1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
4 * Provides Bus interface for MIIM regs
5 *
6 * Author: Andy Fleming <afleming@freescale.com>
7 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
8 *
9 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
10 *
11 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
12 */
13
14#include <linux/kernel.h>
15#include <linux/platform_device.h>
16#include <linux/string.h>
17#include <linux/errno.h>
18#include <linux/slab.h>
19#include <linux/delay.h>
20#include <linux/module.h>
21#include <linux/mii.h>
22#include <linux/of.h>
23#include <linux/of_address.h>
24#include <linux/of_mdio.h>
25#include <linux/property.h>
26
27#include <asm/io.h>
28#if IS_ENABLED(CONFIG_UCC_GETH)
29#include <soc/fsl/qe/ucc.h>
30#endif
31
32#include "gianfar.h"
33
34#define MIIMIND_BUSY		0x00000001
35#define MIIMIND_NOTVALID	0x00000004
36#define MIIMCFG_INIT_VALUE	0x00000007
37#define MIIMCFG_RESET		0x80000000
38
39#define MII_READ_COMMAND	0x00000001
40
41struct fsl_pq_mii {
42	u32 miimcfg;	/* MII management configuration reg */
43	u32 miimcom;	/* MII management command reg */
44	u32 miimadd;	/* MII management address reg */
45	u32 miimcon;	/* MII management control reg */
46	u32 miimstat;	/* MII management status reg */
47	u32 miimind;	/* MII management indication reg */
48};
49
50struct fsl_pq_mdio {
51	u8 res1[16];
52	u32 ieventm;	/* MDIO Interrupt event register (for etsec2)*/
53	u32 imaskm;	/* MDIO Interrupt mask register (for etsec2)*/
54	u8 res2[4];
55	u32 emapm;	/* MDIO Event mapping register (for etsec2)*/
56	u8 res3[1280];
57	struct fsl_pq_mii mii;
58	u8 res4[28];
59	u32 utbipar;	/* TBI phy address reg (only on UCC) */
60	u8 res5[2728];
61} __packed;
62
63/* Number of microseconds to wait for an MII register to respond */
64#define MII_TIMEOUT	1000
65
66struct fsl_pq_mdio_priv {
67	void __iomem *map;
68	struct fsl_pq_mii __iomem *regs;
69};
70
71/*
72 * Per-device-type data.  Each type of device tree node that we support gets
73 * one of these.
74 *
75 * @mii_offset: the offset of the MII registers within the memory map of the
76 * node.  Some nodes define only the MII registers, and some define the whole
77 * MAC (which includes the MII registers).
78 *
79 * @get_tbipa: determines the address of the TBIPA register
80 *
81 * @ucc_configure: a special function for extra QE configuration
82 */
83struct fsl_pq_mdio_data {
84	unsigned int mii_offset;	/* offset of the MII registers */
85	uint32_t __iomem * (*get_tbipa)(void __iomem *p);
86	void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
87};
88
89/*
90 * Write value to the PHY at mii_id at register regnum, on the bus attached
91 * to the local interface, which may be different from the generic mdio bus
92 * (tied to a single interface), waiting until the write is done before
93 * returning. This is helpful in programming interfaces like the TBI which
94 * control interfaces like onchip SERDES and are always tied to the local
95 * mdio pins, which may not be the same as system mdio bus, used for
96 * controlling the external PHYs, for example.
97 */
98static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
99		u16 value)
100{
101	struct fsl_pq_mdio_priv *priv = bus->priv;
102	struct fsl_pq_mii __iomem *regs = priv->regs;
103	unsigned int timeout;
104
105	/* Set the PHY address and the register address we want to write */
106	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
107
108	/* Write out the value we want */
109	iowrite32be(value, &regs->miimcon);
110
111	/* Wait for the transaction to finish */
112	timeout = MII_TIMEOUT;
113	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
114		cpu_relax();
115		timeout--;
116	}
117
118	return timeout ? 0 : -ETIMEDOUT;
119}
120
121/*
122 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
123 * Clears miimcom first.
