718	e100_update_stats(nic);
1719	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1720
1721	if (nic->mac <= mac_82557_D100_C)
1722		/* Issue a multicast command to workaround a 557 lock up */
1723		e100_set_multicast_list(nic->netdev);
1724
1725	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1726		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1727		nic->flags |= ich_10h_workaround;
1728	else
1729		nic->flags &= ~ich_10h_workaround;
1730
1731	mod_timer(&nic->watchdog,
1732		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1733}
1734
1735static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1736	struct sk_buff *skb)
1737{
1738	dma_addr_t dma_addr;
1739	cb->command = nic->tx_command;
1740
1741	dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1742				  DMA_TO_DEVICE);
1743	/* If we can't map the skb, have the upper layer try later */
1744	if (dma_mapping_error(&nic->pdev->dev, dma_addr))
1745		return -ENOMEM;
1746
1747	/*
1748	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1749	 * testing, ie sending frames with bad CRC.
1750	 */
1751	if (unlikely(skb->no_fcs))
1752		cb->command |= cpu_to_le16(cb_tx_nc);
1753	else
1754		cb->command &= ~cpu_to_le16(cb_tx_nc);
1755
1756	/* interrupt every 16 packets regardless of delay */
1757	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1758		cb->command |= cpu_to_le16(cb_i);
1759	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1760	cb->u.tcb.tcb_byte_count = 0;
1761	cb->u.tcb.threshold = nic->tx_threshold;
1762	cb->u.tcb.tbd_count = 1;
1763	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1764	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1765	skb_tx_timestamp(skb);
1766	return 0;
1767}
1768
1769static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1770				   struct net_device *netdev)
1771{
1772	struct nic *nic = netdev_priv(netdev);
1773	int err;
1774
1775	if (nic->flags & ich_10h_workaround) {
1776		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1777		   Issue a NOP command followed by a 1us delay before
1778		   issuing the Tx command. */
1779		if (e100_exec_cmd(nic, cuc_nop, 0))
1780			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1781				     "exec cuc_nop failed\n");
1782		udelay(1);
1783	}
1784
1785	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1786
1787	switch (err) {
1788	case -ENOSPC:
1789		/* We queued the skb, but now we're out of space. */
1790		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1791			     "No space for CB\n");
1792		netif_stop_queue(netdev);
1793		break;
1794	case -ENOMEM:
1795		/* This is a hard error - log it. */
1796		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1797			     "Out of Tx resources, returning skb\n");
1798		netif_stop_queue(netdev);
1799		return NETDEV_TX_BUSY;
1800	}
1801
1802	return NETDEV_TX_OK;
1803}
1804
1805static int e100_tx_clean(struct nic *nic)
1806{
1807	struct net_device *dev = nic->netdev;
1808	struct cb *cb;
1809	int tx_cleaned = 0;
1810
1811	spin_lock(&nic->cb_lock);
1812
1813	/* Clean CBs marked complete */
1814	for (cb = nic->cb_to_clean;
1815	    cb->status & cpu_to_le16(cb_complete);
1816	    cb = nic->cb_to_clean = cb->next) {
1817		dma_rmb(); /* read skb after status */
1818		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1819			     "cb[%d]->status = 0x%04X\n",
1820			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1821			     cb->status);
1822
1823		if (likely(cb->skb != NULL)) {
1824			dev->stats.tx_packets++;
1825			dev->stats.tx_bytes += cb->skb->len;
1826
1827			dma_unmap_single(&nic->pdev->dev,
1828					 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1829					 le16_to_cpu(cb->u.tcb.tbd.size),
1830					 DMA_TO_DEVICE);
1831			dev_kfree_skb_any(cb->skb);
1832			cb->skb = NULL;
1833			tx_cleaned = 1;
1834		}
1835		cb->status = 0;
1836		nic->cbs_avail++;
1837	}
1838
1839	spin_unlock(&nic->cb_lock);
1840
1841	/* Recover from running out of Tx resources in xmit_frame */
1842	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1843		netif_wake_queue(nic->netdev);
1844
1845	return tx_cleaned;
1846}
1847
1848static void e100_clean_cbs(struct nic *nic)
1849{
1850	if (nic->cbs) {
1851		while (nic->cbs_avail != nic->params.cbs.count) {
1852			struct cb *cb = nic->cb_to_clean;
1853			if (cb->skb) {
1854				dma_unmap_single(&nic->pdev->dev,
1855						 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1856						 le16_to_cpu(cb->u.tcb.tbd.size),
1857						 DMA_TO_DEVICE);
1858				dev_kfree_skb(cb->skb);
1859			}
1860			nic->cb_to_clean = nic->cb_to_clean->next;
1861			nic->cbs_avail++;
1862		}
1863		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1864		nic->cbs = NULL;
1865		nic->cbs_avail = 0;
1866	}
1867	nic->cuc_cmd = cuc_start;
1868	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1869		nic->cbs;
1870}
1871
1872static int e100_alloc_cbs(struct nic *nic)
1873{
1874	struct cb *cb;
1875	unsigned int i, count = nic->params.cbs.count;
1876
1877	nic->cuc_cmd = cuc_start;
1878	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1879	nic->cbs_avail = 0;
1880
1881	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1882				   &nic->cbs_dma_addr);
1883	if (!nic->cbs)
1884		return -ENOMEM;
1885
1886	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1887		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1888		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1889
1890		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1891		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1892			((i+1) % count) * sizeof(struct cb));
1893	}
1894
1895	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1896	nic->cbs_avail = count;
1897
1898	return 0;
1899}
1900
1901static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1902{
1903	if (!nic->rxs) return;
1904	if (RU_SUSPENDED != nic->ru_running) return;
1905
1906	/* handle init time starts */
1907	if (!rx) rx = nic->rxs;
1908
1909	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1910	if (rx->skb) {
1911		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1912		nic->ru_running = RU_RUNNING;
1913	}
1914}
1915
1916#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1917static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1918{
