1/*
2 * Ethernet on Serial Communications Controller (SCC) driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 *  by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * This file is licensed under the terms of the GNU General Public License
11 * version 2. This program is licensed "as is" without any warranty of any
12 * kind, whether express or implied.
13 */
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/string.h>
19#include <linux/ptrace.h>
20#include <linux/errno.h>
21#include <linux/ioport.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/netdevice.h>
25#include <linux/etherdevice.h>
26#include <linux/skbuff.h>
27#include <linux/spinlock.h>
28#include <linux/mii.h>
29#include <linux/ethtool.h>
30#include <linux/bitops.h>
31#include <linux/fs.h>
32#include <linux/platform_device.h>
33#include <linux/of_address.h>
34#include <linux/of_irq.h>
35
36#include <asm/irq.h>
37#include <linux/uaccess.h>
38
39#include "fs_enet.h"
40
41/*************************************************/
42#if defined(CONFIG_CPM1)
43/* for a 8xx __raw_xxx's are sufficient */
44#define __fs_out32(addr, x)	__raw_writel(x, addr)
45#define __fs_out16(addr, x)	__raw_writew(x, addr)
46#define __fs_out8(addr, x)	__raw_writeb(x, addr)
47#define __fs_in32(addr)	__raw_readl(addr)
48#define __fs_in16(addr)	__raw_readw(addr)
49#define __fs_in8(addr)	__raw_readb(addr)
50#else
51/* for others play it safe */
52#define __fs_out32(addr, x)	out_be32(addr, x)
53#define __fs_out16(addr, x)	out_be16(addr, x)
54#define __fs_in32(addr)	in_be32(addr)
55#define __fs_in16(addr)	in_be16(addr)
56#define __fs_out8(addr, x)	out_8(addr, x)
57#define __fs_in8(addr)	in_8(addr)
58#endif
59
60/* write, read, set bits, clear bits */
61#define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v))
62#define R32(_p, _m)     __fs_in32(&(_p)->_m)
63#define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
64#define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
65
66#define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v))
67#define R16(_p, _m)     __fs_in16(&(_p)->_m)
68#define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
69#define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
70
71#define W8(_p, _m, _v)  __fs_out8(&(_p)->_m, (_v))
72#define R8(_p, _m)      __fs_in8(&(_p)->_m)
73#define S8(_p, _m, _v)  W8(_p, _m, R8(_p, _m) | (_v))
74#define C8(_p, _m, _v)  W8(_p, _m, R8(_p, _m) & ~(_v))
75
76#define SCC_MAX_MULTICAST_ADDRS	64
77
78/*
79 * Delay to wait for SCC reset command to complete (in us)
80 */
81#define SCC_RESET_DELAY		50
82
83static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op)
84{
85	const struct fs_platform_info *fpi = fep->fpi;
86
87	return cpm_command(fpi->cp_command, op);
88}
89
90static int do_pd_setup(struct fs_enet_private *fep)
91{
92	struct platform_device *ofdev = to_platform_device(fep->dev);
93
94	fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
95	if (!fep->interrupt)
96		return -EINVAL;
97
98	fep->scc.sccp = of_iomap(ofdev->dev.of_node, 0);
99	if (!fep->scc.sccp)
100		return -EINVAL;
101
102	fep->scc.ep = of_iomap(ofdev->dev.of_node, 1);
103	if (!fep->scc.ep) {
104		iounmap(fep->scc.sccp);
105		return -EINVAL;
106	}
107
108	return 0;
109}
110
111#define SCC_NAPI_EVENT_MSK	(SCCE_ENET_RXF | SCCE_ENET_RXB | SCCE_ENET_TXB)