124 *
125 * All PHY operation done on the bus attached to the local interface, which
126 * may be different from the generic mdio bus.  This is helpful in programming
127 * interfaces like the TBI which, in turn, control interfaces like on-chip
128 * SERDES and are always tied to the local mdio pins, which may not be the
129 * same as system mdio bus, used for controlling the external PHYs, for eg.
130 */
131static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
132{
133	struct fsl_pq_mdio_priv *priv = bus->priv;
134	struct fsl_pq_mii __iomem *regs = priv->regs;
135	unsigned int timeout;
136	u16 value;
137
138	/* Set the PHY address and the register address we want to read */
139	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
140
141	/* Clear miimcom, and then initiate a read */
142	iowrite32be(0, &regs->miimcom);
143	iowrite32be(MII_READ_COMMAND, &regs->miimcom);
144
145	/* Wait for the transaction to finish, normally less than 100us */
146	timeout = MII_TIMEOUT;
147	while ((ioread32be(&regs->miimind) &
148	       (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
149		cpu_relax();
150		timeout--;
151	}
152
153	if (!timeout)
154		return -ETIMEDOUT;
155
156	/* Grab the value of the register from miimstat */
157	value = ioread32be(&regs->miimstat);
158
159	dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
160	return value;
161}
162
163/* Reset the MIIM registers, and wait for the bus to free */
164static int fsl_pq_mdio_reset(struct mii_bus *bus)
165{
166	struct fsl_pq_mdio_priv *priv = bus->priv;
167	struct fsl_pq_mii __iomem *regs = priv->regs;
168	unsigned int timeout;
169
170	mutex_lock(&bus->mdio_lock);
171
172	/* Reset the management interface */
173	iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
174
175	/* Setup the MII Mgmt clock speed */
176	iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
177
178	/* Wait until the bus is free */
179	timeout = MII_TIMEOUT;
180	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
181		cpu_relax();
182		timeout--;
183	}
184
185	mutex_unlock(&bus->mdio_lock);
186
187	if (!timeout) {
188		dev_err(&bus->dev, "timeout waiting for MII bus\n");
189		return -EBUSY;
190	}
191
192	return 0;
193}
194
195#if IS_ENABLED(CONFIG_GIANFAR)
196/*
197 * Return the TBIPA address, starting from the address
198 * of the mapped GFAR MDIO registers (struct gfar)
199 * This is mildly evil, but so is our hardware for doing this.
200 * Also, we have to cast back to struct gfar because of
201 * definition weirdness done in gianfar.h.
202 */
203static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
204{
205	struct gfar __iomem *enet_regs = p;
206
207	return &enet_regs->tbipa;
208}
209
210/*
211 * Return the TBIPA address, starting from the address
212 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
213 */
214static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
215{
216	return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
217}
218
219/*
220 * Return the TBIPAR address for an eTSEC2 node
221 */
222static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
223{
224	return p;
225}
226#endif
227
228#if IS_ENABLED(CONFIG_UCC_GETH)
229/*
230 * Return the TBIPAR address for a QE MDIO node, starting from the address
231 * of the mapped MII registers (struct fsl_pq_mii)
232 */
233static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
234{
235	struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
236
237	return &mdio->utbipar;
238}
239
240/*
241 * Find the UCC node that controls the given MDIO node
242 *
243 * For some reason, the QE MDIO nodes are not children of the UCC devices
244 * that control them.  Therefore, we need to scan all UCC nodes looking for
245 * the one that encompases the given MDIO node.  We do this by comparing
246 * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
247 * passed, and the correct UCC node will cover the entire address range.
248 *
249 * This assumes that there is only one QE MDIO node in the entire device tree.