1919	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1920		return -ENOMEM;
1921
1922	/* Init, and map the RFD. */
1923	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1924	rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1925				      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1926
1927	if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1928		dev_kfree_skb_any(rx->skb);
1929		rx->skb = NULL;
1930		rx->dma_addr = 0;
1931		return -ENOMEM;
1932	}
1933
1934	/* Link the RFD to end of RFA by linking previous RFD to
1935	 * this one.  We are safe to touch the previous RFD because
1936	 * it is protected by the before last buffer's el bit being set */
1937	if (rx->prev->skb) {
1938		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1939		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1940		dma_sync_single_for_device(&nic->pdev->dev,
1941					   rx->prev->dma_addr,
1942					   sizeof(struct rfd),
1943					   DMA_BIDIRECTIONAL);
1944	}
1945
1946	return 0;
1947}
1948
1949static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1950	unsigned int *work_done, unsigned int work_to_do)
1951{
1952	struct net_device *dev = nic->netdev;
1953	struct sk_buff *skb = rx->skb;
1954	struct rfd *rfd = (struct rfd *)skb->data;
1955	u16 rfd_status, actual_size;
1956	u16 fcs_pad = 0;
1957
1958	if (unlikely(work_done && *work_done >= work_to_do))
1959		return -EAGAIN;
1960
1961	/* Need to sync before taking a peek at cb_complete bit */
1962	dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1963				sizeof(struct rfd), DMA_BIDIRECTIONAL);
1964	rfd_status = le16_to_cpu(rfd->status);
1965
1966	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1967		     "status=0x%04X\n", rfd_status);
1968	dma_rmb(); /* read size after status bit */
1969
1970	/* If data isn't ready, nothing to indicate */
1971	if (unlikely(!(rfd_status & cb_complete))) {
1972		/* If the next buffer has the el bit, but we think the receiver
1973		 * is still running, check to see if it really stopped while
1974		 * we had interrupts off.
1975		 * This allows for a fast restart without re-enabling
1976		 * interrupts */
1977		if ((le16_to_cpu(rfd->command) & cb_el) &&
1978		    (RU_RUNNING == nic->ru_running))
1979
1980			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1981				nic->ru_running = RU_SUSPENDED;
1982		dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1983					   sizeof(struct rfd),
1984					   DMA_FROM_DEVICE);
1985		return -ENODATA;
1986	}
1987
1988	/* Get actual data size */
1989	if (unlikely(dev->features & NETIF_F_RXFCS))
1990		fcs_pad = 4;
1991	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1992	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1993		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1994
1995	/* Get data */
1996	dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
1997			 DMA_BIDIRECTIONAL);
1998
1999	/* If this buffer has the el bit, but we think the receiver
2000	 * is still running, check to see if it really stopped while
2001	 * we had interrupts off.
2002	 * This allows for a fast restart without re-enabling interrupts.
2003	 * This can happen when the RU sees the size change but also sees
2004	 * the el bit set. */
2005	if ((le16_to_cpu(rfd->command) & cb_el) &&
2006	    (RU_RUNNING == nic->ru_running)) {
2007
2008	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2009		nic->ru_running = RU_SUSPENDED;
2010	}
2011
2012	/* Pull off the RFD and put the actual data (minus eth hdr) */
2013	skb_reserve(skb, sizeof(struct rfd));
2014	skb_put(skb, actual_size);
2015	skb->protocol = eth_type_trans(skb, nic->netdev);
2016
2017	/* If we are receiving all frames, then don't bother
2018	 * checking for errors.
2019	 */
2020	if (unlikely(dev->features & NETIF_F_RXALL)) {
2021		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2022			/* Received oversized frame, but keep it. */
2023			nic->rx_over_length_errors++;
2024		goto process_skb;
2025	}
2026
2027	if (unlikely(!(rfd_status & cb_ok))) {
2028		/* Don't indicate if hardware indicates errors */
2029		dev_kfree_skb_any(skb);
2030	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2031		/* Don't indicate oversized frames */
2032		nic->rx_over_length_errors++;
2033		dev_kfree_skb_any(skb);
2034	} else {
2035process_skb:
2036		dev->stats.rx_packets++;
2037		dev->stats.rx_bytes += (actual_size - fcs_pad);
2038		netif_receive_skb(skb);
2039		if (work_done)
2040			(*work_done)++;
2041	}
2042
2043	rx->skb = NULL;
2044
2045	return 0;
2046}
2047
2048static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2049	unsigned int work_to_do)
2050{
2051	struct rx *rx;
2052	int restart_required = 0, err = 0;
2053	struct rx *old_before_last_rx, *new_before_last_rx;
2054	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2055
2056	/* Indicate newly arrived packets */
2057	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2058		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2059		/* Hit quota or no more to clean */
2060		if (-EAGAIN == err || -ENODATA == err)
2061			break;
2062	}
2063
2064
2065	/* On EAGAIN, hit quota so have more work to do, restart once
2066	 * cleanup is complete.
2067	 * Else, are we already rnr? then pay attention!!! this ensures that
2068	 * the state machine progression never allows a start with a
2069	 * partially cleaned list, avoiding a race between hardware
2070	 * and rx_to_clean when in NAPI mode */
2071	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2072		restart_required = 1;
2073
2074	old_before_last_rx = nic->rx_to_use->prev->prev;
2075	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2076
2077	/* Alloc new skbs to refill list */
2078	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2079		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2080			break; /* Better luck next time (see watchdog) */
2081	}
2082
2083	new_before_last_rx = nic->rx_to_use->prev->prev;
2084	if (new_before_last_rx != old_before_last_rx) {
2085		/* Set the el-bit on the buffer that is before the last buffer.
2086		 * This lets us update the next pointer on the last buffer
2087		 * without worrying about hardware touching it.
2088		 * We set the size to 0 to prevent hardware from touching this
2089		 * buffer.