112#define SCC_EVENT		(SCCE_ENET_RXF | SCCE_ENET_TXB)
113#define SCC_ERR_EVENT_MSK	(SCCE_ENET_TXE | SCCE_ENET_BSY)
114
115static int setup_data(struct net_device *dev)
116{
117	struct fs_enet_private *fep = netdev_priv(dev);
118
119	do_pd_setup(fep);
120
121	fep->scc.hthi = 0;
122	fep->scc.htlo = 0;
123
124	fep->ev_napi = SCC_NAPI_EVENT_MSK;
125	fep->ev = SCC_EVENT | SCCE_ENET_TXE;
126	fep->ev_err = SCC_ERR_EVENT_MSK;
127
128	return 0;
129}
130
131static int allocate_bd(struct net_device *dev)
132{
133	struct fs_enet_private *fep = netdev_priv(dev);
134	const struct fs_platform_info *fpi = fep->fpi;
135
136	fep->ring_mem_addr = cpm_muram_alloc((fpi->tx_ring + fpi->rx_ring) *
137					     sizeof(cbd_t), 8);
138	if (IS_ERR_VALUE(fep->ring_mem_addr))
139		return -ENOMEM;
140
141	fep->ring_base = (void __iomem __force*)
142		cpm_muram_addr(fep->ring_mem_addr);
143
144	return 0;
145}
146
147static void free_bd(struct net_device *dev)
148{
149	struct fs_enet_private *fep = netdev_priv(dev);
150
151	if (fep->ring_base)
152		cpm_muram_free(fep->ring_mem_addr);
153}
154
155static void cleanup_data(struct net_device *dev)
156{
157	/* nothing */
158}
159
160static void set_promiscuous_mode(struct net_device *dev)
161{
162	struct fs_enet_private *fep = netdev_priv(dev);
163	scc_t __iomem *sccp = fep->scc.sccp;
164
165	S16(sccp, scc_psmr, SCC_PSMR_PRO);
166}
167
168static void set_multicast_start(struct net_device *dev)
169{
170	struct fs_enet_private *fep = netdev_priv(dev);
171	scc_enet_t __iomem *ep = fep->scc.ep;
172
173	W16(ep, sen_gaddr1, 0);
174	W16(ep, sen_gaddr2, 0);
175	W16(ep, sen_gaddr3, 0);
176	W16(ep, sen_gaddr4, 0);
177}
178
179static void set_multicast_one(struct net_device *dev, const u8 * mac)
180{
181	struct fs_enet_private *fep = netdev_priv(dev);
182	scc_enet_t __iomem *ep = fep->scc.ep;
183	u16 taddrh, taddrm, taddrl;
184
185	taddrh = ((u16) mac[5] << 8) | mac[4];
186	taddrm = ((u16) mac[3] << 8) | mac[2];
187	taddrl = ((u16) mac[1] << 8) | mac[0];
188
189	W16(ep, sen_taddrh, taddrh);
190	W16(ep, sen_taddrm, taddrm);
191	W16(ep, sen_taddrl, taddrl);
192	scc_cr_cmd(fep, CPM_CR_SET_GADDR);
193}
194
195static void set_multicast_finish(struct net_device *dev)
196{
197	struct fs_enet_private *fep = netdev_priv(dev);
198	scc_t __iomem *sccp = fep->scc.sccp;
199	scc_enet_t __iomem *ep = fep->scc.ep;
200
201	/* clear promiscuous always */
202	C16(sccp, scc_psmr, SCC_PSMR_PRO);
203
204	/* if all multi or too many multicasts; just enable all */
205	if ((dev->flags & IFF_ALLMULTI) != 0 ||
206	    netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) {
207
208		W16(ep, sen_gaddr1, 0xffff);
209		W16(ep, sen_gaddr2, 0xffff);
210		W16(ep, sen_gaddr3, 0xffff);
211		W16(ep, sen_gaddr4, 0xffff);
212	}
213}
214
215static void set_multicast_list(struct net_device *dev)
216{
217	struct netdev_hw_addr *ha;
218
219	if ((dev->flags & IFF_PROMISC) == 0) {
220		set_multicast_start(dev);
221		netdev_for_each_mc_addr(ha, dev)
222			set_multicast_one(dev, ha->addr);
223		set_multicast_finish(dev);
224	} else
225		set_promiscuous_mode(dev);
226}
227
228/*
229 * This function is called to start or restart the FEC during a link
230 * change.  This only happens when switching between half and full
231 * duplex.