250 */
251static void ucc_configure(phys_addr_t start, phys_addr_t end)
252{
253	static bool found_mii_master;
254	struct device_node *np = NULL;
255
256	if (found_mii_master)
257		return;
258
259	for_each_compatible_node(np, NULL, "ucc_geth") {
260		struct resource res;
261		const uint32_t *iprop;
262		uint32_t id;
263		int ret;
264
265		ret = of_address_to_resource(np, 0, &res);
266		if (ret < 0) {
267			pr_debug("fsl-pq-mdio: no address range in node %pOF\n",
268				 np);
269			continue;
270		}
271
272		/* if our mdio regs fall within this UCC regs range */
273		if ((start < res.start) || (end > res.end))
274			continue;
275
276		iprop = of_get_property(np, "cell-index", NULL);
277		if (!iprop) {
278			iprop = of_get_property(np, "device-id", NULL);
279			if (!iprop) {
280				pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n",
281					 np);
282				continue;
283			}
284		}
285
286		id = be32_to_cpup(iprop);
287
288		/*
289		 * cell-index and device-id for QE nodes are
290		 * numbered from 1, not 0.
291		 */
292		if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
293			pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n",
294				 np);
295			continue;
296		}
297
298		pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
299		found_mii_master = true;
300	}
301}
302
303#endif
304
305static const struct of_device_id fsl_pq_mdio_match[] = {
306#if IS_ENABLED(CONFIG_GIANFAR)
307	{
308		.compatible = "fsl,gianfar-tbi",
309		.data = &(struct fsl_pq_mdio_data) {
310			.mii_offset = 0,
311			.get_tbipa = get_gfar_tbipa_from_mii,
312		},
313	},
314	{
315		.compatible = "fsl,gianfar-mdio",
316		.data = &(struct fsl_pq_mdio_data) {
317			.mii_offset = 0,
318			.get_tbipa = get_gfar_tbipa_from_mii,
319		},
320	},
321	{
322		.type = "mdio",
323		.compatible = "gianfar",
324		.data = &(struct fsl_pq_mdio_data) {
325			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
326			.get_tbipa = get_gfar_tbipa_from_mdio,
327		},
328	},
329	{
330		.compatible = "fsl,etsec2-tbi",
331		.data = &(struct fsl_pq_mdio_data) {
332			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
333			.get_tbipa = get_etsec_tbipa,
334		},
335	},
336	{
337		.compatible = "fsl,etsec2-mdio",
338		.data = &(struct fsl_pq_mdio_data) {
339			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
340			.get_tbipa = get_etsec_tbipa,
341		},
342	},
343#endif
344#if IS_ENABLED(CONFIG_UCC_GETH)
345	{
346		.compatible = "fsl,ucc-mdio",
347		.data = &(struct fsl_pq_mdio_data) {
348			.mii_offset = 0,
349			.get_tbipa = get_ucc_tbipa,
350			.ucc_configure = ucc_configure,
351		},
352	},
353	{
354		/* Legacy UCC MDIO node */
355		.type = "mdio",
356		.compatible = "ucc_geth_phy",
357		.data = &(struct fsl_pq_mdio_data) {
358			.mii_offset = 0,
359			.get_tbipa = get_ucc_tbipa,
360			.ucc_configure = ucc_configure,
361		},
362	},
363#endif
364	/* No Kconfig option for Fman support yet */
365	{
366		.compatible = "fsl,fman-mdio",
367		.data = &(struct fsl_pq_mdio_data) {
368			.mii_offset = 0,
369			/* Fman TBI operations are handled elsewhere */
370		},
371	},
372
373	{},
374};
375MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
376
377static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev,
378		      uint32_t __iomem * (*get_tbipa)(void __iomem *),
379		      void __iomem *reg_map, struct resource *reg_res)
380{
381	struct device_node *np = pdev->dev.of_node;
382	uint32_t __iomem *tbipa;
383	bool tbipa_mapped;
384
385	tbipa = of_iomap(np, 1);
386	if (tbipa) {
387		tbipa_mapped = true;
388	} else {
389		tbipa_mapped = false;
390		tbipa = (*get_tbipa)(reg_map);
391
392		/*
393		 * Add consistency check to make sure TBI is contained within
394		 * the mapped range (not because we would get a segfault,
395		 * rather to catch bugs in computing TBI address). Print error
396		 * message but continue anyway.