2090		 * When the hardware hits the before last buffer with el-bit
2091		 * and size of 0, it will RNR interrupt, the RUS will go into
2092		 * the No Resources state.  It will not complete nor write to
2093		 * this buffer. */
2094		new_before_last_rfd =
2095			(struct rfd *)new_before_last_rx->skb->data;
2096		new_before_last_rfd->size = 0;
2097		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2098		dma_sync_single_for_device(&nic->pdev->dev,
2099					   new_before_last_rx->dma_addr,
2100					   sizeof(struct rfd),
2101					   DMA_BIDIRECTIONAL);
2102
2103		/* Now that we have a new stopping point, we can clear the old
2104		 * stopping point.  We must sync twice to get the proper
2105		 * ordering on the hardware side of things. */
2106		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2107		dma_sync_single_for_device(&nic->pdev->dev,
2108					   old_before_last_rx->dma_addr,
2109					   sizeof(struct rfd),
2110					   DMA_BIDIRECTIONAL);
2111		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2112							+ ETH_FCS_LEN);
2113		dma_sync_single_for_device(&nic->pdev->dev,
2114					   old_before_last_rx->dma_addr,
2115					   sizeof(struct rfd),
2116					   DMA_BIDIRECTIONAL);
2117	}
2118
2119	if (restart_required) {
2120		// ack the rnr?
2121		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2122		e100_start_receiver(nic, nic->rx_to_clean);
2123		if (work_done)
2124			(*work_done)++;
2125	}
2126}
2127
2128static void e100_rx_clean_list(struct nic *nic)
2129{
2130	struct rx *rx;
2131	unsigned int i, count = nic->params.rfds.count;
2132
2133	nic->ru_running = RU_UNINITIALIZED;
2134
2135	if (nic->rxs) {
2136		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2137			if (rx->skb) {
2138				dma_unmap_single(&nic->pdev->dev,
2139						 rx->dma_addr, RFD_BUF_LEN,
2140						 DMA_BIDIRECTIONAL);
2141				dev_kfree_skb(rx->skb);
2142			}
2143		}
2144		kfree(nic->rxs);
2145		nic->rxs = NULL;
2146	}
2147
2148	nic->rx_to_use = nic->rx_to_clean = NULL;
2149}
2150
2151static int e100_rx_alloc_list(struct nic *nic)
2152{
2153	struct rx *rx;
2154	unsigned int i, count = nic->params.rfds.count;
2155	struct rfd *before_last;
2156
2157	nic->rx_to_use = nic->rx_to_clean = NULL;
2158	nic->ru_running = RU_UNINITIALIZED;
2159
2160	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2161		return -ENOMEM;
2162
2163	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2164		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2165		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2166		if (e100_rx_alloc_skb(nic, rx)) {
2167			e100_rx_clean_list(nic);
2168			return -ENOMEM;
2169		}
2170	}
2171	/* Set the el-bit on the buffer that is before the last buffer.
2172	 * This lets us update the next pointer on the last buffer without
2173	 * worrying about hardware touching it.
2174	 * We set the size to 0 to prevent hardware from touching this buffer.
2175	 * When the hardware hits the before last buffer with el-bit and size
2176	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2177	 * state.  It will not complete nor write to this buffer. */
2178	rx = nic->rxs->prev->prev;
2179	before_last = (struct rfd *)rx->skb->data;
2180	before_last->command |= cpu_to_le16(cb_el);
2181	before_last->size = 0;
2182	dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2183				   sizeof(struct rfd), DMA_BIDIRECTIONAL);
2184
2185	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2186	nic->ru_running = RU_SUSPENDED;
2187
2188	return 0;
2189}
2190
2191static irqreturn_t e100_intr(int irq, void *dev_id)
2192{
2193	struct net_device *netdev = dev_id;
2194	struct nic *nic = netdev_priv(netdev);
2195	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2196
2197	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2198		     "stat_ack = 0x%02X\n", stat_ack);
2199
2200	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2201	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2202		return IRQ_NONE;
2203
2204	/* Ack interrupt(s) */
2205	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2206
2207	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2208	if (stat_ack & stat_ack_rnr)
2209		nic->ru_running = RU_SUSPENDED;
2210
2211	if (likely(napi_schedule_prep(&nic->napi))) {
2212		e100_disable_irq(nic);
2213		__napi_schedule(&nic->napi);
2214	}
2215
2216	return IRQ_HANDLED;
2217}
2218
2219static int e100_poll(struct napi_struct *napi, int budget)
2220{
2221	struct nic *nic = container_of(napi, struct nic, napi);
2222	unsigned int work_done = 0;
2223
2224	e100_rx_clean(nic, &work_done, budget);
2225	e100_tx_clean(nic);
2226
2227	/* If budget fully consumed, continue polling */
2228	if (work_done == budget)
2229		return budget;
2230
2231	/* only re-enable interrupt if stack agrees polling is really done */
2232	if (likely(napi_complete_done(napi, work_done)))
2233		e100_enable_irq(nic);
2234
2235	return work_done;
2236}
2237
2238#ifdef CONFIG_NET_POLL_CONTROLLER
2239static void e100_netpoll(struct net_device *netdev)
2240{
2241	struct nic *nic = netdev_priv(netdev);
2242
2243	e100_disable_irq(nic);
2244	e100_intr(nic->pdev->irq, netdev);
2245	e100_tx_clean(nic);
2246	e100_enable_irq(nic);
2247}
2248#endif
2249
2250static int e100_set_mac_address(struct net_device *netdev, void *p)
2251{
2252	struct nic *nic = netdev_priv(netdev);
2253	struct sockaddr *addr = p;
2254
2255	if (!is_valid_ether_addr(addr->sa_data))
2256		return -EADDRNOTAVAIL;
2257
2258	eth_hw_addr_set(netdev, addr->sa_data);
2259	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2260
2261	return 0;
2262}
2263
2264static int e100_asf(struct nic *nic)
2265{
2266	/* ASF can be enabled from eeprom */
2267	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2268	   (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2269	   !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2270	   ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2271}