232 */
233static void restart(struct net_device *dev)
234{
235	struct fs_enet_private *fep = netdev_priv(dev);
236	scc_t __iomem *sccp = fep->scc.sccp;
237	scc_enet_t __iomem *ep = fep->scc.ep;
238	const struct fs_platform_info *fpi = fep->fpi;
239	u16 paddrh, paddrm, paddrl;
240	const unsigned char *mac;
241	int i;
242
243	C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
244
245	/* clear everything (slow & steady does it) */
246	for (i = 0; i < sizeof(*ep); i++)
247		__fs_out8((u8 __iomem *)ep + i, 0);
248
249	/* point to bds */
250	W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr);
251	W16(ep, sen_genscc.scc_tbase,
252	    fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring);
253
254	/* Initialize function code registers for big-endian.
255	 */
256#ifndef CONFIG_NOT_COHERENT_CACHE
257	W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL);
258	W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL);
259#else
260	W8(ep, sen_genscc.scc_rfcr, SCC_EB);
261	W8(ep, sen_genscc.scc_tfcr, SCC_EB);
262#endif
263
264	/* Set maximum bytes per receive buffer.
265	 * This appears to be an Ethernet frame size, not the buffer
266	 * fragment size.  It must be a multiple of four.
267	 */
268	W16(ep, sen_genscc.scc_mrblr, 0x5f0);
269
270	/* Set CRC preset and mask.
271	 */
272	W32(ep, sen_cpres, 0xffffffff);
273	W32(ep, sen_cmask, 0xdebb20e3);
274
275	W32(ep, sen_crcec, 0);	/* CRC Error counter */
276	W32(ep, sen_alec, 0);	/* alignment error counter */
277	W32(ep, sen_disfc, 0);	/* discard frame counter */
278
279	W16(ep, sen_pads, 0x8888);	/* Tx short frame pad character */
280	W16(ep, sen_retlim, 15);	/* Retry limit threshold */
281
282	W16(ep, sen_maxflr, 0x5ee);	/* maximum frame length register */
283
284	W16(ep, sen_minflr, PKT_MINBUF_SIZE);	/* minimum frame length register */
285
286	W16(ep, sen_maxd1, 0x000005f0);	/* maximum DMA1 length */
287	W16(ep, sen_maxd2, 0x000005f0);	/* maximum DMA2 length */
288
289	/* Clear hash tables.
290	 */
291	W16(ep, sen_gaddr1, 0);
292	W16(ep, sen_gaddr2, 0);
293	W16(ep, sen_gaddr3, 0);
294	W16(ep, sen_gaddr4, 0);
295	W16(ep, sen_iaddr1, 0);
296	W16(ep, sen_iaddr2, 0);
297	W16(ep, sen_iaddr3, 0);
298	W16(ep, sen_iaddr4, 0);
299
300	/* set address
301	 */
302	mac = dev->dev_addr;
303	paddrh = ((u16) mac[5] << 8) | mac[4];
304	paddrm = ((u16) mac[3] << 8) | mac[2];
305	paddrl = ((u16) mac[1] << 8) | mac[0];
306
307	W16(ep, sen_paddrh, paddrh);
308	W16(ep, sen_paddrm, paddrm);
309	W16(ep, sen_paddrl, paddrl);
310
311	W16(ep, sen_pper, 0);
312	W16(ep, sen_taddrl, 0);
313	W16(ep, sen_taddrm, 0);
314	W16(ep, sen_taddrh, 0);
315
316	fs_init_bds(dev);
317
318	scc_cr_cmd(fep, CPM_CR_INIT_TRX);
319
320	W16(sccp, scc_scce, 0xffff);
321
322	/* Enable interrupts we wish to service.
323	 */
324	W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
325
326	/* Set GSMR_H to enable all normal operating modes.
327	 * Set GSMR_L to enable Ethernet to MC68160.
328	 */
329	W32(sccp, scc_gsmrh, 0);
330	W32(sccp, scc_gsmrl,
331	    SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 |
332	    SCC_GSMRL_MODE_ENET);
333
334	/* Set sync/delimiters.