397		 */
398		if ((void *)tbipa > reg_map + resource_size(reg_res) - 4)
399			dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
400				((void *)tbipa - reg_map) + 4);
401	}
402
403	iowrite32be(be32_to_cpu(tbipa_val), tbipa);
404
405	if (tbipa_mapped)
406		iounmap(tbipa);
407}
408
409static int fsl_pq_mdio_probe(struct platform_device *pdev)
410{
411	const struct fsl_pq_mdio_data *data;
412	struct device_node *np = pdev->dev.of_node;
413	struct resource res;
414	struct device_node *tbi;
415	struct fsl_pq_mdio_priv *priv;
416	struct mii_bus *new_bus;
417	int err;
418
419	data = device_get_match_data(&pdev->dev);
420	if (!data) {
421		dev_err(&pdev->dev, "Failed to match device\n");
422		return -ENODEV;
423	}
424
425	new_bus = mdiobus_alloc_size(sizeof(*priv));
426	if (!new_bus)
427		return -ENOMEM;
428
429	priv = new_bus->priv;
430	new_bus->name = "Freescale PowerQUICC MII Bus";
431	new_bus->read = &fsl_pq_mdio_read;
432	new_bus->write = &fsl_pq_mdio_write;
433	new_bus->reset = &fsl_pq_mdio_reset;
434
435	err = of_address_to_resource(np, 0, &res);
436	if (err < 0) {
437		dev_err(&pdev->dev, "could not obtain address information\n");
438		goto error;
439	}
440
441	snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np,
442		 (unsigned long long)res.start);
443
444	priv->map = of_iomap(np, 0);
445	if (!priv->map) {
446		err = -ENOMEM;
447		goto error;
448	}
449
450	/*
451	 * Some device tree nodes represent only the MII registers, and
452	 * others represent the MAC and MII registers.  The 'mii_offset' field
453	 * contains the offset of the MII registers inside the mapped register
454	 * space.
455	 */
456	if (data->mii_offset > resource_size(&res)) {
457		dev_err(&pdev->dev, "invalid register map\n");
458		err = -EINVAL;
459		goto error;
460	}
461	priv->regs = priv->map + data->mii_offset;
462
463	new_bus->parent = &pdev->dev;
464	platform_set_drvdata(pdev, new_bus);
465
466	if (data->get_tbipa) {
467		for_each_child_of_node(np, tbi) {
468			if (of_node_is_type(tbi, "tbi-phy")) {
469				dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n",
470					tbi);
471				break;
472			}
473		}
474
475		if (tbi) {
476			const u32 *prop = of_get_property(tbi, "reg", NULL);
477			if (!prop) {
478				dev_err(&pdev->dev,
479					"missing 'reg' property in node %pOF\n",
480					tbi);
481				err = -EBUSY;
482				goto error;
483			}
484			set_tbipa(*prop, pdev,
485				  data->get_tbipa, priv->map, &res);
486		}
487	}
488
489	if (data->ucc_configure)
490		data->ucc_configure(res.start, res.end);
491
492	err = of_mdiobus_register(new_bus, np);
493	if (err) {
494		dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
495			new_bus->name);
496		goto error;
497	}
498
499	return 0;
500
501error:
502	if (priv->map)
503		iounmap(priv->map);
504
505	kfree(new_bus);
506
507	return err;
508}
509
510
511static void fsl_pq_mdio_remove(struct platform_device *pdev)
512{
513	struct device *device = &pdev->dev;
514	struct mii_bus *bus = dev_get_drvdata(device);
515	struct fsl_pq_mdio_priv *priv = bus->priv;
516
517	mdiobus_unregister(bus);
518
519	iounmap(priv->map);
520	mdiobus_free(bus);
521}
522
523static struct platform_driver fsl_pq_mdio_driver = {
524	.driver = {
525		.name = "fsl-pq_mdio",
526		.of_match_table = fsl_pq_mdio_match,
527	},
528	.probe = fsl_pq_mdio_probe,
529	.remove_new = fsl_pq_mdio_remove,
530};
531
532module_platform_driver(fsl_pq_mdio_driver);
533
534MODULE_DESCRIPTION("Freescale PQ MDIO helpers");
535MODULE_LICENSE("GPL");
536