2272
2273static int e100_up(struct nic *nic)
2274{
2275	int err;
2276
2277	if ((err = e100_rx_alloc_list(nic)))
2278		return err;
2279	if ((err = e100_alloc_cbs(nic)))
2280		goto err_rx_clean_list;
2281	if ((err = e100_hw_init(nic)))
2282		goto err_clean_cbs;
2283	e100_set_multicast_list(nic->netdev);
2284	e100_start_receiver(nic, NULL);
2285	mod_timer(&nic->watchdog, jiffies);
2286	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2287		nic->netdev->name, nic->netdev)))
2288		goto err_no_irq;
2289	netif_wake_queue(nic->netdev);
2290	napi_enable(&nic->napi);
2291	/* enable ints _after_ enabling poll, preventing a race between
2292	 * disable ints+schedule */
2293	e100_enable_irq(nic);
2294	return 0;
2295
2296err_no_irq:
2297	del_timer_sync(&nic->watchdog);
2298err_clean_cbs:
2299	e100_clean_cbs(nic);
2300err_rx_clean_list:
2301	e100_rx_clean_list(nic);
2302	return err;
2303}
2304
2305static void e100_down(struct nic *nic)
2306{
2307	/* wait here for poll to complete */
2308	napi_disable(&nic->napi);
2309	netif_stop_queue(nic->netdev);
2310	e100_hw_reset(nic);
2311	free_irq(nic->pdev->irq, nic->netdev);
2312	del_timer_sync(&nic->watchdog);
2313	netif_carrier_off(nic->netdev);
2314	e100_clean_cbs(nic);
2315	e100_rx_clean_list(nic);
2316}
2317
2318static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2319{
2320	struct nic *nic = netdev_priv(netdev);
2321
2322	/* Reset outside of interrupt context, to avoid request_irq
2323	 * in interrupt context */
2324	schedule_work(&nic->tx_timeout_task);
2325}
2326
2327static void e100_tx_timeout_task(struct work_struct *work)
2328{
2329	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2330	struct net_device *netdev = nic->netdev;
2331
2332	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2333		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2334
2335	rtnl_lock();
2336	if (netif_running(netdev)) {
2337		e100_down(netdev_priv(netdev));
2338		e100_up(netdev_priv(netdev));
2339	}
2340	rtnl_unlock();
2341}
2342
2343static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2344{
2345	int err;
2346	struct sk_buff *skb;
2347
2348	/* Use driver resources to perform internal MAC or PHY
2349	 * loopback test.  A single packet is prepared and transmitted
2350	 * in loopback mode, and the test passes if the received
2351	 * packet compares byte-for-byte to the transmitted packet. */
2352
2353	if ((err = e100_rx_alloc_list(nic)))
2354		return err;
2355	if ((err = e100_alloc_cbs(nic)))
2356		goto err_clean_rx;
2357
2358	/* ICH PHY loopback is broken so do MAC loopback instead */
2359	if (nic->flags & ich && loopback_mode == lb_phy)
2360		loopback_mode = lb_mac;
2361
2362	nic->loopback = loopback_mode;
2363	if ((err = e100_hw_init(nic)))
2364		goto err_loopback_none;
2365
2366	if (loopback_mode == lb_phy)
2367		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2368			BMCR_LOOPBACK);
2369
2370	e100_start_receiver(nic, NULL);
2371
2372	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2373		err = -ENOMEM;
2374		goto err_loopback_none;
2375	}
2376	skb_put(skb, ETH_DATA_LEN);
2377	memset(skb->data, 0xFF, ETH_DATA_LEN);
2378	e100_xmit_frame(skb, nic->netdev);
2379
2380	msleep(10);
2381
2382	dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2383				RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2384
2385	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2386	   skb->data, ETH_DATA_LEN))
2387		err = -EAGAIN;
2388
2389err_loopback_none:
2390	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2391	nic->loopback = lb_none;
2392	e100_clean_cbs(nic);
2393	e100_hw_reset(nic);
2394err_clean_rx:
2395	e100_rx_clean_list(nic);
2396	return err;
2397}
2398
2399#define MII_LED_CONTROL	0x1B
2400#define E100_82552_LED_OVERRIDE 0x19
2401#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2402#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2403
2404static int e100_get_link_ksettings(struct net_device *netdev,
2405				   struct ethtool_link_ksettings *cmd)
2406{
2407	struct nic *nic = netdev_priv(netdev);
2408
2409	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2410
2411	return 0;
2412}
2413
2414static int e100_set_link_ksettings(struct net_device *netdev,
2415				   const struct ethtool_link_ksettings *cmd)
2416{
2417	struct nic *nic = netdev_priv(netdev);
2418	int err;
2419
2420	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2421	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2422	e100_exec_cb(nic, NULL, e100_configure);
2423
2424	return err;
2425}
2426
2427static void e100_get_drvinfo(struct net_device *netdev,
2428	struct ethtool_drvinfo *info)
2429{
2430	struct nic *nic = netdev_priv(netdev);
2431	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2432	strscpy(info->bus_info, pci_name(nic->pdev),
2433		sizeof(info->bus_info));
2434}
2435
2436#define E100_PHY_REGS 0x1D
2437static int e100_get_regs_len(struct net_device *netdev)
2438{
2439	struct nic *nic = netdev_priv(netdev);
2440
2441	/* We know the number of registers, and the size of the dump buffer.
2442	 * Calculate the total size in bytes.
2443	 */
2444	return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2445}
2446
2447static void e100_get_regs(struct net_device *netdev,
2448	struct ethtool_regs *regs, void *p)
2449{
2450	struct nic *nic = netdev_priv(netdev);
2451	u32 *buff = p;
2452	int i;
2453
2454	regs->version = (1 << 24) | nic->pdev->revision;
2455	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2456		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2457		ioread16(&nic->csr->scb.status);
2458	for (i = 0; i < E100_PHY_REGS; i++)
2459		/* Note that we read the registers in reverse order. This
2460		 * ordering is the ABI apparently used by ethtool and other
2461		 * applications.