335	 */
336	W16(sccp, scc_dsr, 0xd555);
337
338	/* Set processing mode.  Use Ethernet CRC, catch broadcast, and
339	 * start frame search 22 bit times after RENA.
340	 */
341	W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
342
343	/* Set full duplex mode if needed */
344	if (dev->phydev->duplex)
345		S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE);
346
347	/* Restore multicast and promiscuous settings */
348	set_multicast_list(dev);
349
350	S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
351}
352
353static void stop(struct net_device *dev)
354{
355	struct fs_enet_private *fep = netdev_priv(dev);
356	scc_t __iomem *sccp = fep->scc.sccp;
357	int i;
358
359	for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++)
360		udelay(1);
361
362	if (i == SCC_RESET_DELAY)
363		dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n");
364
365	W16(sccp, scc_sccm, 0);
366	C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
367
368	fs_cleanup_bds(dev);
369}
370
371static void napi_clear_event_fs(struct net_device *dev)
372{
373	struct fs_enet_private *fep = netdev_priv(dev);
374	scc_t __iomem *sccp = fep->scc.sccp;
375
376	W16(sccp, scc_scce, SCC_NAPI_EVENT_MSK);
377}
378
379static void napi_enable_fs(struct net_device *dev)
380{
381	struct fs_enet_private *fep = netdev_priv(dev);
382	scc_t __iomem *sccp = fep->scc.sccp;
383
384	S16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK);
385}
386
387static void napi_disable_fs(struct net_device *dev)
388{
389	struct fs_enet_private *fep = netdev_priv(dev);
390	scc_t __iomem *sccp = fep->scc.sccp;
391
392	C16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK);
393}
394
395static void rx_bd_done(struct net_device *dev)
396{
397	/* nothing */
398}
399
400static void tx_kickstart(struct net_device *dev)
401{
402	/* nothing */
403}
404
405static u32 get_int_events(struct net_device *dev)
406{
407	struct fs_enet_private *fep = netdev_priv(dev);
408	scc_t __iomem *sccp = fep->scc.sccp;
409
410	return (u32) R16(sccp, scc_scce);
411}
412
413static void clear_int_events(struct net_device *dev, u32 int_events)
414{
415	struct fs_enet_private *fep = netdev_priv(dev);
416	scc_t __iomem *sccp = fep->scc.sccp;
417
418	W16(sccp, scc_scce, int_events & 0xffff);
419}
420
421static void ev_error(struct net_device *dev, u32 int_events)
422{
423	struct fs_enet_private *fep = netdev_priv(dev);
424
425	dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events);
426}
427
428static int get_regs(struct net_device *dev, void *p, int *sizep)
429{
430	struct fs_enet_private *fep = netdev_priv(dev);
431
432	if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *))
433		return -EINVAL;
434
435	memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t));
436	p = (char *)p + sizeof(scc_t);
437
438	memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *));
439
440	return 0;
441}
442
443static int get_regs_len(struct net_device *dev)
444{
445	return sizeof(scc_t) + sizeof(scc_enet_t __iomem *);
446}
447
448static void tx_restart(struct net_device *dev)
449{
450	struct fs_enet_private *fep = netdev_priv(dev);
451
452	scc_cr_cmd(fep, CPM_CR_RESTART_TX);
453}
454
455
456
457/*************************************************************************/
458
459const struct fs_ops fs_scc_ops = {
460	.setup_data		= setup_data,
461	.cleanup_data		= cleanup_data,
462	.set_multicast_list	= set_multicast_list,
463	.restart		= restart,
464	.stop			= stop,
465	.napi_clear_event	= napi_clear_event_fs,
466	.napi_enable		= napi_enable_fs,
467	.napi_disable		= napi_disable_fs,
468	.rx_bd_done		= rx_bd_done,
469	.tx_kickstart		= tx_kickstart,
470	.get_int_events		= get_int_events,
471	.clear_int_events	= clear_int_events,
472	.ev_error		= ev_error,
473	.get_regs		= get_regs,
474	.get_regs_len		= get_regs_len,
475	.tx_restart		= tx_restart,
476	.allocate_bd		= allocate_bd,
477	.free_bd		= free_bd,
478};
479