2462		 */
2463		buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2464					E100_PHY_REGS - 1 - i);
2465	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2466	e100_exec_cb(nic, NULL, e100_dump);
2467	msleep(10);
2468	memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2469	       sizeof(nic->mem->dump_buf));
2470}
2471
2472static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2473{
2474	struct nic *nic = netdev_priv(netdev);
2475	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2476	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2477}
2478
2479static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2480{
2481	struct nic *nic = netdev_priv(netdev);
2482
2483	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2484	    !device_can_wakeup(&nic->pdev->dev))
2485		return -EOPNOTSUPP;
2486
2487	if (wol->wolopts)
2488		nic->flags |= wol_magic;
2489	else
2490		nic->flags &= ~wol_magic;
2491
2492	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2493
2494	e100_exec_cb(nic, NULL, e100_configure);
2495
2496	return 0;
2497}
2498
2499static u32 e100_get_msglevel(struct net_device *netdev)
2500{
2501	struct nic *nic = netdev_priv(netdev);
2502	return nic->msg_enable;
2503}
2504
2505static void e100_set_msglevel(struct net_device *netdev, u32 value)
2506{
2507	struct nic *nic = netdev_priv(netdev);
2508	nic->msg_enable = value;
2509}
2510
2511static int e100_nway_reset(struct net_device *netdev)
2512{
2513	struct nic *nic = netdev_priv(netdev);
2514	return mii_nway_restart(&nic->mii);
2515}
2516
2517static u32 e100_get_link(struct net_device *netdev)
2518{
2519	struct nic *nic = netdev_priv(netdev);
2520	return mii_link_ok(&nic->mii);
2521}
2522
2523static int e100_get_eeprom_len(struct net_device *netdev)
2524{
2525	struct nic *nic = netdev_priv(netdev);
2526	return nic->eeprom_wc << 1;
2527}
2528
2529#define E100_EEPROM_MAGIC	0x1234
2530static int e100_get_eeprom(struct net_device *netdev,
2531	struct ethtool_eeprom *eeprom, u8 *bytes)
2532{
2533	struct nic *nic = netdev_priv(netdev);
2534
2535	eeprom->magic = E100_EEPROM_MAGIC;
2536	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2537
2538	return 0;
2539}
2540
2541static int e100_set_eeprom(struct net_device *netdev,
2542	struct ethtool_eeprom *eeprom, u8 *bytes)
2543{
2544	struct nic *nic = netdev_priv(netdev);
2545
2546	if (eeprom->magic != E100_EEPROM_MAGIC)
2547		return -EINVAL;
2548
2549	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2550
2551	return e100_eeprom_save(nic, eeprom->offset >> 1,
2552		(eeprom->len >> 1) + 1);
2553}
2554
2555static void e100_get_ringparam(struct net_device *netdev,
2556			       struct ethtool_ringparam *ring,
2557			       struct kernel_ethtool_ringparam *kernel_ring,
2558			       struct netlink_ext_ack *extack)
2559{
2560	struct nic *nic = netdev_priv(netdev);
2561	struct param_range *rfds = &nic->params.rfds;
2562	struct param_range *cbs = &nic->params.cbs;
2563
2564	ring->rx_max_pending = rfds->max;
2565	ring->tx_max_pending = cbs->max;
2566	ring->rx_pending = rfds->count;
2567	ring->tx_pending = cbs->count;
2568}
2569
2570static int e100_set_ringparam(struct net_device *netdev,
2571			      struct ethtool_ringparam *ring,
2572			      struct kernel_ethtool_ringparam *kernel_ring,
2573			      struct netlink_ext_ack *extack)
2574{
2575	struct nic *nic = netdev_priv(netdev);
2576	struct param_range *rfds = &nic->params.rfds;
2577	struct param_range *cbs = &nic->params.cbs;
2578
2579	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2580		return -EINVAL;
2581
2582	if (netif_running(netdev))
2583		e100_down(nic);
2584	rfds->count = max(ring->rx_pending, rfds->min);
2585	rfds->count = min(rfds->count, rfds->max);
2586	cbs->count = max(ring->tx_pending, cbs->min);
2587	cbs->count = min(cbs->count, cbs->max);
2588	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2589		   rfds->count, cbs->count);
2590	if (netif_running(netdev))
2591		e100_up(nic);
2592
2593	return 0;
2594}
2595
2596static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2597	"Link test     (on/offline)",
2598	"Eeprom test   (on/offline)",
2599	"Self test        (offline)",
2600	"Mac loopback     (offline)",
2601	"Phy loopback     (offline)",
2602};
2603#define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2604
2605static void e100_diag_test(struct net_device *netdev,
2606	struct ethtool_test *test, u64 *data)
2607{
2608	struct ethtool_cmd cmd;
2609	struct nic *nic = netdev_priv(netdev);
2610	int i;
2611
2612	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2613	data[0] = !mii_link_ok(&nic->mii);
2614	data[1] = e100_eeprom_load(nic);
2615	if (test->flags & ETH_TEST_FL_OFFLINE) {
2616
2617		/* save speed, duplex & autoneg settings */
2618		mii_ethtool_gset(&nic->mii, &cmd);
2619
2620		if (netif_running(netdev))
2621			e100_down(nic);
2622		data[2] = e100_self_test(nic);
2623		data[3] = e100_loopback_test(nic, lb_mac);
2624		data[4] = e100_loopback_test(nic, lb_phy);
2625
2626		/* restore speed, duplex & autoneg settings */
2627		mii_ethtool_sset(&nic->mii, &cmd);
2628
2629		if (netif_running(netdev))
2630			e100_up(nic);
2631	}
2632	for (i = 0; i < E100_TEST_LEN; i++)
2633		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2634
2635	msleep_interruptible(4 * 1000);
2636}
2637
2638static int e100_set_phys_id(struct net_device *netdev,
2639			    enum ethtool_phys_id_state state)
2640{
2641	struct nic *nic = netdev_priv(netdev);
2642	enum led_state {
2643		led_on     = 0x01,
2644		led_off    = 0x04,
2645		led_on_559 = 0x05,
2646		led_on_557 = 0x07,
2647	};
2648	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2649		MII_LED_CONTROL;
2650	u16 leds = 0;
2651
2652	switch (state) {
2653	case ETHTOOL_ID_ACTIVE:
2654		return 2;
2655
2656	case ETHTOOL_ID_ON:
2657		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2658		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2659		break;
2660
2661	case ETHTOOL_ID_OFF:
2662		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2663		break;
2664
2665	case ETHTOOL_ID_INACTIVE:
2666		break;
2667	}
2668
2669	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2670	return 0;
2671}
2672
2673static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2674	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2675	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2676	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2677	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2678	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2679	"tx_heartbeat_errors", "tx_window_errors",
2680	/* device-specific stats */
2681	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2682	"tx_flow_control_pause", "rx_flow_control_pause",
2683	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2684	"rx_short_frame_errors", "rx_over_length_errors",
2685};
2686#define E100_NET_STATS_LEN	21
2687#define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2688
2689static int e100_get_sset_count(struct net_device *netdev, int sset)
2690{
2691	switch (sset) {
2692	case ETH_SS_TEST:
2693		return E100_TEST_LEN;
2694	case ETH_SS_STATS:
2695		return E100_STATS_LEN;
2696	default:
2697		return -EOPNOTSUPP;
2698	}
2699}
2700
2701static void e100_get_ethtool_stats(struct net_device *netdev,
2702	struct ethtool_stats *stats, u64 *data)
2703{
2704	struct nic *nic = netdev_priv(netdev);
2705	int i;
2706
2707	for (i = 0; i < E100_NET_STATS_LEN; i++)
2708		data[i] = ((unsigned long *)&netdev->stats)[i];
2709
2710	data[i++] = nic->tx_deferred;
2711	data[i++] = nic->tx_single_collisions;
2712	data[i++] = nic->tx_multiple_collisions;
2713	data[i++] = nic->tx_fc_pause;
2714	data[i++] = nic->rx_fc_pause;
2715	data[i++] = nic->rx_fc_unsupported;
2716	data[i++] = nic->tx_tco_frames;
2717	data[i++] = nic->rx_tco_frames;
2718	data[i++] = nic->rx_short_frame_errors;
2719	data[i++] = nic->rx_over_length_errors;
2720}
2721
2722static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2723{
2724	switch (stringset) {
2725	case ETH_SS_TEST:
2726		memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2727		break;
2728	case ETH_SS_STATS:
2729		memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2730		break;
2731	}
2732}
2733
2734static const struct ethtool_ops e100_ethtool_ops = {
2735	.get_drvinfo		= e100_get_drvinfo,
2736	.get_regs_len		= e100_get_regs_len,
2737	.get_regs		= e100_get_regs,
2738	.get_wol		= e100_get_wol,
2739	.set_wol		= e100_set_wol,
2740	.get_msglevel		= e100_get_msglevel,
2741	.set_msglevel		= e100_set_msglevel,
2742	.nway_reset		= e100_nway_reset,
2743	.get_link		= e100_get_link,
2744	.get_eeprom_len		= e100_get_eeprom_len,
2745	.get_eeprom		= e100_get_eeprom,
2746	.set_eeprom		= e100_set_eeprom,
2747	.get_ringparam		= e100_get_ringparam,
2748	.set_ringparam		= e100_set_ringparam,
2749	.self_test		= e100_diag_test,
2750	.get_strings		= e100_get_strings,
2751	.set_phys_id		= e100_set_phys_id,
2752	.get_ethtool_stats	= e100_get_ethtool_stats,
2753	.get_sset_count		= e100_get_sset_count,
2754	.get_ts_info		= ethtool_op_get_ts_info,
2755	.get_link_ksettings	= e100_get_link_ksettings,
2756	.set_link_ksettings	= e100_set_link_ksettings,
2757};
2758
2759static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2760{
2761	struct nic *nic = netdev_priv(netdev);
2762
2763	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2764}
2765
2766static int e100_alloc(struct nic *nic)
2767{
2768	nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2769				      &nic->dma_addr, GFP_KERNEL);
2770	return nic->mem ? 0 : -ENOMEM;
2771}
2772
2773static void e100_free(struct nic *nic)
2774{
2775	if (nic->mem) {
2776		dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2777				  nic->mem, nic->dma_addr);
2778		nic->mem = NULL;
2779	}
2780}
2781
2782static int e100_open(struct net_device *netdev)
2783{
2784	struct nic *nic = netdev_priv(netdev);
2785	int err = 0;
2786
2787	netif_carrier_off(netdev);
2788	if ((err = e100_up(nic)))
2789		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2790	return err;
2791}
2792
2793static int e100_close(struct net_device *netdev)
2794{
2795	e100_down(netdev_priv(netdev));
2796	return 0;
2797}
2798
2799static int e100_set_features(struct net_device *netdev,
2800			     netdev_features_t features)
2801{
2802	struct nic *nic = netdev_priv(netdev);
2803	netdev_features_t changed = features ^ netdev->features;
2804
2805	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2806		return 0;
2807
2808	netdev->features = features;
2809	e100_exec_cb(nic, NULL, e100_configure);
2810	return 1;
2811}
2812
2813static const struct net_device_ops e100_netdev_ops = {
2814	.ndo_open		= e100_open,
2815	.ndo_stop		= e100_close,
2816	.ndo_start_xmit		= e100_xmit_frame,
2817	.ndo_validate_addr	= eth_validate_addr,
2818	.ndo_set_rx_mode	= e100_set_multicast_list,
2819	.ndo_set_mac_address	= e100_set_mac_address,
2820	.ndo_eth_ioctl		= e100_do_ioctl,
2821	.ndo_tx_timeout		= e100_tx_timeout,
2822#ifdef CONFIG_NET_POLL_CONTROLLER
2823	.ndo_poll_controller	= e100_netpoll,
2824#endif
2825	.ndo_set_features	= e100_set_features,
2826};
2827
2828static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2829{
2830	struct net_device *netdev;
2831	struct nic *nic;
2832	int err;
2833
2834	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2835		return -ENOMEM;
2836
2837	netdev->hw_features |= NETIF_F_RXFCS;
2838	netdev->priv_flags |= IFF_SUPP_NOFCS;
2839	netdev->hw_features |= NETIF_F_RXALL;
2840
2841	netdev->netdev_ops = &e100_netdev_ops;
2842	netdev->ethtool_ops = &e100_ethtool_ops;
2843	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2844	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2845
2846	nic = netdev_priv(netdev);
2847	netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2848	nic->netdev = netdev;
2849	nic->pdev = pdev;
2850	nic->msg_enable = (1 << debug) - 1;
2851	nic->mdio_ctrl = mdio_ctrl_hw;
2852	pci_set_drvdata(pdev, netdev);
2853
2854	if ((err = pci_enable_device(pdev))) {
2855		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2856		goto err_out_free_dev;
2857	}
2858
2859	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2860		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2861		err = -ENODEV;
2862		goto err_out_disable_pdev;
2863	}
2864
2865	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2866		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2867		goto err_out_disable_pdev;
2868	}
2869
2870	if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2871		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2872		goto err_out_free_res;
2873	}
2874
2875	SET_NETDEV_DEV(netdev, &pdev->dev);
2876
2877	if (use_io)
2878		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2879
2880	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2881	if (!nic->csr) {
2882		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2883		err = -ENOMEM;
2884		goto err_out_free_res;
2885	}
2886
2887	if (ent->driver_data)
2888		nic->flags |= ich;
2889	else
2890		nic->flags &= ~ich;
2891
2892	e100_get_defaults(nic);
2893
2894	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2895	if (nic->mac < mac_82558_D101_A4)
2896		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2897
2898	/* locks must be initialized before calling hw_reset */
2899	spin_lock_init(&nic->cb_lock);
2900	spin_lock_init(&nic->cmd_lock);
2901	spin_lock_init(&nic->mdio_lock);
2902
2903	/* Reset the device before pci_set_master() in case device is in some
2904	 * funky state and has an interrupt pending - hint: we don't have the
2905	 * interrupt handler registered yet. */
2906	e100_hw_reset(nic);
2907
2908	pci_set_master(pdev);
2909
2910	timer_setup(&nic->watchdog, e100_watchdog, 0);
2911
2912	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2913
2914	if ((err = e100_alloc(nic))) {
2915		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2916		goto err_out_iounmap;
2917	}
2918
2919	if ((err = e100_eeprom_load(nic)))
2920		goto err_out_free;
2921
2922	e100_phy_init(nic);
2923
2924	eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
2925	if (!is_valid_ether_addr(netdev->dev_addr)) {
2926		if (!eeprom_bad_csum_allow) {
2927			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2928			err = -EAGAIN;
2929			goto err_out_free;
2930		} else {
2931			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2932		}
2933	}
2934
2935	/* Wol magic packet can be enabled from eeprom */
2936	if ((nic->mac >= mac_82558_D101_A4) &&
2937	   (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2938		nic->flags |= wol_magic;
2939		device_set_wakeup_enable(&pdev->dev, true);
2940	}
2941
2942	/* ack any pending wake events, disable PME */
2943	pci_pme_active(pdev, false);
2944
2945	strcpy(netdev->name, "eth%d");
2946	if ((err = register_netdev(netdev))) {
2947		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2948		goto err_out_free;
2949	}
2950	nic->cbs_pool = dma_pool_create(netdev->name,
2951			   &nic->pdev->dev,
2952			   nic->params.cbs.max * sizeof(struct cb),
2953			   sizeof(u32),
2954			   0);
2955	if (!nic->cbs_pool) {
2956		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2957		err = -ENOMEM;
2958		goto err_out_pool;
2959	}
2960	netif_info(nic, probe, nic->netdev,
2961		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2962		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2963		   pdev->irq, netdev->dev_addr);
2964
2965	return 0;
2966
2967err_out_pool:
2968	unregister_netdev(netdev);
2969err_out_free:
2970	e100_free(nic);
2971err_out_iounmap:
2972	pci_iounmap(pdev, nic->csr);
2973err_out_free_res:
2974	pci_release_regions(pdev);
2975err_out_disable_pdev:
2976	pci_disable_device(pdev);
2977err_out_free_dev:
2978	free_netdev(netdev);
2979	return err;
2980}
2981
2982static void e100_remove(struct pci_dev *pdev)
2983{
2984	struct net_device *netdev = pci_get_drvdata(pdev);
2985
2986	if (netdev) {
2987		struct nic *nic = netdev_priv(netdev);
2988		unregister_netdev(netdev);
2989		e100_free(nic);
2990		pci_iounmap(pdev, nic->csr);
2991		dma_pool_destroy(nic->cbs_pool);
2992		free_netdev(netdev);
2993		pci_release_regions(pdev);
2994		pci_disable_device(pdev);
2995	}
2996}
2997
2998#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2999#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3000#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3001static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3002{
3003	struct net_device *netdev = pci_get_drvdata(pdev);
3004	struct nic *nic = netdev_priv(netdev);
3005
3006	netif_device_detach(netdev);
3007
3008	if (netif_running(netdev))
3009		e100_down(nic);
3010
3011	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3012		/* enable reverse auto-negotiation */
3013		if (nic->phy == phy_82552_v) {
3014			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3015			                           E100_82552_SMARTSPEED);
3016
3017			mdio_write(netdev, nic->mii.phy_id,
3018			           E100_82552_SMARTSPEED, smartspeed |
3019			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3020		}
3021		*enable_wake = true;
3022	} else {
3023		*enable_wake = false;
3024	}
3025
3026	pci_disable_device(pdev);
3027}
3028
3029static int __e100_power_off(struct pci_dev *pdev, bool wake)
3030{
3031	if (wake)
3032		return pci_prepare_to_sleep(pdev);
3033
3034	pci_wake_from_d3(pdev, false);
3035	pci_set_power_state(pdev, PCI_D3hot);
3036
3037	return 0;
3038}
3039
3040static int __maybe_unused e100_suspend(struct device *dev_d)
3041{
3042	bool wake;
3043
3044	__e100_shutdown(to_pci_dev(dev_d), &wake);
3045
3046	return 0;
3047}
3048
3049static int __maybe_unused e100_resume(struct device *dev_d)
3050{
3051	struct net_device *netdev = dev_get_drvdata(dev_d);
3052	struct nic *nic = netdev_priv(netdev);
3053	int err;
3054
3055	err = pci_enable_device(to_pci_dev(dev_d));
3056	if (err) {
3057		netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3058		return err;
3059	}
3060	pci_set_master(to_pci_dev(dev_d));
3061
3062	/* disable reverse auto-negotiation */
3063	if (nic->phy == phy_82552_v) {
3064		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3065		                           E100_82552_SMARTSPEED);
3066
3067		mdio_write(netdev, nic->mii.phy_id,
3068		           E100_82552_SMARTSPEED,
3069		           smartspeed & ~(E100_82552_REV_ANEG));
3070	}
3071
3072	if (netif_running(netdev))
3073		e100_up(nic);
3074
3075	netif_device_attach(netdev);
3076
3077	return 0;
3078}
3079
3080static void e100_shutdown(struct pci_dev *pdev)
3081{
3082	bool wake;
3083	__e100_shutdown(pdev, &wake);
3084	if (system_state == SYSTEM_POWER_OFF)
3085		__e100_power_off(pdev, wake);
3086}
3087
3088/* ------------------ PCI Error Recovery infrastructure  -------------- */
3089/**
3090 * e100_io_error_detected - called when PCI error is detected.
3091 * @pdev: Pointer to PCI device
3092 * @state: The current pci connection state
3093 */
3094static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3095{
3096	struct net_device *netdev = pci_get_drvdata(pdev);
3097	struct nic *nic = netdev_priv(netdev);
3098
3099	netif_device_detach(netdev);
3100
3101	if (state == pci_channel_io_perm_failure)
3102		return PCI_ERS_RESULT_DISCONNECT;
3103
3104	if (netif_running(netdev))
3105		e100_down(nic);
3106	pci_disable_device(pdev);
3107
3108	/* Request a slot reset. */
3109	return PCI_ERS_RESULT_NEED_RESET;
3110}
3111
3112/**
3113 * e100_io_slot_reset - called after the pci bus has been reset.
3114 * @pdev: Pointer to PCI device
3115 *
3116 * Restart the card from scratch.
3117 */
3118static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3119{
3120	struct net_device *netdev = pci_get_drvdata(pdev);
3121	struct nic *nic = netdev_priv(netdev);
3122
3123	if (pci_enable_device(pdev)) {
3124		pr_err("Cannot re-enable PCI device after reset\n");
3125		return PCI_ERS_RESULT_DISCONNECT;
3126	}
3127	pci_set_master(pdev);
3128
3129	/* Only one device per card can do a reset */
3130	if (0 != PCI_FUNC(pdev->devfn))
3131		return PCI_ERS_RESULT_RECOVERED;
3132	e100_hw_reset(nic);
3133	e100_phy_init(nic);
3134
3135	return PCI_ERS_RESULT_RECOVERED;
3136}
3137
3138/**
3139 * e100_io_resume - resume normal operations
3140 * @pdev: Pointer to PCI device
3141 *
3142 * Resume normal operations after an error recovery
3143 * sequence has been completed.
3144 */
3145static void e100_io_resume(struct pci_dev *pdev)
3146{
3147	struct net_device *netdev = pci_get_drvdata(pdev);
3148	struct nic *nic = netdev_priv(netdev);
3149
3150	/* ack any pending wake events, disable PME */
3151	pci_enable_wake(pdev, PCI_D0, 0);
3152
3153	netif_device_attach(netdev);
3154	if (netif_running(netdev)) {
3155		e100_open(netdev);
3156		mod_timer(&nic->watchdog, jiffies);
3157	}
3158}
3159
3160static const struct pci_error_handlers e100_err_handler = {
3161	.error_detected = e100_io_error_detected,
3162	.slot_reset = e100_io_slot_reset,
3163	.resume = e100_io_resume,
3164};
3165
3166static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3167
3168static struct pci_driver e100_driver = {
3169	.name =         DRV_NAME,
3170	.id_table =     e100_id_table,
3171	.probe =        e100_probe,
3172	.remove =       e100_remove,
3173
3174	/* Power Management hooks */
3175	.driver.pm =	&e100_pm_ops,
3176
3177	.shutdown =     e100_shutdown,
3178	.err_handler = &e100_err_handler,
3179};
3180
3181static int __init e100_init_module(void)
3182{
3183	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3184		pr_info("%s\n", DRV_DESCRIPTION);
3185		pr_info("%s\n", DRV_COPYRIGHT);
3186	}
3187	return pci_register_driver(&e100_driver);
3188}
3189
3190static void __exit e100_cleanup_module(void)
3191{
3192	pci_unregister_driver(&e100_driver);
3193}
3194
3195module_init(e100_init_module);
3196module_exit(e100_cleanup_module);
3197